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Abstract. We consider here the problem of describing the melting of an ice ball surrounded by
water. The corresponding mathematical model consists of the Stefan problem with radial symmetry.
We obtain asymptotic expansions for the radius of the melting ball which turn out to be of a different
nature according to the casesN ≥ 3 andN = 2, N being the space dimension. The methods employed
combine matched asymptotic expansion techniques, a priori estimates, and topological results.
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1. Introduction. This paper is concerned with radial solutions of the following
Stefan problem. To find functions θ(r, t) and R(t) such that

θt = θrr +

(
N − 1

r

)
θr for r > R(t) and t > 0(1.1a)

θ(r, 0) = θ0(r) for r > R(0),(1.1b)

θ(r, t) = 0 if r ≤ R(t) and t > 0,(1.1c)

θr(R(t), t) = −Ṙ(t) if t > 0.(1.1d)

Here r = |x|, x ∈ RN , and N ≥ 2. As it stands, (1.1) is a model for describing the
melting of a ball of ice surrounded by water. θ(r, t) denotes the temperature of the
medium, which is assumed to be zero at the ice phase. We do not require θ0(r) to be
positive for every r > R(0), so that the existence of regions where water is initially
undercooled is not ruled out.

In view of classical results, one expects that under fairly general circumstances
(for instance, if θ0(r) is nonnegative or if undercooling does not affect the dynamics
of the problem much) the ice ball will entirely melt at some finite time t = T < ∞.
We shall address the following here.

Question. What is the speed at which ice balls collapse? In other words, what is
the asymptotic behavior of R(t) as t ↑ T?

We shall show in what follows that there is a countable family of possible behaviors
for R(t) as the melting time t = T is approached. To describe our results, it will be
convenient to consider separately the cases N = 2 and N ≥ 3. In the bidimensional
situation we prove the following theorem.
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Theorem 1.1. Assume that N = 2. For any T > 0, there exist solutions of (1.1)
such that the corresponding interfaces behave as t ↑ T in one of the following ways:

R(t) = B(T − t)
1
2 e−

√
2

2 | log(T−t)| 12 | log(T − t)|
1

4
√

log(T−t)
− 1

4 · (1 + o(1)),(1.2)

where B is a fixed positive constant, or

R(t) = C(T − t)
l
2 | log(T − t)|− l

2(l−1) (1 + o(1)),(1.3)

where C is an arbitrary positive constant and l is any integer such that l ≥ 2.
Concerning the case of higher dimensions, we obtain the following theorem.
Theorem 1.2. Assume that N ≥ 3. For any T > 0, there exist solutions of (1.1)

such that the corresponding interfaces behave as t ↑ T in one of the following ways:

R(t) = BN (T − t)
1
2 | log(T − t)|− 1

N−2 (1 + o(1)),(1.4)

where BN is a fixed positive constant depending on the dimension N ,

or R(t) = C(T − t)
l
2 (1 + o(1)),(1.5)

where C is an arbitrary positive constant and l is any integer number such that l ≥ 2.
Let us remark briefly on Theorems 1.1 and 1.2. To begin with, we do not preclude

here the existence of other possible types of shrinking spheres besides those described
in (1.2)–(1.5), although it seems very unlikely in view of the arguments leading to
the proofs of these results. As a matter of fact, we expect (1.2) and (1.4) to provide
the generic asymptotics for the case of the classical, not undercooled, Stefan problem.
However, no proof of such a statement is given here. It will be apparent from the proofs
that (1.3) and (1.5) correspond to problems with small undercooling, i.e., problems
where temperature changes sign somewhere for any t < T .

We next observe that (1.2)–(1.5) imply that the ice radii R(t) are such that

R(t) � (T − t)
1
2 as t ↑ T,

and the contracting rates are therefore faster than those corresponding to the natural
scales of the problem under consideration. In particular, the solutions obtained are
not self-similar.

It is worth pointing out that our approach here allows us to obtain further infor-
mation on the structure of the solutions involved. For instance, asymptotic expansions
for the predicted water temperature near the melting ice ball can be obtained as t ↑ T .
The corresponding result reads as follows.

Theorem 1.3. Assume first that N = 2. Then the solutions referred to in
Theorem 1.1 are such that the following expansions hold:

If (1.2) occurs, then

θ(x, T ) = D e−2| log |x|| 12 |2 log |x||
1

2
√

2| log |x|| (1 + o(1)) as x ↓ 0,(1.6)

where D is a fixed positive constant.
If (1.3) occurs, then

θ(x, T ) = D1|x|2l−2(| log |x||)− 1
l−1 (1 + o(1)) as x ↓ 0(1.7)

for some positive constant D1.
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Now suppose that N ≥ 3. Then the solutions referred to in Theorem 1.2 are such
that the following expansions hold:

If (1.4) occurs, then

θ(x, T ) = KN (log |x|)− 2
N−2 (1 + o(1)) as x ↓ 0,(1.8)

where KN is a fixed positive constant depending on the dimension N .
If (1.5) occurs, then

θ(x, T ) = K1|x|2l−2(1 + o(1)) as x ↓ 0(1.9)

for some positive constant K1.
Concerning previous related work, it is well known that for N = 1 the asymptotic

shape of the vanishing ice phase is a space-time wedge which has its tip at t = T . We
refer for such a case to the paper [AK], where disappearance of one of the phases in a
one-dimensional, two-phase Stefan problem is studied by means of functional analysis
methods. A different approach, based on matched asymptotics expansion techniques
has been developed in [RSP] and [SW].

For instance, in [SW] a formal analysis of (1.1) with (1.1d) replaced by

θr(R(t), t) = −ΛṘ(t) for t > 0(1.10)

is performed in the limit Λ → ∞. In particular a boundary layer is then identified
where an expansion similar to (1.2) and (1.4) takes place. The reader is referred to
[DH], [HD1], [HD2], and [S] for related work, as well as to [R] and [M] for a general
outline of results concerning Stefan problems.

We conclude this introduction by describing the plan of the paper. Some pre-
liminary material is gathered in section 2. Section 3 is then devoted to deriving the
results in Theorems 1.1–1.3 by means of matched asymptotic expansion techniques
in a way which we believe to be conceptually simpler than the study done in [RSP],
[SW] for (1.1a)–(1.1c) and (1.10). Besides its heuristic interest, this formal method
detects a number of previously unnoticed patterns and provides the basic lines along
which a rigorous proof is subsequently implemented. The arguments in section 3 are
made rigorous in sections 4 to 7. To be precise, the sought-for solutions are obtained
by means of a topological fixed point argument. This is a classical approach in the
literature on partial differential equations (PDEs) which, to mention but a few ex-
amples, has been used recently to analyze singularity patterns arising in parabolic
equations in the works [B1], [B2], [AV], and [HV3], among others. The basic aspects
of our topological method are presented in section 4.

Sections 5 and 6 are then devoted to providing the various estimates required to
yield (1.2) in Theorem 1.1 and (1.6) in Theorem 1.3. Once this has been achieved, we
conclude by sketching in section 7 those modifications required to obtain (1.3)–(1.5)
as well as (1.7)–(1.9).

2. Preliminaries. Let (θ(r, t), R(t)) be a solution of (1.1). It will be convenient
for our purposes to introduce a new variable u(r, t) given by

u(r, t) =

∫ r

R(t)

ξ1−Ndξ
∫ ξ

R(t)

sN−1(θ(s, t) + 1) ds if r > R(t),(2.1a)

u(r, t) = 0 if r ≤ R(t).(2.1b)
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We then readily see that u(r, t) satisfies

ut = urr +

(
N − 1

r

)
ur −H(u) for x ∈ RN , t > 0,(2.2a)

where H(u) is the standard Heaviside function; i.e., H(u) = 1 whenever u > 0 and
H(u) = 0 otherwise. Equation (2.2a) is to be complemented with the initial condition

u(r, 0) =

∫ r

R(0)

ξ1−Ndξ
∫ ξ

R(0)

sN−1(θ(s, 0) + 1) ds.(2.2b)

For ease of notation, we shall often use the symbols ∆ and ∇ instead of their radial
counterparts when dealing with (2.2a) and related equations. Further, we introduce
self-similar variables as follows:

u(r, t) = (T − t)Φ(y, τ), y = r(T − t)−
1
2 , τ = − log(T − t);(2.3)

we define a rescaled free boundary ε(τ) given by

ε(τ) = R(t)e
τ
2 ≡ R(t)(T − t)−

1
2 .(2.4)

It is then readily seen that Φ satisfies the following equation:

Φτ = Φyy +

(
N − 1

y
− y

2

)
Φy −H(Φ)

≡ ∆Φ− 1

2
y∇Φ + Φ− (1− χε)(2.5)

≡ AΦ− (1− χε),

where χε(y) = 1 for y < ε(τ) and χε(y) = 0 otherwise. The linear operator A will
play a key role in our approach. Consider the weighted space

L2
w,r(R+) =

{
f ∈ L2

loc(R+) : ‖f‖2 =

∫ ∞

0

yN−1|f(y)|2e−y
2

4 dy <∞
}
.

Clearly L2
w,r(R+) is a Hilbert space when endowed with the norm

‖f‖2 = 〈f, f〉 =

∫ ∞

0

yN−1|f(y)|2e−y
2

4 dy,

where we have used the symbol 〈 , 〉 to denote the corresponding scalar product.
For any positive integer k, one may then define the Hilbert spaces Hk

w,r(R+) in a
straightforward way. By classical spectral theory, one then has that the radial operator
A in (2.5) is self-adjoint in L2

w,r(R+) with domain D(A) = H2
w,r(R+). Furthermore,

the eigenvalues of A consist of the sequence

λk = 1− k, k = 0, 1, 2, . . . .(2.6a)

The corresponding eigenfunctions can be written in the form

ϕk(y) =


ckLk

(
y2

4

)
if N = 2, k = 0, 1, 2, . . . ,

ck,NL
N−2
N

k

(
y2

4

)
if N ≥ 3, k = 0, 1, 2, . . . ,

(2.6b)
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where Lk(x) (resp. L
(N−2)/N
k (x)) denotes the standard kth Laguerre polynomial (resp.

the modified Lαk (x) Laguerre polynomial with α = N−2
N ), cf., for instance, [L] and

[MF] for a review of properties of such functions. The normalization constants ck and
ck,N in (2.6b) are selected so that

‖ϕk‖ = 1 for any k.(2.6c)

By classical results (cf., for instance, [MF]), we readily see that

c2k,N =
Γ(N2 )Γ(k + 1)

2N
(
Γ
(
N−2

2 + k + 1
))2

π
N
2

,(2.7a)

c2k =
1

4πΓ(k + 1)
.(2.7b)

The following a priori bound on solutions of (2.5) is important for our purposes:

Φ(y, τ) ≤ C(y2 + 1) for some C > 0 and any y > 0, τ > 0.(2.8)

Estimate (2.8) can be obtained, for instance, from the Bernstein-type bound

|∇Φ(y, τ)| ≤ C for any y and any τ > 0,

which holds for solutions of (2.5) under rather loose assumptions on their initial values
(cf., for instance, [HV1] for a related result). Arguing as in [HV2], we may deduce
from (2.8) the following convergence result:

Φ(y, t) → y2

4
as t→∞,

uniformly on sets y ≤M <∞.

(2.9)

Since (2.9) plays an important role in what follows, we shall briefly sketch here
the main ideas in its proof and refer to [HV2] for details. To begin with, an energy
argument like that in [GK] shows that

Φ(y, τ) → Φ∗(y) τ →∞
uniformly on compact sets of |y|, where Φ∗ is a stationary solution of (2.5). Arguing
as in Lemma 4.3 of [HV2], we see that either limτ→∞ ε(τ) = 0 or limτ→∞ ε(τ) = 1.
The second case would allow for a possible stationary solution Φ∗(y) = 1, which
would in turn yield that Φ(0, τ) > 0 for τ � 1. This in particular implies that the ice
ball has already disappeared for some time t < T , which is a contradiction. On the
other hand, the case limτ→∞ ε(r) = 0 gives rise to two possible stationary solutions
satisfying (2.8), namely

Φ∗(y) = 0, Φ∗(y) =
y2

4
.

To rule out the first possibility, we argue by contradiction as follows. Assume
that limτ→∞ Φ(y, r) = 0 uniformly on sets |y| ≤ R < ∞. Then for fixed A > 0 and
ε > 0 we may select τ � 1 so that Φ(y, τ) ≤ ε for τ ≥ τ0 and |y| ≤ A. A quick glance
at equation (2.5) reveals then that Φ(y, τ) is at most of order O(εeτ−τ0) for τ > τ0
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at distances y ∼ Ae(τ−τ0)/2. As a matter of fact, this estimate is readily suggested
by dropping the absorption term H(Φ) in (2.5) and then checking how bounds on
initial values propagate along characteristics for the resulting equation. In terms of
the variable u(x, t), one is thus led to a bound of the type

u(x, t) ≤ εx2 for x ≤ δ, t0 < t < T,(2.10)

where δ = δ(ε) > 0 is a small (but fixed) positive number and t0 is close enough to
T . On the other hand, our assumption Φ∗(y) = 0 carries into

u(x, t0) ≤ ε(T − t0) for x ≤ A.(2.11)

From (2.10) and (2.11), a barrier argument as the one in [EK] or [HV1] yields
that u(x, T ) = 0 for some x > 0, thus contradicting the assumption that the ice ball
collapses exactly at t = T . This concludes the proof.

3. The formal argument. This section is devoted to showing how to obtain the
asymptotic results in Theorems 1.1 and 1.2 by means of formal perturbative methods.
While the approach to be described is a nonrigorous one, it is in our opinion the
crux of this work. The reason for this statement is that these heuristic methods not
only provide deep insight into what to expect but also mark the path along which
a rigorous argument can be implemented. This last task will be postponed until
sections 4–7.

For definiteness, we shall consider first the case N = 2 and remark then about
the differences which arise for N ≥ 3. Our starting point is the convergence result
(2.9). Bearing it in mind, we set

ψ(y, τ) = Φ(y, τ)− y2

4
(3.1)

so that the function ψ(y, τ) satisfies

ψτ = Aψ + χε(τ).(3.2)

We now introduce the following ansatz concerning the effect of the term χε(τ) in (3.2).
Assumption 3.1. For |y| � ε(τ) and τ � 1, we may replace (3.2) by

ψτ = Aψ + γε(τ)2δ(y),(3.3)

where constant γ is uniquely determined by imposing that∫
R2

χε(τ)dy = γε(τ)2
∫

R2

δ(y)dy (i.e., γ = π).(3.4)

We next proceed to derive (1.2) in Theorem 1.1. To this end, we set

Ψ(y, τ) =

∞∑
k=0

ak(τ)ϕk(y) ≡ a0(τ)ϕ0(y) + a1(τ)ϕ1(y) +Q(y, τ).(3.5)

The first two Fourier coefficients would then satisfy

ȧ0 = a0 + γε(τ)2〈ϕ0, δ(y)〉 for τ � 1,(3.6a)

ȧ1 = γε(τ)2〈ϕ1, δ(y)〉 for τ � 1,(3.6b)

whereas the remainder term Q(y, τ) is such that

Qτ = AQ+ γε(τ)2

(
δ(y)−

1∑
k=0

〈ϕk, δ(y)〉ϕk
)
,(3.6c)
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〈Q,ϕk〉 = 0 for k = 0, 1.(3.6d)

We now introduce the following assumption.
Assumption 3.2. The leading term in (3.5) as τ � 1 is a1(τ)ϕ1(y); i.e., evolution

in time of ψ(y, τ) is driven by the eigenfunction corresponding to zero eigenvalue.
Moreover, one then expects

|ε̇(τ)| � ε(τ) as τ →∞,(3.7a)

Q(y, τ) ∼ γε(τ)2F (y) as τ →∞(3.7b)

for a suitable function F (y). It then turns out that F (y) satisfies

AF +

(
δ(y)−

1∑
k=0

〈ϕk, δ(y)〉ϕk
)

= 0,(3.8a)

〈F,ϕk〉 = 0 for k = 0, 1.(3.8b)

We may now integrate (3.8a) and (3.8b) to obtain

F (y) = − 1

2π
log y +B +O(y2| log y|) for ε(τ) � y ≤ 1,(3.9)

where constant B is detemined by the orthogonality conditions (3.8b). On the other
hand, since we expect limτ→∞ ak(τ) = 0 for k = 0, 1, we obtain from (3.6) that

ak(τ) ∼ −γϕk(0)

∫ ∞

τ

ε(s)2e(1−k)(τ−s)ds for τ � 1, k = 0, 1.(3.10)

Putting together (3.5), (3.9), and (3.10), we arrive at

Φ(y, τ ∼ y2

4
− γ

1∑
k=0

ϕk(0)ϕk(y)

∫ ∞

τ

ε(s)2e(1−k)(τ−s)ds(3.11)

+ γε(τ)2
(
B − 1

2π
log y

)
whenever

ε(τ) � y ≤ C with C > 0 and τ � 1.

Formula (3.11) provides an outer expansion for Φ(y, τ) in regions sufficiently far from
the free boundary. To analyze the set where y ∼ ε(τ), we change variables as follows:

Φ(y, τ) = (ε(τ))2w(ξ, τ), ξ =
y

ε(τ)
.(3.12)

Substituting (3.12) into (2.5) readily gives

εε̇w − ε̇εξwξ + ε2wτ = ∆w − ξ2

2
ξwξ + ε2w − χ̃,(3.13)
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where now ∆w = wξξ +
wξ
ξ and χ̃(ξ) = 1 whenever ξ > 1 and is zero elsewhere. After

comparing the order of magnitude of the different terms in (3.13), we are led to guess
that as τ →∞, w(ξ, τ) ∼ w̄(ξ), where w̄(ξ) is the solution of

wξξ +
wξ
ξ

= 1 for ξ > 1,(3.14)

w(1) = wξ(1) = 0;

i.e.,

w̄(ξ) =
ξ2

4
− 1

2
log ξ − 1

4
for ξ > 1.(3.15)

In view of (3.12) and (3.15), we expect that

Φ(y, τ) ∼ ε2(τ)w̄

(
y

ε(τ)

)
=
y2

4
− ε(τ)2

2
log

(
y

ε(τ)

)
− ε(τ)2

4
(3.16)

for y ∼ ε(τ) and τ � 1.
Matching the inner and outer expansions (3.16) and (3.11), we obtain as a match-

ing condition

Bε(τ)2 − γ
1∑
k=0

ϕk(0)2
∫ ∞

τ

ε(s)2e(1−k)(τ−s)ds =
ε(τ)2

2
log ε(τ)− ε(τ)2

4
.(3.17)

This is the basic integral equation that determines the position of the rescaled free
boundary ε(τ). Actually, we claim that (3.17) yields

ε(τ) ∼ Ke−
√

2τ
2 τ

1
4
√
τ
− 1

4 · (1 + o(1)) as τ →∞,(3.18)

where K = e4B .
Taking into account (2.4), one readily checks that (3.18) gives (1.2) in Theorem

1.1. For the convenience of the reader we shall briefly sketch the way in which (3.18)
can be derived from (3.17). We first observe that a dominated balance argument
shows that the leading terms in (3.17) satisfy

ε(τ)2

4
log(ε(τ)2) ∼ −γϕ1(0)2

∫ ∞

τ

ε(s)2ds = −1

4

∫ ∞

τ

ε(s)2ds.(3.19)

Now set

G(τ) =

∫ ∞

τ

ε(s)2ds.

Then

G(τ) = −ε(r)2,

and it follows from (3.19) that

log(ε(τ)2) ∼ logG(τ)− log(− logG(τ)),(3.20)
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where here and henceforth all asymptotic equivalences are understood to hold for
r � 1. Hence

ε2(logG(τ)− log(− logG(τ))) ∼ −G(τ)

which in turn yields

G−1Ġ logG

(
1− log(− logG)

logG
+ · · ·

)
= 1,

and we obtain after integration

1

2
(logG)2 = τ

(
1 +

log(− logG)

logG
+ · · ·

)
+ C

for some constant C. To the first term, the equality above gives | logG| ∼ (2τ)1/2,
whence

G(τ) ∼ e−
√

2τ as τ →∞(3.21)

up to some algebraic factor. From (3.21) and our choice of G, we deduce that∫ ∞

τ

eτ−sε(s)2ds ∼ ε(τ)2.(3.22)

it then follows from (3.22) and (3.17) that

ε(τ)2 log(ε(τ)2) = −G(τ) + 4Bε(r)2 + · · · ,
whence

Ġ

G
(logG− log(− logG) + 4B + · · ·) = 1.

Taking into account (3.21), we then see that

1

2

d

dτ
((logG)2) =

(
1 +

1

2
√
τ

(
log

√
2 +

1

2
log τ

)
+

4B√
2τ

+ · · ·
)−1

= 1− 1

2
√

2

log τ√
τ
− (log

√
2 + 4B)√
2τ

+ · · · .

Setting α =
√

2(log
√

2 + 4B), we obtain

1

2
(logG)2 = τ − τ

1
2√
2

log τ − ατ
1
2 + · · ·

which at once yields

G(τ) ∼ K0e
−√2τ τ

1
2
√
τ with K0 =

√
2e4B .(3.23)

Plugging (3.23) and (3.20) into (3.19) and (3.18) follows.
We next set out to describe the way in which (1.3)–(1.5) are obtained. For the

ease of presentation, we shall merely sketch the points that give rise to the different



10 MIGUEL A. HERRERO AND JUAN J. L. VELÁZQUEZ

behaviors involved. To begin with, we continue to suppose that N = 2 and that
Assumption 3.1 is in force. We now recast (3.5) in the form

ψ(y, τ) =

∞∑
k=0

ak(τ)ϕk(y) =
l∑

k=0

ak(τ)ϕk(y) +Q(y, τ).(3.24)

It is readily seen that formulas (3.6) read in this case as

ȧk = (1− k)ak + γε(τ)2〈ϕk, δ(y)〉 for τ � 1, k = 0, 1, . . . , l,(3.25a)

Qτ = AQ+ γε(τ)2

(
δ(y)−

l∑
k=0

〈ϕk, δ(y)〉ϕk
)
,(3.25b)

〈Q,ϕk〉 = 0 for k = 0, 1, . . . , l.(3.25c)

We now replace Assumption 3.2 by the following.
Assumption 3.3. The leading term in (3.24) as τ � 1 is al(τ)ϕl(y); i.e., evolution

in time of ψ(y, τ) is driven by the eigenfunction corresponding to the lth eigenvalue.
Moreover, one then expects

d

dτ
(ε2(τ)) ∼ (1− l)ε2(τ) as τ →∞,(3.26a)

Q(y, τ) ∼ γε(τ)2F (y) as τ →∞,(3.26b)

where F (y) satisfies

AlF +

(
δ(y)−

l∑
k=0

〈ϕk, δ(y)〉ϕk
)

= 0, k = 0, 1, . . . , l,(3.27a)

〈F,ϕk〉 = 0 for k = 0, 1, . . . , l(3.27b)

and the operator Al is given by

AlF ≡ Fyy +

(
1

y
− y

2

)
Fy + lF.(3.27c)

Integrating (3.27), we obtain

F (y) = − 1

2π
log y + · · · for ε(τ) � y � 1.(3.28)

We point out that no further details on the expansion (3.28) are required to derive
the sought-for result (1.3). Arguing as before, we now obtain the following outer
expansion for Φ(y, τ):

Φ(y, τ) ∼ y2

4
− γϕl(0)2

∫ ∞

τ

ε(s)2e(1−l)(τ−s)ds(3.29)

+ ε(τ)2
(
− 1

2π
log y +O(1)

)
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whenever ε(τ) � y � 1 and τ � 1. The inner expansion for Φ(y, τ) is exactly that
already obtained in (3.16). From (3.29) and (3.16), we deduce the matching condition

− γϕl(0)2
∫ ∞

τ

ε(s)2e(1−l)(τ−s)ds =
1

2
ε2(τ) log ε(τ),(3.30)

which yields now the following asymptotic behavior for ε(τ):

ε(τ) ∼ Ce(
1−l
2 )τ τ−

1
l−1 as τ →∞(3.31)

for some positive constant C.
Estimate (3.31) can be obtained from (3.30) by means of an argument similar to

that leading from (3.17) to (3.18). Indeed, setting τ(s) = ε2(s)e−(1−l)s and observing
that 4γϕl(0)2 = 1 (cf. (2.8)), we may rewrite (3.20) in the form

−
∫ ∞

τ

r(s)ds = r(τ) log(ε2(τ)) = r(τ) ((1− l)τ + log(r(τ))) .

Hence

1

l − 1

∫ ∞

τ

r(s)ds = r(τ) (r +O(log(r(τ)))) for τ � 1,

which can be integrated to yield r(τ) = Cr−l/(l−1), whence

ε2(τ) = Ce(1−l)τ τ−
l

l−1 ,

and (1.3) follows.
We conclude this section by sketching the formal derivation of (1.4) and (1.5) in

Theorem 1.2. Consider first the case of (1.4). From Assumptions 3.1 and 3.2 (with
ε2(τ) replaced by εN (τ) where appropriate), we obtain the following outer expansion
for Φ(y, τ):

Φ(y, τ) ∼ y2

2N
− γ

l∑
k=0

ϕ2
k(0)

∫ ∞

τ

εN (s)e(1−k)(τ−s)ds+O

(
εN (τ)

yN−2

)
(3.32)

whenever ε(τ) � y � 1 and τ � 1. The corresponding inner expansion is also
obtained in the form

Φ(y, τ) = ε2(τ)w(ξ, τ) with ξ =
y

ε(τ)
,

where w(ξ, τ) ∼ w̄(ξ) for large τ and w̄ solves

w̄ξξ +

(
N − 1

ξ

)
w̄ξ = 1 for ξ > 1,

w̄(1) = w̄ξ(1) = 0

(compare with (3.14)). This now yields

w̄(ξ) =
ξ2

2N
− 1

2(N − 2)
+

ξ2−N

N(N − 2)
,
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whereupon the following inner expansion for Φ follows:

Φ(y, τ) ∼ y2

2N
− ε2(τ)

2(N − 2)
+

1

N(N − 2)

(
ε(τ)

y

)N−2

for y ∼ ε(τ) and τ � 1.

(3.33)

Matching (3.32) and (3.33) gives the following equation for ε(τ):

γ
1∑
k=0

ϕk(0)2
∫ ∞

τ

ε(s)Ne(1−k)(τ−s)ds =
ε(τ)2

2(N − 2)
,(3.34)

which yields ε(τ) ∼ Cτ−1/(N−2) and hence (1.4). Finally, (1.5) is obtained by guessing
an outer expansion of the form

Φ(y, τ) ∼ y2

2N
− αe(1−l)τϕl(y).(3.35)

This follows by neglecting the term χε(τ) in (3.2) and assuming that the lth mode
dominates in the Fourier expansion for ψ(y, τ). Matching (3.35) with (3.33), (1.5)
follows.

4. The topological argument. In this section we shall describe the basic ap-
proach towards a rigorous derivation of Theorems 1.1–1.3. For simplicity, we shall
concentrate on the case where N = 2 and (1.2) holds and remark briefly on the
remaining situations afterwards.

4.1. Obtaining (1.2) in Theorem 1.1. Let us define ε̄(τ) as follows:

ε̄(τ) = Ke−
√

2τ
2 τ

1
4
√
τ
− 1

4 , K given in (3.18).(4.1)

In another words, ε̄(τ) is the leading part in the expected asymptotic behavior of
the rescaled free boundary in this case. Fix now τ0, τ1 with τ1 ≥ τ0 � 1 and consider
functions ε(τ) such that the following estimates hold for some choice of M > 1.

sup

{
|ε(τ)− ε̄(s)|, where τ, s ∈ [τ0, τ1] and |τ − s| < 1

τ

}
< Mε(τ)τ−

3
2 ,(4.2a)

ε̄(τ)

M
< ε(τ) < Mε̄(τ) for τ ∈ [τ0, τ1].(4.2b)

We next recall that if Φ(y, τ) is a (rescaled) solution of our problem (cf. (2.3)), then
ψ(y, τ) given in (3.1) solves

ψτ = Aψ + χε(τ) for y ∈ R, τ > τ0,(4.3a)

ψ(y, τ0) = ψ0(y) at τ = τ0,(4.3b)

where A is the linear operator in (2.5). We want to pick ψ0(y) above in a particular
manner. Namely, we take

ψ0(y) = α0ϕ̃0(y) + α1ϕ̃1(y) + γε̄(τ0)
2F (y),(4.4)
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where F (y) is as in (3.9), and α0, α1, ϕ̃0, and ϕ̃1 will be selected presently. As a
matter of fact, for j = 0, 1 functions ϕ̃j(y) will coincide with the eigenfunctions ϕj(y)
given in (2.6) for, say, y ≥ (ε̄(τ0))

1/2. The main point in selecting ψ0(y) in (4.4) is
that we want it to match with the inner expansion (3.16) (with ε(τ) replaced by ε̄(τ0)
there) at distances y ∼ ε̄(τ0)

1/2. This amounts essentially to imposing

α0ϕ0(0) + α1ϕ1(y) + γε̄(τ0)
2

(
− 1

2π
log y +B + · · ·

)
=

ε̄(τ0)
2

2
log ε̄(τ0)− ε̄(τ0)

2

2
log y − ε̄(τ0)

2

4
,

whence

α0ϕ0 + α1ϕ0(0) +

(
B +

1

4

)
γε̄(τ0)

2 =
ε̄(τ0)

2

2
log ε̄(τ0)(4.5)

so that

|α0|+ |α1| = O(ε̄(τ0)
2| log ε̄(τ0)|).(4.6)

We have yet to determine what kind of modification is to be performed on the ϕk’s
near the origin for k = 0, 1. To ascertain this point, we observe that if no change were
done at all, we would have that

ψ0(y) ∼ −γε̄(τ0)
2

2π
log y as y → 0.

To remove such singularity, we just redefine the ϕk’s near y = 0 as follows:

α0ϕ̃0 + α1ϕ̃1(y) =
γε̄(τ0)

2

2π
+ o(ε̄(τ)2 log y) as y → 0.(4.7)

Notice that relations (4.4)–(4.7) are compatible and allow for many possible choices
of αk, ϕ̃k for k = 0.1. Bearing in mind our previous arguments, we now introduce the
following notation:

(4.8)
Let τ0, τ1 be such that τ1 ≥ τ0 � 1, and let µ be a given number
such that 0 < µ ≤ 1. We shall say that a solution ψ(y, τ) of (4.3a)
which is defined for τ0 ≤ τ ≤ τ1 belongs to the class A(τ0, τ1, µ) if
there exists a constant M such that |ψ(y, τ)| < M(1 + y2) for y ∈ R
and τ ∈ [τ0, τ1] and conditions (4.2) are satisfied with M replaced by
Mµ there.

We shall say that ψ(y, τ) ∈ A(τ0, τ1, µ) if it satisfies those conditions describ-
ing membership in the class A(τ0, τs, µ) when strict inequalities are replaced by the
symbol ≤.

For k = 0, 1, let us now define

lk(α0, α1; τ) = 〈ψ(y, τ ;α0, α1), ϕk〉+

∫ ∞

τ

e(1−k)(τ−s)〈χε̄, ϕk〉ds,(4.9)

where ψ(y, τ ;α0, α1) is the solution of (4.3a) such that ψ(y, τ0;α0, α1) = ψ0(y), ψ0(y)
being a function satisfying (4.4)–(4.7) above.
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The following result is a crucial ingredient in the proof of (1.2) in Theorem 1.1.
Proposition 4.1. Assume that M > 0 is large enough and let ψ(y, τ) be the

solution of (4.3), where ψ(y, τ0) ≡ ψ0(y) is such that (4.4)–(4.7) hold. Suppose also
that

ψ(y, τ) ∈ A(τ0, τ1, 1)(4.10)

for some τ1, τ0 so that τ1 > τ0 � 1. Then if

lk(α0, α1, τ1) = 0 for k = 0, 1(4.11)

(cf. (4.9) above), one has that

ψ(y, τ) ∈ A
(
τ0, τ1,

1

2

)
.

We shall prove Proposition 4.1 in sections 5 and 6, which contain most of the
technical aspects of this paper. To keep the flow of the main arguments here, we
will assume that the proposition holds true and continue with the derivation of (1.2).
Let α = (α0, α1) be any pair of real numbers and set l(α0, α1; τ) = (l0(α0, α1; τ),
l1(α0, α1; τ)), where for k = 0, 1, lk is defined as the right-hand side of (4.9). Let
τ1, τ0 be such that τ1 ≥ τ0 and define U(τ0, τ1) ⊂ R2 as the open set consisting of
all points (α0, α1) ∈ R2 such that the corresponding solution ψ(y, τ) of (4.3)–(4.8)
satisfies that ψ(y, τ) ∈ A(τ0, τ1, 1). From our previous arguments, it follows that we
may select an initial value ψ(y, τ0) = ψ0(y) in (4.3b) so that

ψ(y, τ0) ∈ A
(
τ0, τ0,

1

2

)
and there exists a unique solution of l(α0, α1, τ0) = 0. Indeed, by (4.9) one has that

lk(α0, α1; τ0) = αk + δ(α, τ0)(|α0|+ |α1|) +O(ε̄(τ0)
2) for k = 0, 1,

where δ(α, τ0) → 0 as τ0 → ∞, uniformly for |α| = |α0| + |α1| bounded, and the
last term on the right above may be assumed to be independent on α. On the other
hand, we may always suppose l = (l0, l1) to be differentiable with respect to α0, α1

by means of a suitable choice of the initial value ψ0(y). We shall assume henceforth
that ϕ0(y) satisfies such a condition. It then turns out that for k = 0, 1 equation
lk(α0, α1; τ0) = 0 has a unique solution αk such that

αk = O(ε̄(τ0)
2).

As a matter of fact, one then has that

d(l,U(τ0, τ0); 0) = 1,

where for τ ≥ τ0, d(l,U(τ0, τ); 0) denotes the topological degree of the mapping l in
the set U(τ0, τ) at the value zero.

Now assume that U(τ0, τ) 6= φ for any τ ∈ [τ0, τ1] with τ1 > 0 and denote
by ∂U(τ0, τ) the boundary of the open set U(τ0, τ). We notice that if l 6= 0 on
U(∂U(τ0, τ)) for τ0 ≤ τ ≤ τ1, the d(l,U(τ0, τ); 0) = d(l,U(τ0, τ0); 0) for any such τ . It
then follows from standard continuous dependence results that

U(τ0, τ1) 6= φ
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and

d(l,U(τ0, τ1); 0) = 1

for any τ1 > τ0 such that (τ1 − τ0) is sufficiently small. We next claim that

d(l,U(τ0, τ); 0) = 1(4.12a)

for any τ > τ0 as far as

U(τ0, τ) 6= φ.(4.12b)

Indeed, suppose that there exists a first time τ > τ0 when (4.12a) fails but (4.12b)
holds true. In view of our previous remark, there must be a point β = (β0, β1) ∈
∂U(τ0, τ), where l(β) = 0, and clearly ψ(y, τ ;β0, β1) ∈ A(τ0, τ ; 1). We then use
Proposition 4.1 to deduce that β ∈ U(τ0, τ), which is a contradiction.

We further observe that

U(τ0, τ) 6= φ for any τ > τ0,(4.13)

provided that τ0 � 1.

To check (4.13), we define τ∗ = sup{τ : U(τ0, τ) 6= φ}. We already know that
τ∗ > τ0. Assume now that τ∗ <∞. By (4.12), we may select a sequence of times {τn}
increasing to τ∗ and a sequence {αn} = {(α0n, α1n)} such that l(α0n, α1n; τn) = 0
and αn ∈ U(τ0, τn). Since U(τ0, τn+1) ⊂ U(τ0, τn), one has that {αn} is bounded.
Therefore, a subsequence (still denoted by {αn}) exists which converges to some point
α∗ = (α∗0, α

∗
1). It then turns out that l(α∗0, α

∗
1; τ

∗) = 0 and hence by Proposition 4.1
the corresponding function ψ(y, τ ;α∗0, α

∗
1) remains at the interior of A(τ0, τ

∗; 1); this
is the point where restriction τ0 � 1 needs to be imposed on (4.13). By continuous
dependence results, ψ would also remain at the interior of A(τ0, τ

∗ + δ; 1) for some
δ > 0, thus contradicting the definition of τ∗.

We are now prepared to detail the argument leading to the existence of the solu-
tions referred to in Theorems 1.1 and 1.3. Take a sequence {τn} such that τ1 > τ0 and
limn→∞ τn = ∞. For any such n, U(τ0, τn) 6= φ, and we may select αn = (α0n, α1n)
such that l(α0n, α1n; τn} = 0.

Let ψn(y, τ) ≡ ψn(y, τ ;α0n, α1n) be the solution of (4.3a) with initial value
ψn(y, τ0) = ψ0(y;α0n, α1n) satisfying (4.4)–(4.8). By Proposition 4.1, we have that
ψn(y, τ) ∈ A(τ0, τn;

1
2 ). Since the sequence {αn} is bounded, there exists a subse-

quence (still denoted by {αn}) and a value ᾱ = (ᾱ0, ᾱ1) such that limn→∞ αn = ᾱ ∈
U(τ0, τ0). It then turns out that function ψ(y, τ ; ᾱ0, ᾱ1), solution of (4.3a) with initial
value ψ(y, τ0; ᾱ0, ᾱ1), provides a sought-for solution satisfying (1.2), and the proof is
concluded under our current assumptions.

4.2. The remaining cases. To derive (1.3) in Theorem 1.1, we just repeat our
previous argument with the following modifications. First we replace ε̄(τ) in (4.1) by

ε̄(τ) = Ce(1−l)τ τ−
1

l−1 ,

where, as in the statement of the theorem, l is any number larger than or equal to
two and C is any positive constant. Instead of making use of (4.4), we now define
ψ0(y) by

ψ0(y) =

l∑
k=0

αkϕ̃k(y)− C

2π
log y
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and replace condition (4.11) in Proposition 4.1 by

lk(α0, α1, . . . , α0; τ1) = 0 for k = 0, 1, . . . , l,

where the lk’s are defined as in (4.9), except that here we allow lk to depend on all
parameters α0, α1, . . . , αl.

The cases corresponding to dimensions N ≥ 3 are similar. For instance, to obtain
(1.4) (resp. (1.5)), we define ε̄(τ) as follows:

ε̄(τ) = Bτ−
1

N−2 (resp. ε̄(τ) = Ce(1−
l
2 )τ ),

where B > 0 is a fixed constant which depends on N and can be determined from
(3.34) and C is any given constant. We now have to redefine the ϕk’s near y = 0
in order to remove singularities of the type y−(N−2) instead of logarithmic ones. A
straightforward modification of the previous approach yields then the desired results.

5. Derivation of (1.2): Analysis of the outer region. We now set out to
provide the details required to justify the picture given in sections 3 and 4. To this
end, we shall concentrate on proving Proposition 4.1 to highlight those modifications
required to obtain (1.3)–(1.5). From now on we shall thus assume that N = 2 and
start by considering solutions to the equation satisfied by ψ(y, τ) given in (3.2); i.e.,

ψτ = Aψ + χε(τ) for τ > τ0, y ∈ R(5.1)

with initial condition (4.3b), where ψ0(y) satisfies (4.4)–(4.8) and operator A is given
in (2.5). We shall compare solutions to (5.1) and (4.3b) with those to the auxiliary
equation

Wτ = AW + γε(τ)2δ(y) for τ > τ0, y ∈ R(5.2)

with the same initial condition at τ = τ0. Solutions of (5.1) can be represented in the
form

ψ(y, τ) = a0(τ)ϕ0(y) + a1(τ)ϕ1(y) + E(y, τ),(5.3)

where E(y, τ) satisfies

Eτ = ∆E − 1

2
y∇E + E + (χε(τ) − 〈ϕ0, χε(τ)〉ϕ0 − 〈ϕ1χε(τ)〉ϕ1)(5.4)

and 〈E,ϕk〉 = 0 for k = 0, 1. Bearing in mind (5.2), we shall also consider solutions
Q(y, τ) to the equation

Qτ = ∆Q − 1

2
y∇Q+Q(5.5)

+ γε(τ)2(δ(y)− 〈ϕ0, δ(y)〉ϕ0 − 〈ϕ1, δ(y)〉ϕ1)

such that 〈Q,ϕk〉 = 0 for k = 0, 1. We then have the following lemma.
Lemma 5.1. Let τ0 > 0 be fixed. Then the solution Q(y, τ0) of (5.5) which is

defined for τ > τ0 and satisfies Q0(y, τ0) = 0 is given by

Q0(y, τ) = γ

∫ τ

τ0

K(y, τ − s)eτ−sε(s)2ds,(5.6a)
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where

K(y, τ) = (4π(1− e−τ ))−1

(
exp

(
− y2e−τ

4(1− e−τ )

)

−
1∑
j=0

ϕj

〈
ϕj , exp

(
− y2e−τ

4(1− e−τ )

)〉)
.

(5.6b)

Proof. For convenience, we shall dispense with the subscript in Q0(y, τ). Differ-
entiating three times with respect to the y variables in (5.5) yields

∂

∂τ
Qi,j,k = ∆Qi,j,k − 1

2
y∇Qi,j,k − 1

2
Qi,j,k + γε(τ)2(δ(y))i,j,k

= A∗Qi,j,k − 1

2
Qi,j,k + γε(τ)2(δ(y))i,j,k

in an appropriate weak sense. Using a variation of constants formula in the equation
above and denoting by S∗ the semigroup generated by A∗, we obtain that

Qi,j,k(y, τ) = γ

∫ τ

τ0

e−( τ−s2 )S∗(τ − s)

(
ε(s)2

∂3(δ(ξ))

∂ξi∂ξj∂ξk

)
ds = −γ

∫ τ

τ0

e−
(τ−s)

2 ε(s)2

·
∫

R2

∂3

∂ξi∂ξj∂ξk

(
(4π(1− e−(τ−s)))−1 exp

(
− (ye−( τ−s2 ) − ξ)2

4(1− e−(τ−s))
δ(ξ)

)
dξ

)
ds

= γ
∂3

∂yi∂yj∂jk

∫ τ

τ0

eτ−sε(s)2
(

(4π(1− e−(τ−s)))−1 exp

(
− (ye−( τ−s2 ))2

4(1− e−(τ−s))

))
ds.

Integrating now three times with respect to the y variables and imposing 〈Q1ϕ0〉 =
〈Q1ϕ1〉 = 0, the result follows.

We shall elaborate a bit on the formulas in (5.6). To begin with, we observe that〈
ϕ0, exp

(
− y2e−(τ−s)

4(1− e−(τ−s))

)〉
= C(1− e−(τ−s)) for some C > 0,(5.7a)

〈
ϕ1, exp

(
− y2e−(τ−s)

4(1− e−(τ−s))

)〉
= (a0 + a1(1− e−(τ−s)))(1− e−(τ−s))(5.7b)

for some constants a0 and a1. To check (5.7a), we simply notice that〈
ϕ0, exp

(
− y2e−(τ−s)

4(1− e−(τ−s))

)〉
= c0

∫
R2

exp

(
−y

2

4
− y2e−(τ−s)

4(1− e−(τ−s))

)
dy

= c0(1− e−(τ−s))
∫

R2

e−r
2

dr,

where c0 is given in (2.6b). The proof of (5.7b) is similar and will therefore be omitted.
Assume now that τ > τ0 + 1. We may then split the integral term in (5.6a) in

the form

Q0(y, τ) =

∫ τ−1

τ0

( ) +

∫ τ

τ−1

( ) ≡ Q0,1(y, τ) +Q0,2(y, τ).(5.8)
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To estimate Q0,2, we proceed to examine the quantity

J ≡ γ

∫ τ

τ−1

(4π(1− e−(τ−s)))−1 exp

(
(τ − s)− y2e−(τ−s)

4(1− e−(τ−s))

)
ε2(s)ds.(5.9)

Setting η = y2e−(τ−s)(4(1 − e−(τ−s)))−1, it follows that eτ−s = 1 + y2

4η and dη =

4−1y2e−(τ−s)(1−e−(τ−s))−2ds. If we now write f(y) = eθ(y) with θ(y) = y2e−1(4(1−
e−1))−1, we easily see that

J =
γ

π

∫ ∞

θ(y)

ε(s)2
(

1 +
y2

4η

)2

y−2e−ηdη =
γ

4π

∫ ∞

f(y)

ε(s)2
(

1 +
y2

4η

)
e−ηη−1dη,

where s = τ − log(1 + y2

4η ).

Now we shall pay attention to the term S(τ − τ0)Q(y, τ0), where Q(y, τ0) is given
by

Q(y, τ0) = γε̄(τ0)
2F (y) +

1∑
j=0

αj

(
ϕ̃j −

1∑
k=0

ϕk〈ϕk, ϕ̃j〉
)

≡ γε̄(τ0)
2F (y) +R(y),

(5.10)

where αj , ϕj , and ϕ̃j are as in (4.4). Notice that 〈Q(·, τ0), ϕk〉 = 0 for k = 0, 1.
Moreover, one has that

R(y) =
1∑
j=0

αj(ϕ̃j − ϕj) +
1∑
j=0

αj

(
1∑
k=0

ϕk(δj,k − 〈ϕk, ϕ̃j〉)
)
,

where, as customary, δj,k = 1 if j = k and δj,k = 0 otherwise. In view of (4.4)–(4.7),
it holds that

|R(y)| ≤ C

(
ε̄(τ0)

2

∣∣∣∣log

(
y

ε̄(τ0)

)∣∣∣∣χ[y≤ε̄(τ0)1/2] + ε̄(τ0)
3τ0(1 + y2)

)
.

Using the explicit kernel for the semigroup S(τ), we then derive

|S(τ − τ0)R| ≤ Cε̄(τ0)
3τ

3
2
0 (1 + y2) for τ0 ≤ τ ≤ τ0 + 1 and y ≥ ε̄(τ0)

1
4 .(5.11a)

On the other hand, by regularizing properties of S(τ), we obtain

|S(τ − τ0)R| ≤ Cε̄(τ)3−χ(1 + y2) for τ ≥ τ0 + 1,

y ≥ ε̄(τ0)
1
4 , and some χ ∈ (0, 1).

(5.11b)

Summing up, we have obtained the following lemma.
Lemma 5.2. Let τ∗ = max{τ0, τ − 1} and let Q(y, τ) be the solution of (5.5) for

τ > τ0 such that Q(y, τ0) is given by (5.10). We then have that

Q(y, τ) = γε̄(τ0)
2S(τ − τ0)F (y) + γ

∫ τ∗

τ0

K(y, τ − s)eτ−sε(s)2ds(5.12)

+ γ

∫ τ

τ∗
(A1 +A2(1− e−(τ−s)))eτ−sε(s)2ds+

γ

π

∫ ∞

Σ

ε(s)2e−ηη−1dη

+
γ

π

∫ ∞

Σ

ε(s)2e−yη2(4η2)−1dη +O

(
ε̄(τ)2

τ

)
(1 + y2)
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in regions where y ≥ ε̄(τ0)
1/4 and τ > τ0. Here A1, A2 are some positive constants,∑

= y2(4(eβ − 1))−1, where β = max{τ0, τ − 1} and in the last two integrals above,

s = τ − log(1 + y2

4η ).

We now proceed to estimate the difference (E−Q), where E and Q are solutions
of (5.4) and (5.5), respectively. To this end, we set

Z = E −Q, g = χε(τ) − γε(τ)2δ(y)(5.13)

so that Z satisfies

Zτ = ∆Z − 1

2
η∇Z + Z + (g − 〈ϕ0, g〉ϕ0 − 〈ϕ1, g〉ϕ1)

≡ AZ + (g − 〈ϕ0, g〉ϕ0 − 〈ϕ1, g〉ϕ1) ≡ AZ + h(y, τ)

(5.14a)

We shall consider equation (5.14a) for values τ > τ0 � 1. At τ = τ0, we impose
E(y, τ0) = Q(y, τ0) so that

Z(y, τ0) = 0.(5.14b)

We then have that the solution to (5.14) can be written in the form

Z(y, τ) =

∫ τ

τ0

S(τ − s)h(·, s)ds ≡
∫ τ

τ0

L(y, τ − s; s)ds,(5.15a)

where

L(y, τ − s; s) = (4π(1− e−(τ−s)))−1

·
∫

R2

exp

(
− (ye−( τ−s2 ) − ξ)2

4(1− e−(τ−s))

)
h(ξ, s)dξ.

(5.15b)

Without loss of generality, we may assume τ > τ0 + 1. We then split Z in the form

Z(y, τ) =

∫ τ−1

τ0

Lds+

∫ τ

τ−1

Lds.(5.16)

Then the following lemma holds.
Lemma 5.3. There exists C > 0 such that∫ τ−1

τ0

|L|ds ≤ C

∫ τ−1

τ0

e−(τ−s)ε(s)4ds(5.17)

uniformly on bounded sets |y| ≤ R <∞.
Proof. To begin with, we observe that

|〈ϕ0, g(·, s)〉|=
∣∣∣∣∫

R2

ϕ0(χε(s) − γε(s)2δ(y))e−y
2/4dy

∣∣∣∣
=

∣∣∣∣∣
∫
|y|≤ε(s)

ϕ0(e
−y2/4 − 1)dy

∣∣∣∣∣ ≤ C

∫
|y|≤ϕ(s)

r2dr ≤ Cε(s)4

and a similar bound is easily obtained for |〈ϕ1, g〉|. We thus have that
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|〈ϕ0, g(·, s)〉|+ |〈ϕ1, g(·, s)〉| ≤ Cε(s)4(5.18)

for some C > 0.
Recalling that τ − s ≥ 1 under our current assumptions, we now consider the

term

I =

∫ τ−1

τ0

(4π(1− e−(τ−1)))−1

∫
R2

exp

(
− (ye−( τ−s2 ) − ξ)2

4(1− e−(τ−s))

)
g(ξ, s)ds

≡
∫ τ−1

τ0

S(τ − s)g(·, s)ds ≡
∫ τ−1

τ0

S

(
1

2

)
S

(
τ − s− 3

4

)
S

(
1

4

)
g(·, s)ds.(5.19)

We claim that ∥∥∥∥S (1

4

)
g(·, s)

∥∥∥∥ ≤ Cε(s)4 for some C > 0.(5.20)

Let us assume (5.20) for the moment and continue. One then may use classical
regularizing effects to derive that∥∥∥∥S (τ − s− 3

4

)(
S

(
1

4

)
g(·, s)

)∥∥∥∥ ≤ Ce−(τ−s)ε(s)4.(5.21)

Finally, a standard Sobolev imbedding yields∣∣∣∣S (1

2

)(
S

(
τ − s− 3

4

)
S

(
1

4

)
g(·, s)

)∣∣∣∣ ≤ Ce−(τ−s)ε(s)4.(5.22)

Putting together (5.18)–(5.22), estimate (5.17) follows. The proof will thus be
complete as soon as (5.20) has been obtained. To derive this last result, we make use
of a duality argument. Let ϕ(y) be any radial function in L2(R), and consider the
integral

J =

∫
R2

g(ξ, s)

(∫
R2

e−(y−ξ)2ϕ(y)dy

)
dξ ≡

∫
R2

g(ξ, s)G(ξ)dξ.

Recalling the arguments leading to (5.18), one readily sees that∫
R2

g(ξ, s)G(ξ)dξ =

∫
R2

(χε(s) − γε(s)2δ(y))G(ξ)dξ

=

∫
|y|≤ε(s)

(G(ξ)−G(0))dξ ≤ Cε(s)4,

whereupon (5.20) follows.
Our next result reads as follows.
Lemma 5.4. There exists C > 0 such that∫ τ

τ−1

|L(y, τ − s; s)|ds ≤ C

(∫ τ

τ−1

ε(s)4ds+ |y|
∫ 1

0

ε(τ − s)3s−2e−
Cy2

s ds

)
.(5.23)
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Proof. Set

w(y, τ − s; ξ) = exp

(
− (ye−( τ−s2 ) − ξ)2

4(1− e−(τ−s))

)
.(5.24a)

We can then readily check that∫ τ

τ−1

L(y, τ − s; s)ds =

∫ τ

τ−1

(4π(1− e−(τ−s)))−1eτ−sM(y, τ − s)ds,(5.24b)

where

M(y, τ − s) =

∫
R2

(w(y, τ − s; ξ)− 〈ϕ0, w(y, τ − s; ξ)〉ϕ0

− 〈ϕ1, w(y, τ − s; ξ)〉ϕ1)g(ξ, s)dξ.

(5.24c)

y2

4
+

(ye−( τ−s2 ) − ξ)2

4(1− e−(τ−s))
=

1

4(1− e−(τ−s))

(
(y − ξe−( τ−s2 ))2 + ξ2(1− e−(τ−s))

)
.

A quick computation then reveals that

〈ϕ0, w(y, τ − s; ξ)〉 ≤ Ce−
y2

4 (1− e−(τ−s)),

and a similar result holds when we replace ϕ0 by ϕ1 above. Recalling the argument
leading to (5.18), we then have that∫

R2

|(〈ϕ0, w〉ϕ0 + 〈ϕ1, w〉ϕ1)| |g(·, s)|ds ≤ C(1− e−(τ−s))ε(s)4.(5.25)

Now consider the integral

J ≡
∫ τ

τ−1

(4π(1− e−(τ−s)))−1eτ−s
(∫

R2

w(y, τ − s; ξ)g(ξ, s)dξ

)
ds.(5.26)

Since
∫

R2 g(ξ, s)dξ = 0, it holds that

J =

∫
τ−1

(4π(1− e−(τ−s)))−1eτ−s
(∫

R2

(w(y, τ − s; ξ)− w(y, τ − s; 0))g(ξ, s)dξ

)
ds,

whence

|J | ≤C ∫ τ
τ−1

(4π(1− e−1(τ−s)))−1

·
(∫

|ξ|≤ε(s)
|w(y, τ − s; ξ)− w(y, τ − s; 0)|dξ

)
ds.

(5.27)

We now observe that for any real numbers a and b,

|e−a2 − e−(a−b)2 | ≤ Ce−a
2/2|a| |b| for some C > 0.(5.28)

To check (5.28), we consider first the case where |a| ≥ |b|. Then if |a| |b| ≤ 1,

we have that |1 − e2ab−b
2 | ≤ C|a| |b|, whereas if |a| |b| > 1, |e−a2 − e−(a−b)2 | ≤
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Ce−a
2/2 ≤ Ce−a

2/2|a| |b|. When |a| < |b|, we simply select µ > 0 large enough and

observe that if |a| |b| < µ, then |1 − e2ab−b
2 | ≤ C|a| |b| for some C = C(µ) > 0,

whereas for |a| |b| > µ one has that 2ab− b2 ≥ − b2

2 and hence |1− e2ab−b2 | ≤ C|a| |b|.
Having shown that (5.28) holds, we now take advantage of that inequality (with

a = ye−
(τ−s)

2 (4(1− e−(τ−s)))−
1
2 and b = ξ(4(1− e−(τ−s))

1
2 ) and (5.27) to show that

|J | ≤ C

∫ τ

τ−1

(1− e−(τ−s))−1

∫
|ξ|≤ε(s)

(1− e−(τ−s))−1w(y, τ − s; 0)|y||ξ|dξ

≤ C

∫ τ

τ−1

(1− e−s)2ε(s)3|y| exp

(
− y2e−s

(1− e−s)

)
ds ≤ C|y|

∫ 1

0

ε(τ − s)3s−2e−
Cy2

s ds.

(5.29)

Putting together (5.25) and (5.29), the result follows.
For latter reference, we summarize the results obtained in Lemmas 5.2–5.4 as

follows.
Corollary 5.5. Let E(y, τ), Q(y, τ) be functions such that (i) E(y, τ0) =

Q(y, τ0) and (ii) E and Q solve, respectively, (5.4) and (5.5) for τ > τ0. Assume
also that (4.2) holds. Then for any R > 0, there exists C > 0 such that

|E(y, τ)−Q(y, τ)| ≤ C

(
ε(τ)3

y

)
(5.30)

whenever ε̄(τ0)
1
4 ≤ y ≤ R and τ > τ0

Proof. The proof follows from (5.17), (5.23), and the bounds (4.2).

6. Derivation of (1.2): Analysis of the inner region. Let σ(τ) be a function
to be discussed later (cf. (6.9)). We now fix τ̄ � 1 and define

ξ =
y

σ(τ̄)
; w(ξ, τ) = (σ(τ̄))−2Φ(σ(τ̄)ξ, τ),(6.1)

where Φ(y, τ) is given in (2.3). A quick computation reveals that w(ξ, τ) satisfies

(σ(τ̄))2wτ = ∆w −H(w) + (σ(τ̄))2
(
w − ξ∇w

2

)
,(6.2)

where the operators ∆ and ∇ are now written with respect to the inner space variable
ξ. When determining the asymptotics of solutions of (6.2), a key role is played by the
stationary equation

∆ν = H(ν).(6.3)

For any λ > 0, a radial solution of (6.3) is given by νλ(ξ) = λ2ν̄( ξλ ), where

ν̄(r) =
r2

4
− 1

4
− 1

2
log r.(6.4)

We can readily check that the radial, nontrivial solution of (6.3) which satisfies
ν(ξ) = 0 for ξ ≤ λ and ν(λ) = ν′(λ) = 0 is given by

νλ(ξ) =
ξ2

4
− λ2

2
log

(
ξ

λ

)
− λ2

4
for ξ > λ.(6.5)



ON THE MELTING OF ICE BALLS 23

It will be convenient to compare the functions νλ(ξ) given in (6.5) with the sta-
tionary solution of (6.2) that takes off at ξ = λ. The corresponding result reads as
follows.

Lemma 6.1. Let w̃λ(ξ) ≡ w̃λ(ξ; τ̄) be the stationary solution of (6.2) such that
w̃λ(λ) = w̃′λ(λ) = 0 and w̃λ(ξ) > 0 for ξ > λ > 0. Then there holds

w̃λ(ξ) = νλ(ξ) +O(σ2λ2 log λ) for ξ ≤ 1.(6.6)

Proof. We set w̃λ = νλ + ϕ. A quick check reveals that ϕ solves

ϕ′′ +
ϕ′

ξ
+ σ2

(
ϕ− ξϕ′

2
− λ2

2
log

ξ

λ
− λ2

4

)
= 0,

ϕ(λ) = ϕ′(λ) = 0.

Consider first the case where ξ is close to λ. Standard ordinary differential equation
(ODE) arguments yield that, in such a region

ϕ(ξ) ∼ Cσ2λ2ξ2 log
ξ

λ
for some real C.(6.7)

When λ � ξ ≤ 1, we introduce a new variable η = ξ
λ . Setting ϕ̇ = dϕ

dη , we readily
check that ϕ satisfies

ϕ̈+
ϕ̇

η
+ σ2λ2

(
ϕ− ηϕ̇

2

)
=
σ2λ4

2
log η +

σ2λ2

4
.

A dominated balance argument shows that the third term on the left is negligible
with respect to the remaining ones. This in turn implies that ϕ(η) ∼ K2σ2λ4η2 log η.
Back to the original variables, we have derived

ϕ(ξ) ∼ Kσ2λ2ξ2 log
ξ

λ
for λ� ξ ≤ 1.(6.8)

Matching (6.7) and (6.8), we obtain C = K and (6.6) follows.
Let us now define

σ(τ) = (ε(τ))θ, where θ is a positive and small number, 0 < θ <
1

4
,(6.9)

W (τ) =
1

4
+

1

(σ(τ̄))2
(a0(τ)ϕ0 + a1(τ)ϕ1(σ(τ̄)) + E(σ(τ̄), τ)) ,(6.10)

where a0, a1, and E are as in (5.3), and

λ(τ) =
ε(τ)

σ(τ)
.(6.11)

We shall prove the following lemma.
Lemma 6.2. Assume that conditions (4.2) and (4.11) hold. Then there exists a

constant C > 0 such that

|W (τ)−W (τ̄)| ≤ C

τ

(
ε(τ̄)

σ(τ̄)

)2

,(6.12)

provided that |τ − τ̄ | ≤ 1
τ and τ̄ ≥ τ0 � 1.
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Proof. We set

W (τ)−W (τ̄) = ϕ0(σ(τ̄))−2(a0(τ)− a0(τ̄)) + ϕ1(σ(τ̄))−2(a1(τ)− a1(τ̄))

+ (σ(τ̄))−2(E(σ(τ̄), τ)− E(σ(τ̄), τ̄)) ≡W1 +W2 +W3.

(6.13)

Terms W1 and W2 in (6.13) are easily dealt with. For instance, since ψ(y, τ) satisfies
(5.1), one sees that if τ > τ̄ ,

W2 = ϕ1(σ(τ̄))(σ(τ̄))−2

∫ τ

τ̄

〈χε(s), ϕ1〉ds

= ϕ1(σ(τ̄))(σ(τ̄))−2

∫ τ

τ̄

∫
|y|≤ε(s)

ϕ1(y)e
− y2

4 dyds;

hence

|W2| ≤ C|τ − τ̄ |
(σ(τ̄))2

((ε(s)− ε(τ̄))2 + ε(τ̄)2) ≤ C

τ

(
ε(τ̄)

σ(τ̄)

)2(
1 +

M2

τ3

)
,

where (4.2) has been used to obtain the last inequality above. A similar bound for
W1 is obtained by means of (4.11). To estimate W3, we first observe that

|Q(σ(τ̄), τ)−Q(σ(τ̄), τ̄)| ≤ C
ε̄(τ)2

τ
for |τ − τ̄ | ≤ 1

τ
.(6.14)

To obtain (6.14), we consider first the case where |τ0 − τ̄ | ≤ 1
τ0

. Setting

D(y) = δ(y)−
1∑
k=0

〈ϕk, δ(y)〉ϕk(y)

it then turns out that

Q(y, τ) = γε(τ0)
2S(τ − τ0)F (y) + γ

∫ τ

τ0

S(τ − s)(ε(s)2D)ds

= γε(τ0)
2S(τ − τ0)F (y) + γ

∫ τ

τ0

S(τ − s)(ε(τ0)
2D)ds

+ γ

∫ τ

τ0

S(τ − s)((ε(s)2 − ε(τ0)
2)D)ds

= γε(τ0)
2F (y) +O(ε(τ)2τ−

3
2 | log y|)

for |y| small, whereupon (6.14) follows. On the other hand, by (5.30) we have that

|E(σ(τ̄), τ)− E(σ(τ̄), τ̄)| ≤ C
ε(τ)2

τ
|Q(σ(τ̄ , τ))−Q(σ(τ̄), τ̄)|.(6.15)

We thus obtain from (6.14) and (6.15) that

|W3| ≤ C

(
ε(τ)2

τ

)
for |τ0 − τ̄ | ≤ 1

τ0
and τ̄ ≥ τ0 � 1,
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and putting together the bounds obtained for Wi (i = 1, 2, 3) the proof is concluded
in this case.

When |τ0− τ̄ | > 1
τ0

, we make use of (5.12) to check that (6.14) continues to hold.
This is done by comparing the different terms appearing in the right-hand side of
(5.12) when evaluated at (σ(τ̄), τ) and (σ(τ̄), τ̄), respectively. A typical argument in
this direction goes as follows. For i = 1, 2 set

∑
i = (δ(τ̄))2(4(eβi − 1))−1, where βi =

max{τi − 1, τ0}, and let us write si = τi − log(1− (δ(τ̄))2/4η). Then, if |s1 − s2| ≤ 1
τ̄ ,

we have that∣∣∣∣∣
∫ ∞

Σ1

ε(s1)
2e−ηη−1dη − ∫∞

Σ2
ε(s2)

2e−ηη−1dη

∣∣∣∣∣
≤
∫ ∞

Σ1

|ε(s1) + ε(s2)||ε(s1)− ε(s2)|e−ηη−1dη +

∫ Σ2

Σ1

ε(s2)
2e−ηη−1dη

≤ CM(ε̄(τ))2τ−
3
2 | log Σ1|+ C(ε̄(τ))2(δ(τ̄))2| log Σ1|

≤ CMθ
(ε̄(τ))2

τ
,

where θ > 0 can be selected arbitrarily small as τ0 → ∞, and we have assumed for
definiteness that Σ1 < Σ2. We omit further details.

A key result in this section is the following.

Lemma 6.3. Under the assumptions of Lemma 6.2, there exists a constant C > 0
such that

|W (τ)− νλ(τ)(1)| ≤ C

τ

(
ε(τ̄)

σ(τ̄)

)2

(6.16)

provided that |τ − τ̄ | ≤ 1
τ , where νλ is given in (6.5) and τ̄ ≥ τ0 � 1.

Proof. We shall argue by contradiction and therefore assume that for any K > 0
there exists τ̄ � 1 and τ̃ ∈ (τ̄ − 1

τ , τ̄ + 1
τ̄ ) such that

|W (τ̃)− νλ(τ̃)(1)| > K

τ̃

(
ε(τ̄)

σ(τ̄)

)2

.(6.17)

Now let τ be any time in the interval (τ̄ − 1
τ̄ , τ̄ + 1

τ̃ ). In view of (6.12) and (6.17), it
holds that

|W (τ)− νλ(τ̃)(1)| > K

2τ̃

(
ε(τ̃)

σ(τ̃)

)2

.(6.18a)

Assume for definiteness that

|W (τ)− νλ(τ̃)(1)| = vλ(τ̃)(1)−W (τ).(6.18b)

We now claim the following:

There exists µ > 0 such that if λ0(τ̃) = λ(τ̃)(1 + µ(τ̃)−
3
2 ),

(6.19)
then νλ0(1) > W (τ).
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To check (6.19), we observe that since τ̃ � 1,

νλ0
(1) =

1

4
+
λ2

0

2
log λ0 − λ2

0

4

∼ 1

4
+
λ2

2

(
1 + µ(τ̄)−

3
2

)2

log λ0 − λ2
0

4

∼ 1

4
+
λ(τ̃)2

2

(
1 + 2µ(τ̃)−

3
2

)(
log λ(τ̃) + log

(
1 + µ(τ̃)−

3
2

))

− λ(τ̃)2

4

(
1 + 2µ(τ̃)−

3
2

)
=

1

4
+
λ(τ̃)2

2
log λ(τ̃)

+ µλ(τ̃)2(τ̃)−
3
2 log λ(τ̃)− λ(τ̃)2

4
(6.20)

whereas by (6.18),

W (τ) < νλ(τ̃)(1)− K

2τ̃

(
ε(τ̃)

σ(τ̃)

)2

=
1

4
+
λ(τ̃)2

2
log λ(τ̃)− λ(τ̃)2

4
− K

2τ̃
λ(τ̃)2.(6.21)

From (6.20) and (6.21), it follows that (6.19) holds provided that

K

2τ̃
>

µ

τ̃
3
2

| log λ(τ̃)|,

and this last inequality is satisfied by selecting µ > 0 small enough since

τ−
3
2 log λ(τ) ∼ (1− θ)τ−1 as τ →∞.

We now set

z(ξ, τ) = (w(ξ, τ)− w̃λ0(ξ))+, where s+ = max{s, 0}.
Since (H(s)−H(t))(s− t)−1 ≥ 0 whenever s 6= t, we can readily check that z satisfies

zτ ≤ (σ(τ̃))−2∆z +

(
z − ξ∇z

2

)
for τ > τ̃ − 1

τ̃
, 0 < ξ < 1,(6.22a)

whereas by (6.19),

z = 0 when ξ = 0, 1 and τ > τ̃ − 1

τ̃
(6.22b)

and

z = O

(
1

σ(τ̃)2

)
at τ = τ̃ − 1

τ̃
.(6.22c)

By classic parabolic theory, it follows from (6.22) that

z(ξ, τ) ≤ A(σ(τ̃))−2 exp

(
−A(τ − τ̃)

(σ(τ̃)2

)
in Q,
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where

Q =

{
(ξ, τ) : |ξ| ≤ 1, τ ∈

(
τ̄ − 1

τ̃
, τ̃ +

1

τ̃

)}
.

In particular, w(ξ, τ) ∼ w̃λ0(ξ) at τ = τ̃ . Recalling (6.6) (with σ, λ replaced by
σ(τ̃), λ0(τ̃), respectively), we see that the (rescaled) free boundary of w(ξ, τ̃) is very
close to λ0(τ̃) and in particular is larger than λ(τ̃), which is a contradiction. The case
where (6.18b) is replaced by |W (τ) − νλ(τ̃)(1)| = W (τ) − νλ(τ̃)(1) is similar and will
be omitted.

We now point out the following consequence of Lemmas 6.2 and 6.3.
Corollary 6.4. There holds

|ε(τ)− ε(τ̃)| ≤ Cτ−
3
2 ε(τ̃) for some C > 0(6.23)

whenever |τ − τ̃ | < 1
τ and τ̃ ≥ τ0 � 1.

Proof. From (6.12) and (6.16) we readily see that

|νλ(τ)(1)− νλ(τ̃)(1)| ≤ 2C

τ
(λ(τ̃))2 for |τ − τ̃ | < 1

τ

and the result follows at once in view of the explicit formula (6.5).
We shall conclude the proof of (1.2) by means of a careful analysis of (6.16), which

can be thought of as an integral equation for the unknown rescaled free boundary ε(τ).
Assume now that (4.2) holds. Then in view of (5.3), (5.30), and (6.16), we have that∣∣∣∣a0(τ)ϕ0 + a1(τ)ϕ1(0) +Q(y, τ)− ε2(τ)

2
log

(
ε(τ)

σ(τ̃)

)
+
ε(τ)2

4

∣∣∣∣ = O

(
ε(τ)2

τ

)
.(6.24)

Note that the error involved in replacing ϕ1(y) by ϕ1(0) is already accounted for in
the right-hand side of (6.24). We now take advantage of (5.12) to estimate Q(y, τ) in
(6.24). Recalling (6.23), we have that for (z(τ))0 ≤ y ≤ 1 and Σ as in (5.12),∣∣∣∣∣

∫ ∞

Σ

ε(s)2e−ηη−1dη − ε(τ)2
∫ ∞

Σ

e−ηη−1dη

∣∣∣∣∣
≤ Cε̄(τ)2τ−

1
2

∫ ∞

Σ

e−ηη−1dη

≤ Cε̄(τ)2τ−
1
2 (1− | log Σ|)e−Σ ≤ Cε̄(τ)2τ−

1
2 .(6.25a)

Notice that (6.23) provides a factor τ−
3
2 in the right-hand side of the first inequality

above in sets where |s − τ | < 1
τ . Extending such a bound to the interval |s − τ | ≤ 1

required by our choice of Σ yields then the final factor τ−
1
2 . A similar argument gives∣∣∣∣∫ ∞

Σ

ε(s)2η2e−η(4η2)−1dη − ε(τ)2
∫ ∞

Σ

η2e−η(4η2)−1dη

∣∣∣∣ ≤ Cε̄(τ)2τ−
1
2(6.25b)

and ∣∣∣∣∣
∫ τ

τ−1

(A1 +A2(1− e−(τ−s)))eτ−sε(s)2ds

− (ε(τ))2
∫ τ

τ−1

(A1 +A2(1− e−(τ−1)))eτ−sds

∣∣∣∣∣ ≤ Cε̄(τ)2τ−
1
2 .

(6.25c)
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Recalling (5.12), we have obtained the following estimate:

(6.26)∣∣∣∣∣Q(y, τ)− γ − ε(τ0)
2S(τ − τ0)F (y)− γε(τ0)

2

∫ τ

τ0

S(τ − s)

(
δ(y)−

1∑
k=0

〈ϕk, δ(y)〉ϕk
)
ds

∣∣∣∣∣
≤ C(ε̄(τ))2τ−

1
2 .

Keeping in mind the definition of F (y) (cf. (3.8)), we see that

S(τ − τ0)F (y) +

∫ τ

τ0

S(τ − s)

(
δ(y)−

1∑
k=0

〈ϕk, δ(y)〉ϕk
)
ds = F (y).

It then turns out that (6.26) can be recast in the form

|Q(y, τ)− γε(τ)2F (y)− γ(ε(τ̃)2 − ε(τ)2)S(τ − τ0)F (y)|
≤ Cε̄(τ)2τ−

1
2 for (ε̄(τ))θ ≤ y ≤ 1.

Since the term S(τ − τ0)F (y) decays exponentially on sets where |y| is bounded, we
may take advantage again of (6.23) to obtain that

|Q(y, τ)− γε(τ)2F (y)| ≤ Cε̄(τ)2τ−
1
2 whenever (ε̄(τ))θ ≤ y ≤ 1.(6.27)

Using now the explicit representation for F (y) (cf. (3.9)), we deduce from (6.24) and
(6.27) that∣∣∣∣a0(τ)ϕ0 + a1(τ)ϕ1(0) +

(
Bγ +

1

4

)
ε(τ)2 − ε(τ)2

2
log ε(τ)

∣∣∣∣ ≤ Cε̄(τ)2τ−
1
2 .(6.28)

Let us now define ε∗(τ) as follows

ε∗(τ) =

{
ε(τ) if τ0 ≤ τ ≤ τ1,

ε̄(τ) if τ ≥ τ1.

We next observe that if (4.11) is satisfied there holds

ak(τ) = −
∫ ∞

τ

eλk(τ−s)〈χε∗(τ), ϕk〉ds.

Substituting this into (6.28), we finally arrive at∣∣∣∣(Bγ +
1

4

)
ε∗(τ)2 − ε∗(τ)2

2
log ε∗(τ)

−
1∑
k=0

ϕk(0)

∫ ∞

τ

e(1−k)(τ−s)〈χε∗(s), ϕk〉ds
∣∣∣∣∣

= 0(ε∗(τ)2τ−1/2) for τ � 1.

(6.29)

This is essentially the integral equation that has been studied in detail in section
3 (cf. the argument following (3.17)). In view of our previous analysis in section 3,
we may summarize our discussion in the following.
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Lemma 6.5. Assume that (4.2) and (4.11) hold. We then have that

ε(τ) = ε̄(τ)(1 + o(1)) for τ � 1(6.30)

uniformly on τ0 ≤ τ ≤ τ1.
End of the proof for Proposition 4.1. Having obtained (6.30) under assumption

(4.11), it merely remains to show that condition |ψ(y, τ)| < M(1 + y2) in (4.8) holds
for some constant M which is independent of the size of the interval [τ0, τ1]. To check
this point, we argue as follows. We have just seen that

ψ(y, τ) ∼ a0(τ)ϕ0 + a1(τ)ϕ1(y) +O(ε(τ)2) for τ � 1 and y = O(1).(6.31)

We now claim that we may formally differentiate twice with respect to y in both
sides of (6.31) and the corresponding expansion still holds. To wit, we set z(y, τ) =
ψ(y, τ) − a1(τ)ϕ1(y) and remark that in regions where y = O(1), one has that z =
O(ε2(τ)) and satisfies

Lz = 0(ε2(τ)ϕ1(y)),

where L denotes the parabolic operator in (5.1). It then follows that for τ ≥ τ0 � 1

z(y, τ) = exp

(∫ τ

τ0

D(s)ds

)
ϕ1(y) with D(s) = O(ε(s)2)

whereupon the desired bound for ψ follows.
Proof of (1.6) in Theorem 1.3. It has been shown above that

ψyy(y, τ) ∼ Ca1(τ) +O(ε2(τ)) with C =
d2

dy2
(ϕ1(y))(6.32)

for, say, y = O(1) and τ � 1. Since θ(r, t) = ψyy +
ψy
y = Ca1(τ) for some C1 > 0, it

follows that, setting r = Ae−τ/2 with A > 0,

θ(r, T ) ∼ C1a1

(
−2 log

r

A

)
(1 + o(1)) as τ → 0.(6.33)

Since

a1(τ) ∼ ε2(τ) log ε(τ)

2
as τ →∞,

the result follows at once from (6.33) and (3.18).

f(x, T ) ∼ Ca1

(
−2 log

x

A

)
(1 + o(1)) as x→ 0.(6.34)

Since a1(τ) ∼ 1
2ε

2(τ) log ε(τ) as τ → ∞, the result follows at once from (6.34)
and (3.18).

7. The remaining cases. In this final section we shall merely sketch those
modifications of the arguments developed in sections 4–6 which are required to obtain
(1.3)–(1.5) and (1.7)–(1.9), thus concluding the proofs of Theorems 1.1–1.3.



30 MIGUEL A. HERRERO AND JUAN J. L. VELÁZQUEZ

7.1. Obtaining (1.3) in Theorem 1.1. In the topological argument described
in section 4, we must replace ε̄(τ) in (4.1) by

ε̄(τ) = Ce(1−
l
2 )τ τ−1/l−1,

where C is an arbitrary constant and l is an integer such that l ≥ 2. We then
substitute (4.2a) by

sup

{
|ε(τ)− ε̄(s)|,where τ, s ∈ [τ0, τ1] and |τ − s| < 1

τ

}
< Mε̄(τ)τ−1,

which can be rephrased in an informal way as requiring that | ddτ ε̄(τ)| < Mε̄(τ).
Condition (4.2b) is then kept as before. As for (4.11), it is to be replaced by

ak(τ) = −
∫ ∞

τ

e(1−
k
2 )(τ−s)〈χε̄(s), ϕk〉ds

for k = 0, 1, 2, . . . , l.
With these modifications in mind, the analogue of Proposition 4.1 is readily

stated. To analyze the outer region in this case, one writes ψ(y, τ) in the form

ψ(y, τ) =

l−1∑
k=0

ak(τ)ϕk(y) + al(τ)ϕl(y) + E(y, τ).(7.1)

The term E(y, τ) in (7.1) will be approximated as before by Q(y, τ), where Q satisfies
now (3.25b) instead of (5.5). The solution of such an equation for τ > τ0 such that
Q(y, τ0) = 0 is given by

Q0(y, τ) = γ

∫ τ

τ0

Kl(y, τ − s)eτ−sε(s)2ds,(7.2a)

where

Kl(y, τ) = (4π(1−e−τ ))−1

(
exp

(
− y2e−τ

4(1− e−τ )

)
−

l∑
k=0

ϕk

〈
ϕk, exp

(
− y2e−τ

4(1− e−τ )

)〉)
.

(7.2b)

Notice that |Kl(y, τ)| ≤ Ce−lτ uniformly on sets |y| ≤ R < ∞ when τ ≥ 1.
Arguing as for Lemma 5.2, we then obtain the corresponding version of that result in
our case. This last is obtained by making a few modifications in (5.12):

(a) Replace S(τ) by Sl(τ) there, where Sl(τ) is the semigroup associated to
operator Al in (3.27c).

(b) Replace F (y) given in (3.8) by the corresponding solution of (3.27).
(c) Substitute K(y, τ) by Kl(y, τ) given in (7.2b).
(d) Replace the factor (A1 +A2(1− e−(τ−1))) in the integral where it appears in

(5.12) by (A1 +A2(1− e−(τ−1)) + · · ·+Al(1− e−(τ−s)).
The analysis of the inner region is then performed as in section 6. The integral

equation (6.16) is now to be replaced by

|W (τ)− νλ(τ)(1)| ≤ Cε(τ)2,

provided that |τ − τ̄ | ≤ 1
τ , τ̄ � 1.

Arguing as in section 6, we then arrive at an integral equation which is similar to
(3.30). We shall omit further details.
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7.2. The case where N ≥ 3: End of the proof of Theorem 1.2. We first
describe the main steps toward obtaining (1.4). To begin with, we replace ε̄(τ) in
(4.1) by

ε̄(τ) = Cτ−
1

N−2 , C > 0,

and replace (4.2a) by

|ε(τ)− ε̄(s)| < Mε̄(s)τ−(1−θ) for some 0 < θ � 1

whenever |τ − s| ≤ τθ.
The main novelty now with respect to the previous cases is that we may estimate

directly the error term E(y, τ) in (5.3) to obtain

|E(y, τ)| ≤ Cε̄(τ)N (1 + y−(N−2)) for τ � 1

uniformly on sets y ≤ R < ∞. We are thus led to a version of the integral equation
(6.16) which reads now as follows:

|W (τ)− νλ(τ)(1)| ≤ Cε̄(τ)2τ−(1−θ) for |τ − τ̄ | ≤ τθ, τ̄ � 1,

whence the statement in Lemma 6.5 follows in this case.
Finally, (1.5) corresponds to the situation where χε(τ) can be asymptotically

neglected in (5.1), so that the analysis sketched at the end of section 3 can be carried
out in a straightforward way.

7.3. End of the proof of Theorem 1.3. To obtain (1.7), we can argue as in
the last part of section 6 to obtain that

ψ(y, τ) ∼ al(τ)ϕl(y) for y = O(1) and τ � 1,

where the expansion above also holds when differentiated twice with respect to y. In
view of (6.33), one then has that at points x = Ae−τ/2,

θ(x, T ) ∼ al

(
−2 log

x

A

)
A2l−2 = al

(
−2 log

x

A

)
|x|2l−2e(l−1)τ ,

whence (1.7) follows in view of (3.30) and (3.31).
As to (1.8), we make use of (3.33) and (3.34) to observe that

ψyy(y, τ) ∼ Cτ−
2

N−2 for y = O(1) and τ � 1.

This readily gives that for x = Ae−τ/2

θ(x, T ) ∼ C(| log |x||)− 2
N−2 as x ↓ 0.

Finally, to obtain (1.9) we merely recall that, in view of (3.35), one has that for
x = Ae−τ/2

ψyy(A, τ) ∼ e(1−l)τA2l−2,

whereupon θ(x, T ) is shown to be such that

θ(x, T ) ∼ C|x|2l−2 as x ↓ 0.
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SELF-SIMILAR SOLUTIONS OF BARENBLATT’S MODEL FOR
TURBULENCE*

JOSEPHUS HULSHOF
†

Abstract. In this paper, we consider Barenblatt’s k–ε model for turbulence. For the case
of equal diffusion coefficients α and β, Barenblatt found explicit compactly supported self-similar
solutions. From these, we obtain compactly supported solutions for α 6= β by transforming the
equations into a four-dimensional quadratic system and verifying a transversality condition for a
saddle-point connection. This involves the Poincaré transformation as well as classical properties of
the hypergeometric equation and its solutions.

Key words. turbulence, compactly supported similarity solutions, quadratic systems, critical
points at infinity, Poincaré transformation, saddle-point connections, transversality
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Introduction. In this paper, we consider the system

(KE)


kt = α

(k2

ε
kx
)
x
− ε,

εt = β
(k2

ε
εx
)
x
− γ

ε2

k
.

Here α, β, and γ are positive parameters and k and ε are unknown nonnegative
functions of x (space) and t (time). This system is called the k–ε model and describes
the evolution of turbulent bursts [B] (see also [LS], [HP], and [KV]); k stands for
the turbulent energy density and ε is the dissipation rate of turbulent energy. In
applications, α and β are usually different [LMRS, HL]. The model is also refered
to in the literature as the b–ε model, which is, in fact, the original notation due to
Kolmogorov (k = b) [K, P, MY]. We note that (KE) is a coupled system of two
quasilinear diffusion-absorption equations. The diffusion coefficients may, depending
on k and ε, become degenerate (very small) or singular (very large), and the second
absorption term is also singular.

The only results that have been rigorously established so far are for the case where
α = β: for γ > 3/2, a family of explicit self-similar compactly supported “source-type”
solutions was found by Barenblatt et al. [BGL], and for γ > 1, an existence result
for solutions to the Cauchy problem was proved by Bertsch, Dal Passo, and Kersner
[BdPK1, BdPK2], who also showed that for γ > 3/2, the self-similar solutions describe
the intermediate asymptotics of these solutions.

This paper is concerned with the existence of compactly supported self-similar
solutions when α 6= β. Let us recall that the Barenblatt solutions are obtained by

*Received by the editors August 7, 1995; accepted for publication (in revised form) October 18,
1995. This research was supported by the Netherlands Organization for Scientific Research (NWO)
and by EEC grant SC1-0019-C-(TT).
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substituting

(0.1) k =
A2

t2µ
f(ζ), ε =

A2

t2µ+1
g(ζ), ζ =

x

At1−µ
,

where A > 0 is a free-scaling parameter and where we restrict our attention to the
case where 0 < µ < 1. Thus we look at profiles which decay and spread out as time
evolves.

The equations for f and g are

(0.2)

(0.3)


α
(f2

g
f ′
)′

+ (1− µ)ζf ′ + 2µf − g = 0;

β
(f2

g
g′
)′

+ (1− µ)ζg′ + (1 + 2µ)g − γ
g2

f
= 0.

If we assume that

(0.4) g(ζ) = κf(ζ),

equations (0.2) and (0.3) can be reduced to one single equation if and only if

(0.5) α = β, κ =
1

γ − 1
,

the resulting equation for f being

(0.6)
α

κ
(ff ′)′ + (1− µ)ζf ′ + (2µ− κ)f = 0.

Finally, if also

(0.7) µ =
κ+ 1

3
, 0 < µ < 1,

equation (0.6) can be written as

(0.8)
3α

κ(2− κ)
(ff ′)′ + (ζf)′ = 0,

which has compactly supported nonnegative solutions

(0.9) f(ζ) =

(
C − κ(2− κ)

6α
ζ2

)
+

, C > 0,

if and only if

(0.10) 0 < κ < 2.

Note that (0.5), (0.7), and (0.10) imply that γ > 3
2 .

We observe that (0.9) corresponds to the well-known Barenblatt profile for the
porous-medium equation (denoted by (PME)) ut = (um)xx with m = 2. In fact,
substitution of ε = κk together with (0.5) reduces the full system (KE) to (PME).
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Just as in the case of the (PME) (see, e.g., [A]), we see that at the boundary of the
support of the solutions, the fluxes vanish, i.e.,

(0.11)
f2

g
f ′ → 0 and

f2

g
g′ → 0.

The main result of this paper is a perturbation of the explicit family of compactly
supported similarity solutions above, yielding a similar family of solutions for γ > 3/2
and α close to β. This is an important and strong indication that the PDE results
mentioned above for α = β are not isolated but really a first step towards a full theory
for (KE).

Theorem. There exists an open neighborhood O of the set{
(α, β, γ) : α = β > 0, γ >

3

2

}
such that for every (α, β, γ) ∈ O, there is precisely one 0 < µ < 1 for which equations
(0.2) and (0.3) have a solution pair (f, g) with f and g symmetric and positive on
(−1, 1) and

(0.12) f(ζ) → 0, g(ζ) → 0,
f(ζ)

g(ζ)
f ′(ζ) → −α(1− µ),

f(ζ)2

g(ζ)2
g′(ζ) → −β(1− µ)

as ζ ↑ 1. Moreover, if we write

(0.13) κ =
g(0)

f(0)
, λ =

α

β
,

then in λ = 1,

(0.14) κ =
1

γ − 1
,

dµ

dλ
= 0,

dκ

dλ
=

κ(2− κ)

κ+ 1

(
κ− 1 +

2

Bκ

)
.

Here Bκ is defined by

(0.15) Bκ =
Γ( 1

2 )

Γ(a)Γ(b)
, a+ b =

3

2
, ab =

3

2(2− κ)
.

In order to perform the perturbation argument, we adapt the methods in [H] and
introduce

(0.16) t = log ζ, x =
ζf ′

f
, y =

ζg′

g
, z = ζ2

g

αf2
, u =

g

f
,

which transforms the two coupled nonautonomous second-order equations (0.2) and
(0.3) into the four-dimensional first-order quadratic autonomous system

(Q)



dx

dt
= x(1− 3x+ y)− z(x(1− µ) + 2µ− u);

dy

dt
= y(1− 2x)− λz(y(1− µ) + 2µ+ 1− γu);

dz

dt
= z(2 + y − 2x);

du

dt
= u(y − x).
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In section 1, we investigate this system. We find that symmetric profiles (f, g) corre-
spond to the two-dimensional “fast” unstable manifold F of the positive u-axis and
that the profiles satisfying the so-called interface condition as 0 < ζ ↑ ζ∗ < ∞ are
contained in the two-dimensional stable manifold S of a critical point at infinity on
the line with direction vector

(0.17)


−(1− µ)
−λ(1− µ)

1
0

 .

This involves the Poincaré transformation of (Q) and is carried out with the help of
Maple. As a byproduct here, we find that it is necessary to assume that

(0.18) α ≤ 2β

because otherwise S is one dimensional and contained in “infinity.”
It follows from the analysis in section 1 that the compactly supported profiles we

are looking for correspond to intersections of F and S. In particular, and just as in
[H], the explicit solutions above correspond to an orbit which is simply the straight
line

(0.19) x = y = −(1− µ)z, u = κ.

In section 2, we show that in the full (x, y, z, u, α, β, γ, µ)-space, the intersection of F
and S is transversal at (0.19), thus obtaining our perturbation result. The dynamical-
systems methods we use here were applied earlier in [AV] and [HV] to two-dimensional
systems that come from scalar diffusion equations. However, in our case, the compu-
tations in which the hypergeometric function, the Gauss formula, and the Kummer
relations appear [L] are much more involved, and again it is thanks to the help of
Maple that we were able to pull through.

1. The quadratic system. In this section, we examine system (Q) in relation
to the boundary conditions imposed on f and g. We note that every solution of (0.2)–
(0.3) is mapped into an orbit of (Q) and that scaling with the parameter A in (0.1)
corresponds to a shift in t.

By standard ODE theory [CL], there exists for every p, q > 0 a unique local
solution (f, g) of (0.2)–(0.3) satisfying the initial conditions

(1.1) f(0) = p, g(0) = q, f ′(0) = 0, g′(0) = 0.

This provides us with a two-parameter family of local solutions of (0.2)–(0.3). For the
corresponding solution curve S(t) = (x(t), y(t), z(t), u(t)), we find

(1.2) lim
t↓−∞

x(t)e−2t = lim
ζ↓0

f ′(ζ)
ζf(ζ)

=
f ′′(0)

f(0)
=

1

α
(q − 2µp)

q

p3
.

Here we have used (0.2) to compute f ′′(0). Similarly, we find

(1.3) lim
t↓−∞

y(t)e−2t =
1

β
(γq − (2µ+ 1)p)

q

p3
, lim

t↓−∞
z(t)e−2t = lim

ζ↓0
g(ζ)

f(ζ)2
=

αq

p2
,
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and, using l’Hôpital’s rule,

lim
t↓−∞

(
u(t)− q

p

)
e−2t = lim

ζ↓0
pg(ζ)− qf(ζ)

pζ2f(ζ)
= lim

ζ↓0
pg′(ζ)− qf ′(ζ)

2pζf(ζ) + pζ2f ′(ζ)
(1.4)

= lim
ζ↓0

pg′′(ζ)− qf ′′(ζ)
2pf(ζ) + 4pζf ′(ζ) + pζ2f ′′(ζ)

=
q2

2p4

(
1

β
(γq − (2µ+ 1)p)− 1

α
(q − 2µp)

)
.

Thus S(t) comes out of the point (x, y, z, u) = (0, 0, 0, q/p) on the positive u-axis
into the (invariant) open “quadrant” O+ = {z > 0, u > 0} along an eigenvector
corresponding to the eigenvalue 2 of the linearization of (Q) around (0, 0, 0, q/p), which
is

(1.5)


1 0 −(2µ− κ) 0
0 1 −λ(2µ+ 1− γκ) 0
0 0 2 0
0 0 0 0

 .

Here

(1.6) κ =
q

p
, λ =

α

β
.

Clearly, the positive symmetric solution pairs (f, g) are mapped into the “fast unstable
manifold” of the u-axis, the sheet of integral curves tangent to the eigenvector of 2.
Note that the ratio κ determines the orbit.

Next, we consider solutions of (0.2)–(0.3) with f(ζ) → 0 and g(ζ) → 0 and
satisfying the no-flux condition (0.11) as ζ ↑ 1. This cannot be viewed as an initial-
(or final-) boundary value problem in such a straightforward manner as above, and
therefore we turn to the quadratic system. Any such solution with both components
decreasing to zero as ζ ↑ 1 is mapped into an orbit which escapes to infinity in finite
time. Indeed, all of the other orbits contain solutions S(t) = (x(t), y(t), z(t), u(t))
which persist as t ↑ ∞, and it is easy to see that the corresponding solutions (f, g)
are positive in ζ = 1. Thus we look for orbits escaping to infinity in finite time with
x < 0, y < 0, z > 0, and u > 0. This means that x and y cannot both be bounded.

For the study of the unbounded orbits, we use the Poincaré transformation to
determine the critical points at infinity. Rewriting (Q) as

(Q)


ẋ1 = P1(x1, x2, x3, x4);

ẋ2 = P2(x1, x2, x3, x4);

ẋ3 = P3(x1, x2, x3, x4);

ẋ4 = P4(x1, x2, x3, x4),

where (x1, x2, x3, x4) = (x, y, z, u) and dots denote differentiation with respect to t,
we introduce the new coordinates X1, X2, X3, X4, and V as follows:

(1.7) xi =
Xi

V
(i = 1, 2, 3, 4), X2

1 +X2
2 +X2

3 +X2
4 + V 2 = 1.

This transforms (Q) into an autonomous polynomial system of five first-order differ-
ential equations for X1, X2, X3, X4, and V , which leaves the 4-sphere S4 = {X2

1 +
X2

2 +X2
3 +X2

4 + V 2 = 1} invariant.
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Differentiating (1.7), we have

(1.8) V V̇ +
4∑

j=1

XjẊj = 0

and

(1.9) ẊiV −XiV̇ = P ∗i ,

where

(1.10) P ∗i (X1, X2, X3, X4, V ) = V 2Pi(x1, x2, x3, x4).

Thus the P ∗i ’s are homogeneous polynomials of degree 2. Combining (1.8) and (1.9),
we obtain

(1.11) V

V 2 +
4∑

j=1

X2
j

 V̇ = −V
4∑

j=1

XjP ∗j

and, with (1.8) again,

V

V 2 +

4∑
j=1

X2
j

 Ẋi =

V 2 +

4∑
j=1

X2
j

P ∗i +Xi

V 2 +

4∑
j=1

X2
j

 V̇

(1.12) = V 2P ∗i +

4∑
j=1

Xj(XjP ∗i −XiP ∗j ).

Thus integral curves of (Q) correspond to integral curves with V > 0 on S4 of the
system

(Q̃)


X ′
i = V 2P ∗i +

4∑
j=1

Xj(XjP ∗i −XiP ∗j ) (i = 1, 2, 3, 4);

V ′ = −V
4∑

j=1

XjP ∗j .

Here we have absorbed the factor

V

V 2 +
4∑

j=1

X2
j


in the derivative.

Unbounded solutions of (Q) correspond to solutions of (Q̃) which approach the
invariant set S4 ∩ {V = 0}. The critical points “at infinity” of (Q) are by definition
the critical points of (Q̃) on S4 ∩ {V = 0}, which in turn are the solutions of

(1.13)

(1.14)


4∑

j=1

Xj(XjP ∗i −XiP ∗j ) = 0 (i = 1, 2, 3, 4);

X2
1 +X2

2 +X2
3 +X2

4 + V 2 = 1.
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Note that we have five equations for four unknowns. It is implicit in the Poincaré
transformation that these equations are dependent.

Using Maple and again writing X,Y, Z, and U for X1, X2, X3, and X4, we find
that (1.13) is equivalent to

(
Y 3 + (λ− 1)(1− µ)Y 2Z − γλY ZU − (1− µZ3 − (1− µ)ZU2

)
X

+ ZU(Z2 + Y 2 + U2) + (Y 2 + 2U2 + Z2)X2 = 0,(
XY − Y 2 − (1− µ)(λ− 1)Y Z + γλZU

)
X2 − (U2 + ZU)XY

− (U2 + Z2)Y 2 − λ(1− µ)(Z2 + U2)Y Z + γλZU(U2 + Z2) = 0,

Z
(
X3 + (1− µ)ZX2 − (ZU + U2)X + Y 3 + λ(1− µ)Y 2Z − γλY ZU

)
= 0,

U
(
2X3 + (1− µ)X2Z + (Y 2 + Z2 − ZU)X + Y 3 + λ(1− µ)Y 2Z − γλY ZU

)
= 0,

which at first sight looks too complicated to evaluate. However, if we multiply the
third equation by Z and the fourth equation by U , subtraction gives

(1.15) XZU(X2 + Y 2 + Z2 + U2) = XZU = 0,

which reduces the system. Also, if we substitute X = 0 in the first equation, we obtain

(1.16) ZU(Y 2 + Z2 + U2) = ZU = 0.

Thus all the solutions of (1.13)–(1.14) have either Z = 0 or U = 0 or have both. This
allows us to solve (1.13)–(1.14) explicitly, either by hand or by again using Maple.
The solutions (X,Y, Z, U) with Z ≥ 0 and U ≥ 0 are

(±1, 0, 0, 0), (0,±1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1),

(
±
√

1

2
,±
√

1

2
, 0, 0

)
,

(
−(1− µ)√
1 + (1− µ)2

, 0,
1√

1 + (1− µ)2
, 0

)
,

(
0,

−λ(1− µ)√
1 + λ2(1− µ)2

,
1√

1 + λ2(1− µ)2
, 0

)
,

and, last but not least,
(1.17)

P =

(
−(1− µ)√

1 + (1 + λ2)(1− µ)2
,

−λ(1− µ)√
1 + (1 + λ2)(1− µ)2

,
1√

1 + (1 + λ2)(1− µ)2
, 0

)
.

Solution curves of (Q̃) going into P from S4 ∩ {V > 0} correspond to solution curves
of (Q) with

(1.18)
x

z
→ −(1− µ),

y

z
→ −λ(1− µ),

u

z
→ 0

so that in view of the equation for z,

(1.19)
d

dt

1

z(t)
→ (λ− 2)(1− µ).

Thus if λ < 2, these orbits reach infinity in a finite time t∗ with none of the func-
tions x(t), y(t), and z(t) integrable near t∗. (Note that λ > 2 is impossible, as the
linearization of (Q̃) around P will confirm.) Since

(1.20)

∫
x(t)dt =

∫
f ′(ζ)
f(ζ)

dζ,

∫
y(t)dt =

∫
g′(ζ)
g(ζ)

dζ,
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it follows that

(1.21) f(ζ∗) = g(ζ∗) = 0, ζ∗ = et
∗
.

From (1.18), we also have
(1.22)

f(ζ)

g(ζ)
f ′(ζ) =

αx(t)

z(t)
et → −α(1− µ)ζ∗,

f(ζ)2

g(ζ)2
g′(ζ) =

αy(t)

z(t)
et → −β(1− µ)ζ∗

so that condition (0.11) is satisfied at ζ∗. We shall call (1.22) the interface conditions
for f and g.

The linearization of (Q̃) around P has eigenvalues

− 1− µ√
1 + (1 + λ2)(1− µ)2

, − (1− µ)(2− λ)√
1 + (1 + λ2)(1− µ)2

, 0,

1− µ√
1 + (1 + λ2)(1− µ)2

,
λ(1− µ)√

1 + (1 + λ2)(1− µ)2
,

i.e., up to a (positive if µ < 1) multiple, simply

−1, −(2− λ), 0, 1, λ.

We note that zero is always an eigenvalue with eigenvector perpendicular to S4. Since
we only consider the flow on S4, this eigenvector is irrelevant.

The only eigenvector with a nonzero V -component is the one corresponding to
the eigenvalue which changes sign when λ crosses the value 2. Consequently, we may
distinguish between two cases.

0 < λ < 2: The stable and unstable manifolds both have dimension two. The
stable manifold contains a one-parameter family of solutions satisfying the interface
conditions.

λ > 2: The stable manifold has dimension one and the unstable manifold dimen-
sion three. The stable manifold is contained in {V = 0}, implying that there are no
orbits going into P coming from {V > 0}.

2. Transversality of the connection. In this section, we show that the ex-
plicit compactly supported solution which exists for

(2.1) α = β, µ =
γ

3(γ − 1)
, γ >

3

2
,

can be used to obtain a compactly supported solution for α 6= β. Throughout this
section, the value of γ > 3/2 is fixed. Condition (2.1) follows from (0.5) and (0.7).

The orbit of (Q) corresponding to the exact solutions in the introduction is the
straight line (0.19), and it belongs to an analytic family of solution curves of the form

(2.2) x = X(z;κ, µ, λ), y = Y (z;κ, µ, λ), u = U(z;κ, µ, λ),

which are defined as the images under (0.16) of the symmetric solutions to (0.2)–(0.3),
and together form the “fast unstable manifold” F of the u-axis. In particular, we have

(2.3) X(0;κ, µ, λ) = 0, Y (0;κ, µ, λ) = 0, U(0;κ, µ, λ) = κ =
1

γ − 1
.
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Thus we can use z and κ as a coordinate system on F . Note that the analyticity of
(2.2) excludes the other “slow” orbits coming out of the u-axis.

On the other hand, we have that at infinity the orbit (0.19) goes into the critical
point P given by (1.17). Thus (0.19) also belongs to the stable manifold S of P . In
the previous section, we have seen that S contains the similarity profiles satisfying the
interface conditions and that its dimension is two. It can be written as a family of
solutions of the form

(2.4) x = X∗(z; c, µ, λ), y = Y ∗(z; c, µ, λ), u = U∗(z; c, µ, λ).

Here z and c are the parameters which can be used as a coordinate system on S. We
note that c is really given by the proof of the stable-manifold theorem and corresponds
to a suitable smooth curve in the linearized stable manifold [Pe].

Both F and S are two dimensional. The straight line (0.19) lies in the intersection
of F and S. Since we are working in a four-dimensional space, the set of parameters
for which this intersection is a curve should generically be a set of codimension one.
To show that this is really the case in the vincinity of the exact solution above, we
apply the implicit-function theorem to the following set of equations:

(2.5) X(z;κ, µ, λ)−X∗(z; c, µ, λ) = 0;

(2.6) Y (z;κ, µ, λ)− Y ∗(z; c, µ, λ) = 0;

(2.7) U(z;κ, µ, λ)− U∗(z; c, µ, λ) = 0.

Here the value of z can be taken fixed because the flow leaves F and S invariant.
In order to conclude that the solution set of (2.5)–(2.7) is of the form

(2.8) κ = κ(λ), µ = µ(λ), c = c(λ),

we have to show that the matrix containing the partial derivatives of the left-hand
sides with respect to κ, µ, and c has a nonzero determinant.

The functions X(z), Y (z), U(z), X∗(z), Y ∗(z), and U∗(z) are solutions of the
three-dimensional nonautonomous system obtained from (Q) by taking z as a new
independent variable:

(Q∗)



dx

dz
=

x(1− 3x+ y)− z(x(1− µ) + 2µ− u)

z(2 + y − 2x)
;

dy

dz
=

y(1− 2x)− λz(y(1− µ) + 2µ+ 1− γu)

z(2 + y − 2x)
;

du

dz
=

u(y − x)

z(2 + y − 2x)
.

It follows from the proof of the stable-manifold theorem that we can compute the
derivatives of these functions by differentiating (Q*) with respect to the parameters
and solving the resulting equations under the appropiate boundary conditons.

Writing (Q*) as

(2.9)
dξ

dz
= H(ξ) = H(ξ;µ, λ), ξ(z) = (x(z), y(z), u(z)),
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we have for the variation dξ(z) = (dx(z), dy(z), du(z)) of ξ the equation

(2.10)
d

dz
dξ − ∂H

∂ξ
dξ = dH =

∂H

∂µ
dµ+

∂H

∂λ
dλ.

In (2.10), the derivatives of H have to be evaluated at

(2.11) x = y = −(1− µ)z, u = κ, µ =
κ+ 1

3
, γ =

κ+ 1

κ
, λ = 1.

Using Maple again, we find

(2.12)
∂H

∂ξ
=


1
2z + 3

2
2−κ

6+(2−κ)z 0 3
6+(2−κ)z

0 1
2z + 3

2
2−κ

6+(2−κ)z
3(κ+1)

κ(6+(2−κ)z)
−κ
2z + 2−κ

2
κ

6+(2−κ)z
κ
2z − 2−κ

2
κ

6+(2−κ)z 0

 ,

while

(2.13)
∂H

∂µ
=

−1
−1
0

 ,
∂H

∂λ
=

 0
2−κ

3 − 3(2−κ)
6+(2−κ)z
0

 .

In what follows, we shall compute the general solution of (2.9)–(2.13) explicitly
in terms of hypergeometric functions. To do so we transform (2.9)–(2.13) by

w =
(2− κ)z

6 + (2− κ)z
, z =

6w

(2− κ)(1− w)
,

(2.14) G(w) = dx(z), J(w) = dx(z)− dy(z), F (w) = du(z)

into G′(w)
J ′(w)
F ′(w)

 =

 1
2w + 2

1−w 0 3
2−κ

1
1−w

0 1
2w + 2

1−w − 1
κ

3
2−κ

1
1−w

0 − κ
2w 0

G(w)
J(w)
F (w)



(2.15) − 6

2− κ

1

(1− w)2

 dµ
0
0

+
1− 3w

(1− w)2

 0
dλ
0

 .

For F (w), this yields

(2.16) w(1− w)
d2

dw2
F (w) +

(
1

2
− 5

2
w

)
d

dw
F (w)− 3

2(2− κ)
F (w) =

κ(3w − 1)

2(1− w)
dλ,

which has an explicit particular solution, namely,

(2.17) κ(2− κ)

(
1− 2

κ+ 1

1

1− w

)
dλ.

The homogeneous part of (2.16) is the standard hypergeometric equation

(2.18) w(1− w)f ′′(w) + (c− (1 + a+ b)w)f ′(w)− abf(w) = 0
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with parameters a, b, and c given by

(2.19) a+ b =
3

2
, ab =

3

2(2− κ)
, and c =

1

2
.

The general solution of (2.18) is given by

(2.20) f(w) = C1F1(w) + C2F2(w),

where

(2.21) F1(w) = F

(
a, b;

1

2
;w

)
=

1

1− w
F

(
1

2
− a,

1

2
− b;

1

2
;w

)
and

(2.22) F2(w) = w
1
2F

(
1

2
+ a,

1

2
+ b;

3

2
;w

)
=

w
1
2

1− w
F

(
1− a, 1− b;

3

2
;w

)
.

Consequently, the general solution of the homogeneous part of (2.15) is given by

(2.23)

Ghom(w)
Jhom(w)
Fhom(w)

 = C1

 2wF ′1(w)
− 2w

κ F ′1(w)
F1(w)

+ C2

 2wF ′2(w)
− 2w

κ F ′2(w)
F2(w)

+ C3

 w
1
2

(1−w)2

0
0

 .

The hypergeometric part in (2.23) can be derived from the special form of the matrix
in (2.15).

A particular solution of (2.15) is

(2.24)

Gp(w)
Jp(w)
Fp(w)

 =


2κw

(1−w)2 (3κ−1
κ+1 − w)

4(2−κ)
κ+1

w
(1−w)2

κ(2− κ)(1− 2
κ+1

1
1−w )

 dλ+

 −12
2−κ

w
(1−w)2

0
0

 dµ.

Thus the general solution of (2.15) is the sum of (2.23) and (2.24).
We can now write the partial derivatives of (2.2) for (2.11). The analyticity near

z = 0 combined with (2.3) implies that we have to take

(2.25) C2 = C3 = 0, C1 + κ(2− κ)
κ− 1

κ+ 1
dλ = dκ

so that

(2.26)


∂X
∂κ

∂X
∂µ

∂X
∂λ

∂(X−Y )
∂κ

∂(X−Y )
∂µ

∂(X−Y )
∂λ

∂U
∂κ

∂U
∂µ

∂U
∂λ

 =

 2wF ′(a, b; 1
2 ;w) −12

2−κ
w

(1−w)2
2κw

(1−w)2 (3κ−1
κ+1 − w) + 2κ(2− κ) 1−κ

κ+1wF
′(a, b; 1

2 ;w)

− 2w
κ F ′(a, b; 1

2 ;w) 0 4(2−κ)
κ+1

w
(1−w)2 − 2(2− κ) 1−κ

κ+1wF
′(a, b; 1

2 ;w)

F (a, b; 1
2 ;w) 0 κ(2− κ)(1− 2

κ+1
1

1−w ) + κ(2− κ) 1−κ
κ+1F (a, b; 1

2 ;w)

 .
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Next, we compute the partial derivatives of (2.4). The boundary conditions are
now at z = ∞ and follow from (1.17), which implies that

(2.27)
dx(z)

z
→ dµ,

dy(z)

z
→ dµ− 2− κ

3
dλ,

du(z)

z
→ 0 as z →∞,

equivalent (recall (2.14)) to
(2.28)

lim
w↑1

(1− w)G(w) =
6

2− κ
dµ, lim

w↑1
(1− w)J(w) = 2dλ, lim

w↑1
(1− w)F (w) = 0.

In order to choose the constants C1, C2, and C3 accordingly, we need the asymptotic
expansions of (2.23)–(2.24) as w ↑ 1. At first glance, the reader may want to skip
these calculations and proceed directly to (2.47).

We note that Gauss’s formula implies that
(2.29)

lim
w↑1

(1− w)F1(w) = Bκ =
Γ( 1

2 )

Γ(a)Γ(b)
, lim

w↑1
(1− w)F2(w) = Aκ =

Γ( 3
2 )

Γ( 1
2 + a)Γ(1

2 + b)
,

i.e.,

(2.30) F1(w) =
Bκ

1− w
+ o

(
1

1− w

)
, F2(w) =

Aκ

1− w
+ o

(
1

1− w

)
as w ↑ 1.

For the corresponding first components of the homogeneous solution, we find
(2.31)

2wF ′1(w) = 2w
ab
1
2

F

(
a+ 1, b+ 1;

3

2
;w

)
=

6

2− κ

w

(1− w)2
F

(
1

2
− a,

1

2
− b;

3

2
;w

)
=

6

2− κ

w

(1− w)2

×
(

Γ( 3
2 )Γ(2)

Γ(a+ 1)Γ(b+ 1)
− ( 1

2 − a)( 1
2 − b)

3
2

Γ( 5
2 )Γ(1)

Γ(a+ 1)Γ(b+ 1)
(1− w)

+ o(1− w)

)
= 2Bκ

(
1

(1− w)2
− w

(1− w)2

)(
1 +

(
1

2
− 3

2(2− κ)

)
(1− w) + o(1− w)

)
= Bκ

(
2

(1− w)2
−
(

1 +
3

2− κ

)
1

1− w
+ o(

1

1− w
)

)
as w ↑ 1.

In this computation, we have used the Gauss relation for both F (1/2 − a,
1/2 − b; 3/2;w) and its derivative. Similarly, we have

(2.32)

2wF ′2(w) = w
1
2F

(
1

2
+ a,

1

2
+ b;

3

2
;w

)
+ 2w

3
2

( 1
2 + a)( 1

2 + b)
3
2

F

(
3

2
+ a,

3

2
+ b;

5

2
;w

)
= F2(w) + 2w

3
2

( 1
2 + a)( 1

2 + b)
3
2

1

(1− w)2
F

(
1− a, 1− b;

5

2
;w

)
= F2(w) +

2w
3
2

(1− w)2
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× ( 1
2 + a)( 1

2 + b)
3
2

(
Γ( 5

2 )Γ(2)

Γ( 3
2 + a)Γ(3

2 + b)
− (1− a)(1− b)

5
2

Γ( 7
2 )Γ(1)

Γ( 3
2 + a)Γ(3

2 + b)
(1− w)

+ o(1− w)

)
= F2(w) +

2w
3
2

(1− w)2
Aκ

(
1 +

(
1

2
− 3

2(2− κ)

)
(1− w) + o(1− w)

)
=

Aκ

1− w
+ o

(
1

1− w

)
+

2

(1− w)2

(
1− 3

2
(1− w) + o(1− w)

)
Aκ

(
1 +

(
1

2
− 3

2(2− κ)

)
(1− w)

+ o(1− w)

)
= Aκ

(
2

(1− w)2
−
(

1 +
3

2− κ

)
1

1− w
+ o

(
1

1− w

))
as w ↑ 1.

For the first component corresponding to C3, we have

(2.33)
w

1
2

(1− w)2
=

1

(1− w)2
− 1

2

1

1− w
+ o

(
1

1− w

)
as w ↑ 1.

For the particular solution corresponding to dλ, the third component is

(2.34) κ(2− κ)

(
1− 2

κ+ 1

1

1− w

)
= −2κ(2− κ)

κ+ 1

1

1− w
+ o

(
1

1− w

)
as w ↑ 1,

the second component is
(2.35)

4(2− κ)

κ+ 1

w

(1− w)2
=

4(2− κ)

κ+ 1

1

(1− w)2
− 4(2− κ)

κ+ 1

1

1− w
+ o

(
1

1− w

)
as w ↑ 1,

and the first component is
(2.36)

2κw

(1− w)2

(
3
κ− 1

κ+ 1
− w

)
=

4κ(κ− 2)

κ+ 1

1

(1− w)2
+

2κ(5− κ)

κ+ 1

1

1− w
+o

(
1

1− w

)
as w ↑ 1.

Finally, for the first component of the particular solution for dµ,

(2.37) − 12

2− κ

w

(1− w)2
= − 12

2− κ

1

(1− w)2
+

12

2− κ

1

1− w
+ o

(
1

1− w

)
as w ↑ 1.

Now that we have all of the asymptotic expansions as w ↑ 1, we have to choose the
constants in such a way that (2.28) is satisfied. First, we look at the third component,

(2.38)

F (w) = C1F1(w) + C2F2(w) + κ(2− κ)

(
1− 2

κ+ 1

1

1− w

)
dλ

=

(
C1Bκ + C2Aκ − 2κ(2− κ)

κ+ 1
dλ

)
1

1− w
+ o

(
1

1− w

)
as w ↑ 1,
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which forces us to take

(2.39) C1Bκ + C2Aκ − 2κ(2− κ)

κ+ 1
dλ = 0.

Then by the Kummer relation,

(2.40) 2AκF1(w)− 2BκF2(w) = F (a, b; 2;w),

(2.41)

F (w) = κ(2− κ)

(
1

Bκ

2

κ+ 1
F

(
a, b;

1

2
;w

)
− 2

κ+ 1

1

1− w
+ 1

)
dλ+ CF (a, b; 2;w),

where C = −C2/(2Bκ).
For the second component, we then obviously have that the terms with (1−w)−2

disappear and that
(2.42)

J(w) = −2w

κ
F ′(w) = −C1

2w

κ
F ′1(w)− C2

2w

κ
F ′2(w)

4(2− κ)

κ+ 1

w

(1− w)2
dλ

=

(
1

κ
(C1Bκ + C2Aκ)

(
1 +

3

2− κ

)
− 4(2− κ)

κ+ 1
dλ

)
1

1− w
+ o

(
1

1− w

)
=

2

1− w
dλ+ o

(
1

1− w

)
as w ↑ 1,

which agrees with (2.28) and therefore gives no further restriction on the constants
C1, C2, and C3. Thus

(2.43) J(w) =
4(2− κ)w

κ+ 1

(
− 1

Bκ
F ′
(
a, b;

1

2
;w

)
+

1

(1− w)2

)
dλ−2Cw

κ
F ′(a, b; 2;w),

Finally, for the first component, using (2.39) again,
(2.44)

G(w) = 2wC1F ′1(w) + 2wC2F ′2(w) + C3
w

1
2

(1− w)2

+
2κw

(1− w)2

(
3
κ− 1

κ+ 1
− w

)
dλ− 12

2− κ

w

(1− w)2
dµ

=

(
C3 − 12

2− κ
dµ

)
1

(1− w)2
+

(
12

2− κ
dµ− 1

2
C3

)
1

1− w
+ o

(
1

1− w

)
as w ↑ 1

so that

(2.45) C3 =
12

2− κ
dµ

ensures that (2.28) holds. Thus

(2.46)

G(w) =

(
4κ(2− κ)w

(κ+ 1)Bκ
F ′
(
a, b;

1

2
;w

)
+

2κw

(1− w)2

(
3
κ− 1

κ+ 1
− w

))
dλ

+ 2CwF ′(a, b; 2;w) +
12

2− κ

w
1
2 − w

(1− w)2
dµ.
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From (2.41), (2.43), and (2.46), we then have for an appropiate choice of the
coordinate c in (2.4) that

(2.47)


∂X∗
∂c

∂X∗
∂µ

∂X∗
∂λ

∂(X∗−Y ∗)
∂c

∂(X∗−Y ∗)
∂µ

∂(X∗−Y ∗)
∂λ

∂U∗
∂c

∂U∗
∂µ

∂U∗
∂λ



=


2wF ′(a, b; 2;w) 12

2−κ
w

1
2−w

(1−w)2
2κw

(1−w)2 (3κ−1
κ+1 − w) + 4κ(2−κ)w

(κ+1)Bκ
F ′(a, b; 1

2 ;w)

− 2w
κ F ′(a, b; 2;w) 0 4(2−κ)

κ+1
w

(1−w)2 − 4(2−κ)w
(κ+1)Bκ

F ′(a, b; 1
2 ;w)

F (a, b; 2;w) 0 κ(2− κ)(1− 2
κ+1

1
1−w ) + 2κ(2−κ)

(κ+1)Bκ
F (a, b; 1

2 ;w)

 .

Writing (2.5)–(2.7) as

F(z; c, κ, µ, λ) =

 X −X∗
X −X∗ − Y + Y ∗

U − U∗

 = 0,

it follows that ∂F/∂(c, κ, µ, λ) =
(2.48)−2wF ′(a, b; 2;w) 2wF ′(a, b; 1

2 ;w) − 12
2−κ

w
1
2

(1−w)2
2κ(2−κ)
κ+1 βκwF ′(a, b; 1

2 ;w)
2w
κ F ′(a, b; 2;w) − 2w

κ F ′(a, b; 1
2 ;w) 0 − 2(2−κ)

κ+1 βκwF ′(a, b; 1
2 ;w)

−F (a, b; 2;w) F (a, b; 1
2 ;w) 0 κ(2−κ)

κ+1 βκF (a, b; 1
2 ;w)

 ,

where

(2.49) βκ = 1− κ− 2

Bκ
.

Clearly, the first three columns in this matrix have maximal rank for any 0 < w <
1 because the Wronskian of the two hypergeometric functions F (a, b; 1/2;w) and
F (a, b; 2;w) is nonzero. It follows that we can write the solution set of (2.5-7) in
the form (2.8) with−2wF ′(a, b; 2;w) 2wF ′(a, b; 1

2 ;w) − 12
2−κ

w
1
2

(1−w)2

2w
κ F ′(a, b; 2;w) − 2w

κ F ′(a, b; 1
2 ;w) 0

−F (a, b; 2;w) F (a, b; 1
2 ;w) 0


 dc

dλ
dκ
dλ
dµ
dλ



(2.50) = −


2κ(2−κ)
κ+1 βκwF ′(a, b; 1

2 ;w)

− 2(2−κ)
κ+1 βκwF ′(a, b; 1

2 ;w)
κ(2−κ)
κ+1 βκF (a, b; 1

2 ;w)

 ,

whence, using Cramer’s rule,

(2.51)
dc

dλ
=

dµ

dλ
= 0,

dκ

dλ
=

κ(2− κ)

κ+ 1

(
κ− 1 +

2

Bκ

)
.
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ON UNIQUENESS OF RECOVERY OF THE DISCONTINUOUS
CONDUCTIVITY COEFFICIENT OF A PARABOLIC EQUATION∗
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Abstract. We prove uniqueness of a discontinuous principal coefficient of a second-order
parabolic equation of the form a0 + χ(Q∗)b with known smooth a0 and unknown b = b(x) from
all possible lateral boundary measurements of solutions of this equation. In the proofs, we make use
of singular solutions of parabolic equations.

Key words. partial differential equations, inverse problems

AMS subject classification. 35R30

PII. S0036141095286010

Introduction. We consider the problem of recovery of the coefficient a of the
parabolic equation

ut − div(a∇u) = 0 in Q = Ω× (0, T )

with the initial and boundary conditions

u = 0 on Ω× {0}, u = g on ∂Ω× [0, T ]

when ∂u/∂ν is given for all (regular) g. Here Ω is a bounded domain in Rn, 2 ≤ n,
with the boundary ∂Ω ∈ C2. In this paper, we prove uniqueness of discontinuous
a = a0+χ(Q∗)b, where χ(Q∗) is the indicator function of an open set Q∗ ⊂ Q with the
Lipschitz lateral boundary ∂xQ

∗ changing with time and a0 = a0(x) and b = b(x) are,
respectively, given and unknown C2(Ω̄)-functions. For elliptic equations, uniqueness
was proven by Kohn and Vogelius [8] (piecewise-analytic a) and Isakov [5] (Lipschitz
Q∗ and smooth b). Also for elliptic equations, when one is making use of only one
set of u, ∂u/∂ν on ∂Ω, some partial global uniqueness results for Q∗ were obtained
by Friedman and Isakov [4]. Regarding parabolic equations, we can refer only to
Bellout’s study [2] of local stability in the inverse problem. This inverse parabolic
problem is fundamental for groundwater search [12] in particular and important for
many engineering applications.

We introduce some notation. For standard notation, we refer to Friedman [3] and
Ladyzhenskaja, Solonnikov, and Ural’ceva [9].

For an open set Q in the layer Rn × (0, T ), the lateral boundary ∂xQ is the x-
boundary that is the closure of the set ∂Q|{t = 0 or t = T}. We say that Q is
x-Lipschitz if its x-boundary is locally the graph of a function xj = γ(x1, . . . , xj−1,
xj+1, . . . , xn, t) that is Lipschitz.
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1. Statement of results. Let Γ0 be ∂Ω ∪ B0 for some ball B0 centered at a
point of ∂Ω.

We are interested in finding an open setQj and a function bj entering the parabolic
initial-boundary value problem

(1.1) (uj)t − div(aj∇uj) = 0 in Q,

(1.2) uj = g on S = ∂Ω× (0, T ),

(1.3) u = 0 on Ω× {0},
where

(1.4) aj = a0 + χ(Qj)bj > ε > 0, bj 6= 0 on ∂Qj .

It is well known that for any g ∈ C2,1(S̄), g = gt = gtt = 0 on ∂Ω × {0}, there
is a unique (generalized) solution uj of this problem and uj ∈ Cλ(Q̄) for some λ ∈
(0, 1), ∇xuj ∈ L2(Q), and ∈ C(Q̄\Q̄j). For this and for other results about the
direct parabolic problem (1.1)–(1.4), we refer to Friedman [3] and Ladyzhenskaja,
Solonnikov, and Ural’ceva [9, pp. 153, 204, and 227].

Our main result is the following theorem.
Theorem 1.1. Suppose Q1 and Q2 are open x-Lipschitz sets, Qj ⊂ Ω×(−T, 2T ),

and

(1.5) the sets (Q\Qj) ∩ {t = τ} are connected when 0 < τ < T.

If solutions uj to the initial-boundary value problems (1.1), (1.2), and (1.3) satisfy
the equality

(1.6) ∂u1/∂ν = ∂u2/∂ν on Γ0 × (0, T ) (ν is a normal)

for all g ∈ C2(∂Ω× [0, T ]) with suppg ⊂ Γ0 × (0, T ), then

(1.7) a1 = a2 on Q.

This result guarantees uniqueness of reconstruction of Qj from all possible lateral
measurements for an arbitrary T > 0.

The paper is organized as follows. In section 2, we will show that if equality
(1.6) is valid for all Dirichlet boundary data, g implies certain integral relations which
can be interpreted as orthogonality relations. To prove uniqueness in section 4, we
will modify an approach from [5] (the use of singular solutions with the pole in those
orthogonality relations) to obtain a contradiction when the pole converges to the
boundary of one of the domains Qj . To show that some integrals in these relations
are bounded while one of them is not, we will use estimates of integrals of singular
solutions given in section 3, which is the most technically difficult part of the paper.

2. Orthogonality relations. In this section, we assume that the conditions of
Theorem 1.1 are satisfied and obtain some auxiliary relations which will be used in
its proof.

Denote by Q3t the connected component of the open set Ω\(Q1t ∪ Q2t) whose
boundary contains Γ0. Here Qjθ is Qj ∩ {t = θ}, j = 1, 2. Let Q3 = ∪ Q3t over
0 < t < T and let Q4 = Q\Q3.
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Lemma 2.1.

(2.1)

∫
Q1

b1∇v1 · ∇u∗2 dx dt =

∫
Q2

b2∇v1 · ∇u∗2 dx dt

for all solutions v1 to equation (1.1) (j = 1) near Q̄4 that are 0 when t < 0 and
solutions u∗2 to the adjoint equation (u∗2)t + div(a2∇u∗2) = 0 near Q̄4 that are 0 when
t > T .

Proof. From well-known results about regularity of solutions to the parabolic
initial-boundary value problem (1.1)–(1.3), it follows that uj is in C2,1(Q3) and in
H 2,1(Q5), where Q5 = V × (0, T ) and V is a vicinity of ∂Ω in Ω. Due to conditions
(1.2) and (1.5), both u1 and u2 have the same Cauchy data on Γ0× (0, T ) and satisfy
the same parabolic equation in Q3; thus from uniqueness of continuation for second-
order parabolic equations (see, e.g., [7, Corollary 1.2.4]), we conclude that u1 = u2 on
Q3. Letting u = u2 − u1 and subtracting the equations (1.1) with j = 1 from those
with j = 2, we get

(2.2) div((a0 + b2χ(Q2))∇u)− ut = div((b1χ(Q1)− b2χ(Q2))∇u1) in Q.

Now using the definition of a weak solution to the parabolic equation under con-
sideration, we obtain

(2.3)

∫
Q

((a0 + b2χ(Q2))∇u · ∇ψ + utψ) =

∫
Q

(b1χ(Q1)− b2χ(Q2))∇u1 · ∇ψ

for any function ψ from H1,1
0 (Q). Since u and χ(Qj) are zero outside Q4 ∩ {t < T},

this relation remains valid for any function ψ from H1,1(Q6) (where Q6 is an arbitrary
vicinity of Q4) that is 0 when t > T .

If ψ = u∗2 is an H1,1(Q6) solution to the adjoint equation from Lemma 2.1, then
integrating the left side of (2.3) by parts with respect to t and using the definition of a
weak solution to this adjoint equation with the test function u (which is zero outside
Q4 ∩ {t < T}), we conclude that the left side in (2.3) is zero. Thus we have relation
(2.1) with u1 instead of v1.

Now by using the Runge property, we extend equality (2.1) onto all v1 solving
equation (1.1) with j = 1 near Q4 and satisfying the initial condition (1.3). Denote
the space of such v1 by X. It is sufficient to prove that solutions u1 to the initial-
boundary value problem (1.1)–(1.3) with j = 1 (for various g supported in Γ0×(0, T ))
approximate in L2(Q4) any solution from X. We denote the space of solutions to
(1.1)–(1.3) (with various g) by X1. Indeed, let v1 ∈ X. Then we can approximate it
similarly by solutions from X in L2(Q7), where Q7 is a Lipschitz domain containing
Q4 with dist(∂xQ7, Q4) > 0. From the well-known interior Schauder-type estimates
for parabolic equations, it follows that these solutions from X1 will approximate v1
in H1,0(Q4).

To prove L2 approximation in view of the Hahn–Banach theorem, it is sufficient
to show that if f from the dual space L2(Q4) is orthogonal to X1, then f is orthogonal
to X.

Let Ω0 be a bounded domain with C2-boundary such that Ω ⊂ Ω0, Ω 6= Ω0, and
∂Ω\Γ0 belong to ∂Ω0. Let K(x, t; y, s) be the Green function to the first initial value
problem for the operator ∂t + div(a1∇) in Q0 × (0, T ). Let f be orthogonal to X1.
The Green potential

(2.4) U(x, t; f) =

∫
Q4

fK(x, t; )
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is equal to zero on Q0\Q4 because the function u1 = K(x, t; ) belongs to X1 if
(x, t) ∈ Q0\Q4. Since supp f ⊂ Q4, this potential is a solution to the equation
−div(a0∇u) = ut on Q0\Q4. The coefficient a0 belongs to C1(Q0), so this equation
has the property of unique continuation. Therefore, U( ; f) = 0 on Q0\Q4. Now
let v ∈ X; then v is a solution to the homogeneous equation near Q5 ∪ ∂xQ5, where
Q5 is an open set with C∞ lateral boundary and dist(∂xQ5, ∂xQ4) > 0. Using the
representation of v by a single layer potential, we obtain

v(y, s) =

∫
∂xQ5

gK( ; y, s)dΓ

for some g ∈ C(∂xQ5). By using this representation, (2.4), and Fubini’s theorem, we
obtain ∫

Q4

fv =

∫
∂xQ5

gU( ; f) = 0

because U( ; f) = 0 on ∂xQ5. Accordingly, relation (2.1) is valid for any v1 satisfying
the conditions of Lemma 2.1.

The proof is complete.
Assume that

(2.5) Q1 6= Q2.

Then we may assume that Q1 is not contained in Q2. Hence, using condition (1.5)
of Theorem 1.1 on Qj , we conclude that there is a point (x0, t0) ∈ ∂Q1\Q2 such that
(x0, t0) ∈ ∂xQ3. By considering g = 0 for t < t0 and using the translations t→ t− t0
and x→ x− x0, we can reduce the general case to t0 = 0 and x0 = 0. We can choose
a ball B ⊂ Rn centered at 0 and a cylinder Z = B × (0, τ) such that B ⊂ Ω, Z does
not intersect Q2, and (∂xQ1) ∩ Z is a Lipschitz surface. Due to well-known variants
of the Whitney extension theorem, there is a C 2(Q1 ∪ Z)-function a3 that coincides
with a1 on Q1. Extend a3 onto Q\(Q1 ∪ Z) as a0.

Lemma 2.2. Under the conditions of Lemma 2.1,∫
Q1

b1∇u3 · ∇u∗2 =

∫
Q2

b2∇u3 · ∇u∗2

for any solution u3 to the equation div(a3∇u3)− (u3)t = 0 near Q4 which is 0 when
t < 0 and for any solution u∗2 from Lemma 2.1.

Proof. Consider u3 and let Q8 be an open set with C∞-boundary ∂xQ8 and
that contains Q4 with dist(∂xQ8, Q4) > 0 such that u3 is a solution to the equation
div(a3∇u3)− (u3)t = 0 near Q8.

Introduce a sequence of open sets Q4k such that (i) Q4k\Z = Q4\Z and (ii) the
(Hausdorff) distance from ∂Q4k to ∂xQ4 is less than 1/k and ∂xQ4k ∩ Z does not
intersect Q4. Define a coefficient a3k as a3 on Q8\(Q4k\Q4) and as a0 on Q4k\Q4.
Since ∂Q4 ∩ Z is a Lipschitz surface, we have

(2.6) measn{a3k 6= a3} → 0 as k → +∞.

Let u3k be solutions to the initial-boundary value problems

div(a3k∇u3k)−(u3k)t = 0 in Q8, u3k = u3 on ∂xQ8, u3k = 0 on Q8 ∩ {t = 0}.
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Since u3k = a0 + χ(Q1)b1 near Q1, relation (2.1) is valid for any u1 = u3k. The
difference uk = u3k − u3 satisfies the equation

div(a3k∇uk)− (uk)t = div((a3 − a3k)∇u3) in Q8,

and uk = 0 on ∂Q8 ∩ {t < T} because u3k and u3 coincide on the lateral boundary of
Q8 and when t = 0. From the definition of a weak solution to this initial-boundary
value problem with the test function uk, we have∫

Q8

a3k∇uk · ∇uk +

∫
Q8∩ {t=T}

u2
k

2
=

∫
Q8

(a3 − a3k)∇u3 · ∇uk.

According to the assumptions, ε < a3k for certain positive ε. Using this inequality,
dropping the second integral in the left side, and bounding the right side by the
inequality x · y ≤ ε−1/2|x|2 + ε/2|y|2, we obtain∫

Q8

ε|∇uk|2 ≤ C(ε)

∫
Q8

|a3 − a3k|2|∇u3|2 +
ε

2

∫
Q8

|∇uk|2.

Since ∇u3 belongs to L2(Q8), we conclude from (2.6) that the first integral in the right
side tends to 0. Therefore, ∇uk converges to 0 in L2(Q8). Putting u1 = u3k = u3 +uk
into relation (2.1) and letting k →∞, we complete the proof of Lemma 2.2.

3. Estimates of integrals of singular solutions. We will make use of solu-
tions u3 and u∗2 with singularities outside Q4. Solutions of elliptic equations of second
order with arbitrary power singularities were constructed by Alessandrini [1]; we do
not know of similar results for parabolic equations. To simplify obtaining bounds on
the integrals of such solutions, we introduce new variables. We can assume that the
direction en of the xn-axis coincides with the interior unit normal to ∂xQ1 ∩ {t = 0}.
According to our assumptions, ∂xQ1 near the origin is the graph of a Lipschitz func-
tion xn = q1(x1, . . . , xn−1, t) which can be assumed to be defined and Lipschitz on
the whole Rn. The substitution

xk = x∗k, k = 1, . . . , n− 1, xn = x∗n + q1(x
∗
1, . . . , x

∗
n−1, t), t = t∗

transforms the equations (1.1) into similar equations with additional first-order differ-
entiation with respect to x∗n multiplied by a Lipschitz function of t. The domains Qj

are transformed onto domains with similar properties and with the additional prop-
erty that the points (0, t), 0 < t < T , belong to ∂xQ1. Since the (hyper)plane {x∗n = 0}
is tangent to this surface at the origin, we can find a cone C = {|x∗/|x∗| − en| < θ,
|x∗| < ε} such that the cylinder C × (0, T ) is inside Q1. Henceforth, we drop the
sign ∗.

Let K+ be the fundamental solution of the Cauchy problem for the forward
parabolic equation div(a3∇u3) − (u3)t = 0 in ∗-coordinates. Let K− be the funda-
mental solution of the backward Cauchy problem for the backward parabolic equation
div(a2∇u2) + u2t = 0 in these coordinates. It is known that

(3.1) K+ = K+
1 +K+

0 , K− = K−
1 +K−

0 ,

where K+
1 and K−

1 are the principal parts of K+ and K− (parametrices) and K+
0
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and K−
0 are the remainders. The principal parts are

(3.2)

K+
1 (x, t; y, τ) =

C

(a3(y)(t− τ))n/2
exp

(
− |x− y|2

4a3(y)(t− τ)

)
,

K−
1 (x, t; y, τ) =

C

(a0(y)(τ − t))n/2
exp

(
− |x− y|2

4a0(y)(τ − t)

)
.

From the known bounds of fundamental solutions of parabolic equations [9, p. 377],
we have

(3.3)

|∇xK
+
0 (x, t; y, τ)| ≤ C(t− τ)−n/2 exp

(
− |x− y|2

(C(t− τ))

)
,

|∇xK
−
0 (x, t; y, τ)| ≤ C(τ − t)−n/2 exp

(
− |x− y|2

(C(τ − t))

)
.

When (y, 0) and (y, τ) are outside Q1, the functions K+( ; y, 0) and K−( ; y, τ)
are (x, t)-solutions to the homogeneous parabolic equations with bounded measurable
coefficients satisfying zero initial and final conditions. Using Lemma 2.2 with u3 =
K+( ; y, 0) and u∗2 = K−( ; y, τ), we get

(3.4)

∫
Q1∩Z

b1∇xK
+( ; y, 0) · ∇xK

−( ; y, τ)

= −
∫
Q1\Z

b1∇xK
+( ; y, 0) · ∇xK

−( ; y, τ)

+

∫
Q2

b2∇xK
+( ; y, 0) · ∇xK

−( ; y, τ).

From the estimates in (3.3) and similar estimates for ∇xK
+
1 and ∇xK

−
1 , we conclude

that the integrands are bounded by an integrable function uniformly with respect to
y outside Q1. By the Lebesgue dominated-convergence theorem, we may let y → 0
and replace y in (3.4) by 0. Using representation (3.1), we obtain from (3.4) that

(3.5) |I1| ≤ |I2|+ |I3|,
where

I1 =

∫
Q1∩Z

b1∇xK
+
1 ( ; 0, 0) · ∇xK

−
1 ( ; 0, τ)

is formed from the principal parts of K and the remainders are collected in

I2 = −
∫
Q1\Z

b1∇xK
+( ; 0, 0) · ∇K−( ; 0, τ) +

∫
Q2

b2∇xK
+( ; 0, 0) · ∇xK

−( ; 0, τ)

and

I3 =

∫
Q1∩Z

b1(∇xK
+
1 ( ; 0, 0) · ∇K−

0 ( ; 0, τ) + ∇xK
+
0 ( ; 0, 0) · ∇xK

−
1 ( ; 0, τ)

+ ∇xK
+
0 ( ; 0, 0) · ∇K−

0 ( ; y, τ)).
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In the following three lemmas, I1 is bounded from below and I2 and I3 is bounded
from above.

Lemma 3.1.

|I1| ≥ C−1τ−n
∫ ε

0

ρn−1e−4p2/(mτ)dρ,

where m = inf(a3, a0) over Q.
Proof. Using the fact that b1(0) 6= 0 and choosing ε in the definition of C to be

sufficiently small, we obtain

|I1| ≥ C−1

∫
C×(0,τ)

∇xK
+
1 (x, t; 0, 0) · ∇xK

−
1 (x, t; 0, τ)

= C−1

∫ τ

0

∫
C
t−n/2−1 exp

(
− |x|2
a3(x)t

)
x · (τ − t)−n/2−1 exp

( |x|2
a0(x)(τ − t)

)
x dx dt

≥ C−1

∫
C

∫ τ/2

0

|x|2((τ − t)t)−n/2−1 exp

(
− |x|2τ
mt(τ − t)

)
dt dx.

Using the inequality

(3.6)
1

tτ
≤ 1

t(τ − t)
≤ 2

tτ
when 0 < t <

τ

2
,

we bound from below the integral shown above by

C−1

∫
C

∫ τ/2

0

|x|2 1

(tτ)n/2+1
exp

(
−2|x|2

mt

)
dt dx

=
1

Cτn/2+1

∫
C
|x|2−n

∫ ∞

4|x|2
mτ

wn/2−1e−wdw dx,

where we substituted w = 2|x|2/mt.
The function wn/2−1 is increasing, so replacing it by its minimal value at w =

4|x|2/(mτ), we bound the last integral from below by∫
C
τ1−n/2

(∫
(4|x|2/(mτ),∞)

e−wdw

)
dx = C−1τ1−n/2

∫
(0,ε)

ρn−1e−4ρ2/(mτ)dρ.

The proof is complete.
Lemma 3.2.

|I2| ≤ Cτ−n/2+1ε−2e−ε
2/(Mτ),

where M depends only on sup(a3, a0) over Q.
Proof. I2 consists of two integrals. The first one is bounded by

C

∫
ε<|x|<R,0<t<τ

|∇xK
+( ; 0, 0) · ∇xK

−( ; 0, τ)|

≤ C

∫
ε<|x|<R

∫ τ/2

0

1

((τ − t)t)n/2+1/2
exp

(
− |x|2τ
Mt(τ − t)

)
dt dx.
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The bound on |∇xK
+ · ∇xK

−| follows from the direct differentiation of (3.2), the
inequality

|x|(t− τ)−n/2−1 exp

(
− |x|2

4(t− τ)

)
≤ C(t− τ)−n/2−1/2 exp

(
− |x|2

8(t− τ)

)
,

and the bounds in (3.3).
Applying inequality (3.6) as above, we bound the last integral by

C

τn/2+1/2

∫
ε<|x|<R

∫ τ/2

0

1

tn/2+1/2
exp

(
−|x|

2

Mt

)
dt dx

≤ C

τn/2+1/2

∫
ε<|x|<R

|x|1−n
∫ ∞

2|x|2
Mτ

wn/2−1w−1/2e−wdw dx

when we use the substitution w = |x|2/(Mt). The function w−1/2 is decreasing.
Replacing it by its value at 2|x|2/(Mτ), we increase the integral, and we also use the
inequality wn/2−1e−w ≤ Ce−w/2 and calculate the resulting integral with respect to
w. Then the last integral will be less than

Cτ−n/2
∫
ε<|x|<R

|x|−n exp(−|x|2/(Mτ))dx

≤ Cτ−n/2
∫

(ε,∞)

ρ−2ρ exp(−ρ2/(Mτ))dρ

when we use the polar coordinates in Rn. Replacing ρ−2 by its maximal value at ε
and calculating the remaining integral with respect to ρ, we complete the bounding
of the integral over Q1\Z.

A similar argument works for the integral over Q2.
The proof is complete.
Lemma 3.3.

|I3| ≤ Cετ−n/2,

where M depends only on the upper bounds of |a3|, |a0|.
Proof. We bound the integral of the first of the three functions, forming I3 as

defined after (3.5).
As follows from (3.2), (3.3), and the argument in Lemma 3.2, replacing |x| by

some power of (t− τ), the absolute value of this integral is less than

C

∫
|x|<ε

∫
(0,τ/2)

((τ − t)t)−n/2t−1/2 exp(−|x|2τ/(Mt(τ − t))dt dx

≤ C

∫
|x|<ε

∫
(0,τ/2)

(τt)−n/2t−1/2 exp(−|x|2/(Mt))dt dx,

where we used inequality (3.6). Substituting w = |x|2/(Mt) in the inner integral
yields

Cτ−n/2
∫
|x|<ε

|x|1−n
∫

(2|x|2/(Mτ),∞)

wn/2−3/2e−wdw dx ≤ Cτ−n/2
∫
|x|<ε

|x|1−ndx.

Using the polar coordinates, we bound the last integral by Cε.
The other terms can be bounded in a similar way. The proof is complete.
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4. Proof of Theorem 1.1. Now we will complete the proof of Theorem 1.1.
Let

(4.1) ε2 = Eτ,

where (large) E will be chosen later.

First, we bound I1 from below. From Lemma 3.1, substituting w = 4ρ2/(mτ) in
the integral and using condition (4.1), we obtain

(4.2) |I1| ≥ C−1τ−n/2
∫

(0,4E/m)

wn/2−1e−wdw ≥ C−1τ−n/2

provided E > m.

From (3.5), Lemmas 3.1–3.3, (4.1), and (4.2), it follows that

C−1τ−n/2 ≤ C(τ−n/2+1ε−2 exp(−E/M) + τ−n/2ε).

Using (4.1) again and multiplying both sides by Cτn/2, we obtain

1 ≤ CE−1 exp(−E/M) + Cε ≤ CE−1 + Cε.

Let τ < 1. Choose E so large that E−1 < 1/(4C) and ε < 1/(4C); then the right side
is smaller than 1/2. We have a contradiction.

This contradiction shows that Q1 = Q2.

The next step of the proof is to show that

(4.3) b1 = b2 on ∂xQ1.

As in the proof for Qj , we assume the opposite. Then we can assume that the
origin 0 ∈ ∂xQ1 and b1(0) < b2(0). By continuity, b1(0) − b2(0) > C−1 for some C
on a certain ball B centered at the origin. Let Z = B × (0, T ). Extend a2 from Q2

onto Rn as a C2-function a4 > 0. By repeating the proof of Lemma 3.2, we obtain
the following orthogonality relation:

(4.4)

∫
Q1

(b1 − b2)∇u3 · ∇u∗4 = 0

for all solutions u3 to the equation div(a3∇u3) − u3t = 0 near Q4 which are zero
when t < 0 and for all solutions u∗4 to the adjoint equation div(a4∇u4)+u4t = 0 near
Q4 which are zero when t > T . Let K+ be a fundamental solution to the forward
Cauchy problem for the first equation and K− be the fundamental solution to the
backward Cauchy problem for the adjoint equation with the coefficient a4. Using the
representation (3.1) of these fundamental solutions and splitting Q1 into Q1 ∩ Z and
its complement, as in section 3, we obtain from (4.4) the inequality

(4.5) |I4| ≤ |I5|+ |I6|,

where

I4 =

∫
Q1∩Z

(b1 − b2)∇xK
+
1 · ∇xK

−
1
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is related to the supposedly singular part and

I5 =

∫
Q1\Z

(b1 − b2)∇K+ · ∇K−,

I6 =

∫
Q1

(b1 − b2)∇K+
0 · ∇K−2

0 .

It is easy to see that Lemmas 3.1, 3.2, and 3.3 are valid for I4, I5, and I6,
respectively. Therefore, as in the proof above, we arrive at the contradiction that
Q1 = Q2.

This shows that the assumption about b1 and b2 is wrong and that b1 = b2 on
∂xQ1.

Let Ω0 be the intersection of all Q1θ over 0 < θ < T . Since b1 and b2 do not
depend on t and are equal on ∂xQ1, they coincide on Q1θ\Ω0. Letting Q0 = Ω×(0, T ),
we obtain from (4.4) the relation∫

Q0

(b1 − b2)∇u3 · ∇u∗4 = 0

for all u3 and u∗4 in (4.4). As in the proof of Lemma 3.2, this implies that

(4.6)

∫
Q0

(b1 − b2)∇u6 · ∇u∗6 = 0

for solutions u5 to the equation div((a0 + b1χ(Q0))∇u5)− u5t = 0 near Q0 which are
zero when t < 0 and for solutions to the adjoint equation div((a0 + b2χ(Q0))∇u∗6)−
u∗6t = 0 near Q0 which are zero when t < T .

Observe that by choosing T small, we can guarantee that Ω0 is a Lipschitz domain.
Indeed, for any point of ∂xQ1 ∩ {t = 0}, there is a neighborhood where Q1 is the
subgraph of the Lipschitz function xj < qj(x1, . . . , xj−1, xj+1, . . . , xn, t). We can cover
the compact set ∂xQ1∩{t = 0} by a finite number of such neighborhoods. Then there
is T1 such that ∂xQ1 ∩ {t < T1} is contained in the union of these neighborhoods.
Let T = T1; then Ω0 is Lipschitz because locally (in the corresponding neighborhood)
its boundary is given by the equation xj = inf qj(x1, . . . , xj−1, xj+1, . . . , xn, t) over
t ∈ (0, T ), and the inf of a family of uniformly Lipschitz functions is a Lipschitz
function.

Now we will show that the equations for u5 and u6 have the same lateral Dirichlet-
to-Neumann maps. Let u5 and u6 be a solution to these equations with zero initial
conditions and the same lateral Dirichlet data. By subtracting these equations and
letting u = u0 − u5, we obtain

div((a0 + b2χ(Q0))∇u) = div((b1 − b2)χ(Q0)∇u5) in Q.

From the definition of a weak solution of this equation, we have∫
∂Ω×(0,T )

a0uνψ −
∫
Q

((a0 + b2χ(Q0))∇u · ∇ψ −
∫
Q

utψ = −
∫
Q0

(b1 − b2)∇u5 · ∇ψ

for any function ψ ∈ H1,1(Q). Using ψ = u∗6, integrating by parts in the third
integral of the left side, and again using the definition of a weak solution to the
equation div((a0 + b2χ(Q0))∇u∗6) + u∗6t = 0 with the test function u which is zero on
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∂Q ∩ {t < T}, we conclude that the sum of the second and third integrals in the left
side is zero. The right side is zero due to (4.6). Thus the first integral in the left side is
zero. Since the lateral Dirichlet data ψ = u∗6 can be any function in C∞0 (∂Ω× (0, T )),
we get uν = 0 on ∂Ω × (0, T ). Therefore, u5ν = u6ν on the lateral boundary, which
means that we have the same lateral Dirichlet-to-Neumann maps.

Take as the Dirichlet data g a function which does not depend on t when t > τ .
Since the coefficients of the equations div((a0 + bjχ(Q0)∇uj) − ujt = 0 are time
independent, the solution uj(x, t) of the initial-boundary value problems on Ω×(0,∞)
will be analytic with respect to t > τ . They have the same Cauchy data on ∂Ω ×
(0, T ); therefore, as above, by uniqueness in the lateral Cauchy problem, u5 = u6

on (Ω\Ω0) × (0, T ). By uniqueness of the analytic continuation, they are equal also
on (Ω\Ω0) × (0,∞). Now we modify the argument of [6] and consider the Laplace
transforms

Uj(x, s) =

∫
(0,∞)

e−stuj(x, t) dt.

They solve the following Dirichlet problems:

(4.7) div((a0 + bjχ(Ω0))∇Uj)− sUj = 0 in Ω, Uj = G on ∂Ω,

and U5 = U6 on Ω\Ω0. Letting τ → 0 we obtain G(x, s) = g0(x)s
−1, where g0(x) =

g(x, t) when t > τ . Applying the results of [5] and [11] on identification of elliptic
equations, we conclude that b1 = b2 on Ω0. In fact, this result is obtained in [5] when
n ≥ 3, but the recent global uniqueness theorem of Nachman [10] extends it to n = 2.

The proof is complete.
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THE EXISTENCE OF TRAVELLING WAVE SOLUTIONS OF A
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Abstract. This paper establishes the existence and, in certain cases, the uniqueness of travelling
wave solutions of both second-order and higher-order phase-field systems. These solutions describe
the propagation of planar solidification fronts into a hypercooled liquid. The equations are scaled
in the usual way so that the relaxation time is αε2, where ε is a nondimensional measure of the
interfacial thickness. The equations for the transition layer separating the two phases form a system
identical to that for the travelling-wave problem, in which the temperature is strongly coupled with
the order parameter. Thus there is no longer a well-defined temperature at the inteface, as is the case
in the more frequently studied situation in which the liquid phase is undercooled but not hypercooled.

For phase-field systems of two second-order equations, we prove a general existence theorem based
upon topological methods. A second, constructive proof based upon invariant-manifold methods is
also given when the parameter α is either sufficiently small or sufficiently large. In either regime, it
is also proved that the wave and the wave velocity are globally unique.

Analogous results are also obtained for generalized phase-field systems in which the order pa-
rameter solves a higher-order differential equation. In this paper, the higher-order tems occur as a
singular peturbation of the standard (isotropic) second-order equation. The higher-order terms are
useful in modelling anisotropic interfacial motion.

Key words. travelling waves, phase-field equations, hypercooling

AMS subject classification. 35K55

PII. S0036141095283820

1. Introduction. The phase-field system,

(u+ λW (ϕ))t = ∇2u,

αε2ϕt = ε2Λϕ+ F (ϕ, u),

is a well-established model for describing the behavior of phase fronts in materials that
are undergoing a transition between the liquid and solid phase (see, e.g., [2, 9, 8, 3, 4]).
Here u is nondimensional temperature, ϕ is an order parameter, u+λW (ϕ) is the en-
ergy density, Λ is an elliptic partial differential operator, ε is a length scale associated
with the interfacial thickness and also serves as a nondimensional surface tension, and
α is O(1) with respect to ε. The functions W and F are characterized precisely in
the next section; however, we note here that the assumptions about W include the
cases in which W is either a linear or a quadratic function and that F is a bistable
function. The nonnegative parameter λ is included for convenience in the analysis to

∗ Received by the editors March 20, 1995; accepted for publication (in revised form) November
3, 1995.

http://www.siam.org/journals/sima/28-1/28382.html
† Department of Mathematics, Brigham Young University, Provo, UT 84602 (peter@math.

byu.edu). The research of this author was partially supported by NSF grant DMS-9305044 and
the Isaac Newton Institute, Cambridge.

‡ Department of Mathematics, University of Utah, Salt Lake City, UT 84112 (fife@math.
utah.edu). The research of this author was partially supported by NSF grant DMS-9201714 and
the Isaac Newton Institute, Cambridge.

§ Department of Mathematics, University of Massachusetts, Amherst, MA 01003 (gardner@
math.umass.edu). The research of this author was partially supported by NSF grants DMS-
898922384 and DMS-9300848-001.

¶ Division of Applied Mathematics, Brown University, Providence, RI 02912 (ckrtj@cfm.
brown.edu). The research of this author was partially supported by NSF grant DMS-9402774.

60



TRAVELLING WAVES FOR PHASE-FIELD SYSTEMS 61

follow. In [1], the term λW is denoted simply by w. One advantage of phase-field
equations over sharp interface models is that they incorporate both equations for the
field variables away from the interface and the proper interface conditions within a
single system. In addition, they are computationally advantageous.

We shall employ the usual measure of degree of undercooling ∆ = (ĉ/`)(Tm −
T−), where ĉ, `, Tm, and T− are the specific heat, latent heat at T = T−, melting
temperature, and temperature of the undercooled melt. In dimensionless variables,
the value ∆ = 1 is the threshold beyond which the melt is hypercooled (see the
discussion following Hypothesis 2 in section 2). A frequently studied problem is that
of describing the advance of a solid into a supercooled liquid for which ∆ < 1 (see, e.g.,
[4, 8]). Then at locations away from the interface, the temperature of the solid being
formed is approximately the melting temperature Tm, and there can be no planar
front moving with constant velocity (it will decelerate). The analogous problem for
a hypercooled medium, in which ∆ > 1, has received less attention. In this case,
the solidification front advances more rapidly into the liquid and can have constant
speed. The existence of these travelling fronts within the framework of the phase field
models is the principal aim of this paper.

The asymptotic analysis of the phase-field equations in this regime is performed
in a companion paper [1], in which matched asymptotic expansions of the solution
for small ε are constructed. In contrast to the case where ∆ < 1, it turns out that
with hypercooling, both the order parameter and the temperature are discontinuous
at the transition layer (phase interface) in the limit as ε → 0. This implies that
the “inner” equations within the transition layer will be significantly more difficult
to solve than in the case where ∆ < 1 since the travelling wave equations which
give the fine structure of the solution in the interface now consist of a system in
which the temperature equation is coupled with the equation for the order parameter.
When ∆ < 1, temperature is constant to lowest order in the transition layer, and the
resulting connection problem is a scalar ODE for ϕ. In this connection, it should
be noted that the existence of travelling waves in the case where ∆ > 1 was proved
by Caginalp and Nishiura [5] for a variant of the phase-field equations, used in other
papers as well, in which the function F takes the form F (ϕ, u) = Fo(ϕ) + εu. In the
connection problem for this model, as in the present paper, u is not almost constant
in the layer so that the travelling wave problem consists of a system rather than a
scalar equation. However, the problem is simplified considerably by the fact that the
second equation in the system (which contains the function F ) is coupled only weakly
to the variable u, allowing the use of a perturbative argument. In this variant model,
ε has a different meaning and, most importantly, different physical assumptions are
made. See [1] for a comparison of the two versions.

We shall prove several theorems on the existence and the uniqueness of travelling
plane wave solutions to the phase-field system in the hypercooled regime. As shown
in [1], the system for plane waves is precisely the set of “inner” equations for the
transition layer.

The first model we consider is the standard isotropic phase-field system in one
space variable x, in which Λ = ∂2/∂x2. If ξ = x/ε− ct/ε2 and u and ϕ are solutions
of the PDEs that depend only upon ξ, then u and ϕ satisfy the travelling wave ODEs

−c(u̇+ λẆ (ϕ)) = ü,

−cαϕ̇ = ϕ̈+ F (ϕ, u).

We first formulate and prove a theorem, Theorem 2.1, on the existence of heteroclinic
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solutions for this system using the Conley index. The theorem is quite general, requir-
ing only geometric constraints on the nonlinearities in the equations (see Hypotheses
1–5 in section 2 below). The price for such generality is that the proof supplies rel-
atively little information about the qualitative properties of the profile and the wave
speed. It is not difficult to see that the components of the profile can exhibit a rich
variety of different qualitative forms, depending on the parameters and the nonlinear-
ities in the equations. In section 6, we present numerical results giving some of the
wave profiles that can be observed.

In the asymptotics in [1], it is important to have more information about the
wave and the associated wave velocity c. In particular, it is important to know
that the wave speed is unique and that it depends smoothly on parameters in the
equations. In section 4, we give a second proof of the existence of the profile when
the parameter α is either small or large under weaker geometric constaints than those
required in Theorem 2.1. The proof, which is constructive and relies upon invariant-
manifold machinery, provides the local uniqueness of the wave and the wave velocity
as well as their differentiable dependence on parameters. If, in addition, the more
stringent constraints of Theorem 2.1 are satisfied, it is shown that the wave and the
wave velocity are globally unique relative to all possible wave solutions in the isolating
region constructed in section 3 and all negative values of the wave-velocity parameter.

In section 5, we consider phase-field equations where the operator Λ is a higher-
order differential operator. Equations of this type are obtained by retaining higher-
order terms of up to some arbitrarily prescribed order in the Ginzburg–Landau for-
malism used to express the self-interaction term in the free-energy functional as a
differential operator. The retention of higher-order terms provides a natural way
of introducing anisotropy into the equations; see [1] for a detailed derivation. The
resulting travelling wave system for the inner equations at a point on the interface is

−c(u̇+ λẆ (ϕ)) = ü,

−cαϕ̇ = Λ(θ)ϕ+ F (ϕ, u),

where the vector parameter θ consists of the angles that the outward normal to the
interface at this point makes with the coordinate axes (see [1]). Specifically, the
operator Λ(θ) has the form

Λ(θ) =

m∑
i=1

µ2i−2bi(θ)d
2i/dξ2i,

where m is odd and the coefficients bi(θ) are smooth positive functions of θ. In [1],
it is shown that if the interaction function in the free-energy functional possesses
anisotropy of order 2m, then terms in the differential equations of order at least 2m
must be retained in order to observe the required degree of anisotropy in solutions of
the truncated equations. Also, we remark that m should be odd if Λ is to be elliptic.

The parameter µ has physical significance as the ratio of two microscopic charac-
teristic lengths [1]. We assume that µ is small enough since the existence proof entails
perturbing off the case where µ = 0. This generalizes earlier work on the existence of
travelling waves for the scalar problem (wherein u is constant) in the sixth-order case
[11]. The results in [11] are generalized to scalar equations of arbitrarily high order in
[1]. The scalar equation arises as the inner O(1) approximation when the relaxation
time for the phase variable, which we have denoted by αε2, is assumed to be O(ε)
rather than the O(ε2).
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In section 5, we obtain a global existence result similar to Theorem 2.1 for the
higher-order connection problem under the assumption that µ is sufficiently small. We
also give a constructive proof which again implies the uniqueness of the wave speed
c and its differentiable dependence c = c(θ) on the parameter θ under the additional
assumption that α is either small or large. This last result is needed in [1] in the
asymptotic description of anisotropic interfacial motion in hypercooled solidification.
In particular, the asymptotics in [1] lead to a Hamilton–Jacobi-type equation for the
interface. The Hamiltonian is essentially the wave speed c of the above connection
problem as a function c = c(θ, s) of the angles θ and, in the event that the initial data
are in the two phases, position s along the interface.

The proofs of some of the main theorems are somewhat lengthy and technical.
Readers seeking an overview of the results obtained here should first read section
2, wherein the basic structural hypotheses are formulated, and then proceed to the
statement of Theorems 4.2 and 4.3 in section 4, wherein the two asymptotic limits of
the wave for small and large α are described. Further qualititative understanding of
the structure of various waves that appear can be obtained from the numerical results
presented in section 6.

2. A global result. In this section we formulate the general travelling plane
wave problem for the second-order system described in the introduction. Take the
far-field liquid temperature u− < 0 and the phase variable there, ϕ−, to be such
that the state (ϕ−, u−) lies on the equilibrium curve F (ϕ, u) = 0 on the right-hand
ascending branch (see Figure 1). Here the right equilibrium branch is associated with
the liquid phase. Note that with this convention, large ϕ is associated with the liquid
phase while small ϕ along the left branch of equlibria is associated with the solid
phase. Hence here ϕ is more appropriately thought of as a disorder parameter rather
than an order parameter.

A solution of the second-order travelling wave system which is asymptotic to the
state (ϕ−, u−) at ξ = −∞ satisfies the system of ODEs

u̇ = −cg(ϕ, u),(1)

ϕ̇ = ψ,

ψ̇ = −cαψ − F (ϕ, u),

where c < 0 is the wave speed, α > 0, and

g(ϕ, u) = u− u− + λ(W (ϕ)−W (ϕ−)).

W (ϕ) is a function which is either monotone decreasing or concave (see [8]). In
particular, we could assume for simplicity that W (ϕ) = Aϕ − Bϕ2 with A,B ≥ 0.
Additional hypotheses concerning W are formulated below.

We shall consider functions F and W which, in addition to the above, satisfy the
following hypotheses.

Hypothesis 1.

1. F is a C1 function which is “bistable” in ϕ for each fixed u in some interval
−um < u < um, i.e., for each such u, F (ϕ, u) has precisely three roots,

h`(u) < h∗(u) < hr(u).

2.
∫ hr(u)

h`(u)
F (ϕ, u) dϕ has the same sign as u and vanishes if and only if u = 0.

3. ∂F
∂ϕ (h`,r(u), u) < 0 for −um < u < um, and ∂F

∂u (ϕ, u) > 0.
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Fig. 1. Null sets of F and g, and the boxes M0 and M±.

For example, the function F = ϕ − ϕ3 + u is easily seen to satisfy each of the
conditions in Hypothesis 1, as does the function F = (1−ϕ)(ϕ+ a(u))(ϕ+ 1), where
a(u) is a monotone increasing function with a(0) = 0. We remark that these conditions
include the class of thermodynamically consistent phase-field equations of Fife and
Penrose [8]. Since the far field at −∞ is assumed to be in the liquid phase, it is
appropriate to consider only waves with negative speeds c since hypercooling should
produce solidification fronts propagating from the solid into the liquid. The above
hypothesis is consistent with this physical requirement.

The parameter u− is regarded as a free parameter in the range −um < u− < 0
and the parameter ϕ− is then determined by the equation ϕ− = hr(u−). The point
P− = (u−, ϕ−, 0) is therefore a rest point of (1) which lies along the right branch of
F = 0. We next impose some additional hypotheses on the null sets F = 0 and g = 0
that are needed to ensure the existence of the wave. These hypotheses can be seen to
be fulfilled through a judicious choice of the remaining parameter λ. In the following,
λ is allowed to vary over some interval of the form 0 ≤ λ ≤ λ0.

Hypothesis 2 (hypercooling). The null clines F = 0 and g = 0 of the nonlin-
earities in (1) are as depicted in Figure 1. More precisely, there exists λ0 > 0 such
that for λ ∈ [0, λ0], the equations in (1) admit exactly three rest points,

P− = (u−, ϕ−, 0),

P∗(λ) = (u∗(λ), ϕ∗(λ), 0),

P+(λ) = (u+(λ), ϕ+(λ), 0),

where ϕ+(λ) = h`(u+(λ)), ϕ− = hr(u−), and ϕ∗(λ) = h∗(u∗(λ)). Furthermore, we
assume that

u− < u+ < 0.

It follows from the above that the coordinates of P∗(λ) and P±(λ) are implicit
functions of the temperature u−. Hence the only undetermined parameter is the wave
speed c.

From Figure 1, it can be seen that it is possible for the temperature u+(λ) to
be positive at the rest point P+(λ) associated with the solid phase. This is clearly a
nonphysical state. The temperature us of the solid phase should therefore be defined
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as us = min{u+(λ), 0}. In the more typical solidification process (supercooling), the
temperature us of the solid at the interface is zero. The last condition in Hypothesis
2 requires that the temperature in the solid phase be strictly negative, which can be
taken as the definition of hypercooling.

It is easily seen that hypercooling can also be defined in terms of the parameter
∆ mentioned in the introduction. In our dimensionless variables, the latent heat is

` = λ(W (ϕ−)−W (ϕs)) > 0 (ϕs = h`(us))

so that the parameter ∆ is −u−/`. It then follows that u+/` = −∆ + 1 so that
hypercooled solidification occurs when ∆ > 1 and the transition to hypercooling
occurs when ∆ = 1. The problem in which ∆ is near unity is interesting. Some
numerical experiments in this parameter range are presented in section 6.

With a slight abuse of notation we shall also use P± and P∗ to denote the points
(ϕ±, u±) and (ϕ∗, u∗) in the (ϕ, u) plane, and we shall usually suppress their depen-
dence on λ. We remark that the (physical) condition u− < u+ < 0 in Hypothesis 2
implicitly places some constraints on W and λ.

Hypothesis 3. There exists a rectangle M0 in the (ϕ, u) plane with edges parallel
to the coordinate axes and with vertices at a, b, c, and d as depicted in Figure 1 such
that for each λ ∈ [0, λ0],

−F < 0 along āb; −F > 0 along c̄d;
g < 0 along b̄c; g > 0 along ād.

Hypothesis 4. For each λ ∈ [0, λ0], there exist nested families of rectangles
M±(τ), 0 ≤ τ ≤ 1, such that (i) M±(0) = P±, (ii) M±(σ) ⊂ M±(τ) for σ ≤ τ , and
(iii) M±(τ) has edges parallel to the coordinate axes and such that for τ > 0, the null
cline g = 0 intersects ∂M±(τ) only along the vertical edges and the null cline F = 0
intersects ∂M±(τ) only along the horizontal edges. Furthermore, if M± = M±(1),
then the vertices a, b′, c′, and d′ of M+ and the vertices a′′, b′′, c, and d of M− are
as depicted in Figure 1.

It is easily seen that Hypotheses 2–4 will be satisfied whenever λ0 is sufficiently
close to zero since in that case, the rectangles M0 and M± can be chosen to be thin
in the vertical dimension.

Next, let (ϕw, uw) be the point along {g = 0} ∩M0 for which u is minimal. It
follows from (i) and (ii) of Hypothesis 1 that if r(ϕ) = −F (ϕ, uw), then r(ϕ) has three
distinct roots at

ϕ̂− = hr(uw), ϕ̂∗ = h∗(uw), ϕ̂+ = h`(uw).

Let R′(ϕ) = r(ϕ) with R(ϕ̂+) = 0. It follows from Hypothesis 1 that R(ϕ) is as
depicted in Figure 2.

Hypothesis 5. With λ0 set in accordance with the previous hypotheses, let

ϕ+
r = hr(u+(λ)),

ϕ+
∗ = h∗(u+(λ));

assume for each λ ∈ [0, λ0] that

R(ϕ+
∗ ) > R(ϕ+

r ).
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Fig. 2. The primitive R(ϕ) of −F (ϕ, uw).

If λ0 is near zero, g = 0 is nearly a horizontal line; and the rectangles M0 and M±
of Hypotheses 3 and 4 can be chosen to be arbitrarily thin in the vertical dimension. It
then follows that u+(λ) is close to u− so that h∗(u+(λ)) will be near ϕ̂∗ and h`(u+(λ))
will be near ϕ̂+. From Figure 2, we see that R has a local maximum at ϕ̂∗ and an
adjacent local minimum at ϕ̂+, and it therefore follows that for λ ∈ [0, λ0], Hypothesis
5 will always be satisfied for small λ0.

Remark. Hypotheses 1 and 2 are natural and necessary conditions for the exis-
tence of a hypercooled phase front. It turns out that in the asymptotic regimes of
either large or small α, they are also sufficient; see section 4. Hypotheses 3 and 4 are
more restrictive, but they are still quite reasonable requirements for a global theory.
Hypothesis 5 is somewhat more artificial. It is used below to rule out certain internal
tangencies in the construction of an isolating region N in the phase space of the wave.
These tangencies occur when the ϕ component has a local minimum when (ϕ, u) is
exterior to the rectangle M−. The waves that we construct therefore have monotone
ϕ components whenever (ϕ, u) is exterior to this region. This is in itself a rather
artificial requirement, which accounts for the artificiality of the hypothesis.

It should be noted, however, that Hypotheses 1–5 provide global geometric con-
ditions on the nonlinearities in the equations and will hold in regimes other than in
the essentially decoupled regime in which λ is assumed to be small. In particular, it
should be noted that all of the above hypotheses are independent of the parameter
α. In section 4, we show that for large α, the u-component of the profile is monotone
increasing while the ϕ component has a single local maximum. On the other hand,
for small α, the ϕ-component is monotone decreasing while the u-component is either
monotone increasing (if g = 0 is monotone) or has a single local minimum (if g = 0
has a local minimum). Theorem 2.1 can be viewed as a global continuation of these
two asymptotic regimes, each of which is quite far from the scalar bistable travelling
wave problem. Some illustrative numerical calculations are presented in section 6.

Theorem 2.1. Under the above hypotheses, there exists a solution of (1) con-
necting the rest point P− at −∞ to the rest point P+ at +∞ for some wave speed
c < 0. The solution satisfies the following bounds:

uw ≤ u(ξ) ≤ u+,

ϕ(ξ) ≥ φ+.

Furthermore, if ϕm is the value of ϕ in the left vertical edge of M− and if ϕ∗∗ =
min{ϕm, ϕw}, then there exist unique values ξm ≤ ξ∗∗ such that ϕ(ξm) = ϕm,
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ϕ(ξ∗∗) = ϕ∗∗, and

ϕ̇(ξ) < 0 (ξ ≥ ξm),

u̇(ξ) > 0 (ξ ≥ ξ∗∗).

3. Proof of Theorem 2.1. The proof employs a topological invariant called the
Conley connection index, which is a variant of the Conley index whose formulation
permits it to detect codimension-one connections, i.e., connections between rest points
P− and P+ for which the unstable manifold of the former and the stable manifold of
the latter have dimensions adding up to that of the total state space. In this situation,
any intersection of such manifolds is necessarily nontransverse, and in order to detect
connections topologically, it is necessary to augment the flow with a trivial parameter
flow; in this case, we include the wave velocity parameter c as a new dependent
variable. The “nontriviality” of the index then forces the existence of a connecting
orbit for at least one value of the wave-speed parameter. A detailed discussion of the
connection index can be found in Conley and Gardner [6]; see also [10].

The main analytical construction consists of finding a certain neighborhood N in
the unaugmented phase space which contains both rest points in its interior and which
is isolating for each c in some interval of wave speeds c0 ≤ c ≤ c1. Furthermore, it is
required that at the extreme parameter values c0 and c1, there are no orbits connecting
P− to P+. The construction of the neighborhood N given here closely parallels that
of the example of competitive diffusion equations studied in [6] with one important
difference. In [6], both components of the wave are monotone for all parameter values
for which it exists. Here, however, either component may sometimes be nonmonotone,
and the neighborhood N in which we expect to locate the connection must be revised
accordingly. In this regard, the construction is closer in spirit to a paper on travelling
wave solutions of predator–prey systems [10], where nonmonotone behavior is also
encountered.

The isolating neighborhood N will be a region of the form

N = N0 ∪N− ∪N+ \N∗(ε),
where N± are neighborhoods of the rest points P± of the form

N± = M± × {ψ : |ψ| < K},
N0 is the region

N0 = M0 × {ψ : −K ≤ ψ ≤ 0},
where K is a large positive constant, and N∗(ε) is a small ε neighborhood of P∗. The
regions M± and M0 are as in Hypotheses 4 and 3, respectively. It should be noted
that these regions need to vary with the parameters.

In order to show that N is isolating, we need to verify that S(N)∩∂(N) is empty
for c1 ≤ c ≤ c0, where S(N) denotes the set of points on solutions of (1) which remain
in N for all time and, furthermore, that S(N) = {P−, P+} for c = c0, c1. In order to
achieve this last condition, we shall choose c1 to be a large negative constant and c0
to be negative and close to zero.

We begin by proving a lemma which characterizes the possible solutions in S(N).
For convenience, we shall denote system (1) in vector form as

ẋ = f(x, c),
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where x = (u, ϕ, ψ) and c is the wave-speed parameter. Also, we shall denote the
resulting flow by x · ξ.

Lemma 3.1. For all c < 0, S(N) consists of the rest-point set P± interior to N
and orbits in N (if any) which connect P− at ξ = −∞ to P+ at ξ = +∞.

Proof. We first show that the only orbits which remain in the neighborhoods N±
for all time are the rest points P±. Suppose, for example, that there is a nonconstant
orbit x · ξ ∈ N− for all ξ. Let

Nτ = M−(τ)× {ψ : |ψ| < K},

where M−(τ) is as in Hypothesis 4, and set

τ0 = inf{τ ∈ (0, 1] : x · ξ ∈ N−(τ) for all ξ}.

Since x · ξ ∈ N−(1) for all ξ and is nonconstant, it follows that 0 < τ0 ≤ 1. By the
minimal property of τ0, it follows that x1 = x · ξ ∈ ∂N−(τ0) for some ξ. It follows
immediately from Hypothesis 4 that if (ϕ1, u1) lies in a horizontal edge ofM−(τ0), then
u̇ 6= 0 at this point so that the orbit would have to exit N−(τ0) in one time direction.
If (ϕ1, u1) lies in a vertical edge, then if ψ1 6= 0, the solution again leaves N−(τ0) in
one direction, while if ψ1 = 0, then by Hypotheses 1 and 4, ϕ̈(ξ) is positive on the
right vertical edge and negative on the left vertical edge. In either case, the solution
remains outside N−(τ0) in both time directions. Thus in all cases, the solution would
exit N−(τ) for some τ larger than but near τ0, contradicting the defining condition
for τ0. Finally, since (ϕ, u) lies in M− for all ξ, there exists L such that |u| and |ϕ| are
uniformly bounded by L. It then easily follows from standard regularity theory for
parabolic equations that there exists K = K(L) such that |ψ| < K for solutions for
which (ϕ, u) lie in M−. If K is sufficiently large, it therefore follows that |ψ1| < K.
Thus in all cases, we see that the only solution which can remain in N− for all time
is the constant solution P−. The proof for N+ is the same and will be omitted.

Now suppose that x ∈ S(N) and that it is not a rest point. The argument above
shows that

x · ξ ∈ N0 \ (N− ∪N+ ∪N∗(ε))

for some ξ. In the region N0, ϕ(ξ) is a monotone decreasing function. If the solution
were to remain in N0 for all ξ, it would then follow that ϕ(ξ) would tend to distinct
limits at ±∞. The first equation in (1) can then be viewed as an asymptotically
autonomous scalar equation for u, from which it easily follows that u(ξ) tends to
limits at ±∞ as well. Similarly, it easily follows from the second equation in (1) that
ψ(ξ) tends to zero at ±∞. The only way that this can occur is if the forward and
backward limits are rest points of (1); however, the only rest points of (1) in N are
P±. It therefore follows that x · ξ enters N− in some backward time ξ = ξ− and that
it enters N+ in some forward time ξ = ξ+.

We now claim that x · ξ remains in N− (resp. N+) for ξ < ξ− (resp. for ξ > ξ+).
For example, if, after having entered N+ at ξ+, it were to exit this set at some ξ∗ > ξ+,
it would have to do so by having (ϕ, u) cross the lower edge or the right edge of M+,
i.e., an edge interior to M0. If it were to cross the right edge, then ψ(ξ∗) ≥ 0. If ψ
were positive at this point, this would persist for ξ > ξ∗ as the orbit enters the region,
N0; however, in this region, ψ is nonpositive, yielding a contradiction. Also, ψ(ξ∗)
cannot vanish since by Hypothesis 3, we have that at such a point, ϕ̈(ξ∗) = −F > 0
so that x · ξ would be exterior to N+ for all ξ near ξ∗, again yielding a contradiction.
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Fig. 3. Behavior in M+.

If the orbit were to cross back into N+ through the lower edge of M+, by the above
reasoning, ϕ̇ would have to remain negative along the forward half-orbit, while u̇ would
have to remain negative (see Figure 1). This is because g = 0 has a negative slope
here so that the monotonicity of both components must persist along the forward
half-orbit. Such a solution must eventually exit N by having (ϕ, u) exit M0 through
the left or bottom edge.

The argument that x · ξ remains in N− for ξ ≤ ξ− is proved by a similar, simpler
argument. It will therefore be omitted.

We have now demonstrated that ω(x · ξ) ⊂ N+ and that α(x · ξ) ⊂ N−. However,
the argument in the first paragraph of the proof of this lemma shows that the only
way that this can occur is if ω(x · ξ) = {P+} and α(x · ξ) = {P−}, completing the
proof.

Lemma 3.2. 1. Suppose that x · ξ ∈ S(N) is a nonconstant orbit for system (1).
Let uw be the minimal value of u along {g = 0} ∩M0; then uw ≤ u(ξ) ≤ u+(λ) and
ϕ(ξ) > ϕ+(λ) for all ξ. 2. Let the left vertical edge of the rectangle M− be ϕ = ϕm,
let the point where g = 0 has its minimum be (ϕw, uw), and let ϕ∗∗ = min{ϕm, ϕw}.
Then there exist unique points ξm ≤ ξ∗∗ such that ϕ(ξm) = ϕm and ϕ(ξ∗∗) = ϕ∗∗.
Furthermore, ψ(ξ) ≤ 0 for ξ > ξm and u̇(ξ) > 0 for ξ > ξ∗∗.

Proof. 1. If λ = 0, then the solutions in S(N) have constant u-component, in
which case the bounds for u are obvious. Suppose then that λ > 0. The lower bound
uw for u is obvious since u̇ < 0 whenever u < uw. Next, let S be the supremum of
u(ξ) and assume that S > u+. Since u(ξ) tends to limits u± < S at ±∞, it follows
that S = u(ξ0) for some finite ξ0 and that u̇(ξ0) = 0. It then follows that (ϕ, u) lies
in the portion of the null cline {g = 0} inside M+ for which u > u+ at ξ = ξ0 (see
Figure 3). We therefore also have that ϕ(ξ0) < ϕ+.

The region M+ is composed of four wedge-shaped regions bounded by the null
clines F = 0 and g = 0 and the edges of M+, which we have denoted by I, II, III,
and IV in Figure 3. At ξ0, (ϕ, u) must lie on the boundary of I and II. Let τ0 be the
(unique) value of τ ∈ (0, 1) such that

(ϕ(ξ0), u(ξ0)) ∈ ∂M+(τ0),

where M+(τ) is the family of rectangles about P+ defined in Hypothesis 4. Since
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S = u(ξ0) is a maximum, it follows that ü(ξ0) ≤ 0. However, from the first equation
in (1), we see that ü(ξ0) = −cλW ′(ϕ(ξ0))ψ(ξ0); since −cW ′(ϕ) > 0 for (ϕ, u) ∈ M+,
it follows that ψ(ξ0) ≤ 0. However, if ψ(ξ0) = 0, then ψ̇(ξ0) = −F (ϕ(ξ0), u(ξ0)) < 0
so that u...(ξ0) < 0, contradicting the maximality of S for ξ < ξ0. We therefore have
that ψ(ξ0) < 0, and the solution must therefore behave as indicated in Figure 3, i.e.,
(ϕ, u) must exit M(τ0) in the forward time direction by moving from region I to region
II. Note that both components are now decreasing monotonically with ξ.

We next claim that there exists ξ1 > ξ0 such that ϕ has a local minimum at ξ1.
This follows from our previous observation that ϕ(ξ0) < ϕ+ and that x · ξ ∈ S(N),
so ϕ must have a minimum at some finite value of ξ > ξ0. We assume that ξ1 is the
smallest such point. It follows that ϕ̈(ξ1) = −F ≥ 0 so that the point (ϕ, u) must lie
either on the left boundary of region III or in its interior at ξ1. In the former case, we
see that ϕ...(ξ1) is positive since Fu > 0, contradicting the minimality of ξ1. Hence
the solution must lie interior to III so that ϕ̈(ξ1) > 0 and thus ϕ has a strict local
minimum at ξ1 and ϕ̇ > 0 for ξ > ξ1. Note that (ϕ, u) remains outside the rectangle
M+(τ0) on the interval ξ0 < ξ ≤ ξ1 and that u(ξ1) is smaller than the smallest value
of u for all points in this rectangle.

For ξ > ξ1 but not too large, it follows that u must continue to decrease and ϕ
must continue to increase with ξ. Clearly, this monotonicity cannot persist for all
ξ since u(ξ1) < u+, and by the previous lemma, the solution must tend to P+ at
+∞. The only way that this can occur is for (ϕ, u) to cross g = 0 at a time ξ = ξ2
by crossing from region III into region IV. Furthermore, ϕ must remain monotone
increasing since (ϕ, u) remains below F = 0 on this interval.

Finally, we have that at some ξ = ξ2 > ξ1, (ϕ, u) lies on g = 0, defining the
common boundary of III and IV; furthermore, it is still exterior to the rectangle
M+(τ0). We now observe that both ϕ and u must continue to increase while the
solution remains in region IV since u̇ > 0 and ϕ̈ > 0 in this region. Since the orbit
ultimately tends to P+, this monotonicity cannot persist for all ξ ≥ ξ2, and so the
orbit must cross into region I from region IV through their common boundary at some
time ξ3 > ξ2. However, by monotonicity, we again have that (ϕ, u) remains exterior
to M(τ0) for ξ2 ≤ ξ ≤ ξ3. Thus at ξ = ξ3, u attains a value larger than S = u(ξ0),
yielding a contradiction.

It is also easily proved that ϕ(ξ) > ϕ+ for all ξ. Let m be the infimum of ϕ(ξ)
and suppose that m < ϕ+. There exists (finite) ξ0 such that m = ϕ(ξ0), and at this
point, ψ must vanish. It easily follows that (ϕ, u) lies in region III of M+ so that
u̇(ξ0) < 0 and ϕ has a strict local minimum here. Since the solution is assumed to
lie in S(N), arguments similar to those in the preceding paragraphs show that (ϕ, u)
must eventually cross from region III to region IV and finally from region IV to region
I in the forward time direction, contradicting the upper bound u ≤ u+ obtained above.

2. Since the orbit is a connection from P− to P+, there exists some ξ = ξm such
that ϕ(ξm) = ϕm; we assume that ξm is the largest value of ξ where this occurs so that
ϕ(ξ) < ϕm for ξ > ξm. It follows that ψ(ξm) ≤ 0. If ψ(ξm) = 0, then ψ̇(ξm) = −F < 0
since ϕ = ϕm here. However, we would then have that ϕ has a strict local maximum
at ξm so that ψ(ξ) > 0 and ϕ(ξ) < ϕm for ξ < ξm. Such solutions exit N in the
backward time direction. Thus ψ(ξm) < 0. If ϕ(ξ1) = ϕm for some ξ1 < ξm, then
assuming that ξ1 is the largest such value less than ξm, we would have that ψ(ξ1) that
either ψ(ξ1) > 0 or ψ(ξ1) = 0. Both conditions imply that the solution leaves N in
the backwards direction so that ξm is unique.

For ξ > ξm, the solution enters the region N \ (N− ∪ N+) and thus ψ(ξ) ≤ 0
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for ξ ≥ ξm up to the first time ξ = ξ0 > ξm that the solution enters N+, and the
only possibilities are that (ϕ, u) enters M+ through either region III or IV. However,
if it crosses into region III at some ξ ≥ ξ0, then u < u+, and the only way that u
can begin to increase is for ϕ to have a local minimum at some ξ1 > ξ0 so that the
solution crosses from region III into region IV for some ξ2 > ξ1. However, ϕ must
continue to increase for as long as the solution remains in region IV, so as in part 1 of
the proof, u must eventually attain values that exceed u+—a contradiction. The only
possibility is that (ϕ, u) enters region IV with u̇ > 0 and ϕ̇ < 0. If this monotonicity
does not persist for all ξ > ξ0, then ϕ must have a strict local minimum at some
ξ1 > ξ0. For ξ > ξ1, either the solution exits M+ with ψ > 0 so that x · ξ leaves S(N)
or the solution remains in M+, in which case it must cross from region IV into region
I. In either case, we obtain a contradiction. We have therefore shown that ψ remains
nonpositive along the entire forward half-orbit, ξ ≥ ξm.

It follows from the nonpositivity of ψ for ξ ≥ ξm that ϕ(ξ) is strictly monotone
decreasing on this interval since if this were not the case, ψ(ξ) would necessarily
vanish identically on some interval. It would then follow that the orbit in question
is a rest point, contrary to our assumption. It therefore follows that there exists a
unique value ξ = ξ∗∗ ≥ ξm such that ϕ(ξ∗∗) = ϕ∗∗, where ϕ∗∗ = min{ϕm, ϕw}.

We claim that u̇(ξ) > 0 for all ξ > ξ∗∗. Since ϕ̇ ≤ 0 for ξ ≤ ξ∗∗, it follows that
(ϕ, u) lies above g = 0 at ξ∗∗ since otherwise (ϕ, u) would enter and remain in the
region below g = 0 for ξ > ξ∗∗, and u would therefore have to decrease for all larger ξ
since g = 0 is a monotone decreasing function of ϕ here; this is a contradiction. If the
claim that u̇ > 0 for all ξ ≥ ξ∗∗ were false, the point (ϕ, u) would have to cross the null
set g = 0 at some ξ1 > ξ∗∗. Since ψ ≤ 0 for ξ > ξm, the ϕ component must decrease
monotonically for all such ξ. The tangent vector to (ϕ, u) must therefore point into the
left half-plane. Furthermore, we have that u̇(ξ1) = 0 so that the tangent to (ϕ, u) is
the vector (ψ(ξ1), 0) with ψ(ξ1) ≤ 0. If ψ is strictly negative at this point, the solution
enters the region below g = 0. Since ϕ is monotone decreasing for all ξ ≥ ξ1 and g = 0
is a monotone decreasing function of ϕ for ϕ ≤ ϕw, it follows that (ϕ, u) can never
cross g = 0 in the forward direction, and u would therefore have to monotonically
decrease to a limit strictly less than u+ at +∞—a contradiction. If ψ(ξ1) = 0, then
we must have that F (ϕ, u) 6= 0 at ξ1; otherwise, x · ξ1 would coincide with the rest
point P∗, which is impossible. Since the solution is exterior to N± at this point, we
must have that ψ is nonpositive near ξ1 so that the only remaining alternative is that
−F < 0 at this point. However, the argument now proceeds as when ψ(ξ1) < 0, and
the solution must still eventually leave N in the forward direction. Hence we must
have that u̇ > 0 for all ξ > ξ∗∗.

Lemma 3.3. There exists (large) K > 0 and (small) ε > 0 such that S(N)∩∂(N)
is empty for all c < 0.

Proof. Suppose that x ∈ S(N) ∩ ∂N . The boundary of N consists of the union
of the following subsets:

B1: (ϕ, u) ∈ ∂M0 and ψ ≤ 0;
B2: ψ = −K and (ϕ, u) ∈M0, or ψ = +K and (ϕ, u) ∈M±;
B3: ψ ≥ 0 and (ϕ, u) ∈ ∂M±;
B4: ψ = 0 and (ϕ, u) ∈M0 \ (M+ ∪M−);
B5: x ∈ ∂N∗(ε).

1. Suppose that x ∈ B1. If (ϕ, u) lies in either horizontal edge ofM0, then u̇ 6= 0 so
that the solution immediately exits N in one time direction. Next, suppose that (ϕ, u)
lies in a vertical edge of M0. If ψ < 0, then the solution immediately exits N in one



72 P. BATES, P. FIFE, R. GARDNER, AND C. JONES

time direction. Suppose then that ψ = 0 at this point so that ϕ̈ = ψ̇ = −F (ϕ, u). If
(ϕ, u) lies in the left (resp. right) edge of M0, then −F (ϕ, u) < 0 (resp. −F (ϕ, u) > 0)
so that ϕ has a local maximum (resp. minimum). Thus in both cases, the solution
immediately exits N in both time directions.

2. Suppose that x ∈ B2 so that |ψ| = K. If x ∈ S(N) and if

Φ(x, t) = ϕ(x− ct), U(x, t) = u(x− ct),

then Φ is a solution of the scalar parabolic equation

Φt = Φxx + F (Φ, U).

Since the last term is a uniformly bounded, smooth function of (x, t), it follows from
the (1 + δ) Schauder estimates for scalar, linear parabolic equations that Φx is uni-
formly bounded on finite time intervals so that Φx(x, 1) is a uniformly bounded func-
tion of x. However, ϕ̇(x) = Φx(x + c, 1) so that |ψ| is uniformly bounded from
above by some constant K which depends only on the uniform bound for F (ϕ, u) for
(ϕ, u) ∈ M0. In particular, K is independent of the wave speed c. It follows that for
such K, if |ψ| = K, then x 6∈ S(N).

3. Suppose that x ∈ B3. If (ϕ, u) lies in the horizontal edges of M−, then by
Hypothesis 3, u̇ 6= 0 so that the solution immediately exits N in one time direction.
If (ϕ, u) lies on the right vertical edge of M− and ψ > 0, then (ϕ, u) exits M0, and
hence N , in forward time. If ψ > 0 with (ϕ, u) in the left vertical edge of M−, then
(ϕ, u) enters M0 \ (M− ∪M+) in forward time with ψ > 0; such solutions also leave
N . Finally, if (ϕ, u) lies in a vertical edge of M− with ψ = 0, then by Hypothesis 3,
the solution exits N in both time directions.

Next, suppose that (ϕ, u) ∈ ∂M+ with ψ ≥ 0. The argument that the solution
leaves N in at least one time direction is the same as in the case for (ϕ, u) ∈ M−,
with the exception of the points (ϕ, u) in the lower horizontal edge of M+ when ψ = 0
since the latter edge is interior to M0. However, at such a point, we have that u̇ < 0
with ϕ < ϕ∗∗; by Lemma 3.2, the solution through such a point cannot lie in S(N).

4. Suppose that x ∈ B4 so that ψ = 0 and (ϕ, u) ∈ M0 \ (M− ∪ M+). If
F (ϕ, u) 6= 0, then ψ̇ = −F (ϕ, u) is nonvanishing so that ψ becomes positive in one
time direction while (ϕ, u) 6∈ (M− ∪ M+); such solutions cannot lie in S(N). We
therefore have that F = 0 at such points. Since (ϕ, u) 6∈ M±, it follows that (ϕ, u)
must lie in either the middle branch of F = 0 or the portion of the left branch outside
M+. However, in the latter case, ϕ < ϕ+, which is impossible by Lemma 3.2. Hence
(ϕ, u) must lie in the middle branch of F = 0. If (ϕ, u) lies strictly below g = 0 at
x, then u̇ < 0 and ψ̈ = −Fuu̇ > 0 so that ψ > 0 for small ξ and the solution leaves
N in both directions. Furthermore, if g(ϕ, u) = 0, then x = P∗ which is exterior to
N—also a contradiction. Hence we must have that (ϕ, u) lies strictly above g = 0 at
x.

By part 2 of Lemma 3.2, ψ(ξ) remains nonpositive along the backward orbit
segment x · [ξm, 0], beyond which point the orbit enters N−. Furthermore, by an
argument in the previous paragraph, ψ < 0 on this interval whenever F (ϕ, u) 6= 0. If
ψ = 0 at some ξ < ξm, let ξ∗ be the largest value of ξ ≤ ξm for which ψ = 0; if ψ < 0
for all ξ < ξm, let ξ∗ = −∞. Let ϕ+

r = hr(u+(λ)). We claim that ϕ(ξ∗) ∈ [ϕ−, ϕ
+
r ].

The upper bound follows immediately from the estimate u(ξ) ≤ u+(λ) of Lemma 3.2.
We next obtain the lower bound for ϕ(ξ∗). In the event that ξ∗ = −∞, we have that
ϕ(ξ∗) = ϕ−. Assume then that ξ∗ is finite and that ϕ(ξ∗) < ϕ−. A contradiction will
be obtained in each of two separate cases, (a) and (b), below.
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Fig. 4. Possible behavior of the backwards orbit with ψ(0) = 0.

(a) Suppose that the graph of g = 0 is a monotone decreasing function of ϕ in
the range ϕ+ ≤ ϕ ≤ ϕ−. We claim that (ϕ, u) lies strictly above g = 0 on the
interval [ξ∗, 0]. As noted above, this condition holds at ξ = 0. If the claim is false,
let ξ1 ∈ [ξ∗, 0] be the largest ξ in this interval for which g(ϕ, u) = 0. If ψ = 0 at
ξ1, then by the conditions above, we must have that F = 0 as well, in which case
x must be a rest point, and the only possibility is that x = P∗. However, P∗ is
exterior to N . Hence we must have that ψ < 0 at ξ1, in which case the tangent
vector to (ϕ, u) is (ψ(ξ1), 0). Since we have assumed that ϕ < ϕ− at ξ∗, it follows by
monotonicity that ϕ(ξ1) < ϕ− as well, and since g = 0 is a monotone decreasing curve,
this contradicts the maximality of ξ1. Thus g(ϕ, u) > 0 on [ξ∗, 0]. If ϕ(ξ∗) < ϕ−, then
by the monotonicity of g = 0, it follows that ϕ(ξ∗) is a strict local maximum so that
the solution would then necessarily exit N in the backwards direction by leaving N−
while ψ > 0. It therefore follows that that ϕ(ξ∗) > ϕ−.

(b) Next, suppose that g = 0 has its local minimum at the point (ϕw, uw) with
ϕw ∈ (ϕ+, ϕ−). By the definition of ξ∗, we have that ϕ(ξ∗) > ϕm. There are three
distinct possibilities, as depicted in Figure 4. In case 1, the point (ϕ, u) lies above
g = 0 at ξ∗. Since ϕ̈ = −F < 0 at this point, ϕ must have a local maximum at this
point and ψ > 0 for ξ < ξ∗. It now follows that the orbit cannot cross the monotone
increasing portion of g = 0 for ξ < ξ∗. It follows that (ϕ, u) must remain in the region
−F < 0 for as long as the backward orbit remains in N−, and it follows that in this
region, ψ must remain strictly positive. Thus ϕ decreases for ξ < ξ∗ until the solution
leaves N−. At this point, ψ is still positive, and the solution therefore exits N in the
backward direction.

The other two possibilities are depicted by the orbits labelled 2 and 3 in Figure
4. In the former case, (ϕ, u) lies on g = 0 at ξ∗ and the curve has a cusp at this
point. However, the orbit still exits in the backward time direction. The argument
is the same as for orbit 1. In the last case, case 3, (ϕ, u) lies below g = 0 at ξ∗. In
this case, the positivity of ψ is again preserved for ξ < ξ∗ and the curve (ϕ, u) must
cross g = 0 again before leaving N−. As before, the orbit is seen to leave N in the
backward direction since the orbit leaves N− while ψ > 0.

We have now established the claim that ϕ(ξ∗) ∈ [ϕ−, ϕ
+
r ]. Since ϕ̂− ≤ ϕ−, we
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then have that

ϕ̂− ≤ ϕ(ξ∗) ≤ ϕ+
r ,

where ϕ̂− = hr(uw) and ϕ+
r = hr(u

+) are as in Hypothesis 5. Also, since ϕ(0) lies on
the middle branch of F = 0 and u(0) < u+(λ), it follows that

ϕ+
∗ ≤ ϕ(0) ≤ ϕ̂∗

so that by Hypothesis 5, R(ϕ(0)) > R(ϕ(ξ∗)) (see also Figure 2). By Lemma 3.2, we
have that u(ξ) ≥ uw, and by Hypothesis 1, we have that Fu > 0; it therefore follows
that

ϕ̈ = −αcϕ̇− F (ϕ, u)

≤ −αcϕ̇− F (ϕ, uw).

Since ϕ̇ ≤ 0 on [ξ∗, 0] and vanishes at the endpoints, we may multiply the above by ϕ̇
on this interval and integrate to obtain

0 =

∫ 0

ξ∗
(ϕ̇(ξ)2/2).dξ

≥ −cα
∫ 0

ξ∗
ϕ̇2 dξ +R(ϕ(0))−R(ϕ(ξ∗)),

where R(ϕ) is an antiderivative of −F (ϕ, uw). We have by Hypothesis 5 and the
negativity of c that both quantities in the last term of the above inequality are positive,
yielding a contradiction. Thus B4 ∩ S(N) is empty.

5. Finally, suppose that xε ∈ B5 lies in S(N) for a sequence ε tending to zero.
Since each such orbit is a connection from P− to P+, there exists ξε > 0 such that
(ϕ, u)(−ξε) lies in the left vertical edge of M− and is hence uniformly bounded away
from the rest points. Let yε = xε · (−ξε); by passing to a suitable subsequence, it can
be assumed that yε converges to a limit ȳ. Furthermore, since xε converges to the rest
point at P∗, it follows that ξε → +∞. Since ψ < 0 whenever (ϕ, u) ∈M0\(M−∪M+),
it follows that the orbit ȳ · ξ must remain in the region ϕ ≥ ϕ∗ for all positive ξ, and
since ϕ is monotone along the forward half-orbit, the solution must be a connection
between P− and P∗. It also follows, as in case 4, that the orbit must lie in the region
above g = 0 as long as (ϕ, u) is exterior to M−. Set ξ∗ = −∞ if ψ < 0 along the
entire orbit; otherwise, set ξ∗ to be the maximal ξ < +∞ where ψ vanishes. As in
case 4, it follows that ϕ(ξ∗) ∈ [ϕ−, ϕ

+
r ]. The proof is the same as the previous case

and it will therefore be omitted.
A contradiction is obtained as before by replacing u with uw in the ψ̇ equation,

multiplying by ψ̇, and integrating over the interval [ξ∗,+∞). This completes the proof
of the lemma.

We now have an isolating region N for negative wave speeds c which contains
precisely two rest points, P− and P+(λ). Furthermore, the only nonconstant solutions
in N are connections between these two rest points. In order to complete the proof
of Theorem 2.1, we need to use N to construct connection triples for the system
augmented with the parameter flow ċ = 0. In particular, an interval I = [c1, c0] must
be determined such that S(N) = {P−, P+(λ)} when c = c0, c1. The interval I must be
large enough to contain the wave speed c < 0 for which the connecting orbit occurs;
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in this case, that means choosing |c1| sufficiently large and c0 < 0 sufficiently close to
zero.

Lemma 3.4. (a) There exits c0 < 0 such that S(N) = {P−, P+(λ)} for all
c ∈ [c0, 0). (b) There exists c1 � 0 such that S(N) = {P−, P+(λ)} for all c < c1.

Proof. (a) When c = 0, u is constant and negative. Let U = max{u+(λ) : 0 ≤ λ ≤
λ0} so that u ∈ [uw, U ] for 0 ≤ λ ≤ λ0. For u in this range, the (ϕ,ψ) equations form
a one-parameter family of Hamiltonian “fisheye” systems which are all topologically
equivalent, which have an orbit homoclinic to the rest point P−, and which encircle
P∗. In particular, for such a u, there is never an orbit running from a rest point
on the right branch, ϕ = hr(u), to the corresponding rest point on the left branch,
ϕ = h`(u), of F = 0. Let V be a small tubular neighborhood of the two curves of rest
points,

(u, ϕ, ψ) = (u, hr,`(u), 0),

of the c = 0 system. It then follows that at c = 0, there exists T > 0 such that if
x ∈ N \ V , then at least one of x · (±T ) is not in N . It then follows from standard
continuous-dependence theorems for flows that at least one of x · (±T ) is not in N for
all sufficiently small c < 0 and x ∈ N \ V . However, any connecting orbit from P− to
P+ necessarily enters the region N \ V at some point. Hence there are no P−-to-P+

connections for sufficiently small c.
(b) Let δ = c−1 and

U(ϕ) = u− + λ(W (ϕ)−W (ϕ−));

since N is a compact region, it follows that for any solution (u, ϕ, ψ) in S(N), we
have that u(ξ) = U(ϕ(ξ))+O(δ) for sufficiently small δ. It therefore follows that such
solutions have (ϕ,ψ) components which satisfy the system

ϕ̇ = ψ,

ψ̇ = −αcψ − F (ϕ,U(ϕ)) +O(δ).

Next, let γ = ψ̇; then (γ, ϕ) satisfies the system

δγ̇ = −αγ +O(δ),

ϕ̇ = −δ(F (ϕ,U(ϕ)) +O(δ) + γ)/α.

It follows that |γ| must remain O(δ) along bounded solutions so that after rescaling
time, the ϕ component must satisfy the scalar equation

ϕ̇ = F (ϕ,U(ϕ)) +O(δ).

Now the function F (ϕ,U(ϕ)) is qualitatively a cubic with attracting rest points at
ϕ± and a repelling rest point at ϕ∗. It is therefore possible to find positively invariant
neighborhoods of the first two rest points for all sufficiently small δ. It follows that
there are no P−-to-P+ connections for sufficiently large |c|. This completes the proof
of the lemma.

The proof of Theorem 2.1 is now easily completed. Since N is isolating for all c in
the interval I = [c1, c0], it follows that a connection triple (S−, S+, S) is determined
by the augmented flow

ẋ= f(x, c),
ċ= 0,
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where S± = {P±}×I, and S = S(N×I) for the augmented flow (see [6]). Furthermore,
by our hypotheses, these connection triples are all related by continuation for λ ∈
[0, λ0] so that the connection index h̄ of the triple is independent of λ. At λ = 0, the
equations nearly decouple since the u equation

u̇ = −c(u− u−)

is independent of ϕ. The above equation is linear with a repelling rest point at u = u−
so that u ≡ u− is its only bounded solution. Thus at λ = 0, u = u− along solutions
in S. Next, replace u in the argument of F in the ψ̇ equation by

σu− + (1− σ)u.

By the previous remark, the invariant set isolated by N×I is independent of σ ∈ [0, 1]
so that the triples isolated by N × I are all related by continuation for such σ. At
σ = 1, the equations completely decouple—

u̇ = −c(u− u−),

ϕ̇ = ψ,

ψ̇ = −cαψ − F (ϕ, u−),

—and by the product formula for the connection index (see [6]), we have that h̄ is the
smash product of the connection index for the (ϕ,ψ) system with a 1-sphere. Since
the index of the latter system is the homotopy type [0̄] of a point (see the appendix
in [6]), it follows that h̄ = [0̄] ∧ Σ1 = [0̄]. It therefore follows that S(N) contains
more than the two rest points P− and P+ for some c ∈ I, and by Lemma 3.2, the
nonconstant solution in N must be the desired connecting orbit.

4. Singular limits I: Small and large α. In this section, we examine two
asymptotic regimes wherein the parameter α is either small or large. For both regimes,
we obtain two classes of results: a local theory in the neighborhood of certain reduced
problems, wherein the existence of a wave and its uniqueness relative to some neigh-
borhood of the reduced wave are obtained, and a global result concerning the asymp-
totic behavior as α → 0 and uniqueness relative to all possible wave speeds and all
possible wave solutions in the isolating region N constructed in the previous section.
In each case, the local analysis, which is based upon geometric singular perturbation
theory, holds under substantially weakened hypotheses, wherein only Hypotheses 1
and 2 are required. The global theory draws upon several results in the preceding
section, and therefore all five hypotheses need to be satisfied in this case.

Let θ = αc; system (1) can then be written as

u̇ = −cg(ϕ, u),(2)

ϕ̇ = ψ,

ψ̇ = −θψ − F (ϕ, u).

The system therefore has two independent parameters c and θ related to the wave
speed. The following lemma obtains a region in parameter space for which connecting
solutions can exist. This is needed to establish the global uniqueness of the wave and
the wave velocity since invariant-manifold methods only provide local information
about uniqueness in a neighborhood of the singular limit. We remark that if we do
not impose some particular ansatz for the asymptotic limit, c is an arbitrary negative
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parameter so that even if α is assumed to be small, θ is also an arbitrary negative
parameter.

Lemma 4.1. There exists θ0 < 0 such that there are no solutions of (2) in the
isolating region N which connect P− to P+ for any c ≤ 0 and θ ∈ [θ0, 0].

Proof. For large c, we expect that g = 0 along bounded solutions of (2). Hence
we set

U(ϕ) = u− − λ(W (ϕ)−W (ϕ−)),

h(ϕ) = F (ϕ,U(ϕ))

and consider the reduced problem

ϕ̇ = ψ,(3)

ψ̇ = −θψ − h(ϕ),

u(ξ) = U(ϕ(ξ)).

It follows from Hypotheses 1 and 2 that h(ϕ) has three distinct roots p+ < p∗ < p−.
Furthermore, if H ′(ϕ) = h(ϕ), then it follows from Hypothesis 1 and, in particular,
from Fu < 0 ∈M0 that H(p−) < H(p+). In this manner, we see that (3) has a unique
connection from p− to p+ which occurs for a unique negative value of θ = θR < 0.
It is well known that this connection occurs as the transverse intersection of the
center-unstable manifold of (p−, 0, 0) with the center-stable manifold of (p+, 0, 0) after
appending the parameter flow θ̇ = 0 to (3).

Next, rescale ξ to y = |c|ξ and set δ = 1/|c|; system (3) then takes the form

u′ = g(ϕ, u),(4)

ϕ′ = δψ,

ψ′ = δ(−θψ − F (ϕ, u)),

θ′ = 0.

Let M0 = {(U(ϕ), ϕ, ψ, θ)} so that M0 is a manifold of rest points of (4) when δ = 0.
Furthermore, since gu = 1, M0 is normally hyperbolic in the sense of Fenichel [7]. It
follows that M0 perturbs smoothly for small δ to an invariant manifold Mδ, where
the flow on the perturbed manifold is given by (3) with U(ϕ) replaced by U(ϕ)+O(δ).
It immediately follows that a connection exists for small delta and that the wave speed
θ = θR + O(δ). Furthermore, given any η > 0, let Vη be an η neighborhood (in R4)
of M0. Since the p−-to-p+ connection occurs as a transverse intersection of invariant
manifolds of the augmented equations at δ = 0, it follows that for sufficiently small
η, there exists δ1 > 0 such that the connection lies in Vη for 0 ≤ δ ≤ δ1 and that the
connecting solution is unique relative to this neighborhood.

Let c1 = −1/δ1 and let θ ∈ (θ1, 0), where θ1 = θR/2. Also, set η as in the
previous paragraph. Now suppose that we have a connecting solution of (2) in the
isolating neighborhood N of Theorem 2.1 for some c ≤ c1 and θ ∈ [θ1, 0]. Changing
to the scaling in (4), we find that (u− U)′ = g(ϕ, u) +O(δ) so that when u = U ± η,
(u−U)′ has the same sign as g(ϕ,U(ϕ)±η). It follows from this that Vη is a positively
invariant set for (4) for sufficiently small δ so that if |u − U(ϕ)| ≥ η at some point
along the solution, then this condition persists for all ξ in the forward time direction.
It follows that u must be unbounded along such a solution, leading to a contradiction.
Thus we must have that all connecting solutions relative to N lie interior to Vη for
such c. Hence the only possible connecting solution in N is the one lying near the
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invariant manifoldM0. However, for c in the specified range, the wave speed θ of such
a connection must approximate θR = 2θ1 to within O(δ); hence the set of connections
relative to N is empty for c ≤ c1 and θ ∈ [θ1, 0].

Next, set c = 0 in (2) so that (ϕ,ψ) solve the last two equations with u constant.
By Lemma 3.2, solutions in S(N) satisfy u ∈ [uw, u+] = Iu. For each fixed u in this
range, (2) has three distinct rest points p±(u) and p∗(u), and there is a connecting
solution from p−(u) to p+(u) which exists at some unique θ = θ(u), where the contin-
uous function θ(u) is strictly negative on Iu. Let θ2 < 0 be greater than the minimum
of θ(u) over Iu so that θ2 < 0. The phase plane of (2) at c = 0 for each u ∈ Iu
consists of the two saddles at p± and either an unstable node or a spiral at p∗. For
θ ≤ θ2, there are no connecting orbits from p− to p+. For such a θ, it immediately
follows that one of the following hold for every nonconstant solution in N : ϕ becomes
unbounded in at least one time direction or ψ becomes positive at some point where
ϕ < ϕm, where ϕm is as in Lemma 3.2. In either case, such solutions exit N in finite
time. It follows from regular perturbation theory that there exists c2 < 0 such that
S(N) = {P±} for c ∈ [c2, 0] and θ ∈ [θ2, 0].

If c2 < c1 we are done. Suppose then that c1 < c2. Finally, set θ = 0 in (2)
and suppose that c ∈ [c1, c2]. It follows from Lemma 3.1 that nonconstant solutions
in S(N) are connections from P− to P+. Furthermore, by Lemma 3.2, we have that
u(ξ) ≤ u+ along any such solution, and by Hypothesis 1, we have that F (ϕ(ξ), u(ξ)) ≤
F (ϕ(ξ), u+). Also, by Lemma 3.2, we have that ψ < 0 on a (maximal) interval of
the form (ξ0,+∞), where ξ0 ≥ −∞. Thus if ξ0 is finite, then ψ = 0 at this point. It
follows from the above for ξ ∈ (ξ0,+∞) that

ϕ̇ϕ̈ ≤ −F (ϕ, u+)ϕ̇.

Let H(ϕ) be an antiderivative of −F (ϕ, u+); by Hypothesis 1, we have that H(ϕ+) <
H(ϕ) for all ϕ > ϕ+ since u+ < 0. Integration of this inequality on the interval
(ξ0,+∞) yields the inequality

0 ≤ H(ϕ+)−H(ϕ(ξ0)),

and by the conditions above, the quantity on the right is negative, yielding a con-
tradiction. Thus there are no connecting orbits when θ = 0 and c ∈ [c1, c2]. It
immediately follows from regular peturbation theory that there exists θ3 < 0 such
that the set of connections is empty for θ ∈ [θ3, 0] and c ∈ [c1, c2].

The proof is completed by taking θ0 to be the (negative) maximum of θi, i =
1, 2, 3.

We can now prove the main theorems addressing the asymptotic behavior of the
connecting solutions of (1) for small and large α. We first consider the case of small
α and, accordingly, write (4) in the equivalent form,

u′ = −θg(ϕ, u),(5)

ϕ′ = αψ,

ψ′ = α(−θψ − F (ϕ, u)),

θ′ = 0,

where “prime” is d
dy with y = α−1ξ.

Theorem 4.2. (a) Suppose that Hypotheses 1 and 2 are satisfied. There exists
α0 > 0 such that for α ∈ (0, α0) and c = αθ, there exists a solution (u(y, α), ϕ(y, α),
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ψ(y, α), θ(α)) of (5) which is near the connecting solution (ϕR(ξ), ψR(ξ), θR) of the
reduced equation (3) in the sense that the perturbed solution satisfies the estimates

u(α−1ξ, α) = U(ϕR(ξ)) +O(α),

ϕ(α−1ξ, α) = ϕR(ξ) +O(α),

ψ(α−1ξ, α) = ψR(ξ) +O(α),

θ(α) = θR +O(α)

modulo a phase shift in ξ. The perturbed solution is unique relative to some neigh-
borhood of the reduced solution (in its four-dimensional phase space), and it depends
smoothly on parameters in the equations.

(b) Suppose that all five hypotheses in section 2 are satisfied. Then the perturbed
solution obtained in (a) is unique relative to all possible solutions in the isolating
region N constructed in section 3 and all negative wave speeds c < 0.

Proof. (a) Clearly, the parameter α in (5) plays the same role as the parameter
δ in (4). An invariant manifold Mα of the perturbed equations can be constructed
near the invariant manifold M0 of (3) as in the proof of Lemma 4.1, and the proof of
part (a) follows as in the previous lemma by transversality.

It was also proved in Lemma 4.1 that in this regime, all connecting solutions in
N of (4) lie in the η-neighborhood Vη of M0. Furthermore, by the same lemma,
it follows that such connections exist only for θ < θ0 < 0, which is in the range of
parameter values for which the manifold M0 will be normally hyperbolic for (5) with
α = 0. Hence any such connection must lie in the manifold Mα for sufficiently small
α, and it must therefore coincide with the unique solution in this invariant manifold.

The second result concerns asymptotic behavior as α tends to +∞. We shall see
that the wave is resolved into an inner and an outer layer, which makes the analysis
more complicated than the previous limit α = 0, where the wave is contained entirely
in the slow manifold Mα. Set 1/α = δ so that (1) can be written as

u̇ = −δθg(ϕ, u),(6)

ϕ̇ = ψ,

ψ̇ = −θψ − F (ϕ, u)

and also in rescaled form as

u′ = −θg(ϕ, u),(7)

δϕ′ = ψ,

δψ′ = −θψ − F (ϕ, u),

where ′ = d
dy and y = δξ. As δ → 0, a matched asymptotic expansion of the solution is

constructed in the usual way. The transition layer is the solution (u+, ϕF (ξ), ψF (ξ), θF )
of (7) at δ = 0 connecting ϕ− = hr(u+) to ϕ+ = h`(u+). This connection ex-
ists for some unique value θF < 0 of θ. The construction of the fast singular
limit again only requires Hypotheses 1 and 2. The slow outer layer is the solution
(uS(y), h`(uS(y)), 0, θF ), where uS(y) is the solution of

u′ = −θF g(h`(u), u)
satisfying uS(0) = u+. The singular solution Γ is defined to be the union of all points
on the fast layer (for all ξ) with the union of points along the backward slow layer
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(for y ≤ 0). Note that θ is included as a dependent variable in the phase space of the
wave.

Theorem 4.3. (a) Suppose that Hyptotheses 1–5 are satisfied. Given η > 0,
let Vη(Γ) be an η-neighborhood of Γ. There exists δ0 > 0 such that for δ < δ0,
S(N × {c < 0}) ⊂ Vη(Γ), where S(N × {c < 0}) denotes the isolated invariant set of

(6) augmented with the parameter flow θ̇ = 0 and where N is the isolating neighborhood
constructed in section 3.

(b) Suppose that Hypotheses 1 and 2 are satisfied. For sufficiently small η and δ,
the perturbed solution in Vη(Γ) is uniquely determined as the transverse intersection
of the center-unstable manifold of P− with the center-stable manifold of P+ for the
equations in (6) augmented with θ̇ = 0. The connecting solution is a smooth function
of δ for small δ, and in particular, the wave speed c has an expansion of the form

c(δ) = δ(θF +O(δ)).

Proof. (a) We first obtain another a priori estimate for the scaled wave speed θ.
To this end, set ρ = ψ̇ and replace ψ with ρ in (6). The ψ̇ equation is then replaced
by

ρ̇ = −θρ+ Fϕ(ρ+ F )/θ + Fu(δθg).

If the solution is assumed to lie in S(N), then g and the partials of F are bounded
independently of θ and δ. It follows that the ρ equation is of the form

ρ̇ = (−θ +O(1/θ))(ρ+O(δ)) +O(1/θ).

In order for ρ to remain uniformly bounded, it follows that |ρ| ≤ K(1/|θ|2 + δ) for
some K independent of both θ and δ. However, the ϕ equation can be expressed as

−θϕ̇ = F (ϕ, u) + ρ;

for large |θ| and small δ, it follows that a neighborhood of the right branch ϕ = hr(u)
of F = 0 will be positively invariant relative to N . It is therefore impossible to have
a connecting orbit from P− to P+ for such a θ and δ. There therefore exist δ0 > 0
and θ1 < 0 such that when δ < δ0, the scaled wave speed θ of any connection in N
must lie in the interval [θ1, 0]. Combining this with the result of Lemma 4.1 shows
that θ ∈ [θ1, θ0].

Let I = [θ1, θ0] and suppose that η > 0 is given and that

(x, θ) ∈ (N × I) \ Vη(Γ).

We must show that the solution through this point must leave N in at least one
time direction provided that δ is sufficiently small. If this were not the case, the
solution through this point would have to be a connecting orbit by Lemma 3.1. We
will first show that the wave speed θ of any such connection must approximate the
wave speed θF of the inner reduced solution. To this end, parametrize the orbit so
that ϕ(0) = ϕm, where ϕm is as in Lemma 3.2. For small δ, the solution is well
approximated by setting δ = 0 in (6), in which we set u ≡ u(0). In order for the
solution to remain in N , it must approximate the saddle–saddle connection of (6)
when δ = 0 on finite ξ intervals. It follows that θ must be near the wave speed
θ(u(0)) of the saddle–saddle connection for the δ = 0 system. If u(0) ≤ u+ − η, then
there exists ξ0 < 0 such that the solution is in a small neighborhood of the left slow
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manifold ϕ = h`(u(0)) at ξ0. It follows from the monotonicity properties of solutions
in N that the solution must then remain near the left slow manifold for all ξ ≤ ξ0.
However, since u(0) is strictly less than u+, it follows that u̇ < 0 for all ξ ≤ ξ0 so that
the solution must eventually leave N by having (ϕ, u) exit M0 through the bottom of
the rectangle. It therefore follows that u(0) must lie within η of u+ and thus that the
wave speed θ must be of order η from θF

The proof of (a) is now completed by following the flow through each point in
N \ Vη(Γ) and showing that the solution leaves N in at least one time direction. The
details of the argument are similar to those used above to show that the wave speed
is near θF , and we shall only provide a brief outline. Solutions in S(N) for small δ
remain outside the middle slow manifold ϕ = h∗(u) since we see from (6) that this
is a repelling rest point at δ = 0 so that for small δ, we can construct a negatively
invariant region about it. Therefore, a solution through such a point cannot get to
P− in backward time. We now argue as in the previous paragraph that a solution in
S(N) must have exactly one transition layer in which it jumps from the right slow
manifold to the left slow manifold by approximating the saddle–saddle connection of
(6) when δ = 0. Combining these remarks with the estimates for θ and u in the
transition layer, it follows that S(N × I) ⊂ Vη(Γ).

(b) By (a), it suffices to describe the wave in the neighborhood Vη(Γ). To this end,

augment (6) with the parameter flow θ̇ = 0, let W cs
δ be the center-stable manifold

of P+, and let W cu
δ be the center-unstable manifold of P− for the augmented flow

with δ > 0. Thus W cs
δ is two dimensional and W cu

δ is three dimensional. We note
that W cs

δ is foliated by the collection of one-dimensional stable manifolds of P+ for
each θ. Similarly, W cu

δ is foliated by the two-dimensional unstable manifolds of P−
for each θ. These manifolds therefore have limiting configurations W cs

0 and W cu
0 ,

respectively, that can be calculated as δ → 0. The former consists of the collection of
one-dimensional stable manifolds Ms(θ) of P+ for (6) at δ = 0 for each θ. The latter
consists of the two-dimensional center-unstable manifold Mcu(θ) of the continuum of
rest points ϕ = hr(u) for (6) (without the θ equation) for each θ. The tangent space
to Mcu(θ) at each one of these rest points consists of a vector tangent to the right
slow manifold and a vector in the strongly unstable direction.

The manifolds W cs
0 and W cu

0 intersect along Γ. We now describe their tangent
spaces T cs and T cu at a point Q which lies on the fast layer and close to the “corner
point” P = (u+, hr(u+), 0, θF ) of the singular limit. The former tangent space at
Q consists of a vector (0, p, q, 0), which is close to the strongly unstable direction at
the right corner P of Γ, and another vector of the form (0, r, s, 1), where the vectors
(p, q) and (r, s) are independent. This is a consequence of the well-known fact that
for the scalar bistable travelling wave problem, the saddle–saddle connection occurs
as the transverse intersection of center-unstable and center-stable manifolds for the
equations augmented with θ̇ = 0. The tangent space T cu is spanned by the vectors
v1, v2, and v3, where

v1 = (1, h′r(u+), 0, 0),

v2 = (0, p, q, 0),

v3 = (0, 0, 0, 1).

It immediately follows that these manifolds intersect transversely at Q and therefore
everywhere along Γ; thus the perturbed manifolds W cs

δ and W cu
δ also intersect trans-

versely for small δ. The uniqueness of the wave in Vη(Γ) as well as the differentiable
dependence of the wave speed θ on δ immediately follow from this.
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The following corollary summarizes the estimates obtained above on the possible
wave speeds c for all possible parameter values of α. These estimates are used in [1]
to compare the results obtained here from phase-field models with other models of
hypercooled solidification.

Corollary 4.4. Under Hypotheses 1–5, the wave speed c of any connecting
solution of the travelling wave equations in (1) which lies interior to the region N
constructed in section 3 satisfies an estimate of the form

T0/α < c < T1/α

for some constants T0 < T1 < 0 depending only on N and for all parameter values
α > 0.

Proof. The upper bound for c is exactly the result proved in Lemma 4.1 with
T0 = θ0. A lower bound for c, θ1/α < 0 also follows from the proof of Lemma 4.1 and
Theorem 4.2 for 0 < α < α0 for some α0 > 0 since for such an α, the theorem implies
that the scaled wave speed θ = cα must approximate that of the singular limit. The
lower bound for c in the parameter range α > 1/δ0 is proved in a similar manner at
the beginning of Theorem 4.3. Finally, in the parameter range 1/δ0 < α < α1, the
estimate follows from the upper and lower bounds for c obtained in Lemma 3.4, which
implicitly assumes that α lies in a compact set bounded away from α = 0. Combining
the estimates above provides the stated result for all α > 0.

Remarks. (i) The asymptotics for small α indicate that in this regime, the ϕ
component of the profile should be monotone decreasing in ξ while the u component
will either be monotone increasing (in the event that {g = 0} is monotone in M0)
or have a unique local minimum at some point. On the other hand, the asymptotics
for large α predict that the u-component will be monotone increasing and that the
ϕ-component will have a unique local maximum in this regime. Thus the profile
is capable of exhibiting a rich variety of qualitative properties. It is therefore quite
plausible that some additional hypotheses are essential in the proof of the global result
(Theorem 2.1) linking these two asymptotic regimes.

(ii) Asymptotic expansions to any desired order of accuracy can be obtained in
the usual way for both asymptotic regimes. In particular, we derive the first few terms
of the expansion for the transition layer in the large α regime. To this end, we expand
the solution in powers of δ:

u = u+ + δu1(ξ) + · · · ,
φ = ϕ0(ξ) + δϕ1(ξ) + · · · ,
θ = θ0 + δθ1 + · · · ,

where ψ = ϕ′ has a similar expansion. The zeroth-order terms satisfy the second-order
equation

ϕ′′ + θ0ϕ
′ + F (ϕ0, u+) = 0

and are determined by taking ϕ0(ξ), θ0 to be the solution connecting ϕ+ at +∞ to
ϕr = hr(u+) at −∞. In particular, θ0 = θF . The first-order asymptotics are then
determined by the equations

u′1 = −θ0γ(ϕ+ − ϕ0(ξ)),

ϕ′′1 + θ0ϕ
′
1 + Fϕϕ1 = −Fuu1 − θ1ϕ

′
0,
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where the partials of F are evaluated at (ϕ0(ξ), u+). The kernel of the adjoint of the
linear operator on the left side of the second equation is ϕ∗ = ϕ′0e

θ0ξ. First, u1 is
determined by integrating the first equation,

u1 = −θ0γ
∫ ∞

ξ

(ϕ+ − ϕ0(s))ds.

Since ϕ0 decays exponentially to ϕ+ (resp. ϕr) at +∞ (resp. −∞), it follows that
u1(ξ) decays exponentially to zero at +∞ and that u1(ξ)/ξ is asymptotic to ϕ+−ϕr,
i.e., u1 is linear at −∞. It then follows that the integrals in the expression

θ1 =
− ∫∞−∞ Fu(ϕ0(s), u+)u1(s)ϕ

∗(s) ds∫∞
−∞ ϕ∗(s)ϕ′0(s) ds

converge. Hence the first-order asymptotics are completely determined. Clearly, this
procedure can now be continued to determine the terms in the asymptotic series to
any desired order.

5. Singular limits II: Perturbation by higher-order equations. We finally
consider the singular perturbation problem discussed in the introduction,

u̇ = −cg(ϕ, u),(8)

ϕ̇1 = ϕ2,

ϕ̇2 = ϕ3,

µϕ̇3 = ϕ4,

...

µϕ̇2m−1 = ϕ2m,

µϕ̇2m = H(ϕ, u),

where ϕ now denotes the vector with components ϕi and

H(ϕ, u) = −
(
m−1∑
n=1

bnϕ2n+1 + αcϕ2 + F (ϕ1, u)

)
/bm.

We shall fix the parameters in the nonlinearities and α and investigate the behavior
of the above system for small µ. Let ϕs = (u, ϕ1, ϕ2) denote the slow components and
ϕf = (ϕ3, . . . , ϕ2m) denote the fast components. We shall locate orbits connecting

the rest point P̃− = (P−, 0) to the rest point P̃+ = (P+, 0).
The fast–slow structure of the system is more easily seen after the change of

independent variables ξ → y, where y = µ−1ξ, and of dependent variables ϕf → ζf ,
where

ζ3 = ϕ3 + (cαϕ2 + F (ϕ1, u))/b2,

ζj = ϕj , j = 4, . . . , 2m.

In the new variables, system (8) can be expressed as

u′ = −µcg(ϕ1, u),(9)

ϕ′1 = µϕ2,
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b2ϕ
′
2 = µ(−αcϕ2 − F (ϕ1, u) + b2ζ3),

ζ ′3 = ζ4 + µV (ϕs, ζf ),

ζ ′4 = ζ5,

...

ζ ′2m = −
(

m∑
n=1

bnζ2n+1

)
/bm,

where V is a smooth function of its arguments, whose precise form is not important
here. Formally setting µ = 0, we see that (9) is a singular perturbation of problem
(1). This is more easily seen by changing back to the slow (ξ) scaling to obtain

u̇ = −cg(ϕ1, u),(10)

ϕ̇1 = ϕ2,

b2ϕ̇2 = (−αcϕ2 − F (ϕ1, u) + b2ζ3),

µζ̇3 = ζ4 + µV (ϕs, ϕf ),

...

µζ2m = −
(

m∑
n=1

bnζ2n+1

)
/b2m.

Note that at µ = 0, the ζf equations in (9) form a linear system that is decoupled from
ϕs; let J be the coefficient matrix of this (2m− 2)-dimensional system. It was proved
in Lemma 7.1 in [1] that this matrix is always hyperbolic when the coefficients bn are
determined as in [1] by the various moments of the interaction function generating
the phase-field model. In particular, J has (m−1) eigenvalues with positive real part
and (m− 1) eigenvalues with negative real part.

Theorem 5.1. (a) Let Vη = {ζf : |ζf | ≤ η}. There exists η > 0 and µ0 = µ0(η)

such that Ñ = N × Vη is an isolating neighborhood for (9) for all µ ∈ (0, µ0) and all
c ∈ [c1, c0], where N is the isolating region of Theorem 2.1 and c1 and c0 are as Lemma
3.4. Furthermore, the set of connections from P̃− to P̃+ is empty for c = c1, c0.

(b) The Conley connection index for (9) on Ñ × [c1, c0] is the homotopy type of
a point so that there exists a connection from P̃− to P̃+ for some c ∈ [c1, c0] and for
each µ ∈ (0, µ−].

Proof. (a) The boundary of Ñ is (∂N × Vη) ∪ (N × ∂Vη). First, suppose that
ϕs ∈ ∂N . Since N is a compact isolating region for (1) for each c ∈ [c1, c0], there
exists T > 0 and δ > 0 such that if Nδ is a δ-neighborhood of N in R3, then for each
x ∈ ∂N , there exists ξ ∈ [−T, T ] such that x · ξ ∈ R3 \Nδ, i.e., the solution through x
lies at a distance of at least δ from N at some time ξ that is uniformly bounded from
above and below. Now suppose that (ϕs, ζf ) ∈ S(Ñ) so that |ζf (ξ)| ≤ η for all ξ. It
then follows that there exists K > 0 such that if ϕs ∈ ∂N , then the solution of (10)
through (ϕs, ζf ) satisfies

|ϕs(ξ)− x(ξ)| ≤ KTη,

where x(ξ) is the solution of (1) through ϕs. Now choose η so that KTη ≤ δ. It then
follows that such a solution must leave Ñ in time |ξ| ≤ T so that the solution could
not lie in S(Ñ).
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With η fixed as above, we claim that if (ϕs, ζf ) ∈ N × ∂Vη, then the solution

of (9) through this point exits Ñ in finite time provided that µ is sufficiently small.
If this were not the case, the solution would lie in S(Ñ) and therefore be uniformly
bounded. It follows that the perturbation µV (ϕs, ζf ) in the ζ3 equation is uniformly
of order µ. It therefore follows that if ζ̄ solves ζ̄ ′ = Jζ̄ with the same initial data as
ζf (y), then there exists a constant K > 0 depending only on P > 0 such that

|ζ̄(y)− ζf (y)| ≤ KPµ

for |y| ≤ P . Since the matrix J is hyperbolic, the neighborhood Vη isolates the origin
for the linear flow ζ̄ ′ = Jζ̄; thus there exists ε > 0 and P > 0 such that ζ̄(y) 6∈ Vη+ε
for some y ∈ [−P, P ] whenever ζ̄(0) ∈ ∂Vη. Now choose µ0 so that KPµ0 < ε; it

then follows that solutions of (9) which initially lie in N × ∂Vη exit Ñ in time y with

|y| ≤ P . Thus Ñ is isolating for (9) for µ ∈ (0, µ0].
We next show that the set of connecting orbits from P̃− to P̃+ is empty when

c = c0, c1 for sufficiently small µ. As noted earlier, the matrix J is hyperbolic so that
the slow subspace {(ϕs, 0)} is normally hyperbolic when µ = 0. We may therefore
apply Fenichel’s theorem [7] to obtain a smooth invariant manifoldMµ = (ϕs, ζf (ϕs)),
where ζf (ϕs) = O(µ) over compact subsets of the slow subspace. Furthermore, since
the rest points P± are hyperbolic for the slow reduced system (1), it follows that the
rest points P̃± are hyperbolic relative to the flow in Mµ so that they have stable and
unstable manifolds in Mµ that closely approximate the stable and unstable manifolds

Wu,s
± of P± of the reduced system (1) for small µ. Furthermore, P̃± are hyperbolic rest

points of (9) so that P̃− has an unstable manifold W̃u
− and P̃+ has a stable manifold

W̃ s
+ in the full space. By the hyperbolicity of J , these manifolds closely approximate

the product manifolds Wu
− × Uf and W s

+ × Sf , where Uf and Sf are the unstable
and stable subspaces of J . By Lemma 3.4, Wu

− and W s
+ do not intersect in N at

c = c1, c0; it follows that W̃u
− and W̃ s

+ do not intersect in Ñ for sufficiently small µ
for c = c1, c0.

(b) By part (a), the neighborhood Ñ can be used to define a family of connection
triples (S̃−, S̃+, S̃) for system (9) augmented with c′ = 0 and for all sufficiently small
µ. This is achieved by defining S̃ = S(Ñ× [c1, c0]) with an analogous definition for S̃±
with N replaced by suitable neighborhoods of the two rest points. The key fact used
in part (a) was that the coupling terms b2ζ3 and µV (ϕs, ζf ) linking the fast and slow

subsystems in (9) are small provided the solution remains in Ñ . We now introduce
a homotopy of (9) by replacing b2ζ3 by πb2ζ3 and µV (ϕs, ζf ) by πµV (ϕs, ζf ), where
the homotopy parameter π ∈ [0, 1]. Clearly, this only improves the estimates in part
(a) so that Ñ generates connection triples (S̃−(π), S̃+(π), S̃(π)) that are all related by
continuation. The connection index h̄(π) is therefore independent of π. It immediately
follows from the product structure of the system at π = 0 and the product formula
for h̄ that h̄(0) is the product of h̄ for the three-dimensional slow system (1) with
an (m − 1)-sphere Σm−1. By the proof of Theorem 2.1, the former index is [0̄], the
homotopy type of a point; thus h̄(1) = h̄(0) = [0̄] ∧ Σm−1 = [0̄]. Since this index is
different from the “trivial” index Σm∧Σm+1, it follows that S(Ñ) contains more than
the two rest points P̃± for some c ∈ [c1, c0]. However, any solution which remains in
Ñ for all ξ must lie in the invariant manifold Mµ. As in Lemma 3.1, it follows that

any such solution must be a connecting orbit from P̃− to P̃+.
As before, finer information about the wave can be obtained when α is either

small or large. The following theorem is the natural generalization of the invariant-
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manifolds approach used by Gardner and Jones in [11] for the (scalar) higher-order
phase-field equation in which the temperature is constant.

Theorem 5.2. Let the heteroclinic solution of (1) obtained when α is either small
or large be denoted by

(ur(ξ, α), ϕr(ξ, α), ψr(ξ, α), cr(α)).

For fixed α, there exists µ0 such that for µ ∈ (0, µ0], the solution of (10) (augmented
with c′ = 0) is unique and can be expanded in a series of the form

ϕs(ξ, µ) = (ur(ξ, α), ϕr(ξ, α), ψr(ξ, α)) +O(µ),

ζf (ξ, µ) = O(µ),

c(µ) = cr(α) +O(µ).

Proof. The proof in either case is similar to those using Fenichel’s theorem in
the previous section. We shall therefore only give a brief outline in the case of small
δ = 1/α. Let c = δθ and αc = θ in (9) and augment this system with the parameter
flow θ′ = 0. The augmented system has a four-dimensional manifold of rest points
M0 at µ = 0, namely, ζf = 0, and by the hyperbolicity of the matrix J proved in
Lemma 7.1 of [1], this manifold is normally hyperbolic. By [7], there exists a smooth
invariant manifold Mµ of the augmented system for small µ, and the flow on Mµ is
of the form

θ′ = 0,(11)

u′ = −δθg(ϕ1, u) +O(µ),

ϕ′1 = ϕ2 +O(µ),

ϕ′2 = −θϕ2 − F (ϕ1, u) +O(µ).

In Theorem 4.3, it was proved that at µ = 0, the above system has a connecting
solution from P− to P+ for some θ and for small δ which lies in the transverse inter-
section of the center-unstable manifold of the former rest point and the center-stable
manifold of the latter. It is easily seen from (8) that the perturbed system has the
same rest points (with ζf = 0) so that (11) has rest points P− and P+ with invariant
manifolds W cu and W cs which smoothly approximate those of the reduced equations
with µ = 0. Since the reduced manifolds intersect transversely, this intersection must
persist for small µ.

We note that all that was used in the above argument was the normal hyper-
bolicity of M0 and the transverse intersection of the two invariant manifolds of the
reduced flow. The same argument therefore applies to the small α regime as well.

6. Numerical results. We conclude with the results of some numerical exper-
iments involving the second-order phase-field system

(u+ λϕ− aϕ2)t = uxx,

αε2ϕt = ε2ϕxx + b(ϕ− ϕ3) + u

in one space-variable x on a large finite interval [−50, 50] with homogeneous Neumann
boundary conditions and step-function initial data

(ϕ(x, 0), u(x, 0)) =

{
ϕ−, x < 20,
ϕ+(λ), x > 20.
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Note that the equations are parameterized in a slightly different manner than the
system described in the introduction. In particular, we take W (ϕ) = ϕ − Bϕ2 in
the equations described in the introduction; then those equations are equivalent to
the above with a = λB. In most situations, the interval above was large enough
that the boundary did not appear to affect the transient behavior of the solution
on time intervals large enough for travelling waves to be observed. The equations
were integrated numerically with the MOL1D package which is based on the method
of lines and a GEAR program to solve the associated system of ODEs. Solutions
were calculated on several different meshes to check for accuracy. In all but one case
(Figure 9 below), a mesh of 300 points appeared to be fine enough to give reliable
results in that the wave speeds and profiles calculated on different grids matched to
a high degree of accuracy.

Experiments were performed in broad ranges of the various parameters. In the
following, the null sets of the nonlinearities, F = 0 and g = 0, the u-component, and
the ϕ-component of the solution are depicted in the first, second, and third figures
of each sequence. To begin with, parameters were set so as to be consistent with
the hypotheses of Theorem 2.1 to test both the theorem and the numerical code. In
Figure 5, λ = .06 and a = 0 so that g = 0 is close to a horizontal line and the wave is
close to the scalar wave with constant u. Note that both components of the solution
are monotone. In Figure 6, λ was increased so that the hypotheses of Theorem 2.1
fail to be satisfied. For example, it can be seen from Figure 6a that it is impossible to
construct a rectangle M0 which intersects F = 0 and g = 0 in the manner required in
Hypothesis 3; it is also impossible to construct the rectangle M− about P−. However,
travelling waves were still observed in the solution, indicating that the hypotheses
of Theorem 2.1, while sufficient, are far from necessary conditions for the existence
of the profile. The nonlinearities in Figure 7 are still consistent with the hypotheses
of Theorem 2.1; however, W (ϕ) is quadratic. Note that the u-component now has a
local minimum while ϕ is still monotone decreasing. This type of profile was predicted
by the asymptotic results of Theorem 4.2 with small α, although α in this particular
experiment was O(1). In Figure 8, the coefficient of the quadratic term in W was
sufficiently increased so that it is again impossible to construct the rectangles M0 and
M± as required in Hypotheses 3 and 4 of Theorem 2.1. Nevertheless, the system still
supports travelling waves.

Finally, in Figure 9, we illustrate another interesting limiting regime in which u+

is near zero. In this case, the solution has a structure similar to that of the solutions
constructed in Theorem 4.3, in which ϕ has a transition layer and the temperature
u is monotone and has a “corner” near the point where the phase variable has a
transition layer. This is a different singular limit problem than that of Theorem 4.3,
wherein δ = 1/α was assumed to be small. Here the small parameter is the scaled
wave speed θ in (6), which is determined by the heteroclinic solution of the last two
equations in (6) when the temperature is the constant u = u+. This singular limit
problem does not fit immediately into the framework of Theorem 4.3, and it requires
a separate analysis. Nevertheless, it seems likely that an existence theorem along the
lines of Theorem 4.3 could be obtained for small u+ < 0.

It is interesting to note that we were forced to consider a much finer spatial mesh
in order to observe the waves in Figure 9. Coarser meshes seemed to give rise to Hopf
bifurcations in the form of periodic hot spots appearing in the temperature profile.
This must be regarded as a numerical artifact since the phenomenon disappeared with
mesh refinement.
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Fig. 5. (ϕ, u)− = (.8,−.29), (ϕ, u)+ = (−1.1,−.23), λ = .06, a = 0, b = 2, ε = 1, α = 1.
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Fig. 6. (ϕ, u)− = (.75,−.66), (ϕ, u)+ = (−1.03,−.06), λ = .3, a = 0, b = 2, ε = 1, α = 1.
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Fig. 7. (ϕ, u)− = (.9,−.34), (ϕ, u)+ = (−1.05,−.21), λ = .02, a = .3, b = 2, ε = 1, α = 1.
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Fig. 8. (ϕ, u)− = (.9,−.34), (ϕ, u)+ = (−1.05,−.21), λ = −.06, a = .85, b = 2, ε = 1, α = 1.
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Fig. 9. (ϕ, u)− = (.75 − .66), (ϕ, u)+ = (−1.01,−.008), λ = .14, b = .8, a = 0, b = .8, 1/ε2 =
55, α = 1.
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We also attempted to calculate the singular solutions of Theorem 4.3 with α
large and u+ negative and bounded away from zero. The numerical solutions did
not produce travelling wave profiles consistent with the singular limit structure of
Theorem 4.3. The temperature profile appeared more like the solution of a linear
diffusion equation with step-function initial data, while the phase variable appeared
to have a nearly stationary transition layer. In particular, the numerical solutions did
not appear to converge to travelling waves. Whether the source of this is numerical
or whether it points to some underlying instability of the travelling wave profiles of
Theorem 4.3 is at this point unclear.

REFERENCES

[1] P. Bates, P. Fife, R. Gardner, and C. Jones, Phase field models for hypercooled solidifica-
tion, Phys. D., to appear.

[2] G. Caginalp, The role of microscopic anisotropy in the macroscopic behavior of a phase
boundary, Ann. Phys., 172 (1986), pp. 136–155.

[3] G. Caginalp and P. Fife, Higher order phase field models and detailed anisotropy, Phys. Rev.
B, 34 (1986), pp. 4940–4943.

[4] G. Caginalp and P. Fife, Dynamics of layered interfaces arising form phase boundaries,
SIAM J. Appl. Math., 48 (1988), pp. 506–518.

[5] G. Caginalp and Y. Nishiura, The existence of travelling waves for phase field equations and
convergence to sharp interface models in the singular limit, Quart. Appl. Math., 49 (1991),
pp. 147–162.

[6] C. Conley and R. A. Gardner, An application of the generalized Morse index to a competitive
diffusion-reaction model, Indiana Univ. Math. J., 33 (1984), pp. 319–343.

[7] N. Fenichel, Persistence and smoothness of invariant manifolds for flows, Indiana Univ.
Math. J., 21 (1971), pp. 193–226.

[8] P. Fife and O. Penrose, Interfacial dynamics for theromodynamically consistent phase-field
models with nonconserved order parameter, Electronic J. Differential Equations, 1995,
pp. 1–49.

[9] P. C. Fife, Dynamics of internal layers and diffusive interfaces, CBMS–NSF Regional Con-
ference Series in Applied Mathematics 53, SIAM, Philadelphia, 1988.

[10] R. A. Gardner, Existence of travelling wave solutions of predator-prey systems via the con-
nection index, SIAM J. Appl. Math., 44 (1984), pp. 56–79.

[11] R. A. Gardner and C. Jones, Stability of travelling waves of diffusive predator prey systems,
Trans. Amer. Math. Soc., 327 (1991), pp. 465–524.



COMPRESSIBLE NAVIER–STOKES EQUATIONS IN A BOUNDED
DOMAIN WITH INFLOW BOUNDARY CONDITION∗

JAE RYONG KWEON† AND R. BRUCE KELLOGG‡

SIAM J. MATH. ANAL. c© 1997 Society for Industrial and Applied Mathematics
Vol. 28, No. 1, pp. 94–108, January 1997 005

Abstract. In this paper, we study the barotropic compressible Navier–Stokes equations in a
bounded plane domain Ω. Nonzero velocities are prescribed on the boundary of Ω, and the density
is prescribed on that part of the boundary corresponding to entering velocity. This causes a weak
singularity in the solution at the junction of incoming and outgoing flows. We prove the existence
of the solution (u, p) of the system

−µ∆u− ν∇divu + ρ(p)(u · ∇)u +∇p = 0 in Ω,
div(ρu) = 0 in Ω,
u = u0(x, y) on Γ,
p = p0(x, y) on Γin

in the Sobolev space H2,q ×H1,q(2 < q < 3). The proof follows from an analysis of the linearized
problem and a fixed-point argument.

Key words. Navier–Stokes equations, singularities, compressible viscous flows, fixed-point
arguments
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1. Introduction and main results. The steady-state barotropic compressible
Navier–Stokes equations are a system of PDEs of mixed type; the momentum equa-
tions form an elliptic subsystem in the velocity components, and the continuity equa-
tion is a hyperbolic equation in the density. Because, as a rule, the flow is zero on
the boundary of a region, boundary value problems for the Navier–Stokes system are
generally considered with the condition that the velocity components vanish on the
boundary of the region. It is at least of mathematical interest and possibly of phys-
ical interest to consider boundary value problems in which the velocity components
assume specified nonzero values on the boundary. Since the velocity field gives the
characteristic directions for the continuity equation, values of the density must be
specified on those portions of the boundary where the specified velocity vector points
into the region. In this paper, we shall discuss the resulting boundary value problem
in a special case. Particular attention will be paid to the boundary points where the
velocity vector is tangent to the boundary since these give rise to singularities in the
solution. We study the system

−µ∆u− ν∇divu + ρ(p)(u · ∇)u +∇p = 0 in Ω,
div(ρu) = 0 in Ω,
u = u0(x, y) on Γ,
p = p0(x, y) on Γin.

(1.1)

Here Ω is a bounded open set in R2 with smooth boundary Γ, u = [u, v] is the velocity
vector, p is the pressure, ρ = ρ(p) is the density, µ is the viscosity constant, and ν
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is the bulk viscosity constant. We assume that µ > 0 and ν > −µ. The functions
u0(x, y) and p0(x, y) that give the boundary data are assumed to be smooth functions
on the closure of Ω. The incoming and outgoing portions of the boundary, Γin and
Γout, are defined by

Γin = {(x, y) ∈ Γ : u0 · n < 0},
Γout = {(x, y) ∈ Γ : u0 · n ≥ 0},

where n = [n1, n2] denotes the unit outward-pointing normal to Γ. In fact, to make the
construction simpler, we assume throughout the paper that v0(x, y) ≡ 0, u0(x, y) ≥
C0 > 0.

Let Γ∗ ⊂ Γ be the set of the points at which u0 · n is zero. We shall further
simplify the situation by imposing the following condition.

Condition A. Γ∗ consists of two points (x∗, y∗) and (x∗, y∗).
Again, Condition A is not essential for our results but serves to remove unessential

details. With Condition A, the boundary Γ is divided into two connected arcs, the
arc Γin for which u0 · n < 0 and the arc Γout for which u0 · n ≥ 0. There are two
increasing functions δ±(y), defined for y∗ ≤ y ≤ y∗, such that

Γin = {(δ−(y), y) ∈ Γ : y∗ ≤ y ≤ y∗},
Γout = {(δ+(y), y) ∈ Γ : y∗ ≤ y ≤ y∗},

Ω = {(x, y) : δ−(y) < x < δ+(y), y∗ ≤ y ≤ y∗}.

*(x  ,y  )*

* *
(x  ,y  )

Ω

*

Γ
in Γout

*

Fig. 1

(See Figure 1.) On Γin, we have

n(δ−(y), y) =
1√

1 + δ′−(y)2
[−1, δ′−(y)].(1.2)

Also, in a neighborhood of (x∗, y∗), Γ is the graph of a function y = ε+(x), and in
a neighborhood of (x∗, y∗), Γ is the graph of a function y = ε−(x). Near (x∗, y∗) or
(x∗, y∗), we have

n(x, ε±(x)) =
1√

1 + ε′±(x)2
[−ε′±(x),±1].
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Near these two points, we define µ(x) = (u0 · n)(x, ε(x)), where ε denotes ε− or ε+.
For simplicity, we will use ε to stand for ε− or ε+, respectively.

We will also use the following nondegeneracy assumption.
Condition B. µ′(x∗) 6= 0 and µ′(x∗) 6= 0.
With our assumptions, Condition B is equivalent to the condition that Γ has

nonzero curvature at (x∗, y∗) and (x∗, y∗).
We define the distance from Γ∗ to any point on the boundary Γin:

d(y) ≡ min
{√

(y − y∗)2 + (δ−(y)− x∗)2,
√

(y − y∗)2 + (δ−(y)− x∗)2
}
.(1.3)

Remark. Assume that Condition B holds. Then there are positive constants C1

and C2 such that

C1d(y) ≤ min{|y − y∗| 12 , |y − y∗| 12 } ≤ C2d(y).(1.4)

Proof. If y = ε(x), then x = δ−(y) by the description of the boundary Γin. Thus
y − y∗ = ε′(ξ)(x− x∗) for some ξ ∈ (x, x∗). Since µ(x∗) = 0 and µ′(x∗) 6= 0, we get

ε′(ξ) =

∫ ξ

x∗
ε′′(s)ds ∼ C(ξ − x∗) near x∗.

Hence y − y∗ ∼ C(x − x∗)2 = C(δ−(y) − x∗)2 near x∗ and for some C. However,
d(y) = |δ−(y) − x∗|√1 + ε′(ξ)2 for some ξ. Thus we easily get C1d(y) ≤ √

y∗ − y ≤
C2d(y) for some positive constants C1 and C2, and similarly for µ′(x∗) 6= 0.

The following lemma describes the behavior of the singularity near Γ∗.
Lemma 1.1. Let u0 = [u0, 0] be a given smooth vector field with u0 ≥ C0 > 0.

Assume that Condition B holds. Then there exist positive numbers m and M such
that md(y) ≤ |µ(δ−(y))| ≤Md(y) near Γ∗.

Proof. Let y be near y∗, and let x = δ−(y), so y = ε(x). Since µ(x∗) = 0,

µ(δ−(y)) = (u0 · n)(δ−(y), ε(δ−(y)))

= (µ ◦ δ−)′(ζ)(δ−(y)− x∗)

for some ζ with y ≤ ζ ≤ y∗. Since (µ ◦ δ−)′(y) is continuous in y and µ′(δ−(y∗)) > 0,
there are positive numbers m1 and M1 such that m1 ≤ µ′(δ−(y)) ≤ M1 near y∗.
However, by (1.3), d(y) = |δ−(y)− x∗|√ε′(δ−(ζ))2 + 1 for some ζ ∈ [ȳ, y∗]. Hence

µ(δ−(y)) =
(µ ◦ δ−)′(ζ)√
1 + ε′(δ−(ζ))2

d(y)

for some ζ ∈ [ȳ, y∗]. Now if ε′(x) is bounded near x = x∗, then

m ≤ (µ ◦ δ−)′(ζ)√
1 + ε′(δ−(ζ))2

≤M near y∗

for some positive constants m and M . A similar argument holds in a neighborhood
of (x∗, y∗).

As an example, let u0=(1, 0) and consider the domain Ω = {(x, y) ∈ R2 : |y| <
1 − x2, − 1 < x < 1}. Then if y ≥ 0, δ−(y) = −√1− y, ε+(x) = 1 − x2, and
y = ε+(δ−(y)). Now (0, 1) is the singularity point. Hence d(y) =

√
(1− y)2 + δ−(y)2

and |u0 · n| = 2
√

1− y = 2d(y)/
√

2− y, where n = (2x, 1). Hence d(y)/3 ≤ |(µ ◦
δ−)(y)| ≤ d(y), and similarly for y < 0.
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We now explain our reason for taking u0 in the form u0 = [u0, 0]. Let u0 = [u0, v0]
with v0 not necessarily 0 be a given smooth vector field on the closure of Ω with
u0 ≥ C0 > 0—say u0 ∈ C∞(Ω̄). Consider the function k(x, ȳ) generated by the
vector u0 and defined by the following first-order ODE: for each fixed ȳ,

kx(x, ȳ) = u−1
0 v0(x, k(x, ȳ)),

k(δ−(ȳ), ȳ) = ȳ.
(1.5)

We also consider the streamlines generated by this function, that is, the points
(x, k(x, ȳ)). The solution k of (1.5) is given as follows: setting U0 = u−1

0 v0,

k(x, ȳ) =

∫ x

δ−(ȳ)

U0(s, k(s, ȳ))ds+ ȳ for all x.(1.6)

Here we can observe that the function k(x, ȳ) is strictly increasing in ȳ. Now we set
y = k(x, ȳ). Thus ȳ = ψ(x, y) for some function ψ. Hence equation (1.6) can be
written as

y =

∫ x

δ−(ψ(x,y))

U0(s, k(s, ψ(x, y)))ds+ ψ(x, y).(1.7)

Now we want to compute the first and second derivatives of δ−(ψ(x, y)). First, we
have

∇δ−(ψ(x, y)) = δ′−(ψ(x, y))∇ψ(x, y),(1.8)

∇2δ−(ψ(x, y)) = δ′′−(ψ(x, y))(∇ψ)2 + δ′−(ψ(x, y))∇2ψ.(1.9)

We compute ∇ψ(x, y). Differentiating both sides of (1.7) with respect to x and y,
respectively, we get

ψx(x, y) = (u0 · n)−1

{
−v0 − u0

∫ x

δ−(ψ(x,y)

∂

∂x
[U0(s, k(s, ψ(x, y)))]ds

}
,(1.10)

ψy(x, y) = (u0 · n)−1

{
v0 − u0

∫ x

δ−(ψ(x,y)

∂

∂y
[U0(s, k(s, ψ(x, y)))]ds

}
,(1.11)

where n is the unit normal vector defined in (1.2). Since u0 ·n is zero at the points of
Γ∗, ψx and ψy have singularities there. If v0 = 0, δ′−(y) is ∞ on Γ∗ . In either case, the
behavior of the singularities will be the same, and there is no mathematical difference
between the two cases. According to this observation, throughout this paper, we
choose u0 = [u0, 0] with u0 > 0. With this condition, the flow enters the region from
the left. Around Γ∗, the streamlines in Ω are almost parallel to the vector u0 because
u|Γ = u0.

In this paper, we obtain the following main results. The proofs are given in section
2.

Theorem 1.1. Suppose that u0 ∈ H2,q(Ω), p0 ∈ H1,q(Ω), and 2 < q < 3. Then
there is a constant µ∗ depending on ‖u0‖2,q+‖p0‖1,q such that if µ ≥ µ∗, then problem
(1.1) has a unique solution (u, v, p) ∈ H2,q ×H2,q ×H1,q with the following estimate:

‖u− u0‖2,q + ‖v‖2,q + ‖p− p0‖1,q ≤ C1,

where C1 = C(Ω, µ, ν, C0, µ
∗, |κ0|1,∞, |τ |1,∞, |ρ|∞, |ρ̄|∞).
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The condition that µ is large means that the Reynolds number of the flow is small,
so the flow in this domain is a laminar flow.

The next theorem does not have a restriction on µ. Instead, it is required that
the functions u0 and p0 are almost constant. The proof of Theorem 1.2 is also given
in section 2.

Theorem 1.2. Let u0 ∈ H2,q, p0 ∈ H1,q, and 2 < q < 3. For any constant C1,
there is a constant C2 such that if ‖u0‖2,q + ‖p0‖1,q ≤ C1 and ‖∇u0‖1,q + ‖∇p0‖1,q ≤
C2, then there is a unique solution (u, v, p) ∈ H2,q ×H2,q ×H1,q of system (1.1) with
the inequality

‖u− u0‖2,q + ‖v‖2,q + ‖p− p0‖1,q ≤ C3,

where C3 = C(Ω, µ, ν, C0, C1, C2, ‖κ0‖1,q, |ρ|∞, |τ |1,∞, |ρ̄|∞).
The proof of the theorems above consist of formulating problem (1.1) as a mapping

on a certain Banach space in such a way that the solution to (1.1) is a fixed point of
the mapping. The Schauder fixed-point theory is then used to establish the existence
of a fixed point. We use the Banach space of pairs (u, p) ∈ (H2,q(Ω))2 ×H1,q. The
index q is chosen in the open interval (2, 3). We choose q > 2 so that the Sobolev
imbedding theorem can be applied to guarantee that the density ρ(p) is well defined.
We require that q < 3 to handle the singularities in the solution that occur on Γ∗.

In our analysis, it is convenient to use the deviation from the boundary values as
dependent variables. We therefore define new dependent variables ū = u − u0 and
p̄ = p− p0. We then obtain for the first equation in (1.1) that

−µ∆(ū + u0)− ν∇div(ū + u0) + ρ[(ū + u0) · ∇](ū + u0) +∇(p̄+ p0) = 0,

and rearranging this equation, we get

−µ∆ū− ν∇div ū +∇p̄+ ρ{[(ū + u0) · ∇]ū + (ū · ∇)u0} = f ,(1.12)

where f = µ∆u0 +ν∇divu0−∇p0−ρ(u0 ·∇)u0. By the relation ρ = ρ(p), div(ρu) =
ρ(p)divu + ρ

′
(p)u · ∇p = 0, and κ(p)divu + u · ∇p = 0, where κ(p) = ρ(p)ρ

′
(p)−1.

Hence the second equation in (1.1) becomes

κ(p̄+ p0)div ū + (ū + u0) · ∇p+ ū · ∇p0 = g,(1.13)

where g = −κ(p̄+ p0)divu0 − u0 · ∇p0. Here we define τ(p) and ρ̄(p) as follows:

τ(p) ≡ κ(p)− κ(p0)

p− p0
for p 6= p0, τ(p0) = κ′(p0),(1.14)

ρ̄(p) ≡ ρ(p)− ρ(p0)

p− p0
for p 6= p0, ρ̄(p0) = ρ′(p0).(1.15)

Thus κ(p) = κ(p0) + τ(p)(p− p0) and ρ(p) = ρ(p0) + ρ̄(p)(p− p0). Now we join (1.12)
and (1.13) and replace ū and p̄ by u and p for convenience. Then we get

−µ∆u− ν∇divu +∇p+ ρ{[(u + u0) · ∇]u + (u · ∇)u0} = f in Ω,
κ(p+ p0)divu + (u + u0) · ∇p+ u · ∇p0 = g in Ω,
u = 0 on ∂Ω,
p = 0 on Γin,

(1.16)

where f and g are defined above and ρ = ρ(p+ p0).
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In order to solve the nonlinear problem (1.16), we shall rephrase it as a fixed-point
problem. Let w be a given vector field with w = 0 on Γ, and let η be a given function
with η = 0 on Γin. Let

F(w, η) = f − ρ[(w · ∇)w + (w · ∇)u0]− ρ̄η(u0 · ∇)w,(1.17)

G(w, η) = g − τηdivw −w · ∇p0,(1.18)

where ρ = ρ(η+p0), ρ̄ = ρ̄(η+p0), and τ = τ(η+p0). Let κ0 = κ(p0) and ρ0 = ρ(p0),
and let U and V be given functions. Consider the linear problem

−µ∆u− ν∇divu + ρ0(u0 · ∇)u +∇p = F in Ω,
κ0divu + Upx + V py = G in Ω,
u = 0 on ∂Ω,
p = 0 on Γin.

(1.19)

System (1.19) is a linear system of equations which is somewhat more complicated
than the Stokes system. The complications are the presence of the convection term
in the first equation of (1.19) and, more importantly, the presence of the pressure p
terms in the second equation of (1.19). We shall call (1.19) a compressible Stokes
system. If this system has a solution for F = F(w, η), G = G(w, η), U = w1 + u0,
and V = w2, we may consider the solution as defining a map (w, η) −→ (u, p). If it
happens that this map has a fixed point (u, p), then system (1.19) becomes (1.16).
Hence to solve (1.16), it suffices to find a fixed point of this map.

Throughout this paper, we will assume that

U ≥ C0 > 0(1.20)

for some constant C0.
In this paper, we will use the following spaces and norms:

‖u‖0 ≡
{∫

Ω

|u(x)|2dx

}1/2

and ‖u‖0,q ≡
{∫

Ω

|u(x)|qdx

}1/q

,

L2(Ω) = {u : ‖u‖0 <∞} and Lq(Ω) = {u : ‖u‖0,q <∞},

‖u‖k ≡
k∑
j=0

‖∇ju‖0, ‖u‖k,q ≡
k∑
j=0

‖∇ju‖j,q,

Hk(Ω) ≡ {u ∈ L2(Ω) : ‖u‖k <∞},
Hk

0 (Ω) ≡ {u ∈ Hk(Ω) : u = 0 on ∂Ω},
Hk,q(Ω) ≡ {u ∈ Lq(Ω) : ‖u‖k,q <∞},
Hk,q

0 (Ω) ≡ {u ∈ Hk,q(Ω) : u = 0 on ∂Ω},
‖u‖−1 ≡ sup{〈u, v〉 : v ∈ H1

0 (Ω), ‖v‖1 = 1},
‖u‖−1,q ≡ sup{〈u, v〉 : v ∈ H1,q′

0 (Ω), ‖v‖1,q′ = 1, 1/q + 1/q′ = 1},
|u|0,∞ ≡ sup{|u(x)| : x ∈ Ω},

|u|k,∞ ≡
k∑
j=0

|∇ju|0,∞.

In our proofs, C denotes a generic constant depending on certain quantities. We
shall make this dependence explicitly—for example, writing C(Ω) if C depends only
on Ω (for example, in the Sobolev inequalities) or C(Ω, u0, C0) if C depends on Ω, u0,
and C0, and so on.
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2. Large viscosity and constant ambient flows. In this section, we prove the
theorems stated above. We start with some lemmas. In these lemma, the functions
δ−(y) and d(y), which were defined in section 1, are regarded as functions on Ω which
are independent of x.

Lemma 2.1. Let q be given with 2 < q < 3. Then δ′−, d2δ′′− ∈  Lq(Ω).
Proof. Since the behavior of δ′−(y) is like that of (δ−(y)− x∗)/(y − y∗) near x∗

and d(y) = |δ−(y)− x∗|√ε′(ξ)2 + 1 for x̄ ≤ ξ ≤ x∗, using Condition B,∫ x∗

δ−(y)

|δ′−(y)|qdx ≤ C|y − y∗| 1−q
2 for some constant C.

Integrating both sides of above inequality with respect to y in a neighborhood of
y∗, we have δ′−(y) ∈ Lq(Ω) for q < 3. A similar argument holds near y∗. From the
relation y = ε(x), x = δ−(y), δ′′−(y) = −ε′′(δ−(y))δ′−(y)3. A similar argument shows
that d(y)2δ′′−(y) ∈ Lq(Ω).

In order to study the linear system (1.19), we first consider the continuity equation

px(x, y) + U−1V (x, y)py(x, y) = Ĥ(x, y) in Ω,
p(δ−(y), y) = 0,

(2.1)

where U and V are given and Ĥ = U−1H. To solve the continuity equation, consider
for each fixed ȳ,

px(x, h(x, ȳ)) + U−1V (x, h(x, ȳ))py(x, h(x, ȳ)) = Ĥ(x, h(x, ȳ)) in Ω,
p(δ−(ȳ), ȳ) = 0,

(2.2)

where h(x, ȳ) is the solution of the following first-order ODE: for each ȳ,

hx(x, ȳ) = U−1V (x, h(x, ȳ)) in Ω,
h(δ−(ȳ), ȳ) = ȳ.

(2.3)

The solution h(x, ȳ) of (2.3) is given by

h(x, ȳ) =

∫ x

δ−(ȳ)

U−1V (s, h(s, ȳ))ds+ ȳ.(2.4)

Now we set y = h(x, ȳ). Then ȳ = ϕ(x, y) for some function ϕ since h(x, ȳ) is increasing
in ȳ. Thus

y =

∫ x

δ−(ϕ(x,y)

U−1V (s, h(s, ϕ(x, y)))ds+ ϕ(x, y).(2.5)

Differentiating both sides of (2.5) with respect to x and y, respectively, and using
U−1V = 0 on Γ, we get

ϕx(x, y) = −U−1V (x, y)−
∫ x

δ−(ϕ(x,y))

∂

∂x
[U−1V (s, h(s, ϕ(x, y)))]ds,(2.6)

ϕy(x, y) = 1−
∫ x

δ−(ϕ(x,y))

∂

∂y
[U−1V (s, h(s, ϕ(x, y)))]ds.(2.7)
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Lemma 2.2. Let h and ϕ be given as above. Then ‖h‖2,q, ‖ϕ‖2,q, and ‖∇(δ− ◦
ϕ)‖0,q are bounded by a constant of the form C(Ω, ‖U‖2,q, ‖V ‖2,q, C0).

Proof. The proof follows from the formulas above, in particular, Lemma 2.1, (2.6),
(2.7), and the fact that V = 0 on Γ.

Now using (2.2) ∼ (2.5), the solution of (2.1) is given by

p(x, y) =

∫ x

δ−(ϕ(x,y))

Ĥ(s, h(s, ϕ(x, y)))ds,(2.8)

where Ĥ ≡ U−1H.
Lemma 2.3. If 2 < q < 3, then the solution p of (2.1), given by (2.8), satisfies

the following inequality:

‖p‖1,q ≤ C‖H‖1,q,(2.9)

where C = C(Ω, ‖U‖2,q, ‖V ‖2,q, C0).
Proof. Differentiating both sides of (2.8) with respect to y, we get

py(x, y) =

∫ x

δ−(ϕ(x,y))

∂

∂y
Ĥ(s, h(s, ϕ(x, y)))ds− Ĥ(δ−(ϕ(x, y)), ϕ(x, y))

∂δ−(ϕ(x, y))

∂y
,

and for simplicity, writing ϕ(x, y) as ϕ, we have

|py(x, y)|q ≤ C

{[∫ x

δ−(ϕ(x,y))

∣∣∣∣ ∂∂y Ĥ(s, h(s, ϕ(x, y)))

∣∣∣∣ ds
]q

+ |Ĥ(δ−(ϕ), ϕ)|q
∣∣∣∣∂δ−(ϕ)

∂y

∣∣∣∣q
}

(2.10) ≤ C

{∫ x

δ−(ϕ(x,y))

∣∣∣∣ ∂∂y Ĥ(s, h(s, ϕ(x, y)))|qds+ |Ĥ
∣∣∣∣q
∞

∣∣∣∣∂δ−(ϕ)

∂y

∣∣∣∣q
}
,

where we used (a+ b)q ≤ 2q−1(aq + bq) in the first inequality and Hölder’s inequality
in the second inequality and C depends on Ω. Next, integrating both sides of (2.10)
with respect to x from δ−(y) to δ+(y),∫ δ+(y)

δ−(y)

|py(x, y)|qdx ≤ C

∫ δ+(y)

δ−(y)

∫ x

δ−(ϕ(x,y))

∣∣∣∣ ∂∂y Ĥ(s, h(s, ϕ(x, y)))

∣∣∣∣q dsdx(≡ A(y))

+ C|Ĥ|q∞
∫ δ+(y)

δ−(y)

∣∣∣∣∂δ−(ϕ)

∂y

∣∣∣∣q dx(≡ B(y)).(2.11)

Integrating A(y) and changing the variables of integration, we get∫ y∗

y∗
A(y)dy = C

∫ y∗

y∗

∫ δ+(y)

δ−(y)

{∫ x

δ−(ϕ(x,y))

∣∣∣∣ ∂∂y Ĥ(s, h(s, ϕ(x, y)))

∣∣∣∣q ds
}
dxdy

≤ C(‖U‖2,q, ‖V ‖2,q,Ω)

∫
Ω

|Ĥy(x, y)|qdx.(2.12)

In order to estimate B(y) in (2.11), we observe that ∂(δ− ◦ ϕ)/∂y is close to δ′−(y)
near Γ. Then we have∫ y∗

y=y∗

∫ δ+(y)

δ−(y)

∣∣∣∣∂δ−(ϕ(x, y))

∂y

∣∣∣∣q dxdy ≤ C‖δ′−(y)‖0,q <∞,(2.13)
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where C = C(Ω, ‖U‖2,q, ‖V ‖2,q, C0) and we have used Lemma 2.1. Since q > 2, by
the Sobolev embedding theorem, H1,q(Ω) ⊆ C0(Ω),

|Ĥ|q∞ ≤ C‖Ĥ‖q1,q for some constant C.(2.14)

Combining (2.11)–(2.14), we get ‖py‖qq ≤ C‖Ĥ‖q1,q for some constants C. Similarly,

applying the same procedure for px, we get ‖px‖qq ≤ C‖Ĥ‖q1,q. Furthermore, we can

easily get the Lq-estimate for p(x, y). Thus, since Ĥ = U−1H, the result follows.
Consider the following elliptic boundary value problem:

−µ∆u− ν∇divu + ρ0(u0 · ∇)u= F̄ in Ω,
u= 0 on Γ.

(2.15)

Remark. The ellipticity of the operator follows from the inequalities satisfied by
µ and ν. For simplicity, we set µ̄ = (µ+ ν)/µ.

Lemma 2.4. Assume that |∇(ρ0u0)|∞ is small enough. Then there is a unique
weak solution u of (2.15) with (i) µ‖u‖1 ≤ C1‖F̄‖0, where C1 = C(µ̄, |∇(ρ0u0)|∞).
Furthermore, the solution u of (2.15) satisfies (ii) µ‖u‖k,q ≤ C2‖F̄‖k−2,q, where C2 =
C(Ω, µ̄,u0, ρ0, k), k is an integer ≥ 1, 1 < q < ∞, C2 is bounded provided that µ̄
ranges over a compact subset of (0,∞), and µ is bounded away from zero. Also, the
solution u of (2.15) satisfies (ii) with the small condition of |ρ0|k−2,∞ (k ≥ 2).

Proof. First, let ū = µu and consider the modified equation of (2.15); −∆ū −
(µ̄ − 1)∇divū + µ−1ρ0(u0 · ∇)ū = F̄ in Ω and ū = 0 on Γ. Next, we multiply both
sides by ū and integrate by parts. Using the inequalities satisfied by µ and µ̄ and
the smallness assumption on |∇(ρ0u0)|∞ (or the condition that µ is large enough),
we easily get (i). The existence of a weak solution ū ∈ H1

0 to (i) then follows from
the Lax–Milgram lemma. From the standard Lq theory of elliptic equations (see [2])
applied to the modified version of (2.15), we obtain

‖ū‖k,q ≤ µ−1C(µ̄)|ρ0u0|k−2,∞‖ū‖k−1,q + C(µ̄)‖F̄‖k−2,q.

This inequality holds uniformly if µ̄ ranges over a compact subset of (0,∞). Sup-
pose that |∇(ρ0u0)|∞ is small enough so that (i) holds. A standard argument by
contradiction then establishes (ii).

The next theorem gives a solution to the linear system (1.19).
Theorem 2.1. Suppose that U ≥ C0. Assume that |∇(ρ0u0)|∞ is small enough.

Assume that ‖κ0‖1,q is sufficiently small or µ is large enough. Then there exists

a unique solution (u, p) ∈ H2,q
0 × H1,q of system (1.19) with the following a priori

estimate:

µ‖u‖2,q + ‖p‖1,q ≤ C(‖F‖0,q + ‖G‖1,q),(2.16)

where C = C(Ω, ‖U‖2,q, ‖V ‖2,q, C0, µ̄, ‖κ0‖1,q,u0, ρ0).

Proof. Let w ∈ H2,q
0 be given, and consider the following problem:

−µ∆u− ν∇divu + ρ0(u0 · ∇)u +∇p = F in Ω,
Upx + V py = G− κ0divw in Ω,
u = 0 on ∂Ω,
p = 0 on Γin.

(2.17)

Using Lemma 2.3 with H = G − κ0divw, we find that the solution p in (2.1) exists
and satifies

‖p‖1,q ≤ C(‖κ0‖1,q‖w‖2,q + ‖G‖1,q),(2.18)



COMPRESSIBLE NAVIER–STOKES EQUATIONS 103

where C = C(Ω, ‖U‖2,q, ‖V ‖2,q, C0). However, by (2.8) with H = G − κ0divw, the
solution p of the continuity equation (2.17) is uniquely determined, and using this
solution p and Lemma 2.4, the problem

−µ∆u− ν∇divu + ρ0(u0 · ∇)u +∇p= F in Ω,
u= 0 on ∂Ω,

(2.19)

has a unique solution u ∈ H2,q(Ω) ∩H1,q
0 (Ω) and satisfies the inequality

µ‖u‖2,q ≤ C(‖∇p‖0,q + ‖F‖0,q),(2.20)

where C = C(Ω, µ̄, ρ0,u0, q). Here we combine (2.18) and (2.20) and get

µ‖u‖2,q + ‖p‖1,q ≤ C(‖κ0‖1,q‖w‖2,q + ‖F‖0,q + ‖G‖1,q),(2.21)

where C = C(Ω, ‖U‖2,q, ‖V ‖2,q, C0, µ̄, ρ0,u0, q). At this point, we call attention to
the linear map (F, G, U, V,w) 7−→ (u, p) defined by (2.17). If (u∗, p∗) is the solution
corresponding to the data (F, G, U, V,w∗), it follows that (u−u∗, p−p∗) is the solution
corresponding to the data (0, 0, 0, 0,w −w∗). Now using (2.21), we get

µ‖u− u∗‖2,q + ‖p− p∗‖1,q ≤ C‖κ0‖1,q‖w −w∗‖2,q,

where C = C(Ω, ‖U‖2,q, ‖V ‖2,q, C0, µ̄, |ρ0|∞, |u0|∞, q). Thus we have

µ‖u− u∗‖2,q ≤ C‖κ0‖1,q‖w −w∗‖2,q.

Hence for fixed F, G, U , and V , if µ = large or ‖κ0‖1,q = small, then the map w 7−→ u

is a contraction in the topology of H2,q
0 , i.e., ‖u−u∗‖2,q ≤ (1/2)‖w−w∗‖2,q and it has

a unique fixed point u = w. Thus using this fixed point u, p is uniquely determined
by the continuity equation in (2.17) and (2.8). Hence (u, p) is the desired solution of
(1.19). Again, if µ is large or ‖κ0‖1,q is small, we get (2.16) by (2.21).

We give an example of a solution to (1.19) that emphasizes that the restriction on
the regularity of the solution (u, p) of (1.19) in Theorem 2.1 comes from the geometry
of ∂Ω, not the regularity of the data. For example, let Ω be the unit disk and let
µ = 1, ν = 0, u0 = [1, 0], κ0 = 1, U = 1, and V = 0. Let [u, v, p] be defined by

u(x, y) = 1− x2 − y2,

v(x, y) = χ(y)[(1− y2)3/2 − |x|3],
p(x, y) = 3χ(y)(x− 1)[(1− y2)1/2 + x].

Here χ(y) is a smooth function which is ≡ 1 near y = 1 and ≡ 0 near y = −1. It is
easily seen that v ∈ H2,q(Ω) and p ∈ H1,q(Ω) for q < 3. Also, u = v = 0 on Γ and
p = 0 on Γin. For y near 1, f1 = −∆u+ux+px = 3(1−y2)1/2 +4x+1 ∈ H1,q(Ω) and
f2 = −∆v+vx+py = 3(y−y2−xy)(1−y2)−1/2+3(1−y2)1/2+6|x|−3x|x|. The first term
in this formula for f2 may be written 3y(1−y)(1−y2)−1/2−3xy(1−y2)−1/2 ∈ H1,q(Ω).
It may be seen that |x| ∈ H1,q(Ω) and x|x| ∈ H1,q(Ω). Hence f2 ∈ H1,q(Ω). Finally,
g = ux + vy + px = 3(1 − y)(1 − y2)1/2 + 4x − 3 ∈ H2,q(Ω). Summarizing the
computation above, f1 ∈ H1,q(Ω), f2 ∈ H1,q(Ω), and g ∈ H2,q(Ω). Hence (u, v, p)
satisfies (1.19) with data of sufficient regularity to permit u, v, and p to have more
regularity than they have. The singularity of the solution at (x∗, y∗) blocks further
regularity in the solution.
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Recall that in (1.12) and (1.13), we defined f = µ∆u0 + ν∇divu0 −∇p0 − ρ(u0 ·
∇)u0 and g = −κ(η + p0)divu0 − u0 · ∇p0. Hence we get

‖f‖0,q + ‖g‖1,q ≤ C(‖∇u0‖1,q + ‖∇p0‖1,q).(2.22)

Let us set M ≡ ‖∇u0‖1,q + ‖∇p0‖1,q. In order to solve system (1.16), we use both
the linear system (1.19) with U = w1 + u0 and V = w2 and (2.16). Before doing this,
we need the following lemma.

Lemma 2.5. Let w ∈ H2,q
0 and η ∈ H1,q. Let F = F(w, η) and G = G(w, η) be

given by (1.17) and (1.18). Let U = w1 + u0 and V = w2. Then the solution (u, p) ∈
H2,q

0 ×H1,q of system (1.19) that is given by Theorem 2.1 satisfies the inequality

‖u‖2,q + µ−1‖p‖1,q ≤ C(‖w‖2,q + µ−1‖η‖1,q)2 +
CM

µ
‖w‖1,q +

CM

µ
,(2.23)

where C = C(Ω, µ̄, ‖w‖2,q, ‖u0‖2,q, C0, |κ0|1,∞, |τ |1,∞, |ρ|∞, |ρ̄|∞).
Proof. Using formula (1.17) for F(w, η) and the Sobolev embedding H1,q ⊆ C0,

‖F(w, η)‖0,q ≤ C(‖f‖0,q + ‖w · ∇w‖0,q + ‖∇w‖0,q|η|∞ + ‖w · ∇u0‖0,q)
≤ C(‖w‖1,q + ‖η‖1,q + ‖∇u0‖1,q)‖w‖1,q + C‖f‖0,q,(2.24)

where C = C(Ω, |ρ|∞, |ρ̄|∞). Next, using (1.18), we estimate ‖G(w, η)‖1,q and get

‖G‖1,q ≤ C(‖τηdivw‖1,q + ‖w · ∇p0‖1,q + ‖g‖1,q),(2.25)

‖∇(ηdivw)‖0,q ≤ C(‖∇ηdivw‖0,q + ‖η∇divw‖0,q)
≤ C(|divw|∞‖∇η‖0,q + |η|∞‖w‖2,q),(2.26)

‖ηdivw‖0,q ≤ |divw|∞‖η‖0,q.(2.27)

Hence, using the inequality ‖w · ∇p0‖ ≤ C‖∇p0‖1,q‖w‖1,q,
‖G‖1,q ≤ C(‖w‖2,q‖η‖1,q + ‖∇p0‖1,q‖w‖1,q + ‖g‖1,q).(2.28)

Finally, combining (2.24) and (2.28), we have

‖F(w, η)‖0,q + ‖G(w, η)‖1,q ≤ C(‖w‖2,q‖η‖1,q + ‖w‖21,q +M‖w‖1,q)
+ C(‖f‖0,q + ‖g‖1,q),(2.29)

where C = C(Ω, |τ |1,∞, |ρ|∞, |ρ̄|∞). Recalling that U = w1 +u0 and V = w2, recalling
f and g from (1.12) and (1.13), combining (2.16) and (2.29), then dividing the resulting
inequality by µ, and finally using 2αβ ≤ (α+β)2, we get the required inequality.

We now construct a fixed-point map. To do this, we let σ = µ−1p and π = µ−1η.
Then the linear sytem (1.19) becomes

−∆u− µ−1ν∇divu + µ−1ρ0(u0 · ∇)u +∇σ = µ−1F(w, µπ) in Ω,
κ0divu + µ(Uσx + V σy) = G(w, µπ) in Ω,
u = 0 on ∂Ω,
σ = 0 on Γin,

(2.30)

where U = w1 + u0 and V = w2.
The existence of the solution (u, σ) of (2.30) is guaranteed by Theorem 2.1. For

fixed f and g, define the map T : (w, π) −→ (F(w, µπ), G(w, µπ)) −→ (u, σ), where
(u, σ) is the solution of (2.30). We want to prove that the map T is a contraction in
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some ball B in the topology of H1,q
0 ×H0,q if µ is sufficiently large or ‖κ0‖1,q is small

enough. Choose a ball

B ≡ {(w, π) ∈ H2,q
0 ×H1,q : ‖w‖2,q + ‖π‖1,q ≤ A},(2.31)

where A ≤ 1 will be chosen later.

Lemma 2.6. Let the constants M and C be given in (2.22) and (2.23), respectively.
Assume that µ−1M ≤ A/3C and A ≤ 1/3C. Then we have T (B) ⊂ B.

Proof. Let (w, π) ∈ B. Then ‖w‖2,q + ‖π‖1,q ≤ A. Now from (2.23), we get

‖u‖2,q + ‖σ‖1,q ≤ CA2 +
CM

µ
A+

A

3

≤ A

3
+
A2

3
+
A

3
≤ A.

Thus the result follows.

Remark. If A is small, and if µ is large enough or M is small enough, then we get
Lemma 2.6. Thus Lemma 2.6 covers both cases.

Lemma 2.7. Assume that M and ‖κ0‖1,q are small enough or µ is large enough.
Then for fixed f and g, the map T : B −→ B is a contraction in the topology of
H1,q

0 ×H0,q if A is small.

Proof. Consider (u, σ) = T (w, π) and (u∗, σ∗) = T (w∗, π∗) and set F = F(w, µπ),
F∗ = F(w∗, µπ∗), G = G(w, µπ), and G∗ = G(w∗, µπ∗). Then from (2.30), we get

−∆(u− u∗)− µ−1ν∇div(u− u∗) + µ−1ρ0(u0 · ∇)(u− u∗)
+∇(σ − σ∗) = µ−1(F− F∗) in Ω,

(w∗ + u0) · ∇(σ − σ∗)
= µ−1[G−G∗ − κ0div(u− u∗)]− µ−1(w −w∗) · ∇p in Ω,

u− u∗ = 0 on ∂Ω,
σ − σ∗ = 0 on Γin.

(2.32)

Let h be the solution of

hx(x, ȳ) = U∗−1V ∗(x, h(x, ȳ)),
h(δ−(ȳ), ȳ) = ȳ.

(2.33)

Applying the same procedures as in (2.3), (2.4), (2.5), and (2.8) to the continuity
equation above, we can get

(σ − σ∗)(x, y) =

∫ x

δ−(ϕ(x,y))

B(s, h(s, ϕ(x, y)))ds,(2.34)

where B ≡ µ−1U∗−1[(G − G∗) − κ0div(u − u∗) − (w − w∗) · ∇p], U∗ = w∗1 + u0.
However,

µ−1(F− F∗) = −ρ′(ξ)[(w · ∇)w + (w · ∇)u0](π − π∗)
+ ρµ−1{[(w −w∗) · ∇]w + (w∗ · ∇)(w −w∗) + [(w −w∗) · ∇]u0}
− [ρ̄′(ξ)η(u0 · ∇)w + ρ̄(u0 · ∇)w](π − π∗)− ρ̄π∗(u0 · ∇)(w −w∗),



106 J. R. KWEON AND R. B. KELLOGG

where we used the mean-value property for ρ and ρ̄ and where ξ is between π and π∗.
Hence

‖µ−1(F− F∗)‖0,q ≤ C(‖w‖22,q + ‖w‖2,q‖η‖1,q
+ ‖w‖2,q + |∇u0|0,∞‖w‖2,q)‖π − π∗‖0,q
+ C(‖w‖2,q + ‖w∗‖1,q + ‖π∗‖1,q + µ−1|∇u0|∞)‖w −w∗‖1,q

≤ CA(‖w −w∗‖1,q + ‖π − π∗‖0,q) if µ−1M ≤ A,(2.35)

where C = C(A,µ, |ρ′|∞, |ρ̄|1,∞) and M = ‖∇u0‖1,q + ‖∇p0‖1,q. Next, setting τ∗ =
τ(η∗ + p0),

µ−1(G−G∗) = −µ−1[τηdivw − τ∗η∗divw∗ + (w −w∗) · ∇p0]

= −[τ(η + p0) + τ ′(ξ)η∗](π − π∗)divw − [τπ∗div(w −w∗)
+ µ−1(w −w∗) · ∇p0].(2.36)

Now

‖σ − σ∗‖0,q ≤ C‖B‖0,q

≤ C

(∥∥∥∥G−G∗

µ

∥∥∥∥
0,q

+
|κ0|∞
µ

‖div(u− u∗)‖0,q + µ−1|w −w∗|∞‖∇p‖0,q
)

≤ C

(∥∥∥∥G−G∗

µ

∥∥∥∥
0,q

+
‖κ0‖1,q
µ

‖u− u∗‖1,q + µ−1‖w −w∗‖1,q‖∇p‖0,q
)
,

where we used the Sobolev embeddingH1,q ⊆ C0 and C = C(Ω, C0, A). From Lemma
2.6, we get µ−1‖∇p‖0,q ≤ A, and using (2.36),

‖µ−1(G−G∗)‖0,q ≤ C|divw|∞‖π − π∗‖0,q + C(‖π∗‖1,q + µ−1‖∇p0‖1,q)‖w −w∗‖1,q,
where C = C(µ, |τ |1,∞, A, |κ|∞). Thus if µ−1M ≤ A and |divw|∞ ≤ CA,

‖σ − σ∗‖0,q ≤ Cµ−1‖κ0‖1,q‖u− u∗‖1,q(2.37)

+ CA(‖w −w∗‖1,q + ‖π − π∗|0,q),
where C = C(Ω, C0, A, |τ |1,∞, |κ|∞). From the momentum equation, standard elliptic
theory, Lemma 2.4, (2.35), (2.37), and the assumption that µ is large or ‖κ0‖1,q is
small enough, we get

‖u− u∗‖1,q ≤ C(‖∇(σ − σ∗)‖−1,q + ‖µ−1(F− F∗)‖0,q)
≤ C(‖σ − σ∗‖0,q + ‖µ−1(F− F∗)‖0,q)
≤ CA(‖w −w∗‖1,q + ‖π − π∗‖0,q),(2.38)

where C = C(Ω, C0, A, |τ |1,∞, |κ|∞). Combining (2.37) and (2.38), we get

‖u− u∗‖1,q + ‖σ − σ∗‖0,q ≤ CA(‖w −w∗‖1,q + ‖π − π∗|0,q),(2.39)

where C depends on the same quantity as in (2.38). Hence if A ≤ 1/2C, we get the
inequality

‖u− u∗‖1,q + ‖σ − σ∗‖0,q ≤ 1

2
(‖w −w∗‖1,q + ‖σ − σ∗‖0,q).(2.40)
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This means that T : B −→ B, defined by T (w, π) = (u, σ), is a contraction in the
topology of H1,q ×H0,q.

Recall that u = ū = u − u0 and p = p̄ = p − p0. Combining all of the previous
lemma series and theorems, we obtain a result for the existence and regularity of the
solution (u, p) for problem (1.1) in the case of large viscosity.

Theorem 2.2. Suppose that u0 ∈ H2,q(Ω), p0 ∈ H1,q(Ω). Then there is a
constant µ∗ depending on ‖u0‖2,q + ‖p0‖1,q such that if µ ≥ µ∗, then problem (1.16)
has a unique solution (u, v, p) ∈ H2,q ×H2,q ×H1,q with the following estimate:

‖u− u0‖2,q + ‖v‖2,q + ‖σ − σ0‖1,q ≤ C1,(2.41)

where C1 = C(Ω, µ, ν, µ∗, C0, |κ0|1,∞, |τ |1,∞, |ρ|∞, |ρ̄|∞), σ = µ−1p, and σ0 = µ−1p0.

Proof. The ball B defined by (2.31) is a compact convex subset of H1,q
0 ×H0,q.

From Lemma 2.6, T (B) ⊂ B. From Lemma 2.7, the map T is continuous from B to
H1,q

0 ×H0,q. Since the continuous image of a compact set is compact, T (B) is compact
inH1,q

0 ×H0,q. Hence by the Schauder fixed-point theorem, there is a unique (u, σ) ∈ B
with T (u, σ) = (u, σ). Now we combine the previous lemma series and theorems to get
our main result. Let (w, π) ∈ B, defined by (2.31). Then ‖w‖2,q+‖π‖1,q ≤ A and the
constant C in (2.23) becomes C = C(Ω, µ, ν, A, ‖u0‖2,q, C0, |κ0|1,∞, |τ |1,∞, |ρ|∞, |ρ̄|∞).
Let us denote this constant by C3. However, the map T has a unique fixed point
(u, σ) ∈ B with u = w and σ = π. Therefore, if u0 ∈ H2,q, p0 ∈ H1,q, 3C3M/A ≤
µ∗ ≤ µ, and µ−1C3M ≤ 1/3, then using (2.23), the solution (u, σ) of system (1.16)
satisfies the following inequality:

‖u‖2,q + ‖σ‖1,q ≤ C1,(2.42)

where C1 = C(Ω, µ, ν, µ∗, C0, |κ0|1,∞, |τ |1,∞, |ρ|∞, |ρ̄|∞).
In Theorem 2.2, we have found the solution (u, p) of the nonlinear system (1.16)

with the condition µ = large. This means that the Reynolds number is small and
so the flows in this domain are laminar flows. The flows have a small perturbation
around the ambient flows.

Next, combining the lemmas and theorems above, we obtain a result for the
existence and regularity of the solution (u, p) of problem (1.1) in the case of nearly
constant ambient flow.

Theorem 2.3. Let u0 ∈ H2,q(Ω), p0 ∈ H1,q(Ω), and 2 < q < 3. For any
constant C1, there is a constant C2 such that if ‖u0‖2,q+‖p0‖1,q ≤ C1 and ‖∇u0‖1,q+
‖∇p0‖1,q ≤ C2, then there is a unique solution (u, v, p) ∈ H2,q

0 ×H2,q
0 ×H1,q of system

(1.1) with the following estimate:

‖u− u0‖2,q + ‖v‖2,q + ‖p− p0‖1,q ≤ C3,(2.43)

where C3 = C(Ω, µ, ν, C0, C1, C2, |ρ|∞, |ρ̄|∞, |τ |1,∞).
Proof. The existence of the solution (u, v, p) of (1.1) easily follows from the

similar procedures in the proof of Theorem 2.2. Furthermore, inequality (2.43) can
be obtained by using the same methods in the proof of Theorem 2.2.
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Abstract. The paper studies the Riemann problem for a conservation law with a source term
and a nonconvex flux-function. The complete solution is provided in the case when the flux has one
inflection point and the Riemann states are stationary states of the source term. For small times, the
structure of the solutions is similar to the homogeneous case. As the time increases, the size of the
shocks may decrease under the action of the source, while rarefaction waves tend to traveling waves.
It is also proved that if the flux has more than one inflection point, there may be shocks vanishing
in finite time, in contrast to the case when the flux is convex.
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extinction of shocks
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1. Introduction. Equations of the form

∂tu(x, t) + ∂xf(u(x, t)) = g(x, u(x, t)), x ∈ IR, t ≥ 0,(1.1)

are usually called conservation laws with source or inhomogeneous conservation laws
and arise in various physical applications. For example, the case g(x, u) = c(x)h(u)
with h, h′ 6= 0 and c with compact support was considered by Liu and Li [13], [12] as
a model for transonic nozzle flow. Also, the equation

∂tu+ h(u)∂xu = h0 − h(u),

with h a cubic polinomial and h0 a constant, was studied by some authors (e.g.,
Knight and Peterson [9], Murray [17], and Bonilla [2]) as a model for the so-called
Gunn effect in semiconductor physics. The interesting feature of the behavior of the
solutions in these cases is the appearance of new types of asymptotic states that are
different from the shock, rarefaction, and N-waves which are familiar from the case
where g = 0 (see, e.g., [11]). For instance, in the study of nozzle flow, there appears
a new family of stationary waves connecting two states at x = ±∞.

In a different direction, several researchers, including Dafermos [4], Natalini and
Tesei [18], Lyberopoulos [14], [16], Fan and Hale [6], [7], and the author [20], [21],
have investigated the properties of (1.1) as a general equation without referring to
a specific physical application, the goal being to catalog, at least for the case where
g = g(u), the possible structure and asymptotic profiles of solutions. All these papers
concern the case of a convex f .

In contrast, the case of a nonconvex f has been considered only in the above-
mentioned papers [12], [9], [17], and [2], which deal with particular models, and in the
study by Lyberopoulos [15] of periodic solutions in the presence of a linear source.
Thus we are still far from having a complete description of the general case. This is

∗ Received by the editors September 19, 1994; accepted for publication (in revised form) Septem-
ber 19, 1995. This research was partially supported by the Italian National Project MURST (“Pro-
blemi nonlineari...”).

http://www.siam.org/journals/sima/28-1/27446.html
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because the geometric structure of the solutions when f changes convexity is much
more complicated due to the presence of contact discontinuities, and there is a larger
variety of asymptotic states.

In this paper, we intend to provide another step toward the understanding of the
properties of the solutions of (1.1) with a general nonconvex f and a nonlinear source
term g depending on u alone. The analysis is focused on Riemann initial data

u(x, 0) =

 ul, x < 0,

ur, x > 0.
(1.2)

The importance of Riemann problems is well known in the study of homogeneous
conservation laws, g = 0. They admit self-similar solutions which represent the time
asymptotic state of any reasonable data asymptotic to ul and ur at x = ∓∞. When
g 6= 0, there are also many reasons to study Riemann problems. First, although the
solutions are no longer self-similar, it is still possible to compute them explicitly, and
this shows how the source term affects the evolution of discontinuities. Moreover, we
still expect a study of the asymptotic states of the Riemann data to provide useful
information about the large-time behavior of more general solutions.

In the main part of the paper, we restrict ourselves to the case when ul and ur are
consecutive simple zeros of g and f has exactly one inflection point between ul and ur.
Of course, the case when ul and ur are zeros of g is the most relevant for the study of
the asymptotic behavior because for general Riemann data, the left and right state of
the solution converge to stationary states of the source term. We explicitly construct
the solution of problem (1.1)–(1.2). Our techniques are partly similar to those used
by Ballou in [1] to find solutions to homogeneous conservation laws with piecewise-
constant initial data. The results can be roughly described as follows. The solution is
piecewise smooth, and for small times, it is close to the solution of the homogeneous
problem. As time increases, the amplitude of the shock waves may decrease under
the action of the source term, and in some cases, it tends to zero. On the other hand,
rarefaction waves evolve and converge to traveling waves. Thus the asymptotic profile
of the solution is given by a traveling wave, in some cases discontinuous, and can be
found by solving a first-order ordinary differential equation. The statements about
the asymptotic behavior are given in section 2, while the construction of the solution
is done in sections 4 and 5.

Cases when f has a finite number of inflection points and g has a finite number of
simple zeros could be handled by the same techniques; the results would be similar and
we would again find an asymptotic state given by a superposition of shock waves and
traveling waves. However, there is an interesting behavior arising when f has more
than one inflection point, namely the extinction of a shock wave in finite time. Such
a behavior is analyzed in the last section of the paper. It is shown that the solution
of (1.1)–(1.2) may be discontinuous up to a certain time T ∗ > 0 and then become
continuous. Such a property was never observed before for solutions of equation (1.1)
and is the opposite of what one usually expects for this type of equation, namely the
breakdown of classical solutions and the appearance of discontinuities. In this case, a
crucial role is played by the source as well as the nonconvexity of f . In fact, if f is
convex (see [3]) or if f has one inflection point and g ≡ 0 (see [5]), it has been proved
that shock waves cannot vanish in finite time, and so the solution can no longer be
regular after the formation of singularities.

The results above suggest what the behavior of solutions would be in more general
cases. Assume, for instance, that the initial value u0 is equal to ul and ur for x < −L
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and x > L, respectively, and that it is equal to some function of bounded variation in
[−L,L]. Then we still expect the solution to converge to a superposition of possibly
discontinuous traveling waves. This supposition is supported by the results in the
convex case (see [21]), where the solutions corresponding to initial data with compact
support exhibit a behavior of this kind. Also, a similar property has been obtained
in [12] and [13] in the case of nozzle flow. There the asymptotic states are given by a
superposition of rarefaction, shock, and stationary waves; this is because the source
term has compact support with respect to the x variable and thus the solutions behave
as in the homogeneous case outside a compact interval.

2. Statement of the main results. Let us set um := min{ul, ur}, uM :=
max{ul, ur}. In sections 4 and 5, we find the solution of the Cauchy problem (1.1)–
(1.2) under the following assumptions.

(H1) f ∈ C2([um, uM ]) and g ∈ C1([um, uM ]).
(H2) There exists ū ∈ ]um, uM [ such that

f ′′(u) < 0 for u ∈ ]um, ū[ ,

f ′′(u) > 0 for u ∈ ]ū, uM [ .

(H3) g(um) = g(uM ) = 0, g(u) > 0 for u ∈ ]um, uM [ , g′(um) 6= 0, and g′(uM ) 6= 0.
The case when f is convex in [um, ū] and concave in [ū, uM ] can be reduced to

our case by taking −x instead of x as spatial coordinate. Similarly, if g is negative in
]um, uM [ , we can take −u as unknown function. In order to exclude trivial cases, we
also assume the following.

(H4) The shock wave connecting ul and ur does not satisfy the entropy admissi-
bility criterion (see [19]), i.e.,

f(ul)− f(ur)

ul − ur
< f ′(ur).

The full expression of the solution is lengthy, but its asymptotic state can be
found in a simple way. In fact, it turns out that the solution is asymptotic to a
possibly discontinuous traveling-wave solution of (1.1). We first give the result in the
case where ul < ur.

Theorem 2.1. Assume that hypotheses (H1)–(H4) hold and that ul < ur. Let v̂
be the unique value in ]ū, ur[ such that

f ′(v̂) =
f(ul)− f(v̂)

ul − v̂

and let φ : [0,∞[ → [v̂, ur[ be defined by∫ φ(ξ)

v̂

f ′(v)− f ′(v̂)
g(v)

dv = ξ for ξ ≥ 0.

Then the solution of problem (1.1)–(1.2) satisfies

u(x, t) =

 ul, x < f ′(v̂)t,

φ(x− f ′(v̂)t) + o(1), x > f ′(v̂)t.
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Here and in the following, we denote by o(1) an error term converging to zero as
t→∞ uniformly in x. Observe that φ solves the ordinary differential problem

φ′(ξ) =
g(φ(ξ))

f ′(φ(ξ))− f ′(v̂)
, ξ > 0,

lim
ξ→0+

φ(ξ) = v̂,

and so φ(x− f ′(v̂)t) is a traveling-wave solution of equation (1.1).
For the reader’s convenience, we recall the results in the homogeneous case (see

[8]).
Theorem 2.2. Assume that hypotheses (H1), (H2), and (H4) hold, that g ≡ 0,

and that ul < ur. Then the solution of problem (1.1)–(1.2) is

u(x, t) =



ul, x < f ′(v̂)t,

h
(x
t

)
, f ′(v̂)t < x ≤ f ′(ur)t,

ur, x > f ′(ur)t,

where v̂ is defined as in Theorem 2.1 and h : [f ′(v̂), f ′(ur)] → [v̂, ur] is the inverse of
f ′.

Thus in the homogeneous case, the solution is given by a shock wave connecting
ul and v̂ and a rarefaction wave connecting v̂ and vr. In the presence of the source
term, the rarefaction wave asymptotically becomes a traveling wave, while the size of
the shock wave remains unchanged.

Let us now turn to the case ul > ur.
Theorem 2.3. Assume that hypotheses (H1)–(H4) hold and that ul > ur. Let u

be the solution of problem (1.1)–(1.2).
(i) Suppose f ′(ul) = f ′(ur). Let

L =

∫ ul

ur

f ′(ur)− f ′(v)
g(v)

dv

and let ψ : [−L, 0] → [ur, ul] be defined by∫ ψ(ξ)

ur

f ′(v)− f ′(ur)
g(v)

dv = ξ(2.1)

for ξ ∈ [−L, 0]. Then

u(x, t) =


ul, x < f ′(ur)t− L,

ψ(x− f ′(ur)t) + o(1), f ′(ur)t− L ≤ x ≤ f ′(ur)t,

ur, x > f ′(ur)t.

(ii) Suppose f ′(ul) > f ′(ur). Denote by w̄ the unique value in ]ū, ul[ which satisfies

f(ul)− f(w̄)

ul − w̄
= f ′(ur)
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and set

L =

∫ w̄

ur

f ′(ur)− f ′(v)
g(v)

dv.

Let ψ : [−L, 0] → [ur, w̄] be defined by (2.1) for all ξ ∈ [−L, 0]. Then there exists a
function γ : [0,∞[ → IR such that

lim
t→∞ γ(t)− f ′(ur)t = −L, lim

t→∞ γ
′(t) = f ′(ur),

u(x, t) =


ul, x < γ(t),

ψ(x− f ′(ur)t) + o(1), γ(t) < x ≤ f ′(ur)t,

ur, x > f ′(ur)t.

(iii) Suppose f ′(ul) < f ′(ur). Let ψ : ] −∞, 0] → [ur, ul[ be defined by equality
(2.1) for all ξ ≤ 0. Then

u(x, t) =

 ψ(x− f ′(ur)t) + o(1), x ≤ f ′(ur)t,

ur, x > f ′(ur)t.

In the homogeneous case, there is the following result (see [8]).
Theorem 2.4. Suppose that assumptions (H1), (H2), and (H4) hold, that g ≡ 0,

and that ul > ur. Then the solution of problem (1.1)–(1.2) is

u(x, t) =



ul, x < f ′(ŵ)t,

j
(x
t

)
, f ′(ŵ)t < x ≤ f ′(ur)t,

ur, x > f ′(ur)t,

where ŵ ∈ ]ur, û[ is the unique value satisfying

f ′(ŵ) =
f(ul)− f(ŵ)

ul − ŵ

and j : [f ′(ŵ), f ′(ur)] → [ur, ŵ] is the inverse of f ′.
If we look back at Theorem 2.3, we do not find in the asymptotic profile of the

solution the shock wave x = f ′(ŵ)t connecting the states ul and ŵ, which appears in
the homogeneous case. In section 5, we will see that if g 6= 0, there is still a shock
wave connecting initially the states ul and ŵ, but its amplitude decreases with time.
The left state remains ul, but the right state increases monotonically and tends to w̄
in case (ii) and to ul in cases (i) and (iii). Thus in cases (i) and (iii), the amplitude of
the shock tends to zero and the asymptotic profile of the solution is continuous. Like
the function φ of the case where ul > ur, the function ψ of Theorem 2.3 solves the
differential equation which yields the traveling-wave solutions of (1.1).

In section 6, we consider a case where f has two inflection points, and we show
that the solution has a shock which vanishes in finite time, as mentioned in section 1.
The result that we obtain is the following.
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Theorem 2.5. Let assumptions (H1) and (H3) hold. Suppose, in addition, that
ul < ur and that f satisfies the following properties.

(H5) There exist ū1 and ū2 such that

f ′′(u) > 0 for u ∈ ]ul, ū1[ ,

f ′′(u) < 0 for u ∈ ]ū1, ū2[ ,

f ′′(u) > 0 for u ∈ ]ū2, ur[ .

(H6) There exist v̂1 ∈ ]ul, ū1[ and v̂2 ∈ ]ū2, ur[ such that

f ′(v̂1) = f ′(v̂2) =
f(v̂2)− f(v̂1)

v̂2 − v̂1
.

(H7) f ′(ul) < f ′(ū2).
Then the solution of problem (1.1)–(1.2) has the following property: there exists

T ∗ > 0 such that u(·, t) is discontinuous for any t < T ∗, while it is continuous for
any t > T ∗.

Example. Let us define ul = −2, ur = 2, f(u) = (u2 − 1)2, and g(u) = 4 − u2.
Then the assumptions of Theorem 2.5 are satisfied with

ū1 = − 1√
3
, ū2 =

1√
3
, v̂1 = −1, v̂2 = 1.

3. Preliminaries. It is well known (see, for instance, [10]) that under our as-
sumptions, problem (1.1)–(1.2) possesses a unique solution in the class of the so-called
entropy solutions , taking values in [um, uM ]. For our purposes, is enough to recall
the following characterization of piecewise-smooth entropy solutions (see [8]). It is
convenient to use the notation

σ(u, v) =


f(u)− f(v)

u− v
if u 6= v,

f ′(u) if u = v

(3.1)

for u, v ∈ [um, uM ].
Theorem 3.1. Suppose that u : IR×IR+ → IR is of class C1 in the complement of

a finite number of smooth curves x = γ1(t), . . . , x = γk(t) which intersect themselves
at most at a finite number of points, and suppose that the one-sided limits of u exist
along γ1, . . . , γk. Then u is an entropy solution of problem (1.1)–(1.2) if and only if
the following hold.

(i) Equalities (1.1) and (1.2) are satisfied in the classical sense in the complement
of the curves γi.

(ii) Along each curve γi, the function u satisfies the Rankine–Hugoniot jump
condition

γ′i(t)[ul(t)− ur(t)] = [f(ul(t))− f(ur(t))] ∀ t > 0(3.2)

and the Oleinik admissibility condition

σ(ul(t), v) ≥ σ(ul(t), ur(t)) ≥ σ(ur(t), v)
∀ t > 0, ∀ v ∈ [min{ul(t), ur(t)},max{ul(t), ur(t)}].(3.3)
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Here we have set

ul(t) = lim
x→γi(t)−

u(x, t),

ur(t) = lim
x→γi(t)+

u(x, t).

Remark 3.2. The two inequalities in (3.3) are equivalent since σ(ul(t), ur(t)) is a
convex combination of σ(ul(t), v) and σ(ur(t), v).

To find the entropy solution of problem (1.1)–(1.2), we will construct suitable
piecewise-smooth functions and then check that they satisfy conditions (i) and (ii) of
Theorem 3.1. To this end, it is useful to introduce some auxiliary functions.

Definition 3.3. For any v ∈ [um, uM ], let W (v, ·) denote the solution of ∂tW (v, t) = g(W (v, t)), t ∈ IR,

W (v, 0) = v.
(3.4)

For v ∈ [um, uM ] and t ≥ 0, let us also set

F+(v, t) =

∫ t

0

f ′(W (v, s)) ds,(3.5)

F (v, t) =

∫ t

0

f ′(W (v,−s)) ds.(3.6)

The following result motivates the definition of W , F , and F+ and collects some
useful properties of such functions.

Lemma 3.4.

(i) Given uo ∈ [um, uM ] and xo ∈ IR, the functions x(t) = xo + F+(uo, t),

u(t) = W (uo, t),
t ≥ 0,(3.7)

are the solution of the characteristic system associated with equation (1.1), x′(t) = f ′(u(t)),

u′(t) = g(u(t))
(3.8)

with initial data x(0) = xo, u(0) = uo. Similarly, given ū ∈ [um, uM ] and (x̄, t̄) ∈
IR× IR+, the functions x(t) = x̄− F (ū, t̄− t),

u(t) = W (ū, t− t̄),
t ∈ [0, t̄],(3.9)

are the solution of system (3.8) with terminal conditions x(t̄) = x̄, u(t̄) = ū.
(ii) If v = ul or v = ur, then W (v, t) ≡ v and F+(v, t) = F (v, t) = f ′(v)t.
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(iii) If v 6= ul, ur, then W (v, ·) is strictly increasing and F and F+ satisfy

F (v, t) = F+(W (v,−t), t).(3.10)

(iv) F is of class C1 and satisfies

∂tF (v, t) = f ′(W (v,−t)),(3.11)

∂vF (v, t) =
f ′(v)− f ′(W (v,−t))

g(v)
(v 6= ul, ur).(3.12)

(v) Let A be an open subset of IR× IR+, and let ũ ∈ C1(A) satisfy

F (ũ(x, t), t) = x for any (x, t) ∈ A.(3.13)

Then ũ solves equation (1.1) in A.
Proof. Properties (i) to (iii) are easy consequences of the definition and of as-

sumption (H3) as well as equality (3.11). Let us check (3.12). For v 6= ul, ur, we
have

∂vW (v, t) = exp

(∫ t

0

g′(W (v, s))ds

)

= exp

(∫ W (v,t)

v

g′(w)

g(w)
dw

)
=
g(W (v, t))

g(v)
,

∂vF (v, t) =

∫ t

0

f ′′(W (v,−s))g(W (v,−s))
g(v)

ds

= − 1

g(v)

∫ t

0

d

ds
f ′(W (v,−s))ds

=
f ′(v)− f ′(W (v,−t))

g(v)
.

To verify that property (v) holds, let us first observe that by equalities (3.11) and
(3.12),

∂tF (v, t) + g(v)∂vF (v, t) = f ′(v).(3.14)

Differentiating (3.13), we obtain

∂vF ∂xũ = 1, ∂vF ∂tũ+ ∂tF = 0.

Thus

0 = ∂xũ (∂vF ∂tũ+ ∂tF ) = ∂tũ+ ∂xũ ∂tF

= ∂tũ+ f ′(ũ)∂xũ− g(ũ).

Remark 3.5. Some comments about equality (3.13) are in order. Since we are
considering Riemann initial data with a discontinuity which is not entropy admissible,



INHOMOGENEOUS CONSERVATION LAWS WITHOUT CONVEXITY 117

we expect the solution to exhibit a fan of characteristics starting from the origin. Let
us therefore consider a solution ũ of (1.1) and assume that the backward characteristic
from a given point (x, t) ends up at the origin. By (3.9), the value ũ(x, t) satisfies
equality (3.13). Thus such an equality characterizes the solutions defined by a fan of
characteristics centered at the origin.

This fact is well known for the case where g ≡ 0. In fact, defining the functions
W and F as above, we obtain W (v, t) = v and F (v, t) = f ′(v)t. Therefore, (3.13)
becomes

f ′(ũ(x, t)) =
x

t
,

which is the equality that characterizes the rarefaction waves centered at the origin.
This equality is usually derived by exploiting the self-similarity of the Riemann prob-
lem under the transformation (x, t) → (λx, λt) for λ > 0 rather than the method of
characteristics. Such rescaling arguments, however, cannot be applied to the general
inhomogeneous case.

In the following sections, we will use equality (3.13) to define ũ. This is equivalent
to finding the inverse of F with respect to the variable v. The problem is that ∂vF is
not of constant sign by (3.12) and (H2). Therefore, equality (3.13) in general defines
a multivalued function, and every time, we have to select the branch of ũ which fits
to our purposes. This is a major complication due to the nonconvexity of f when we
want to study equation (1.1) with the method of characteristics. Let us also observe
that in the homogeneous case, the values of v for which ∂vF (v, t) = 0 are the zeros of
f ′′ and do not depend on t. In our case, because of the presence of the source term,
these values vary with time (and so do the restrictions to be imposed on the range of
ũ in order to obtain a single-valued function from (3.13)).

4. The case where ul < ur. Throughout this section, we assume that proper-
ties (H1)–(H4) hold and that ul < ur.

Lemma 4.1. There exists a unique v̂ ∈ ]ū, ur[ such that

f ′(v̂) = σ(ul, v̂).(4.1)

Moreover, the function v → σ(ul, v) is decreasing for v ∈ [ul, v̂].
Proof. By assumptions (H2) and (H4), we have

f ′(ū) < σ(ul, ū), f ′(ur) > σ(ul, ur).

Therefore, f ′(v) = σ(ul, v) for some v ∈ ]ū, ur[ . Denote by v̂ the smallest of the
values satisfying this equality. Then for any v > v̂,

σ(ul, v) = (v − ul)
−1

(∫ v̂

ul

f ′(w)dw +

∫ v

v̂

f ′(w)dw

)

= (v − ul)
−1

(
(v̂ − ul)f

′(v̂) +

∫ v

v̂

f ′(w)dw

)
< f ′(v)

because, by (H2), f ′ is increasing in [ū, ur]. It follows that there is a unique value
that satisfies (4.1).

Differentiating σ, we obtain

∂vσ(ul, v) =
f ′(v)− σ(ul, v)

v − ul
.
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Since we have f ′(v) < σ(ul, v) for any v ∈ ]ul, v̂[ , we deduce that σ(ul, ·) is decreasing
in [ul, v̂].

Definition 4.2. Let v̂ be the value given by Lemma 4.1.
(i) For any (x, t) with t > 0 and x ∈ [F+(v̂, t), f ′(ur)t], let ũ(x, t) ∈ [W (v̂, t), ur]

be defined by

F (ũ(x, t), t) = x.

(ii) Let φ : [0,∞[ → [v̂, ur[ be defined by∫ φ(ξ)

v̂

f ′(v)− f ′(v̂)
g(v)

dv = ξ for ξ ≥ 0.

Lemma 4.3.

(i) ũ is well defined, of class C1, and solves equation (1.1) in the interior of its
domain of definition.

(ii) φ is well defined, belongs to C([0,∞[ ) ∩ C2( ]0,∞[ ), and satisfies
φ′ =

g(φ)

f ′(φ)− f ′(v̂)
in ]0,∞[,

φ(0) = v̂.

(4.2)

(iii) For any t > 0, we have

ũ(F+(v̂, t), t) = φ(F+(v̂, t)− f ′(v̂)t) = W (v̂, t),

ũ(f ′(ur)t, t) = ur.

Proof. (i) Let us fix t > 0 and v ∈ [W (v̂, t), ur]. Then by assumption (H3) and
the definition of W ,

ur ≥ v > W (v,−t) ≥ v̂.

Since v̂ > ū and f ′ is increasing in [ū, ur] by assumption (H2), we have

f ′(v) > f ′(W (v,−t)).

Therefore, by (3.12),

∂vF (v, t) > 0 ∀ v ∈ [W (v̂, t), ur[.

Since, by Lemma 3.4(ii)–(iii), F (W (v̂, t), t) = F+(v̂, t) and F (ur, t) = f ′(ur)t, we
obtain that ũ is well defined, of class C1, and satisfies

ũ(F+(v̂, t), t) = W (v̂, t),(4.3)

ũ(f ′(ur)t, t) = ur.(4.4)

Furthermore, by Lemma 3.4(v), ũ satisfies equation (1.1).
(ii) It follows from the definition and from assumptions (H2) and (H3).
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(iii) By Definition 3.3,

F+(v̂, t)− f ′(v̂)t =

∫ t

0

[f ′(W (v̂, s))− f ′(v̂)] ds

=

∫ W (v̂,t)

v̂

f ′(w)− f ′(v̂)
g(w)

dw.

Therefore,

W (v̂, t) = φ(F+(v̂, t)− f ′(v̂)t).

We conclude (4.4) from (4.3).
Theorem 4.4. Let assumptions (H1)–(H4) be satisfied and let ul < ur. Then

the solution of problem (1.1)–(1.2) is

u(x, t) =



ul, x < f ′(v̂)t,

φ(x− f ′(v̂)t), f ′(v̂)t < x < F+(v̂, t),

ũ(x, t), F+(v̂, t) ≤ x ≤ f ′(ur)t,

ur, x > f ′(ur)t,

(4.5)

where v̂, ũ, and φ are defined as in Lemma 4.1 and Definition 4.2.
Proof. It is easily checked that the function defined by (4.5) satisfies the hypothe-

ses of Theorem 3.1. In fact, by Lemma 4.3(i)–(ii) and by assumption (H3), u is a
classical solution of equation (1.1) in each of the four regions which appear in (4.5).
By Lemma 4.3(iii), u is continuous along the curves x = F+(v̂, t) and x = f ′(ur)t.
Finally, Lemma 4.1 implies that conditions (3.2) and (3.3) are satisfied along the line
of discontinuity x = f ′(v̂)t (see also Remark 3.2).

Proof of Theorem 2.1. Let us fix t > 0 and x > F+(v̂, t). By Lemma 4.3(iii),

ur > φ(x− f ′(v̂)t) > φ(F+(v̂, t)− f ′(v̂)t) = W (v̂, t).

On the other hand, by Theorem 4.4 and Definition 4.2,

ur ≥ u(x, t) ≥W (v̂, t).

It follows that

|u(x, t)− φ(x− f ′(v̂)t)| ≤ ur −W (v̂, t) ∀ t > 0, x > F+(v̂, t).

Since, by assumption (H3), W (v̂, t) → ur as t→∞, the conclusion follows.

5. The case where ul > ur. Throughout this section, we assume that prop-
erties (H1)–(H4) hold and that ul > ur. The following result is analogous to Lemma
4.1.

Lemma 5.1. There exists a unique ŵ ∈ ]ur, ū[ such that

f ′(ŵ) = σ(ŵ, ul).(5.1)

Moreover, the function v → σ(v, ul) is increasing for v ∈ [ŵ, ul].
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As observed in Remark 3.5, it is useful to find the values for which ∂vF (v, t) = 0.
This is done in the next lemma.

Lemma 5.2. For fixed t > 0, there exists a unique value v∗ = v∗(t) ∈ ]ū, ul[ such
that

f ′(v∗) = f ′(W (v∗,−t)).(5.2)

The function t→ v∗(t) is strictly increasing for t > 0 and satisfies

lim
t→0

v∗(t) = ū,(5.3)

lim
t→∞ v

∗(t) =

 ul if f ′(ur) ≥ f ′(ul),

v̄ if f ′(ur) < f ′(ul),
(5.4)

where v̄ is the unique value in ]ur, ul[ satisfying f ′(v̄) = f ′(ur). Moreover,

sgn∂vF (v, t) = sgn[v − v∗(t)](5.5)

for any t > 0 and v ∈ ]ur, ul[.
Proof. Let us fix t > 0. Since g is positive, we have by (3.4) that v > W (v,−t)

for any v ∈ ]ur, ul[ . Using property (H2), we obtain that

f ′(v) < f ′(W (v,−t)) for any v ∈ ]ur, ū],(5.6)

f ′(v) > f ′(W (v,−t)) for any v ∈ [W (ū, t), ul[ .(5.7)

Therefore, there exists at least one value v∗ for which equality (5.2) holds. Moreover,
any such v∗ satisfies

v∗ ∈ ]ū,W (ū, t)[, W (v∗,−t) ∈ ]W (ū,−t), ū[ .(5.8)

Since f ′(v) is decreasing for v ∈ [W (ū,−t), ū] and increasing for v ∈ [ū,W (ū, t)], the
value v∗ satisfying (5.2) is unique. From inequalities (5.6) and (5.7), it follows that

sgn[f ′(v)− f ′(W (v,−t))] = sgn[v − v∗].(5.9)

This implies (5.5) by Lemma 3.4(iv) and assumption (H3).
Let us now take t2 > t1 > 0. We have

W (v∗(t1),−t2) < W (v∗(t1),−t1) < ū.

Since f ′(v) is decreasing for v ≤ ū, we obtain

f ′(W (v∗(t1),−t2)) > f ′(W (v∗(t1),−t1)) = f ′(v∗(t1)),

which implies by (5.9) that v∗(t2) > v∗(t1). Hence v∗ is strictly increasing. In a
similar way, it is checked that W (v∗(t),−t) is a decreasing function of t.

Property (5.3) follows from (5.8) since W (ū, 0) = ū. To prove (5.4), let us observe
that by the definition of W , ∫ v∗(t)

W (v∗(t),−t)

dv

g(v)
= t.(5.10)
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Let us denote by v∞ and w∞ the limits of v∗(t) and W (v∗(t),−t) as t → ∞. By
relations (5.2), (5.8), and (5.10), these values satisfy

f ′(w∞) = f ′(v∞),(5.11)

ur ≤ w∞ < v∞ ≤ ul,(5.12)

∫ v∞

w∞

dv

g(v)
= ∞.(5.13)

From (5.12) and (5.13), we deduce that either w∞ = ur or v∞ = ul. Then equality
(5.11) and assumption (H2) yield (5.4).

Definition 5.3. For any t > 0 and x ∈ [F (v∗(t), t), f ′(ur)t], let ũ(x, t) ∈
[ur, v

∗(t)] be defined by

F (ũ(x, t), t) = x.(5.14)

Remark 5.4. In this paper, we sometimes denote different functions with the
same symbol because they play the same role in the problem that is being considered
(in this case, the function ũ; see Definition 4.2). However, there is no ambiguity since
each of these functions appears only in the section where it has been introduced.

Lemma 5.5. ũ is well defined. It is of class C1 and satisfies equation (1.1) in the
interior of its domain of definition. Furthermore,

ũ(f ′(ur)t, t) = ur ∀ t > 0.(5.15)

Proof. By Lemma 3.4(ii), we have F (ur, t) = f ′(ur)t. Equality (5.5) ensures that
F (·, t) is strictly decreasing in [ur, v

∗(t)]. Therefore, ũ is well defined and satisfies
(5.15). From Lemma 3.4(v), it follows that ũ solves equation (1.1).

Lemma 5.6. There exists γ ∈ C1([0,∞[) with the following properties.

γ(0) = 0, γ′(0) = f ′(ŵ),(5.16)

γ(t) ∈ ]F (v∗(t), t), F (ŵ, t)[ ∀t > 0,(5.17)

ũ(γ(t), t) ∈ ]ŵ, v∗(t)[ ∀t > 0,(5.18)

γ′(t) = σ(ũ(γ(t), t), ul) ∀t > 0,(5.19)

ũ(γ(·), ·) is increasing in ]0,∞[ ,(5.20)

lim
t→0

ũ(γ(t), t) = ŵ,(5.21)

lim
t→∞ ũ(γ(t), t) =

 ul if f ′(ur) ≥ f ′(ul),

w̄ if f ′(ur) < f ′(ul),
(5.22)
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where w̄ ∈ ]ŵ, ul[ is the unique value satisfying f ′(ur) = σ(ul, w̄).
Remark 5.7. In analogy with the homogeneous case (see Theorem 2.4), we want

to show that the states ul and ur can be connected by a shock wave followed by a
rarefaction wave. The shock curve is given by x = γ(t), where γ is the function whose
existence we are going to prove, while the rarefaction wave is given by the function ũ.
According to condition (3.2), the speed of γ is given by (5.19). In order to stay within
the domain of definition of ũ, we must have γ(t) ≥ F (v∗(t), t). On the other hand, we
cannot have γ(t) > F (ŵ, t); otherwise, ũ(γ(t), t)) would assume a value smaller than
ŵ, which could not be connected to ul by an admissible shock. This motivates the
restrictions in (5.17). We also notice that by property (5.16), for small times, γ(t) is
close to f ′(ŵ)t, which is the position of the shock in the homogeneous case.

Proof of Lemma 5.6. To simplify notation, we set

χ1(t) = F (v∗(t), t),

χ2(t) = F (ŵ, t),

h(x, t) = σ(ũ(x, t), ul).

We have to show that there exists γ ∈ C1([0,∞[) such that χ1(t) < γ(t) < χ2(t) for
any t > 0 and  γ′(t) = h(γ(t), t) ∀ t > 0,

γ(0) = 0.
(5.23)

Let us observe that by equalities (3.11), (3.12), (5.1), (5.2), and (5.14),

χ′1(t) = f ′(v∗(t)), χ′2(t) = f ′(W (ŵ,−t)),(5.24)

h(χ1(t), t) = σ(v∗(t), ul), h(χ2(t), t) = f ′(ŵ).(5.25)

We recall that by Lemmas 5.1 and 5.2,

ur < ŵ < ū < v∗(t) < ul ∀ t > 0.

From assumption (H2) and inequalities (5.24) and (5.25), we deduce

χ′1(t) < h(χ1(t), t), χ′2(t) > h(χ2(t), t) ∀ t > 0.(5.26)

We now consider equation (5.23). Since χ1(0) = χ2(0) = 0 and h is not defined at
(0, 0), we will prove the existence of a solution by an approximation procedure. We
first observe that by (5.24), (5.3), and (H2), we have

χ′1(t) < f ′(ŵ)

for t small. On the other hand, since W (ŵ, ·) is increasing, we obtain by the same
relations that

χ′2(t) > f ′(ŵ)
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for any t > 0. It follows that for n ∈ IN large enough,

χ1

(
1

n

)
<
f ′(ŵ)

n
< χ2

(
1

n

)
.

Define γn to be the solution of
γ′n(t) = h(γn(t), t) for t ≥ 1

n

γn

(
1

n

)
=
f ′(ŵ)

n
.

The inequalities in (5.26) show that γn is well defined for t ∈ [1/n,∞[ and satisfies
χ1 < γn < χ2. Since, by Lemma 5.1 and Definition 5.3,

h(x, t) > σ(ŵ, ul) = f ′(ŵ) ∀x ∈ [χ1(t), χ2(t)[ ,

we also have

γn(t) > f ′(ŵ)t ∀ t > 1

n
.

It follows that

max{χ1(t), f
′(ŵ)t} < γn(t) < γn+1(t) < χ2(t)

for any n, t > 1/n. Thus if we define

γ(t) =


lim
n→∞γn(t) if t > 0,

0 if t = 0,

it is easily seen that γ satisfies (5.17) and (5.19). (The strict inequality in (5.17)
follows from (5.26).) Property (5.18) is equivalent to (5.17) by Definition 5.3. We
have also obtained that

γ(t) > f ′(ŵ)t for any t > 0.(5.27)

Let us now fix v′ ∈ ]ŵ, ū]. Since, by Lemma 3.4(iv),

lim
t→0

∂tF (v′, t) = f ′(v′) < f ′(ŵ),

there exists ε = ε(v′) such that

F (v′, t) < f ′(ŵ)t ∀ t < ε.

By the definition of ũ and of χ2, this implies

ũ(x, t) ∈ [ŵ, v′[ ∀ t < ε, x ∈ [f ′(ŵ)t, χ2(t)].

Since v′ can be chosen arbitrarily close to ŵ, we obtain

lim
(x,t)→(0,0)

f ′(ŵ)t≤x≤χ2(t)

ũ(x, t) = ŵ,
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lim
(x,t)→(0,0)

f ′(ŵ)t≤x≤χ2(t)

h(x, t) = σ(ŵ, ul) = f ′(ŵ).

From (5.17) and (5.27), we deduce that

lim
t→0

ũ(γ(t), t) = ŵ, lim
t→0

γ′(t) = f ′(ŵ).

Thus we have proved properties (5.16) and (5.21).
For simplicity, let us set

α(t) = ũ(γ(t), t).

To show that (5.20) holds, let us first observe that by (5.14) and (5.5),

sgn [α(t)− v] = sgn [F (v, t)− γ(t)](5.28)

for any t > 0 and v ∈ [ur, v
∗(t)]. Suppose that α(·) is not increasing. Then there

exist t2 > t1 > 0 such that α(t2) < α(t1). If we fix v0 ∈ ]α(t2), α(t1)[, we deduce by
(5.28) that there exists t3 ∈ ]t1, t2[ such that

α(t3) = v0, γ′(t3) ≥ ∂tF (v0, t3).(5.29)

Since α(t1) > v0 > ŵ = α(0), we also obtain that there exists t4 ∈ ]0, t1[ such that

α(t4) = v0, γ′(t4) ≤ ∂tF (v0, t4).(5.30)

From relations (3.11), (5.29), and (5.30), we deduce

f ′(W (v0),−t4) ≥ f ′(W (v0),−t3).(5.31)

Since t4 < t3, we have W (v0,−t4) > W (v0,−t3). Moreover, by inclusions (5.18) and
(5.8), W (v0,−t4) < W (v∗(t4),−t4) < ū. However, f ′ is decreasing in [ur, ū], and thus
we find a contradiction to (5.31). This proves that α(·) is increasing.

It remains to prove (5.22). Let us denote by w∞ the limit of α(t) as t→∞. By
(5.19), we have

lim
t→∞ γ

′(t) = σ(w∞, ul).(5.32)

Suppose that f ′(ur) ≥ f ′(ul) and w∞ < ul. Then by (3.11) and Lemma 5.1,

lim
t→∞ ∂tF (v, t) = lim

t→∞ f
′(W (v,−t)) = f ′(ur) ≥ f ′(ul) > σ(w∞, ul)

for any v < ul. By (5.32), this implies that

γ(t) < F (v, t) ∀ t� 0.

By (5.28), we obtain

α(t) > v ∀ t� 0.

If we choose v > w∞, we find a contradiction to the definition of w∞. Thus relation
(5.22) is proved in the case f ′(ur) ≥ f ′(ul).
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Let us now suppose that f ′(ur) < f ′(ul). In this case, Lemma 5.2 asserts that
limt→∞ v∗(t) < ul. Then from (5.18), we obtain that w∞ < ul. By the same argument
used in the case where f ′(ur) ≥ f ′(ul), we find a contradiction unless

f ′(ur) = σ(w∞, ul).

By Lemma 5.1, there exists only one value w∞ ∈ ]ŵ, ul[ satisfying the above equality.
The proof is complete.

Theorem 5.8. Suppose that assumptions (H1)–(H4) are satisfied and that ul >
ur. Let ũ be defined as in Definition 5.3. Then the function γ given by Lemma 5.6 is
unique and the solution of problem (1.1)–(1.2) is

u(x, t) =


ul, x < γ(t),

ũ(x, t), γ(t) < x ≤ f ′(ur)t,

ur, x > f ′(ur)t.

(5.33)

Proof. By Lemma 5.5 and assumption (H3), u is a classical solution of equation
(1.1) in each of the three regions defined above. It is continuous on the line x = f ′(ur)t
by virtue of (5.15). Furthermore, from (5.19), (5.18), and Lemma 5.1, it follows that
along the curve x = γ(t), conditions (3.2) and (3.3) are satisfied. We conclude by
Theorem 3.1 that u is the solution of our problem. The uniqueness of γ follows from
the uniqueness of u.

Proof of Theorem 2.3.
Step 1. We have

lim
t→∞ γ(t)− f ′(ur)t =

 −L in cases (i) and (ii),

−∞ in case (iii).
(5.34)

Let us first prove this property for cases (i) and (ii). From the proof of Lemma 5.2,
it follows that

lim
t→∞W (v∗(t),−t) = ur.(5.35)

For simplicity, we set α(t) := ũ(γ(t), t), ω(t) := W (α(t),−t). By (5.18),

ur < ω(t) < W (v∗(t),−t).

Therefore,

lim
t→∞ω(t) = ur.(5.36)

On the other hand, by (5.22),

lim
t→∞α(t) =

 ul if f ′(ur) = f ′(ul),

w̄ if f ′(ur) < f ′(ul).
(5.37)

From (5.14), (3.4), and (3.6), we deduce that
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γ(t)− f ′(ur)t = F (α(t), t)− f ′(ur)t

=

∫ t

0

[f ′(W (α(t),−s))− f ′(ur)]ds(5.38)

=

∫ α(t)

ω(t)

f ′(v)− f ′(ur)
g(v)

dv.

By letting t → ∞ and taking into account relations (5.36) and (5.37), we prove the
first part of (5.34). Let us also observe that by (5.20), equality (5.38) implies that

γ(t) > f ′(ur)t− L ∀ t > 0.(5.39)

To prove (5.34) in case (iii) it suffices to observe that by (5.19) and (5.22),

lim
t→∞ γ

′(t) = f ′(ul) < f ′(ur).

Step 2. Let us fix ξ ∈ ] − L, 0] (in cases (i) or (ii)) or ξ ∈ ] −∞, 0] (in case (iii))
and define

λ(t) = λξ(t) = ũ(f ′(ur)t+ ξ, t).

Then λ(·) is decreasing and

lim
t→∞λ(t) = ψ(ξ).

Let us first show that λ is well defined for t large enough. From Step 1 and (5.17),
we deduce that

F (v∗(t), t) < γ(t) < f ′(ur)t+ ξ ≤ f ′(ur)t ∀ t� 0,

and therefore ũ is defined at (f ′(ur)t+ ξ, t). Next, we observe that by the definition
of ũ,

F (λ(t), t)− f ′(ur)t ≡ ξ.(5.40)

Differentiating this equality with respect to t, we obtain by (3.11) that

∂vF (λ(t), t)λ′(t) + f ′(W (λ(t),−t))− f ′(ur) ≡ 0.(5.41)

Since λ(t) ∈ [ur, v
∗(t)[ , we obtain from (3.12), (5.5), (5.8), and (H2) that

∂vF (λ(t), t) < 0, f ′(W (λ(t),−t)) ≤ f ′(ur).

Thus equality (5.41) implies that λ(·) is decreasing. Let us denote by λ∞ its limit as
t→∞. From (5.40), (3.4), and (3.6), we deduce that

ξ =

∫ t

0

[f ′(W (λ(t),−s))− f ′(ur)] ds

=

∫ λ(t)

W (λ(t),−t)

f ′(v)− f ′(ur)
g(v)

dv

t→∞−→
∫ λ∞

ur

f ′(v)− f ′(ur)
g(v)

dv.
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Thus λ∞ = ψ(ξ).
Step 3. sup{|ũ(x, t)− ψ(x− f ′(ur)t)| : x ∈ [γ(t), f ′(ur)t]} → 0 as t→∞.

It is convenient to set

z̄ = lim
t→∞α(t) =

 ul in cases (i) and (iii),

w̄ in case (ii).

For fixed ε ∈ ]0, z̄ − ur[, let us define

ξε =

∫ z̄−ε

ur

f ′(v)− f ′(ur)
g(v)

dv.

By Step 1, we have

γ(t) < f ′(ur)t− ξε ∀ t� 0.

By Step 2, we can apply Dini’s theorem to obtain

lim
t→∞ ũ(ξ + f ′(ur)t, t) = ψ(ξ),(5.42)

uniformly for ξ ∈ [ξε, 0]. Let us now fix T such that

ũ(ξε + f ′(ur)t, t)− ψ(ξε) < ε ∀ t ≥ T.

Then, since ũ(·, t) and ψ(·) are both decreasing and since inequality (5.39) holds, we
obtain for ξ ∈ [γ(t)− f ′(ur)t, ξε] and t ≥ T that

ψ(ξ) ∈ [z̄ − ε, z̄], ũ(ξ + f ′(ur)t, t) ∈ [z̄ − 2ε, α(t)].(5.43)

Step 3 then follows from relations (5.42) and (5.43). From Steps 1 and 3 and from
Theorem 5.8, it is easy to deduce Theorem 2.3.

6. Extinction of shocks in finite time. In the previous sections, we have
considered the case when f has a single inflection point between ul and ur and g
has constant sign. It is possible to treat more complicated situations with a similar
procedure and obtain an asymptotic profile for the solution consisting of a suitable
number of shock waves and traveling waves. An interesting new property arising when
f has more than one inflection point is that the discontinuities present in the solution
may vanish in finite time. In this section, we give an example of such a behavior.

We assume that ul < ur and that f and g satisfy hypotheses (H1), (H3), (H5),
(H6), and (H7).

Lemma 6.1. For any v ∈ [v̂1, ū2], there exists a unique η = η(v) ∈ [ū2, v̂2] such
that

f ′(η) = σ(v, η).(6.1)

The function v → η(v) is continuous, differentiable in ]v̂1, ū2[ , and strictly decreasing,
and it satisfies η(v̂1) = v̂2 and η(ū2) = ū2. Furthermore,

σ(v, η(v)) > σ(w, η(v)) ∀ v, w : v̂1 ≤ v < w < η(v),(6.2)

f ′(v) > f ′(η(v)) ∀ v ∈ ]v̂1, ū2[ .(6.3)



128 CARLO SINESTRARI

Proof. From assumptions (H5) and (H6), we deduce

f ′(w) > f ′(ū2) ∀w ∈ [v̂1, v̂2] \ {ū2}.(6.4)

Therefore,

σ(v, ū2) =
1

ū2 − v

∫ ū2

v

f ′(w)dw > f ′(ū2) ∀v ∈ [v̂1, ū2[ .(6.5)

From (H5) and (H6), it also follows that there exists v̂3 ∈ ]ū1, ū2[ such that

f ′(v̂1) = f ′(v̂2) = f ′(v̂3),(6.6)

sgn[f ′(v)− f ′(v̂3)] = sgn[v̂3 − v] ∀ v ∈ ]v̂1, v̂2[ .(6.7)

The last equality implies that

σ(v, v̂2) < f ′(v̂3) ∀ v ∈ [v̂3, v̂2[ .(6.8)

For any v ∈ ]v̂1, v̂3], we obtain by (H6), (6.6), and (6.7) that

σ(v, v̂2) =
1

v̂2 − v

[
(v̂2 − v̂1)σ(v̂1, v̂2)−

∫ v

v̂1

f ′(w)dw

]
<

1

v̂2 − v
[(v̂2 − v̂1)f

′(v̂3)− (v − v̂1)f
′(v̂3)] = f ′(v̂3).(6.9)

Inequalities (6.8), (6.9), and (6.6) yield

σ(v, v̂2) < f ′(v̂2) ∀ v ∈ ]v̂1, v̂2[ .(6.10)

From (6.5) and (6.10), we deduce that for any v ∈ ]v̂1, ū2[, there exists a value
η ∈ ]ū2, v̂2[ such that (6.1) is satisfied. If v = v̂1 (resp. v = ū2), then (6.1) holds
with η = v̂2 (resp. η = ū2). The uniqueness of η is checked analogously to the
uniqueness of v̂ in Lemma 4.1.

Let us now prove inequality (6.3). We observe that for any v ∈ ]v̂1, ū2[ ,

v̂3 < ū2 < η(v) < v̂2.(6.11)

Therefore, if v ≤ v̂3, (6.3) follows from (6.7). Let us then consider the case where
v > v̂3. If we define

M = max{f ′(w) : w ∈ [v, η(v)]},

we have

f ′(η(v)) = σ(v, η(v)) =
1

η(v)− v

∫ η(v)

v

f ′(w)dw < M.(6.12)

Since we are assuming v > v̂3, we deduce from (6.11) and (H5) that

M = max{f ′(v), f ′(η(v))},

which implies (6.3) by virtue of (6.12).
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Let us now define

H(v, w) = f ′(w)− σ(v, w) for (v, w) ∈ [v̂1, ū2]× [ū2, v̂2].

Then H(v, w) = 0 if and only if w = η(v). For any v ∈ ]v̂1, ū2[, we have by (6.1),
(6.3) and (H5) that

Hv(v, η(v)) =
f ′(v)− σ(v, η(v))

η(v)− v
> 0, Hw(v, η(v)) = f ′′(η(v)) > 0.

It follows that v → η(v) is differentiable and decreasing.
It remains to prove inequality (6.2). To this end, let us fix v ∈ [v̂1, ū2[ and define

K(w) = f(w)− f(η(v))− f ′(η(v))(w − η(v)) (w ∈ [v, η(v)]).

By (H5), (H6), (6.1), and (6.3), we have

K(v) = K(η(v)) = 0,

K ′(v) = f ′(v)− f ′(η(v)) > 0 if v > v̂1,

K ′(v) = 0, K ′′(v) > 0, if v = v̂1,

K ′(η(v)) = 0 K ′′(η(v)) > 0.

It follows that the two endpoints w = v and w = η(v) are local minima for K(·).
Suppose that K(w) ≤ 0 for some w ∈ ]v, η(v)[ . Then there would exist at least
three critical points for K(·) in ]v, η(v)[ . However, the derivative of K is K′(w) =
f ′(w) − f ′(η(v)) and can vanish at at most one value of this interval by (H5) and
(H6). The contradiction proves that K(w) is positive for any w ∈ ]v, η(v)[ . Thus we
conclude that

σ(v, η(v))− σ(w, η(v)) = − K(w)

w − η(v)
> 0

for any w ∈ ]v, η(v)[ . The proof is complete.
Definition 6.2. Let t∗ > 0 be the value such that

f ′(W (ū2,−t∗)) = f ′(ū2).(6.13)

Let v∗ : [0, t∗] → [ū1, ū2] be defined by v∗(0) = ū1 and by the equality

f ′(W (v∗(t),−t)) = f ′(v∗(t)) ∀ t ∈ ]0, t∗](6.14)

(see Remark 5.4). For t > t∗, let us set

v∗(t) = W (ū2, t− t∗).(6.15)

Given (x, t) with t ≥ 0 and x ∈ [f ′(ul)t, F (v∗(t), t)], let ũ1(x, t) ∈ [ul, v
∗(t)] be defined

by

F (ũ1(x, t), t) = x.(6.16)
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Similarly, given (x, t) with t ≥ 0 and x ∈ [F+(v̂2, t), f
′(ur)t], let ũ2(x, t) ∈ [W (v̂2, t), ur]

be defined by

F (ũ2(x, t), t) = x.(6.17)

Lemma 6.3. The quantities introduced above are well defined. The function v∗

is continuous, while ũ1 and ũ2 are classical solutions of equation (1.1) in the interior
of their domain of definition and satisfy

ũ1(f
′(ul)t, t) = ul,(6.18)

ũ2(F+(v̂2, t), t) = W (v̂2, t), ũ2(f
′(ur)t, t) = ur.(6.19)

Proof. By assumptions (H5) and (H7), there exists a unique value w∗ ∈ ]ul, ū2[
satisfying

f ′(w∗) = f ′(ū2).

Since W (ū2,−t) decreases monotonically from ū2 to ul as t runs the interval [0,∞[ ,
there exists a unique value t∗ for which

W (ū2,−t∗) = w∗.(6.20)

This is also the unique value which satisfies (6.13).
Following the proof of Lemma 5.2, we obtain that equality (6.14) defines v∗

uniquely and that v∗ is continuous at t = 0. From (6.13), (6.14), and (6.15), it
follows that v∗ is continuous at t = t∗ and that v∗(t∗) = ū2.

To show that ũ1 and ũ2 are well defined, we need to prove

∂vF (v, t) > 0 ∀ t > 0, ∀ v ∈ ]ul, v
∗(t)[ ∪ ]W (v̂2, t), ur[ .(6.21)

By (3.12) and (H3), this is equivalent to

f ′(v) > f ′(W (v,−t)) ∀ t > 0, ∀ v ∈ ]ul, v
∗(t)[ ;(6.22)

f ′(W (v, t)) > f ′(v) ∀ t > 0, ∀ v ∈ ]v̂2, ur[ .(6.23)

Inequality (6.23) follows from assumption (H5), while (6.22) follows from the definition
of v∗ for t ≤ t∗. If t > t∗ then by (6.15) and (6.20),

W (v∗(t),−t) = W (ū2,−t∗) = w∗ ∀ t ≥ t∗.(6.24)

Let us now take v ∈ ]ul, v
∗(t)[ . If v ≤ ū1, then (6.22) is a consequence of assumption

(H5). Otherwise, by (6.24) and (H5), we have

f ′(v) ≥ f ′(ū2) = f ′(w∗) = f ′(W (v∗(t),−t)) > f ′(W (v,−t)).
Thus ũ1 and ũ2 are well defined. The other properties follow from the definition and
from Lemma 3.4(v).

Lemma 6.4. There exists a function γ ∈ C1([0, T ∗]) with T ∗ > t∗ which satisfies
the following properties:

γ(0) = 0, γ′(0) = f ′(v̂1),(6.25)
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γ(t) ∈ ]F (v̂1, t), F (v∗(t), t)[ ∀ t ∈ ]0, t∗],(6.26)

γ(t) ∈ ]F (v̂1, t), F (ū2, t)[ ∀ t ∈ [t∗, T ∗[ ,(6.27)

γ(T ∗) = F (ū2, T
∗), γ′(T ∗) = f ′(ū2),(6.28)

γ′(t) = f ′(η(ũ1(γ(t), t))) ∀ t ∈ ]0, T ∗].(6.29)

Furthermore, if we set

α(t) = ũ1(γ(t), t), ω(t) = η(α(t)) for t ∈ ]0, T ∗],(6.30)

we have

α(t) ∈ ]v̂1,min{ū2, v
∗(t)}[ ∀ t ∈ ]0, T ∗[ .(6.31)

lim
t→0

α(t) = v̂1, lim
t→0

ω(t) = v̂2,(6.32)

α(·) is increasing, ω(·) is decreasing.(6.33)

Remark 6.5. As in section 5, the curve γ we are dealing with will turn out to be
a curve of discontinuity of the solution u of our problem. We will show that u = ũ1 on
the left of γ and that γ is a right contact, i.e., its speed is equal to the characteristic
speed of u on the right. By Lemma 6.1, this means that the limit from the right of
u(·, t) at a point γ(t) is equal to η(ũ1(γ(t), t)). Thus condition (3.2) yields equality
(6.29). Observe that at time T ∗, we have by (6.28) and the definition of ũ that

u(γ(T ∗)−, T ∗) = ũ1(γ(T
∗), T ∗) = ū2 = η(ū2) = u(γ(T ∗)+, T ∗).

Thus u(·, t) is no longer discontinuous across γ.
Proof of Lemma 6.4. To simplify notation, we set

χ1(t) = F (v̂1, t),

χ2(t) =

 F (v∗(t), t) for t ∈ [0, t∗],

F (ū2, t) for t ∈ [t∗,∞[ ,

h(x, t) = f ′(η(ũ1(x, t)) for t > 0, x ∈ [χ1(t), χ2(t)].

Then by assumptions (H5) and (H6), Definition 6.2, and Lemmas 3.4(iv) and 6.1, we
have

h(χ1(t), t) = f ′(v̂1) > f ′(W (v̂1,−t)) = χ′1(t) ∀ t > 0,(6.34)

h(χ2(t), t) = f ′(η(v∗(t), t)) < f ′(v∗(t)) = χ′2(t) ∀ t ∈ ]0, t∗[ ,(6.35)
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h(x, t) < f ′(v̂2) = f ′(v̂1) ∀t ∈ ]0, t∗[ , ∀x ∈ ]χ1(t), χ2(t)[ .(6.36)

Following the proof of Lemma 5.6, we find γ ∈ C1([0, t∗]) which satisfies properties
(6.25), (6.26), (6.32), and (6.29) for t ∈ ]0, t∗]. Then we continue with γ as a solution
of (6.29) in the maximal interval [t∗, T ∗[ where (6.27) is satisfied. If T ∗ is finite, we
can define by continuity the value of γ at T ∗ because γ′ is uniformly bounded by
(6.29).

We can exclude that T ∗ = ∞. In fact, we have

lim
t→∞χ

′
2(t) = lim

t→∞ f
′(W (ū2,−t)) = f ′(ul).

On the other hand, since η takes values in [ū2, v̂2], we have by (H5) and (H7) that

γ′(t) ≥ f ′(ū2) > f ′(ul) ∀ t < T ∗.

Thus inequality (6.27) cannot hold for arbitrarily large t, and T ∗ must be finite. By
(6.34), we can also exclude that γ(T ∗) = χ1(T

∗). Therefore equalities (6.28) are
satisfied.

Inclusion (6.31) follows from (6.26) and (6.27), while (6.33) is proved by the same
argument used for (5.20) in the proof of Lemma 5.6.

We define γ after T ∗ by setting

γ(t) = γ(T ∗) + F+(ū2, t− T ∗) for t > T ∗.(6.37)

Then by (6.28) and Definition 3.3,

γ(t) = F (ū2, T
∗) + F+(ū2, t− T ∗) = F (W (ū2, t− T ∗), t),

and by (6.16), we obtain

ũ1(γ(t), t) = W (ū2, t− T ∗) ∀ t > T ∗.(6.38)

The next result states that the region lying between the curves x = γ(t) and x =
F+(v̂2, t) is covered univalently by the characteristics emanating from γ. Therefore,
it is possible to define in this region a function û which assumes the desired values
along γ and solves equation (1.1).

Lemma 6.6. For any (x, t) with t > 0 and x ∈ [γ(t), F+(v̂2, t)], there exists a
unique value τ = τ(x, t) ∈ [0,min{t, T ∗}] such that

x = γ(τ) + F+(ω(τ), t− τ).(6.39)

Proof. For fixed t > 0, define

y(τ) = γ(τ) + F+(ω(τ), t− τ) for τ ∈ [0,min{t, T ∗}].
Then by (6.32) and (6.37),

y(0) = F+(v̂2, t), y(min{t, T ∗}) = γ(t).

We only need to prove that y(·) is strictly decreasing. Since f is convex in [ū2, ur], we
have ∂vF+(v, s) > 0 for any v ∈ [ū2, ur] and s > 0. Furthermore, by (6.33), ω′ ≤ 0.
Thus by (6.29) and (3.5), we conclude

y′(τ) = γ′(τ) + ∂vF+(ω(τ), t− τ)ω′(τ)− ∂tF+(ω(τ), t− τ)

≤ f ′(ω(τ))− f ′(W (ω(τ), t− τ)) < 0.
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Definition 6.7. For any t > 0 and x ∈ [γ(t), F+(v̂2, t)], set

û(x, t) = W (ω(τ(x, t)), t− τ(x, t)),(6.40)

where ω and τ are defined as in Lemmas 6.4 and 6.6.
Lemma 6.8. The function û introduced above is a classical solution of equation

(1.1) in the interior of its domain of definition. Moreover, it satisfies

û(γ(t), t) =

 ω(t) if t ∈ [0, T ∗],

W (ū2, t− T ∗) if t ∈ [T ∗,∞[ ,
(6.41)

û(F+(v̂2, t)) = W (v̂2, t).(6.42)

Proof. By (6.39), (6.40), and (3.10), we have

x− γ(τ(x, t)) = F+(ω(τ(x, t)), t− τ(x, t))

= F (W (ω(τ(x, t)), t− τ(x, t)), t− τ(x, t))(6.43)

= F (û(x, t), t− τ(x, t)).

Furthermore, by (6.29), (3.11), and (6.40),

γ′(τ(x, t)) = f ′(ω(τ(x, t)))

= f ′(W (û(x, t), τ(x, t)− t))

= ∂tF (û(x, t), t− τ(x, t)).

Thus if we differentiate (6.43), we obtain

1 = ∂vF ∂xû, 0 = ∂vF ∂tû+ ∂tF.

Following the proof of Lemma 3.4(v), we can conclude that û solves equation (1.1).
Equalities (6.41) and (6.42) follow from the definition of û.

Theorem 6.9. Let assumptions (H1), (H3), and (H5)–(H7) be satisfied and let
ũ1, ũ2, and û be defined as in Definitions 6.2 and 6.7. Then the function γ given by
Lemma 6.4 is unique, and the solution of problem (1.1)–(1.2) is

u(x, t) =



ul, x < f ′(ul)t,

ũ1(x, t), f ′(ul)t < x < γ(t),

û(x, t), γ(t) < x < F+(v̂2, t),

ũ2(x, t), F+(v̂2, t) < x < f ′(ur)t,

ur, x > f ′(ur)t.

(6.44)

Furthermore, u(·, t) is discontinuous at γ(t) for t < T ∗, while it is continuous every-
where for t ≥ T ∗ (T ∗ has been introduced in Lemma 6.4).

Proof. The function u is a classical solution of equation (1.1) in each of the five
regions defined above by virtue of assumption (H3) and Lemmas 6.3 and 6.8. By
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equalities (6.18), (6.19), and (6.42), we deduce that u is continuous along the curves
x = f ′(ul)t, x = f ′(ur)t, and x = F+(v̂2, t), while (6.38) and (6.41) imply the conti-
nuity along γ for t ≥ T ∗. By Lemmas 6.1, 6.4, and 6.8, γ is a curve of discontinuity
which satisfies conditions (3.2) and (3.3) for t < T ∗. Finally, the uniqueness of γ
follows from the uniqueness of u.

From the previous theorem, it is possible to deduce the following asymptotic
representation for u. We omit the proof, which is similar to the proof of Theorem 2.3.

Theorem 6.10. Under assumptions (H1), (H3), and (H5)–(H7), the solution of
problem (1.1)–(1.2) satisfies

u(x, t) =

 ul for x < f ′(ul)t,

φ(x− f ′(ul)t) + o(1) for x > f ′(ul)t,
(6.45)

where φ : [0,∞[→ [ul, ur[ is defined by∫ φ(ξ)

ul

f ′(v)− f ′(ul)
g(v)

dv = ξ for any ξ ≥ 0.

Acknowledgments. The author wishes to thank the referees for their helpful
suggestions.

REFERENCES

[1] D. P. Ballou, Solutions to nonlinear hyperbolic Cauchy problems without convexity conditions,
Trans. Amer. Math. Soc., 152 (1970), pp. 441–460.

[2] L. L. Bonilla, Solitary waves in semiconductors with finite geometry and the Gunn effect,
SIAM J. Appl. Math., 51 (1991), pp. 727–747.

[3] C. M. Dafermos, Generalized characteristics and the structure of solutions of hyperbolic con-
servation laws, Indiana Univ. Math. J., 26 (1977), pp. 1097–1119.

[4] C. M. Dafermos, Large time behaviour of solutions of hyperbolic balance laws, Bull. Greek
Math. Soc., 25 (1984), pp. 15–29.

[5] C. M. Dafermos, Regularity and large time behavior of solutions of a conservation law without
convexity, Proc. Roy. Soc. Edinburgh Sect. A, 99 (1985), pp. 201–239.

[6] H. Fan and J. K. Hale, Large-time behaviour in inhomogeneous conservation laws, Arch.
Rational Mech. Anal., 125 (1993), pp. 201–216.

[7] H. Fan and J. K. Hale, Attractors in inhomogeneous conservation laws and parabolic regu-
larizations, Trans. Amer. Math. Soc., 347 (1995), pp. 1239–1254.

[8] E. Godlewski and P. Raviart, Hyperbolic Systems of Conservation Laws, Mathématiques et
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Abstract. We analyze a simple system of conservation laws with a strong relaxation term.
Well-posedness of the Cauchy problem in the framework of bounded-total-variation (BV) solutions
is proved. Furthermore, we prove that the solutions converge towards the solution of an equilibrium
model as the relaxation time δ > 0 tends to zero. Finally, we show that the difference between an
equilibrium solution (δ = 0) and a nonequilibrium solution (δ > 0) measured in L1 is bounded by
O(δ1/3).
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1. Introduction. The purpose of this paper is to study the following system of
conservation laws:

(u+ v)t + f(u)x = 0,(1.1)

δvt = A(u)− v.

Here f and A are given functions, u and v are the unknowns and δ > 0 is referred
to as the relaxation time. The function A(u) will throughout this paper be assumed
to be an increasing function of u. Further assumptions on the model will be given in
section 2.

We will be concerned in particular with the convergence of (u, v) = (uδ, vδ) as δ
tends to zero. In the limit of zero relaxation time, a scalar conservation law of the
form

(w +A(w))t + f(w)x = 0(1.2)

is obtained. Systems of the form (1.1) are usually referred to as “nonequilibrium”
models, whereas (1.2) is the “equilibrium” model. The main result of this paper is
that for proper conditions on the initial data, the solutions of the nonequilibrium
model tend to the solution of the equilibrium model in L1 with a deviation bounded
by O(δ1/3).

System (1.1) arises in chromatography and is discussed in [19, 20, 28]. In this
framework, u denotes the density of some species contained in a fluid flowing through a
fixed bed and v denotes the density of the species adsorbed on the material in the bed.
The right-hand side of the second equation models the adsorption. Different forms of
adsorption functions A are discussed by, e.g., Bear and Bachmat [1, Chapter 6].

The equilibrium assumption in chromatography states that the rate of the chemi-
cal reaction is so large that the reaction can be considered as instantaneous compared
to the time scales of other effects. We prove that for initial data close to equilibrium
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and for small relaxation times δ, the equilibrium model provides good approximations
of the nonequilibrium solutions. One should, however, be cautious. In [24], the system
in a radial geometry is considered as a model for near-well reservoir simulation. Their
results indicate the equilibrium model is inadequate for the analysis of this problem.

A nice introduction to systems of conservation laws with relaxation terms can be
found in Whitham’s book [28], where such models arising in, e.g., chromatography,
traffic modeling, water waves, and gas dynamics are discussed. For applications in
chromatography, a detailed discussion is provided in the books of Rhee, Aris, and
Amundson [19, 20]. Systems consisting of one conservation equation and one equation
with a relaxation term have been studied by several authors; cf. [2, 5, 6, 7, 12, 13,
15, 17, 18, 21, 24, 25, 27]. Much of this research is motivated by combustion theory
and especially by Majda’s model [15]. The question of well-posedness of this system
is discussed by Teng and Ying [25] and Levy [12], and computational studies of the
system are presented by Colella, Majda, and Roytburd [5] and Pember [17, 18].

The so-called subcharacteristic condition plays a central role in systems with
relaxation terms. Consider system (1.1) above and let λ1 = 0 and λ2 = f ′ denote the
characteristic speeds. Similarly, λ∗ = f ′/(1 + A′) denotes the characteristic speed of
(1.2). Then the subcharacteristic condition states that λ1 ≤ λ∗ ≤ λ2, which due to the
monotonicity of A is satisfied for our models. It turns out that the subcharacteristic
condition is necessary for the stability of the nonequilibrium model. This issue is
analyzed using linearization by Whitham [28, Chapter 10], for “small waves” by Liu
[13], for a linear model by LeVeque and Wang [11], and finally by Chen and Liu
[2]. In the latter paper, Chen and Liu actually prove convergence of solutions of the
nonequilibrium towards the solution of an equilibrium model for two different systems.
Their results are based on the theory of compensated compactness. Generalizations
of their results are given in the recent paper by Chen, Levermore, and Liu [3]. Also,
Schochet [21] proves convergence of a family of nonequilibrium solutions to the solution
of an equilibrium model. He studies the refined traffic model, introduced by Whitham
[28], which consists of a standard conservation law for the density of cars and a
nonequilibrium model for the velocity.

The plan of this paper is as follows. We begin in section 2 by giving precise
assumptions on system (1.1) and the initial data. Furthermore, we state the main
results of the paper. Section 3 is devoted to the analysis of a finite-difference scheme
approximating system (1.1). The results of section 3 are used in section 4, where
we demonstrate existence, uniqueness, and stability of solutions of (1.1). We should
mention here that the well-posedness of (1.1) was proved by both Levy [12] and Teng
and Ying [25]. Their estimates, however, depend on the relaxation time, and since
we will study the convergence of solutions of (1.1) as δ → 0, we need δ independent
estimates.

In section 5, we introduce an auxiliary system where small diffusion terms are
present. This auxiliary system enables us to prove in section 6 that the solution of
(1.1) tends to the solution of (1.2) in L1 with a deviation bounded by O(δ1/3).

Remarks. (1) The results obtained in this paper could without too much difficulty
be generalized to yield slightly more general systems than those covered by (1.1). For
clarity, however, we have chosen to analyze a model that is as simple as possible in
order to avoid messy details containing no essential new insights.

(2) We do not know if the convergence estimate of the form O(δ1/3) is optimal.
However, computational experiments that we have done seem to indicate that if an
estimate of the form O(δγ) is sought, then the optimal value of γ is somewhere in the
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interval [1/4, 1/2]; see also section 6 of [22].

2. Preliminaries and statement of the main results. The purpose of this
paper is to study how well solutions of the scalar conservation law

(w +A(w))t + f(w)x = 0(2.1)

approximate the corresponding solutions of the system

(u+ v)t + f(u)x = 0,(2.2)

δvt = A(u)− v

for small positive values of the relaxation time δ, i.e., δ ∈ (0, 1]. The explicit de-
pendence of the solution (u, v) on δ will usually be suppressed. We will assume that
f = f(u) is a smooth function satisfying f(0) = 0 and that

f ′(u) ≥ 0 for u ∈ [0, 1].

The function A = A(u) will be assumed to satisfy the requirements

A(0) = 0, A(1) = 1,

A′(u) ≥ 0,(2.3)

|A′′(u)| ≤ α < 1

for all relevant values of u. We shall consider solutions of (2.2) in the state space

S = [0, 1]× [0, 1]

and solutions of (2.1) in [0, 1].
In equilibrium, we have v = A(u), and system (2.2) degenerates to the scalar

equation (2.1). In order to study the deviation from equilibrium in the nonequilibrium
model, we introduce an auxiliary variable defined by

p = A(u)− v.

The initial conditions (u0, v0) for system (2.2) are supposed to satisfy the following:

(i) (u0(x), v0(x)) ∈ S ∀x ∈ R,
(ii) TV(u0) + TV(v0) ≤M,(2.4)

(iii) ‖p0‖1 = ‖A(u0)− v0‖1 ≤Mδ,

(iv) u0(±∞), v0(±∞) = 0.

Here and in the rest of this paper, M denotes a generic finite constant independent
of δ. The L1-norm is denoted by ‖ · ‖1 and TV(·) denotes the total variation, defined
by

TV(z) = sup
h 6=0

∫
R

|z(x+ h)− z(x)|
|h| dx.

Furthermore, BV = BV(R) denotes the subspace of L1
loc consisting of functions with

bounded total variation.



CONSERVATION LAWS WITH A RELAXATION TERM 139

Note that (iii) above assures that the initial conditions are close to equilibrium.
This is a natural assumption since we primarily want to analyze the convergence
towards the solutions of the equilibrium model in (2.1). However, we shall also indicate
that if (iii) is not satisfied initially, an initial layer will appear and ‖p(t)‖1 = O(δ)
will be reached at an exponential rate.

What we mean by an entropy solution of the scalar equation (2.1) is well known,
but let us define a similar concept for (2.2). For any T > 0, we let D+(T ) denote the
set of all nonnegative C∞-functions with compact support in R× [0, T ].

Definition 1. Let (u0, v0) satisfying (2.4) be the given initial data. Then (u, v)
is called an entropy solution of system (2.2) if the following requirements are satisfied:

1. (u, v) ∈ S ∀(x, t) ∈ R×R+
0 ;

2. TV(u(·, t)),TV(v(·, t)) ≤M ∀t ∈ R+
0 ;

3. ‖u(·, t)− u(·, τ)‖1 + ‖v(·, t)− v(·, τ)‖1 ≤M |t− τ | ∀t, τ ∈ R+
0 ;

4. For any (k, q) ∈ S and any ϕ,ψ ∈ D+(T ), where T > 0 is arbitrary,∫ T

0

∫
R

[|u− k|ϕt + |f(u)− f(k)|ϕx + |v − q|ψt]dx dt

+

∫
R

[|u0 − k|ϕ(x, 0) + |v0 − q|ψ(x, 0)]dx(2.5)

−
∫
R

[|u(x, T )− k|ϕ(x, T ) + |v(x, T )− q|ψ(x, T )]dx

≥ 1

δ

∫ T

0

∫
R

[σ(u− k)ϕ− σ(v − q)ψ](A(u)− v)dx dt,

where σ denotes the sign function.
Remark. Let us again mention that the existence of entropy solutions of systems

of the form of (2.2) has previously been proved by Levy [12] and Teng and Ying [25].
The reason for us to redo the existence part here is that we shall need δ-independent
estimates when we consider the convergence of (uδ, vδ) as δ → 0. Such estimates are
not provided by [12, 25].

Existence of an entropy solution satisfying the requirements of Definition 1 will be
proved using a finite-difference scheme. We note that existence could also be proved
using the parabolic regularizations discussed below, but the problem of computing
solutions of systems of the form of (2.2) is important, and hence we find it desirable
to prove existence by demonstrating convergence of a numerical scheme. An error
estimate for the scheme is derived in [22].

Our scheme for analyzing system (1.1) is straightforward and semiimplicit:

(un+1
j + vn+1

j )− (unj + vnj )

∆t
+
f(unj )− f(unj−1)

∆x
= 0(2.6)

δ(vn+1
j − vnj )

∆t
= A(un+1

j )− vn+1
j

Here unj denotes an approximation of u(x, t) over the grid block

Bn
j = [xj−1/2, xj+1/2)× [tn, tn+1),

where xj = j∆x and tn = n∆t. Furthermore, ∆t and ∆x denote the step lengths in
the t and x directions, respectively. Similarly, vnj approximates v on Bn

j . The scheme
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is initialized by setting

u0
j =

1

∆x

∫ xj+1/2

xj−1/2

u0(x) dx and v0
j =

1

∆x

∫ xj+1/2

xj−1/2

v0(x) dx.(2.7)

Throughout the paper, we will assume that the grid parameters satisfy the Courant–
Friedrichs–Lewy (CFL) condition

µf ′(u) ≤ 1(2.8)

for all u ∈ [0, 1], where µ = ∆t/∆x. It is interesting from a computational point of
view to note that this condition is independent of the relaxation time δ; thus very
small relaxation times do not force us to use equally small time steps.

For a grid function u, the discrete total variation is defined by

TV(u) =
∑
j∈Z

|uj − uj−1|,

and ‖ · ‖1 denotes the discrete L1-norm defined by

‖u‖1 = ∆x
∑
j∈Z

|uj |.

In order to study the deviation from equilibrium in the nonequilibrium system, we
define

pnj = A(unj )− vnj .

We consider initial data satisfying

(i) (u0
j , v

0
j ) ∈ S for all j ∈ Z,

(ii) TV(u0) + TV(v0) ≤M,(2.9)

(iii) ‖p0‖1 ≤Mδ,

(iv) (u0
−∞, v

0
−∞) = (u0

∞, v
0
∞) = 0,

where M is a finite constant independent of the grid parameters and the relaxation
time. Note that (2.9) is simply a discrete version of (2.4).

Based on the results of the scheme, a family of approximate solutions is defined
by setting

(u∆, v∆)(x, t) = (unj , v
n
j ) for (x, t) ∈ Bn

j ∀(j, n) ∈ Z × Z+.

By using the properties of the scheme presented above, the following theorem will
be proved in section 4.

Theorem 2.1. Let (u0, v0) be initial data satisfying (2.4) and let (u0
j , v

0
j ) be the

corresponding discrete initial values generated by (2.7). Then as ∆x and ∆t tend to
zero, the family {(u∆, v∆)} of approximate solutions generated by the finite-difference
scheme described above converges in (L1

loc(R×R+
0 ))2 towards a pair of functions (u, v).

Furthermore, the limit (u, v) is a unique entropy solution satisfying the requirements
of Definition 1.

The entropy solution (u, v) satisfies

‖p(·, t)‖1 = ‖A(u)− v‖1 ≤Mδ for t ≥ 0,



CONSERVATION LAWS WITH A RELAXATION TERM 141

where M is a finite constant not depending on δ. If (ū0, v̄0) is another pair of initial
data satisfying (2.4), there is a unique entropy solution (ū, v̄) such that

‖u(·, t)− ū(·, t)‖1 + ‖v(·, t)− v̄(·, t)‖1 ≤ ‖u0 − ū0‖1 + ‖v0 − v̄0‖1 for t ≥ 0.

Since our existence theorem is based on estimates independent of δ, we could by
appealing to Helly’s theorem prove convergence of a subsequence in L1

loc of (u, v) =
(uδ, vδ) as δ → 0. However, we want more than convergence—we are also interested
in the rate of convergence. In order to analyze this issue, we are lead to study a
parabolic regularization of the system

uεt + f(uε)x =
1

δ
(vε −A(uε)) + εuεxx,(2.10)

vεt =
1

δ
(A(uε)− vε) + εvεxx.

The properties of this system are analyzed in section 5. In section 6, we begin by
proving that (cf. Lemma 6.1)

‖uε(·, t)− u(·, t)‖1 + ‖vε(·, t)− v(·, t)‖1 ≤Mε1/2,(2.11)

where (uε, vε) solves the regularized problem and (u, v) solves (2.2). Then we introduce
a regularized equilibrium model of the form

(wε +A(wε))t + f(wε)x = ε(wε +A(wε))xx.(2.12)

For this scalar equation, it is well known (cf. Kuznetsov [10]) that

‖w − wε‖1 ≤Mε1/2,(2.13)

where w solves (2.1) and wε solves (2.12). Furthermore, we prove (cf. Lemma 6.2)
that

‖uε − wε‖1 ≤ Mδ

ε
,(2.14)

where δ is the relaxation time and ε is the diffusion coefficient. Collecting these results,
we observe that

‖u− w‖1 ≤ ‖u− uε‖1 + ‖uε − wε‖1 + ‖wε − w‖1 ≤M

(
ε1/2 +

δ

ε
+ ε1/2

)
.

Hence, by choosing ε = δ2/3, we obtain the following result.
Theorem 2.2. Let (u0, v0) be a pair of initial data satisfying (2.4), and let

w0 = u0. Then for any finite T > 0, there is a finite constant M such that

‖u(·, t)− w(·, t)‖1 ≤Mδ1/3 for all 0 ≤ t ≤ T.

Here (u, v) and w are solutions of (2.2) and (2.1), respectively.
The rest of this paper is devoted to the proof of Theorems 2.1 and 2.2.
Remark. Heuristic arguments, e.g., by a Chapman–Enskog expansion, indicate a

rate of 1/2 rather than 1/3 in Theorem 2.2, but we have not been able to give rigorous
arguments for such an improved rate. Neither have we been able to prove that 1/3
is optimal. In estimates (2.11), (2.13), and (2.14) leading to this rate, the first and
second results are sharp but estimate (2.14) is probably not sharp. Our attempts at
improving this estimate have not been successful.
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3. Bounds on the approximate solutions. In this section, we will study
the properties of the finite-difference scheme in (2.6) approximating the solutions
of (2.2). In fact, the existence of an entropy solution of the system is proved by
demonstrating convergence of the family of approximate solutions generated by the
finite-difference scheme. We start by considering the standard estimates needed to
prove the existence of a bounded-total-variation (BV) solution: an L∞-bound, a
bound on the total variation, and finally an L1-continuity estimate in time. With
these bounds, independent of the mesh size and the relaxation time δ, the existence
of a weak solution can be demonstrated; cf., e.g., Smoller [23].

We also show that if the initial data is close to equilibrium, the discrete solution
remains close to equilibrium for all time. Finally, we show that the finite difference
solutions satisfy a discrete entropy inequality. This latter property enables us to prove
the existence of an entropy solution satisfying the requirements of Definition 1.

The finite-difference approximations have the following properties.
Lemma 3.1. Suppose that the initial data (u0, v0) satisfy (2.9) and that the grid

parameters ∆t and ∆x satisfy the CFL condition (2.8). Then for any δ > 0, there is
a finite constant M independent of δ, ∆t, and ∆x such that

I. (unj , v
n
j ) ∈ S for all (j, n) ∈ Z × Z+,

II. TV(un) + TV(vn) ≤ TV(u0) + TV(v0),

III. ‖pn‖1 ≤Mδ,

IV. ‖un − um‖1 + ‖vn − vm‖1 ≤M |n−m|∆t,
V. ‖un − ūn‖1 + ‖vn − v̄n‖1 ≤ ‖u0 − ū0‖1 + ‖v0 − v̄0‖1,

where (ūn, v̄n) is a discrete solution based on initial data (ū0, v̄0) satisfying (2.9).
Note that since the entropy solution will inherit the properties of the approximate

solutions, it will satisfy a maximum principle (I), be TV stable (II), be close to
equilibrium (III), be L1-continuous in time (IV), and be stable in L1 (V).

The next subsections are devoted to the proof of Lemma 3.1.

3.1. Proof of I: Maximum principle. For a fixed pair of (j, n), we let (u, v) =
(un+1

j , vn+1
j ), (ū, v̄) = (unj , v

n
j ), and (uL, vL) = (unj−1, v

n
j−1). Then by (2.6), we get

the equations

u+ v = ū+ v̄ − ∆t

∆x
(f(ū)− f(uL),(3.1)

(δ + ∆t)v −∆tA(u) = δv̄.

Let us first verify that (3.1) has a unique solution (u, v) for any given (ū, v̄, uL, vL).
Denote by r1 and r2 the two right-hand sides such that

v = r1 − u,

and thus the single equation

K(u) ≡ ∆tA(u) + (δ + ∆t)u+ r2 − r1(δ + ∆t) = 0

determines u. Since K is monotone and K(±∞) = ±∞, it is clear that (u, v) is
uniquely determined by (3.1).

Next, we assume that 0 ≤ ū, v̄, uL, vL ≤ 1, and we want to prove that this implies

0 ≤ u, v ≤ 1,(3.2)
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which, in fact, proves part I of Lemma 3.1. In order to prove (3.2), we consider u and
v as functions of uL, ū, and v̄, i.e.,

u = u(uL, ū, v̄) and v = u(uL, ū, v̄).

Now we want to show that u and v are monotone in all arguments, and we start by
considering ∂u

∂v̄ and ∂v
∂v̄ . From the first equation of (3.1), we get

∂u

∂v̄
+
∂v

∂v̄
= 1,(3.3)

and the second equation gives

(δ + ∆t)
∂v

∂v̄
−∆tA′(u)

∂u

∂v̄
= δ;

hence

∂v

∂v̄
=

δ + ∆tA′(u)
δ + ∆t+ ∆tA′(u)

∈ (0, 1),

and then by (3.3), ∂u
∂v̄ ∈ (0, 1) and we conclude that

∂u

∂v̄
,
∂v

∂v̄
> 0.(3.4)

Similarly, by differentiating (3.1) with respect to ū, we get

∂u

∂ū
+
∂v

∂ū
= 1− µf ′(ū)(3.5)

and

(δ + ∆t)
∂v

∂ū
−∆tA′(u)

∂u

∂ū
= 0;

hence

∂v

∂ū
=

∆tA′(u)
δ + ∆t+ ∆tA′(u)

(1− µf ′(ū)) ≡ ω(1− µf ′(ū)),(3.6)

where ω ∈ [0, 1). Now (3.5) gives

∂u

∂ū
= (1− µf ′(ū))(1− ω),

and then by the CFL condition (2.8), we can conclude that

∂u

∂ū
,
∂v

∂ū
≥ 0.(3.7)

Finally, by differentiating (3.1) with respect to uL, we get

∂u

∂uL
+

∂v

∂uL
= µf ′(uL)

and

(δ + ∆t)
∂v

∂uL
−∆tA′(u)

∂u

∂uL
= 0;
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hence

∂v

∂uL
=

∆tA′(u)
δ + ∆t+ ∆tA′(u)

µf ′(uL) ≡ ω̄µf ′(uL),(3.8)

where ω̄ ∈ [0, 1) and

∂u

∂uL
= µf ′(uL)(1− ω̄)(3.9)

Now (3.8) and (3.9) give

∂u

∂uL
,
∂v

∂uL
≥ 0.(3.10)

By using the monotonicity properties (3.4), (3.7), and (3.10) of u = u(uL, ū, v̄) and
v = v(uL, ū, v̄), we have

u(0, 0, 0) ≤ u(uL, ū, v̄) ≤ u(1, 1, 1)

and

v(0, 0, 0) ≤ v(uL, ū, v̄) ≤ v(1, 1, 1).

It is easily seen that u(0, 0, 0) = v(0, 0, 0) = 0 and u(1, 1, 1) = v(1, 1, 1) = 1, and then
the maximum principle I of the lemma follows by induction.

3.2. Proof of II: The total-variation estimate. Recall that the total varia-
tion of {unj } at time t = n∆t is defined by

TV(un) =
∑
j

|unj+1 − unj |.

In order to prove the TV bound, it is convenient to introduce the following notation:

Un
j = unj+1 − unj

and

V n
j = vnj+1 − vnj .

Then by rewriting the scheme in (2.6) in the form

un+1
j = unj − µ(f(unj )− f(unj−1))−

∆t

δ
(A(un+1

j )− vn+1
j ),(3.11)

vn+1
j = vnj +

∆t

δ
(A(un+1

j )− vn+1
j ),

we get

(3.12)

Un+1
j = Un

j − µf ′(ũnj+1/2)U
n
j + µf ′(ũnj−1/2)U

n
j−1 −

∆t

δ
A′(ûn+1

j+1/2)U
n+1
j +

∆t

δ
V n+1
j ,

V n+1
j = V n

j +
∆t

δ
A′(ûn+1

j+1/2)U
n+1
j − ∆t

δ
V n+1
j .(3.13)
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Here ũnj+1/2 satisfies

f(unj+1)− f(unj ) = f ′(ũnj+1/2)U
n
j(3.14)

and ûnj+1/2 satisfies

A(unj+1)−A(unj ) = A′(ûnj+1/2)U
n
j .(3.15)

We multiply (3.12) by σ(Un+1
j ) and (3.13) by σ(V n+1

j ) (recall that σ denotes the sign
function), and get

|Un+1
j |

≤ (1− µf ′(ũnj+1/2)|Un
j |+ µf ′(ũnj−1/2)|Un

j−1| −
∆t

δ
A′(ûn+1

j+1/2)|Un+1
j |+ ∆t

δ
|V n+1
j |,

|V n+1
j | ≤ |V n

j |+
∆t

δ
A′(ûn+1

j+1/2)|Un+1
j | − ∆t

δ
|V n+1
j |.

By adding these inequalities, we get∑
j

|Un+1
j |+

∑
j

|V n+1
j | ≤

∑
j

|Un
j |+

∑
j

|V n
j |,

and thus

TV(un) + TV(vn) ≤ TV(u0) + TV(v0)

by induction.

3.3. Proof of III: Deviation from equilibrium. Note that p = A(u) − v
measures the deviation from equilibrium in the nonequilibrium model. Part III of
Lemma 3.1 states that if we give initial data close to equilibrium for the nonequilibrium
model, the solution will remain close to equilibrium for all time. To prove this, we
begin by noting that

pn+1
j − pnj = A′(ûn+1

j )(un+1
j − unj )− (vn+1

j − vnj ),

where ûn+1
j satisfies

A(un+1
j )−A(unj ) = A′(ûn+1

j )(un+1
j − unj ).

Then, using the scheme in (3.11), we get

(3.16)

pn+1
j = pnj − µA′(ûn+1

j )f ′(ũnj−1/2)(u
n
j − unj−1)−

∆t

δ
(1 +A′(ûn+1

j ))pn+1
j ,

where ũnj−1/2 satisfies (3.14). Multiplying this equation by σ(pn+1
j ), we obtain

|pn+1
j | ≤ |pnj |+ µM |unj − unj−1| −

∆t

δ
|pn+1
j |,

where M is a finite constant independent of ∆x, ∆t, and δ and where we have used
the fact that

A′(u) ≥ 0
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for all u ∈ [0, 1]; cf. (2.3). Since the total variation of un is bounded, we have

‖pn+1‖1 ≤ ‖pn‖1 + M̃∆t− ∆t

δ
‖pn+1‖1,(3.17)

where again M̃ is another finite constant independent of ∆x, ∆t, and δ. From (3.17),
we get

‖pn‖1 ≤ M̃δ(3.18)

provided that the estimate holds for n = 0. This concludes the proof of part III of
the lemma.

Remark. As mentioned above, our interest in this paper is solutions which are
close to equilibrium. For this purpose, estimate (3.18) is exactly what we need. It
should be mentioned, however, that some further insight could be gained from (3.17).
In fact, by assuming that ∆t is sufficiently small, i.e., ∆t ≤ constant δ, inequality
(3.17) implies that

‖pn‖1 ≤M1δ + e−M2tn/δ‖p0‖1,(3.19)

where M1 and M2 are finite constants independent of δ, ∆t, and ∆x. Hence, for any
initial data of bounded variation lying in the state spaces, the nonequilibrium discrete
solution approaches a state close to equilibrium at an exponential rate.

3.4. Proof of IV: L1-continuity in time. By using the property of pnj derived

above, the L1-continuity in time is easily verified. Consider the scheme in (3.14) and
(3.15) using the definition of pnj :

un+1
j = unj − µ(f(unj )− f(unj−1))−

∆t

δ
pn+1
j ,(3.20)

vn+1
j = vnj +

∆t

δ
pn+1
j .

Now

‖un+1 − un‖1 + ‖vn+1 − vn‖1 ≤M∆t
∑
j

|unj − unj−1|+
∆t

δ
‖pn+1‖1,

where M is a finite constant independent of ∆x, ∆t, and δ. Thus, using parts I, II,
and III of Lemma 3.1, we get

‖un+1 − un‖1 + ‖vn+1 − vn‖1 = O(∆t),

and then IV follows using the triangle inequality.

3.5. Proof of V: Stability in L1. The proof of the L1-stability is quite similar
to the proof of the TV bound and is therefore omitted.

3.6. The discrete entropy inequalities. Finally, we would like to show that
the solutions of the difference scheme in (2.6) satisfy an entropy inequality.

Lemma 3.2. Suppose that (u0
j , v

0
j ) satisfies (2.9), and let φ, ψ ∈ D+(T ) for some

T > 0. Furthermore, let N be a positive integer such that tN ≤ T , and let E :
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[0, 1] → R be a convex C∞ entropy function with an associated entropy flux F , i.e.,
F : [0, 1] → R satisfies F ′ = E′f ′. Then the following inequalities hold:

∆t

N−1∑
n=0

∆x
∑
j∈Z

(
φ(xj , tn+1)− φ(xj , tn)

∆t
E(un+1

j ) +
φ(xj+1, tn)− φ(xj , tn)

∆x
F (unj )

)
+ ∆x

∑
j∈Z

(
E(u0

j )φ(xj , 0)− E(uNj )φ(xj , tN )
)

(3.21)

≥
(

∆t

δ

)N−1∑
n=0

(∆x)
∑
j∈Z

E′(un+1
j )φ(xj , tn)(A(un+1

j )− vn+1
j )

and

∆t

N−1∑
n=0

∆x
∑
j∈Z

(
ψ(xj , tn+1)− ψ(xj , tn)

∆t
E(vn+1

j )

)
+ ∆x

∑
j∈Z

(
E(v0

j )ψ(xj , 0)− E(vNj )ψ(xj , tN )
)

(3.22)

≥ −
(

∆t

δ

)N−1∑
n=0

(∆x)
∑
j∈Z

E′(vn+1
j )ψ(xj , tn)(A(un+1

j )− vn+1
j ).

Proof. It will be sufficient to establish inequality (3.21) since (3.22) will follow by
completely similar arguments. From the difference scheme in (2.6), we observe that

un+1
j − k = unj − k − µ(f(unj )− f(k)) + µ(f(unj−1)− f(k))(3.23)

−
(

∆t

δ

)
(A(un+1

j )− vn+1
j )

for any k ∈ [0, 1]. By multiplying this equality by σ(un+1
j − k) and observing that the

CFL condition (2.8) implies that

|unj − k − µ(f(unj )− f(k))| = |unj − k| − µ|f(unj )− f(k)|,
we obtain

|un+1
j − k| ≤ |unj − k| − µ|f(unj )− f(k)|+ µ|f(unj−1)− f(k)|

−
(

∆t

δ

)
σ(un+1

j − k)(A(un+1
j )− vn+1

j ).

If we multiply this final inequality by φ(xj , tn), sum over 0 ≤ n ≤ N − 1 and j ∈ Z,
and apply summation by parts with respect to time and space, the following inequality
appears:

∆t

N−1∑
n=0

∆x
∑
j∈Z

(
φ(xj , tn+1)− φ(xj , tn)

∆t
|un+1
j − k|

+
φ(xj+1, tn)− φ(xj , tn)

∆x
|f(unj )− f(k)|

)
(3.24)

+ ∆x
∑
j∈Z

(|u0
j − k|φ(xj , 0)− |uNj − k|φ(xj , tN )

)
(3.25)
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≥
(

∆t

δ

)N−1∑
n=0

(∆x)
∑
j∈Z

σ(un+1
j − k)φ(xj , tn)(A(un+1

j )− vn+1
j ).

Now let Em : I → R be a convex piecewise-linear function of the form

Em(u) = β0(u− k0) +
m∑
i=1

βi|u− ki|,(3.26)

where βi ≥ 0 for i = 1, 2, . . . ,m, and let Fm be the corresponding flux given by

Fm(u) = β0(f(u)− f(k0)) +
m∑
i=1

βi|f(u)− f(ki)|.

Observe that F ′m(u) = E′m(u)f ′(u) and that equality (3.23) and inequality (3.25)
imply that the desired inequality (3.21) holds if the smooth functions E and F are
replaced by the polygonal functions Em and Fm. However, for any smooth convex
function E, we can choose Em of the form of (3.26) such that Em and E′m con-
verge uniformly on [0, 1] as m → ∞ to E and E′, respectively, and hence we obtain
(3.21).

4. Properties of the entropy solutions. In this section, we shall conclude
the proof of Theorem 2.1. The properties of the entropy solutions of system (2.2) will
be derived from the corresponding properties derived for the finite-difference scheme
in (2.6) above. First, we will establish the existence of entropy solutions for (2.2) by
a limit argument. Thereafter, uniqueness and continuous dependence with respect to
the initial data in L1 are proved. From a proper application of Helly’s theorem, the
following lemma can be derived by standard arguments from parts I–IV of Lemma
3.1 (cf. [16] or [23, Chapter 16]).

Lemma 4.1. Suppose that (u0, v0) satisfies the requirements in (2.4) above. Then
as the mesh parameters ∆x and ∆t tend to zero, there is a subsequence {(u∆, v∆)}
of the family of approximate solutions generated by (2.6) that converges in (L1

loc(R×
R+

0 ))2 to a pair of functions (u, v). Furthermore, u(·, t), v(·, t) ∈ BV for all t ≥
0, (u(x, t), v(x, t)) ∈ S for (x, t) ∈ R×R+

0 , and the estimates

TV(u(·, t)) + TV(v(·, t)) ≤ TV(u0) + TV(v0),(4.1)

‖p(·, t)‖1 ≤Mδ,(4.2)

‖u(·, t)− u(·, τ)‖1 + ‖v(·, t)− v(·, τ)‖1 ≤M |t− τ |(4.3)

hold, where p(·, t) = A(u(·, t))− v(·, t) and M is independent of t and δ.
Since the discrete solutions satisfy the entropy inequalities (3.21) and (3.22), we

also easily derive that the limit (u, v) is an entropy solution of (2.2).
Lemma 4.2. Assume that (u0, v0) satisfies the requirements in (2.4), and let

(u, v) be the pair of functions constructed in Lemma 4.1. Then (u, v) is an entropy
solution of (2.2).

Proof. We have to show that (u, v) satisfy the variational inequality (2.5) for any
ϕ,ψ ∈ D+(T ) and (k, q) ∈ S. However, by letting ∆t,∆x → 0 in (3.21), it follows
that for any smooth entropy/entropy flux pair (E,F ),∫ T

0

∫
R

[E(u)ϕt + F (u)ϕx]dx dt
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+

∫
R

[E(u0)ϕ(x, 0)− E(u(x, T ))ϕ(x, T )]dx(4.4)

≥ 1

δ

∫ T

0

∫
R
E′(u)ϕ(A(u)− v)dx dt.

Hence, by choosing a sequence of smooth entropy/entropy flux pairs (Eθ, Fθ) such
that as θ → 0,

Eθ(u) → |u− k| and E′θ → σ(u− k)

pointwise, the dominated-convergence theorem implies that∫ T

0

∫
R

[|u− k|ϕt + |f(u)− f(k)|ϕx]dx dt

+

∫
R

[|u0 − k|ϕ(x, 0)− |u(x, T )− k|ϕ(x, T )]dx

≥ 1

δ

∫ T

0

∫
R
σ(u− k)ϕ(A(u)− v)dx dt

for all k ∈ [0, 1] and ϕ ∈ D+(T ). The rest of the desired inequality (2.5) can be
derived from (3.22) by similar arguments.

In order to show that the entropy solutions are unique, we will use arguments
inspired by Kruzkov [9], Kuznetsov [10], and Lucier [14]. For any θ ∈ (0, 1], we
introduce the mollifier function ωθ on R given by

ωθ(x) =
1

θ
Ω
(x
θ

)
,

where Ω : R → R is a nonnegative, symmetric C∞-function with support in [−1, 1]
and satisfying ∫

R
Ω(x)dx = 1.

Hence ∫
R
ωθ(x)dx = 1

and supp(ωθ) ⊂ [−θ, θ]. Furthermore, we define a smooth approximation σθ of the
sign function σ by

σθ(x) = −1 + 2

∫ x

−∞
ωθ(y)dy

and a smooth approximation µθ of the absolute-value function by

µθ(x) = θ +

∫ x

−θ
σθ(y)dy.

We observe that µθ
′ = σθ and σθ

′ = 2ωθ. Also,

σθ(x) = σ(x) for |x| ≥ θ,

µθ(x) = |x| for |x| ≥ θ,



150 ASLAK TVEITO AND RAGNAR WINTHER

and

|µθ(x)− |x|| ≤ θ for all x ∈ R.
The next result shows that the entropy solutions of (2.2) are unique and depend

continuously, independently of δ, on the initial data in L1.
Lemma 4.3. Let (u, v) and (ū, v̄) be two entropy solutions of (2.2) with initial

data (u0, v0) and (ū0, v̄0), respectively, satisfying the requirements in (2.4). Then

‖u(·, t)− ū(·, t)‖1 + ‖v(·, t)− v̄(·, t)‖1 ≤ ‖u0 − ū0‖1 + ‖v0 − v̄0‖1 for all t ≥ 0.

Proof. The result follows by generalizing Kuznetsov’s argument in [10] for scalar
conservation laws. Let T > 0 be given and choose (k, q) = (ū(y, τ), v̄(y, τ)) and
ϕ(x, t) = ψ(x, t) = ωθ(x− y)ωθ(t− τ) in (2.5) for the solution (u, v). Integrating the
result over R× [0, T ] with respect to y and τ , we obtain

(4.5)∫ T

0

∫
R

∫ T

0

∫
R

(|u− ū|+ |v − v̄|)ωθ ′(t− τ)ωθ(x− y)dx dt dy dτ

+

∫ T

0

∫
R

∫ T

0

∫
R
|f(u)− f(ū)|ωθ(t− τ)ωθ

′(x− y)dx dt dy dτ

+

∫ T

0

∫
R

∫
R

[|u0(x)− ū|+ |v0(x, t)− v̄|]ωθ(τ)ωθ(x− y)dx dy dτ

−
∫ T

0

∫
R

∫
R

[|u(x, T )− ū|+ |v(x, T )− v̄|]ωθ(T − τ)ωθ(x− y)dx dy dτ

≥ 1

δ

∫ T

0

∫
R

∫ T

0

∫
R

(σ(u− ū)− σ(v − v̄))(A(u)− v)ωθ(x− y)ωθ(t− τ)dx dt dy dτ,

where u = u(x, t), v = v(x, t), ū = ū(y, τ), and v̄ = v̄(y, τ). By performing a similar
operation on inequality (2.5) for the solution (ū, v̄), but where we reverse the role
of the variables (x, t) and (y, τ), and by adding the inequality obtained to (4.5), we
observe that the terms which contain derivatives will cancel out. Hence we obtain an
inequality of the form

R(θ)− L(θ)(4.6)

≥ 1

δ

∫ T

0

∫
R

∫ T

0

∫
R

(σ(u− ū)− σ(v − v̄))(A(u)−A(ū)

− (v − v̄))ωθ(x− y)ωθ(t− τ)dx dt dy dτ,

where

R(θ) =

∫ T

0

∫
R

∫
R

(|u0(x)− ū|+ |v0(x)− v̄|)ωθ(x− y)ωθ(τ)dx dy dτ

+

∫ T

0

∫
R

∫
R

(|u− ū0(y)|+ |v − v̄0(y)|)ωθ(x− y)ωθ(t)dx dy dt

and

L(θ) =

∫ T

0

∫
R

∫
R

(|u(x, T )− ū|+ |v(x, T )− v̄|)ωθ(T − τ)ωθ(x− y)dx dy dτ

+

∫ T

0

∫
R

∫
R

(|u− ū(y, T )|+ |v − v̄(y, T )|)ωθ(T − t)ωθ(x− y)dx dy dt.
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Due to the monotonicity of A = A(u) (cf. (2.3)), the integrand on the right-hand side
of (4.6) is nonnegative, and thus we get

L(θ) ≤ R(θ).(4.7)

By using the properties in (4.1) and (4.3) for both pairs of solutions, it follows easily
(cf., e.g., [26]) that

|R(θ)− (‖u0 − ū0‖1 + ‖v0 − v̄0‖1)| ≤Mθ

and

|L(θ)− (‖u(·, T )− ū(·, T )‖1 + ‖v(·, T )− v̄(·, T )‖1)| ≤Mθ,

where M is independent of θ. Thus the desired result follows from (4.7) by letting
θ → 0.

Remarks. (1) Note that Lemmas 4.1, 4.2, and 4.3 prove Theorem 2.1. In particu-
lar, the uniqueness result of Lemma 4.3 implies that the complete sequence {(u∆, v∆)}
converges towards (u, v).

(2) In the proof of Theorem 2.1, we have not used the assumption on A′′ given in
(2.3).

(3) The stability result of Lemma 4.3 could also be proved by appealing to the
similar property of the discrete scheme; cf. part V of Lemma 3.1. However, in order to
prove both stability and uniqueness of the entropy solution, the argument presented
above is needed.

5. A regularized model. The purpose of the final two sections of this paper
is to analyze the convergence as δ tends to zero of the solutions of the model in (2.2)
to the corresponding solutions of the equilibrium model given in (2.1). The main
purpose of the discussion is to establish that the difference between these solutions,
measured in the L1-norm, is bounded by O(δ1/3).

In order to study this convergence, a regularized model is introduced. For any
ε, δ ∈ (0, 1], consider the pure initial-value problem

uεt + f(uε)x = −1

δ
(A(uε)− vε) + εuεxx,

vεt =
1

δ
(A(uε)− vε) + εvεxx,(5.1)

uε(x, 0) = uε,0(x), vε(x, 0) = vε,0(x),

where f and A are the given functions of u satisfying (2.3).
Since system (5.1) contains proper diffusion terms, the solutions will in general

be smooth functions of x and t. In order to state a suitable regularity result for the
system, we let Hm(R), m ≥ 0, denote the L2-based Sobolev spaces of order m on R
and we let H∞(R) =

⋂
m≥0H

m(R).
Hence H∞(R) consists of all C∞-functions with the property that any derivative

is in L2(R). In particular, if u ∈ H∞(R), then

∂j

∂xj
u(x) → 0 as x→ ±∞(5.2)

for any j ≥ 0.
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In order to avoid technical difficulties with respect to smoothness, we will simply
assume that the initial functions uε,0 and vε,0 of (5.1) are in H∞(R). The following
regularity result can then be established.

Lemma 5.1. Assume that (uε,0(x), vε,0(x)) ∈ S for all x ∈ R and that uε,0, vε,0 ∈
H∞(R). Then there exists a unique classical solution (uε, vε) of (5.1) such that

∂juε

∂tj
(·, t), ∂

jvε

∂tj
(·, t) ∈ H∞(R)

for all t ≥ 0 and integers j ≥ 0. Furthermore,

(uε(x, t), vε(x, t)) ∈ S
for all x ∈ R and t ≥ 0.

The regularity part of this lemma is rather standard and a proof can be found,
for example, in [8] (cf. Chapter 5 of [8]), while the invariant region part follows from
the assumptions on A and the result of Chueh, Conley, and Smoller [4], (cf. Theorem
4.4. of [4]).

In section 3, independently of the relaxation parameter δ and the discretization
parameters ∆x and ∆t, we derived bounds for the total variation of the solution of the
discrete scheme (2.6). We will need similar bounds for the solution of the regularized
model (5.1), i.e., TV bounds independent of the parameters ε and δ. We observe that
if u ∈ H∞(R), then u ∈ BV if and only if ux ∈ L1(R). Note that for these functions,
TV(u) = ‖ux‖1.

Lemma 5.2. Assume that (uε,0(x), vε,0(x)) ∈ S for all x ∈ R and that uε,0, vε,0 ∈
H∞(R)

⋂
BV. If (uε, vε) is the solution of (5.1), then uε(·, t), vε(·, t) ∈ H∞(R)

⋂
BV

for all t ≥ 0 and

‖uεx(·, t)‖1 + ‖vεx(·, t)‖1 ≤ ‖uε,0x ‖1 + ‖vε,0x ‖1.(5.3)

Furthermore, if the initial data is chosen such that uεt(·, 0), vεt (·, 0) ∈ L1(R), then
uεt(·, t), vεt (·, t) ∈ L1(R) for all t ≥ 0 and

‖uεt(·, t)‖1 + ‖vεt (·, t)‖1 ≤ ‖uεt(·, 0)‖1 + ‖vεt (·, 0)‖1.(5.4)

Proof. For notational convenience, we will throughout this proof denote the so-
lution of (5.1) by (u, v), i.e., the explicit dependence on the regularization parameter
ε is suppressed. Let µθ : R → R, θ ∈ (0, 1], be the smooth approximation of the
absolute-value function introduced in section 4. Hence µθ

′ = σθ, where σθ is the
smooth approximation of the sign function, while

µθ
′′ = σθ

′ = 2ωθ.

Now consider system (5.1) and differentiate both equations with respect to x. We
then obtain the following system:

(ux)t + (f ′(u)ux)x = −1

δ
(A′(u)ux − vx) + ε(ux)xx,(5.5)

(vx)t =
1

δ
(A′(u)ux − vx) + ε(vx)xx.

Furthermore, multiply the first equation of (5.5) by σθ(ux) and the second equation
by σθ(vx) and integrate over (−M,M) × (0, T ) for M,T > 0. If we add the results
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from the two equations, we obtain

(5.6)∫ M

−M
(µθ(ux(x, T )) + µθ(vx(x, T )))dx+

∫ T

0

∫ M

−M
(f ′(u)ux)xσθ(ux)dx dt

=

∫ M

−M
(µθ(u

0
x(x)) + µθ(v

0
x(x)))dx−

1

δ

∫ T

0

∫ M

−M
(A′(u)ux − vx)(σθ(ux)− σθ(vx))dx dt

+ ε

∫ T

0

∫ M

−M
(uxxxσθ(ux) + vxxxσθ(vx))dx dt.

We observe that since |σθ(r)| ≤ 1 and since σθ(r) → σ(r) for all r ∈ R, it follows
from the dominated-convergence theorem that

lim
θ→0

−
∫ T

0

∫ M

−M
(A′(u)ux − vx)(σθ(ux)− σθ(vx))dx dt(5.7)

= −
∫ T

0

∫ M

−M
(A′(u)ux − vx)(σ(ux)− σ(vx))dx dt ≤ 0.

By using integration by parts with respect to x, we derive∫ T

0

∫ M

−M
(f ′(u)ux)xσθ(ux)dx dt

=

∫ T

0

[f ′(u)uxσθ(ux)] |Mx=−Mdt− 2

∫ T

0

∫ M

−M
f ′(u)uxuxxωθ(ux)dx dt.

Since rωθ(r) is uniformly bounded and since for any r ∈ R, limθ→0 rωθ(r) = 0, it
follows again from the dominated-convergence theorem that

lim
θ→0

∫ T

0

∫ M

−M
f ′(u)uxuxxωθ(ux)dx dt = 0.

Hence (5.2) implies that

lim
M→∞

lim
θ→0

∫ T

0

∫ M

−M
(f ′(u)ux)xσθ(ux)dx dt = 0.(5.8)

Finally, we observe that integration by parts with respect to x implies that∫ T

0

∫ M

−M
(ux)xxσθ(ux)dx dt =

∫ T

0

uxxσθ(ux) |Mx=−Mdt− 2

∫ T

0

∫ M

−M
u2
xxωθ(ux)dx dt.

Since ωθ(r) ≥ 0 and by treating the v term in the same way, we therefore obtain

lim
M→∞

lim sup
θ→0

ε

∫ T

0

∫ M

−M
((ux)xxσθ(ux) + (vx)xxσθ(vx))dx dt ≤ 0.

Together with (5.6), (5.7), and (5.8), this implies that

lim
M→∞

∫ M

−M
(|ux(x, T )|+ |vx(x, T )|)dx ≤ ‖u0

x‖1 + ‖v0
x‖1,
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and hence u(·, T ), v(·, T ) ∈ BV and (5.3) holds. Inequality (5.4) can be derived by
a completely analogous argument by differentiating system (5.1) with respect to t
instead of x. The details of this derivation are therefore omitted.

As above, we need to measure the deviation from equilibrium,

pε = A(uε)− vε.

Lemma 5.3. Assume that the initial data uε,0 and vε,0 of (5.1) satisfy all of the
assumptions given in Lemma 5.2. Furthermore, assume that ‖pε(·, 0)‖1 ≤ M0δ and
‖pεx(·, 0)‖1 ≤ M0δ/ε, where M0 is independent of ε and δ. Then there is a constant
M , independent of ε and δ, such that

‖pε(·, t)‖1 ≤Mδ(5.9)

and

‖pεx(·, t)‖1 ≤
Mδ

ε
(5.10)

for all t ≥ 0.
Proof. As above, we suppress the explicit dependence of ε throughout the proof.

From the definition of the function p and from (5.1), it follows that

pt = A′(u)ut − vt = A′(u)
(
εuxx − 1

δ
p− f(u)x

)
− εvxx − 1

δ
p.

Since

pxx = A′(u)uxx +A′′(u)ux2 − vxx,

the expression above can be written as follows:

pt = εpxx − 1

δ
(1 +A′(u))p− εA′′(u)ux2 −A′(u)f(u)x.(5.11)

Observe that if we multiply the first equation of (5.1) by u(x, t) and integrate with
respect to x, we obtain

ε

∫
R
ux

2(x, t)dx ≤ 1

δ

∫
R
|p(x, t)||u(x, t)|dx+

∫
R
|ut(x, t)||u(x, t)|dx.

Hence the results of Lemmas 5.1 and 5.2 imply that there is a constantM , independent
of ε, δ, and t, such that

ε

∫
R
ux

2(x, t)dx ≤ ‖p(·, t)‖1
δ

+M.

If we multiply (5.11) by σθ(p), integrate with respect to x, and let θ tend to zero, we
obtain

d

dt
‖p(·, t)‖1 ≤M − 1− α

δ
‖p(·, t)‖1,

where 0 ≤ α < 1 (cf. (2.3)). Gronwall’s lemma therefore implies that

‖p(·, t)‖1
≤ exp

(
− (1− α)t

δ

)
‖p(·, 0)‖1 +

(
Mδ

(1− α)

)(
1− exp

(
− (1− α)t

δ

))
≤ ‖p(·, 0)‖1 +

Mδ

1− α
.
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We have therefore established (5.9).
In order to derive (5.10), we differentiate (5.11) with respect to x and obtain the

equation

(px)t = ε(px)xx − 1

δ
(1 +A′(u))px +R,(5.12)

where R = R(x, t) is given by

R = −ε(A′′′(u)ux3 + 2A′′(u)uxuxx)

− 1

δ
A′′(u)uxp−A′′(u)f ′(u)ux2 −A′(u)(f ′(u)uxx − f ′′(u)ux2).

Now observe that ‖ut(·, t)‖1, ‖ux(·, t)‖1, and (1/δ)‖p(·, t)‖1 are bounded indepen-
dently of ε, δ, and t. Hence the first equation of (5.1) implies that ε‖uxx‖1 admits a
similar bound, and since

lim
x→±∞ux(x, t) = 0,

we obtain

‖ux(·, t)‖∞ ≤ M

ε
,(5.13)

where M is independent of ε, δ, and t. However, from (5.13) and the earlier bounds
(5.3) and (5.9), we derive that

‖R(·, t)‖1 ≤ M

ε
(5.14)

for all t ≥ 0. Arguing as we did above, we therefore obtain from (5.12) that

d

dt
‖px(·, t)‖1 ≤ M

ε
− 1

δ
‖px(·, t)‖1,

and hence (5.10) follows from Gronwall’s lemma.

6. The rate of convergence. The purpose of this final section of the paper is
to complete the proof of Theorem 2.2. Let (u, v) be the entropy solution of (2.2) with
initial data (u0, v0). As in Theorem 2.1, we assume that the initial data satisfy the
requirements in (2.4), i.e., (u0(x), v0(x)) ∈ S for x ∈ R, u0, v0 ∈ BV, and

lim
x→±∞u

0(x) = lim
x→±∞ v

0(x) = 0

and that

‖p0‖1 = ‖A(u0)− v0‖1 ≤Mδ,

where M is independent of δ. Furthermore, let w be the entropy solution of the
equilibrium model (2.1) with w(x, 0) = u0(x).

Our goal is to show that

‖u(·, t)− w(·, t)‖1 ≤Mδ1/3 for 0 ≤ t ≤ T,(6.1)

where M is independent of δ.
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In order to establish the desired estimate (6.1), we shall rely on properties of the
regularized model (5.1). Throughout this section, we assume that δ ≤ ε. In fact, at
the end of this section, we will choose ε = δ2/3.

Let {uε,0} be a sequence of functions in H∞(R) such that

‖uε,0 − u0‖1 ≤Mε,

TV(uε,0) ≤ TV(u0),(6.2)

‖uε,0xx‖1 ≤
M

ε
,

where the constant M is independent of ε and δ. Such a sequence can be constructed
by a standard averaging procedure using the mollifier function ωε. Furthermore, let

vε,0 = A(uε,0);(6.3)

then pε,0 ≡ 0 and

(uε,0(x), vε,0(x)) ∈ S for all x ∈ R,
‖vε,0 − v0‖1 ≤Mε,(6.4)

TV(vε,0) ≤M,

‖vε,0xx‖1 ≤
M

ε
.

Let (uε, vε) denote the solution of system (5.1) corresponding to the initial data
(uε,0, vε,0). We observe that (6.2) and (6.4) imply that ‖uεt(·, 0)‖1 and ‖vεt (·, 0)‖1
are bounded independently of ε and δ. Hence the initial data (uε,0, vε,0) satisfy all of
the assumption of the Lemmas 5.1–5.3.

Lemma 6.1. Let u0, v0, {uε,0}, and {vε,0} satisfy (2.4), (6.2), and (6.3). Then
for any T > 0, there is a constant M , independent of ε and δ, such that

‖uε(·, t)− u(·, t)‖1 + ‖vε(·, t)− v(·, t)‖1 ≤Mε1/2 for 0 ≤ t ≤ T.

Proof. The proof is based on the characterization in (2.5) of the entropy solution
of (2.2) and a corresponding variational inequality for the regularized system (5.1).
We first observe that for any (k, q) ∈ S, the following system holds

(uε − k)t + (f(uε)− f(k))x = −1

δ
(A(uε)− vε) + εuεxx,(6.5)

(vε − q)t =
1

δ
(A(uε)− vε) + εvεxx.

Let ϕ,ψ ∈ D+(T ). For any θ ∈ (0, 1), multiply the first equation of (6.5) by σθ(u
ε−k)ϕ

and the second equation by σθ(v
ε − k)ψ, add the two equations, and integrate over

R× (0, T ). We then obtain∫ T

0

∫
R

[µθ(u
ε − k)ϕt + Fθ(u

ε, k)ϕx + µθ(v
ε − q)ψt]dx dt

+

∫
R

[µθ(u
ε,0(x)− k)ϕ(x, 0) + µθ(v

ε,0(x)− q)ψ(x, 0)]dx

−
∫
R

[µθ(u
ε(x, T )− k)ϕ(x, T ) + µθ(v

ε(x, T )− q)ψ(x, T )]dx(6.6)
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=
1

δ

∫ T

0

∫
R

(σθ(u
ε − k)ϕ− σθ(v

ε − q)ψ)(A(uε)− vε)dx dt

− ε
∫ T

0

∫
R

[σθ(u
ε − k)ϕuεxx + σθ(v

ε − q)ψvεxx]dx dt,

where the flux function Fθ(u, k) satisfies

dFθ(u, k)

du
= σθ(u− k)f ′(u), Fθ(k, k) = 0.

We observe that

−ε
∫ T

0

∫
R
σθ(u

ε − k)uεxxϕdx dt

= −ε
∫ T

0

∫
R

(σθ(u
ε − k)uεx)xϕdx dt+ 2ε

∫ T

0

∫
R
ωθ(u

ε − k)(uεx)
2ϕdx dt

≥ ε

∫ T

0

∫
R
σθ(u

ε − k)uεxϕxdx dt

and that a similar inequality can be derived for the corresponding v term. By letting
θ → 0 in (6.6), we therefore obtain that for any (k, q) ∈ S and any ϕ,ψ ∈ D+(T ), the
following inequality holds:∫ T

0

∫
R

[|uε − k|ϕt + |f(uε)− f(k)|ϕx + |vε − q|ψt]dx dt

+

∫
R

[|uε,0 − k|ϕ(x, 0) + |vε,0 − q|ψ(x, 0)]dx

−
∫
R

[|uε(x, T )− k|ϕ(x, T ) + |vε(x, T )− q|ψ(x, T )]dx(6.7)

≥ 1

δ

∫ T

0

∫
R

(σ(uε − k)ϕ− σ(vε − q)ψ)(A(uε)− vε)dx dt

+ ε

∫ T

0

∫
R

[σ(uε − k)ϕxu
ε
x + σ(vε − q)ψxv

ε
x]dx dt.

This variational inequality should be compared with the characterization (2.5) of the
entropy solution of (2.2).

Now let k = u(y, τ), q = v(y, τ), and ϕ(x, t) = ψ(x, t) = ωθ(x − y)ωθ(t − τ) in
(6.7), where (y, τ) ∈ R× (0, T ) is fixed, and integrate the result over R× (0, T ) with
respect to y and τ . Consider (2.5) similarly, but use (y, τ) as integration variables
instead of x and t. Then take k = uε(x, t), q = vε(y, τ), and

ϕ(y, τ) = ψ(y, τ) = ωθ(x− y)ωθ(t− τ).

If we add the two inequalities, we then obtain

L(ε, θ) ≤ R(ε, θ)− 1

δ
I1(ε, θ)− εI2(ε, θ).(6.8)

Here

L(ε, θ) =

∫ T

0

∫
R

∫
R

(|uε(x, T )− u|+ |vε(x, T )− v|)ωθ(x− y)ωθ(T − τ)dx dy dτ
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+

∫ T

0

∫
R

∫
R

(|uε − u(y, T )|+ |vε − v(y, T )|)ωθ(x− y)ωθ(T − t)dx dy dt,

R(ε, θ) =

∫ T

0

∫
R

∫
R

(|uε,0(x)− u|+ |vε,0(x)− v|)ωθ(x− y)ωθ(T )dx dy dτ

+

∫ T

0

∫
R

∫
R

(|uε − u0(y)|+ |vε − v0(y)|)ωθ(x− y)ωθ(t)dx dy dt,

I1(ε, θ) =

∫ T

0

∫
R

∫ T

0

∫
R

[(σ(uε − u))(A(uε)−A(u)) + |vε − v|]dx dt dy dτ,

I2(ε, θ) =

∫ T

0

∫
R

∫ T

0

∫
R

[(σ(uε − u)uεx + σ(vε − v)vεx)ωθ
′(x− y)ωθ(t− τ)]dx dt dy dτ,

where uε = uε(x, t), vε = vε(x, t), u = u(y, τ), and v = v(y, τ).
From the total-variation bounds and the L1-continuity properties of the solutions

(uε, vε) and (u, v), we obtain by a standard argument (cf., e.g., [26]) that there is a
constant M , independent of ε, δ, and θ, such that

|L(ε, θ)− ‖uε(·, T )− u(·, T )‖1 + ‖vε(·, T )− v(·, T )‖1| ≤Mθ,(6.9)

|R(ε, θ)− ‖uε,0 − u0‖1 + ‖vε,0 − v0‖1| ≤Mθ.

Furthermore, the monotonicity property of A implies that I1(ε, θ) ≥ 0. Finally, from
the properties of (uε, vε), we obtain that

|I2(ε, θ)| ≤ T sup
0≤t≤T

(‖uεx(·, t)‖1 + ‖vεx(·, t)‖1)
∫
R
|ωθ ′(y)|dy ≤ M

θ
.

Hence, together with (6.2), (6.4), (6.8), and (6.9), this implies that

‖uε(·, T )− u(·, T )‖1 + ‖vε(·, T )− v(·, T )‖1 ≤M
(
ε+ θ +

ε

θ

)
.

The desired result now follows by choosing θ = ε1/2.
In addition to the system studied above, we shall also need a regularized version

of the equilibrium model. Consider the pure initial-value problem

(wε +A(wε))t + f(wε)x = ε(wε +A(wε))xx,(6.10)

wε(x, 0) = uε,0(x),

where {uε,0} ⊂ H∞(R) denotes the initial functions introduced at the beginning of
this section. From the properties of {uε,0} and u0 given above, it follows from the
standard theory for scalar equations (cf., e.g., [10]) that for any T > 0, there is a
constant M , independent of ε, such that

‖w(·, t)− wε(·, t)‖1 ≤Mε1/2 for 0 ≤ t ≤ T.(6.11)

Hence, if we write the error u− w in the form

u− w = (u− uε) + (uε − wε) + (wε − w),

it remains to estimate the term uε − wε. In order to estimate this final error term,
we shall rely on properties of system (5.1) derived in the previous section and on
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well-known properties of scalar diffusion equations of the form of (6.10). Consider a
scalar equation of the form

(z +A(z))t + f(z)x = ε(z +A(z))xx +G,(6.12)

z(x, 0) = z0(x),

where z0 = z0(x) represents the initial function and G = G(x, t) is a given source
term. It is well known that if the data z0 and G are smooth, then problem (6.12)
has a unique smooth solution. Furthermore, if z and ẑ denote two solutions of (6.12)
with data (z0, G) and (ẑ0, Ĝ), respectively, then we have the estimate

‖z(·, t)− ẑ(·, t)‖1 ≤MA

(
‖z0 − ẑ0‖1 +

∫ t

0

‖G− Ĝ‖1ds
)
,(6.13)

where the constant MA only depends on the function A. In fact, this estimate can
easily be proved by using arguments similar to those used in the proofs of Lemmas
5.2 and 5.3. Using this property of equation (6.12) and the properties of system (5.1)
derived in section 5, we now establish the following estimate.

Lemma 6.2. Let {uε,0} and {vε,0} satisfy the requirements of Lemma 6.1. Then
for any T > 0, there is a constant M , independent of ε and δ, such that

‖uε(·, t)− wε(·, t)‖1 ≤ Mδ

ε
for 0 ≤ t ≤ T.

Proof. First, we consider system (5.1), and as above, we let

pε = A(uε)− vε.

By adding the two equations of (5.1), we obtain

(uε + vε)t + f(uε)x = ε(uε + vε)xx

or

(uε +A(uε)− pε)t + f(uε)x = ε(uε +A(uε)− pε)xx.(6.14)

Introduce a new function zε(x, t) defined by

zε +A(zε) = uε +A(uε)− pε.(6.15)

Then the differential equation (6.14) can be written in the form of (6.12), i.e.,

(zε +A(zε))t + f(zε)x = ε(zε +A(zε))xx +G,(6.16)

where

G = f(zε)x − f(uε)x.

From the monotonicity property of A, it follows that

|zε(x, t)− uε(x, t)| ≤ |pε(x, t)|.
Hence it follows from (6.2) and Lemma 5.3 that

‖zε(·, t)− uε(·, t)‖1 ≤Mδ, 0 ≤ t ≤ T.(6.17)
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By differentiating (6.15) with respect to x, we obtain

zεx − uεx +A′(zεx)(z
ε
x − uεx) = (A′(uε)−A′(zε))uεx − pεx,

and this implies that

‖zεx(·, t)− uεx(·, t)‖1 ≤MA‖uε(·, t)− zε(·, t)‖1‖uεx(·, t)‖∞ + ‖pεx(·, t)‖1.
From estimates (5.10), (5.13), (6.2), and (6.17), we therefore have

‖zεx(·, t)− uεx(·, t)‖1 ≤
Mδ

ε
for 0 ≤ t ≤ T,(6.18)

where M is independent of ε and δ. Now observe that the source term G introduced
above can be represented in the form

G = f ′(zε)(zεx − uεx) + (f ′(zε)− f ′(uε))uεx,

and since ‖uεx(·, t)‖1 is uniformly bounded on [0, T ] and since

‖zε(·, t)− uε(·, t)‖∞ ≤ ‖zεx(·, t)− uεx(·, t)‖1,
it follows from (6.18) that

‖G(·, t)‖1 ≤ Mδ

ε
for 0 ≤ t ≤ T.(6.19)

Hence the stability estimate (6.13) implies that for 0 ≤ t ≤ T ,

‖zε(·, t)− wε(·, t)‖1 ≤M

(
‖zε(·, 0)− uε,0‖1 +

δ

ε

)
≤ Mδ

ε
.(6.20)

The desired estimate now follows from (6.17), (6.20), and the triangle inequality.
Proof of Theorem 2.2. We can now easily complete the proof of Theorem 2.2. By

writing

u− w = (u− uε) + (uε − wε) + (wε − w),

we obtain from Lemmas 6.1 and 6.2 and estimate (6.11) that for 0 ≤ t ≤ T ,

‖u(·, t)− w(·, t)‖1 ≤M

(
ε1/2 +

δ

ε

)
.

By choosing ε = δ2/3, the desired estimate follows.
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Abstract. Two algorithms are given for finding conditions for a critical point to be an isochron-
ous center. The first is based on a systematic search for a transformation to the simple harmonic
oscillator and as an example is used to find conditions for an isochronous center in the Kukles
system; the second algorithm is specific to systems with homogeneous nonlinearities and is based
on a connection with an Abel differential equation. General properties of systems with isochronous
centers are also considered and results on Liénard and Hamiltonian systems are deduced; a close
connection is demonstrated between isochronous centers and complex centers.
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1. Introduction. Consider the planar system

(1.1) ẋ = P (x, y), ẏ = Q(x, y),

where P and Q are polynomials in x and y and the dot denotes differentiation with
respect to time. Suppose that (1.1) has a center and define a period function T by
taking a semitransversal through the center with some parametrization x(s); T (s) is
then the time taken for the trajectory starting at x(s) to return to x(s).

We are interested in the case when the period function is constant; the center
is then said to be isochronous. Probably the first nonlinear example of isochronous
oscillations is Huygen’s pendulum, in which the bob is constrained to follow a cycloidal
path; the period of the motion is then independent of the amplitude [12]. Recently,
Needham [18] has demonstrated the existence of an isochronous center in a system
arising in telecommunications theory—it is of interest to note that this system hence
has the property that small changes in the initial conditions can alter the amplitude
of an oscillation but not its frequency.

Questions relating to the period function have been studied by a number of
authors. One motivation is a connection between solutions of certain second-order
boundary value problems and properties of the period function for related systems
(1.1): the range of values of the period determines the range of initial conditions
for which the second-order problem has a solution [5, 21]. Also, in the study of
subharmonic bifurcations of periodically forced Hamiltonian systems, a nondegener-
acy condition is that the period function of the unperturbed system be locally strictly
monotone [8]—monotonicity conditions have hence been of special interest [4]. In par-
ticular, quadratic Hamiltonian systems and Lotka–Volterra systems are both known
to have monotone period functions [10, 23]. We note that in both these applications,
isochronicity represents the worst possible case.
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To fully understand the properties of the period function in a class of systems, it
is necessary to consider the bifurcation of critical points of the period. This question
has been studied by Chicone and Jacobs [6]. Suppose that the system

ẋ = −y + Pλ(x, y), ẏ = x+Qλ(x, y)

has a center at the origin for all λ. If T (x;λ) is the period of the solution through the
point (x, 0), then T is written as

T (x;λ) = 2π + a0(λ)x+ a1(λ)x2 + · · · .
If ai(λ

∗) = 0 for i = 0, . . . , n and an+1(λ
∗) 6= 0, then it is shown that at most n

zeros of Tx bifurcate out of the origin of the system with λ = λ∗ when λ is perturbed.
However, if ai(λ

∗) = 0 for all i so that the origin is isochronous, then it is necessary
to determine the ideal generated by the ai(λ); this is obviously a much more difficult
problem. Thus a complete analysis of these bifurcations for a class of systems requires
the identification of the subclass of systems with an isochronous center.

Isochronous centers also play an important part in another paper of Chicone and
Jacobs [7]. In this paper, they look at the bifurcation of limit cycles from periodic
orbits around a center. Since the method used requires knowledge of the period
function, it is natural to first investigate bifurcation from isochronous centers; it is
shown that at most three limit cycles can bifurcate from a quadratic isochronous
center.

Necessary and sufficient conditions for quadratic systems to have an isochronous
center at the origin were found by Loud [14], and conditions for systems in which P
and Q are cubic polynomials without quadratic terms were obtained by Pleshkan [19].
The system d2x/dy2 + g(x) = 0 was considered by Urabe [22]: the only case which
yields an isochronous center is the simple harmonic oscillator g(x) = k2x. Apart from
these cases, knowledge of polynomial systems with isochronous centers is slight.

In this paper, we first consider some general properties of polynomial systems
with isochronous centers; these allow us to prove, for example, that a polynomial
Liénard system with an isochronous center has no other critical point. We then go
on to present an algorithm for obtaining necessary conditions for a point to be an
isochronous center, based on a systematic search for a transformation to the simple
harmonic oscillator. This is similar to the Liapunov function method which has been
applied with much success to the problem of determining necessary conditions for a
center [3]. This approach to isochronous centers seems to have been used first by
Pleshkan in his work on cubic systems [19]. We illustrate our method by applying it
to the system

(1.2) ẋ = y, ẏ = −x+ ax2 + bxy + cy2 + dx3 + ex2y + fxy2 + gy3

and obtaining necessary conditions for the origin to be an isochronous center. To com-
plement this work on necessary conditions, we give some simple sufficient conditions
for the existence of an isochronous center. We show that the conditions obtained for
(1.2) are sufficient, thus completely solving the problem for this system. We end by
examining systems with homogeneous nonlinearities in some detail; we give an alter-
native algorithm for this special case based on a transformation to an Abel equation
and we give a new class of systems with isochronous centers.

2. Some general results. In this section, we present several results of a general
nature. We first give a definition of what we mean by a center.



164 C. J. CHRISTOPHER AND J. DEVLIN

Definition 2.1. We say that a critical point of system (1.1) is a center if there
is a deleted neighborhood of the point which consists entirely of closed trajectories
surrounding that point. The center is said to be nondegenerate if the linearized vector
field at the point has two nonzero eigenvalues and isochronous if its associated period
function is constant.

Remark. It can be shown [20] that by an affine transformation, a polynomial
system with a nondegenerate center can be brought to the form

(2.1) ẋ = −λy + p(x, y), ẏ = λx+ q(x, y),

where p and q are polynomials with all terms of degree at least two and λ 6= 0.
Theorem 2.2. An isochronous center is nondegenerate.
Proof. Suppose that the origin of (1.1) is a degenerate center. If the linear terms

vanish, we have

ṙ = f(θ)r2 +O(r3), θ̇ = g(θ)r +O(r2),

where f and g are homogeneous cubic polynomials in cos θ and sin θ. Then for any
δ > 0, there are trajectories sufficiently close to the origin along which |θ̇| < δ. Thus
there are periodic solutions of arbitrarily large period.

Now suppose that the system has degenerate linear terms. If the flow is not to be
area contracting or expanding, then the divergence of the vector field must vanish at
the critical point. Thus both eigenvalues vanish and an affine transformation brings
the system to the form

ẋ = ky +O(x2 + y2), ẏ = O(x2 + y2).

Furthermore, since scaling time by a constant will have no effect on isochronicity, we
can take k = −1. Thus, in polar coordinates,

ṙ = r cos θ sin θ +O(r2), θ̇ = sin2 θ +O(r).

Given δ > 0, there exist trajectories sufficiently close to the origin along which
θ̇ < sin2 θ + δ2. Near the origin along the positive y-axis, trajectories cross into
the first quadrant. Thus trajectories go around the origin in an anticlockwise direc-
tion. Ignoring any contribution to the period by parts of the trajectory where θ̇ < 0,
we find that the period is at least∫ 2π

0

dθ

sin2 θ + δ2
=

2π

δ(1 + δ2)1/2
.

Thus we can choose δ small enough to give a contradiction.
Theorem 2.3. An isochronous period annulus cannot have any finite critical

point on its boundary except for an isochronous center.
Proof. Suppose that we have a critical point on the boundary of an isochronous

period annulus D of period T ; then given a neighborhood U of the point, there is a
smaller neighborhood V such that any trajectory in V will take at least time 2T to
pass out of U . Hence any trajectory passing through V ∩D will remain in U ∩D for
all time. Since these trajectories are closed curves, the critical point must be a center.

Corollary 2.4. If D is an isochronous period annulus, then any trajectory in
∂D is unbounded as t increases and as t decreases.
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Although these results might appear simple, they can reveal a surprising amount
of information. For example, if the polynomial Liénard system

ẋ = y − f(x), ẏ = −g(x)

has an isochronous center, then either f ≡ 0 or g is of odd degree and there are no
other critical points. (In fact, if f ≡ 0 then g = k2x by the result of Urabe [22].) This
is a consequence of the following more general result.

Theorem 2.5. Suppose that
(1) Q(x, y) = q(x), where q has more than one zero (counting multiplicity);
(2) if the zeros of q(x) are xi and P (x, y) is of degree n in y, then the coefficient

of yn in P (x, y) is never zero for min{xi} ≤ x ≤ max{xi};
(3) if P (x, y) is of degree m in x, then the coefficient of xm in P (x, y) is never

zero.
Then system (1.1) cannot have an isochronous center.

Proof. Suppose that there is an isochronous center at the point (x0, y0) so that
q(x0) = 0. Since the linearization of (1.1) at this point is

ẋ = Px(x0, y0)x+ Py(x0, y0)y, ẏ = q′(x0)x,

we have q′(x0) 6= 0 by Theorem 2.2. Hence condition (1) implies the existence of
x1 6= x0 such that q(x1) = 0.

Let the period annulus of the isochronous center be D. If there is a trajectory in
D which intersects the line x = x1, then there is a trajectory in D which touches the
line at a point where ẋ = 0. But ẏ = 0 on x = x1, so D contains a critical point other
than (x0, y0), contradicting Theorem 2.3. Hence D cannot intersect the line x = x1

for any x1 6= x0 such that q(x1) = 0.
Now suppose that there exist x1 and x2 with q(x1) = q(x2) = 0 and x1 < x0 < x2.

Then D is entirely contained in the strip (x1, x2) × R. Now by (1) and (2), there
exists M > 0 such that ∣∣∣∣dydx

∣∣∣∣ =

∣∣∣∣ q(x)

P (x, y)

∣∣∣∣
is bounded in [x1, x2]×{(−∞,−M)∪(M,∞)}, so no solution can become unbounded
in the strip (x1, x2)×R. But D is unbounded by Corollary 2.4—a contradiction. It
follows that if the zeros of q(x) are xi, then either x0 = max{xi} or x0 = min{xi}.
We consider the case x0 = max{xi}; the other case is similar.

Let x1 < x0 be such that q(x1) = 0 and q(x) 6= 0 for x ∈ (x1, x0). Then ∂D
has points in the strip (x1, x0) ×R. But ∂D is bounded in this strip, as above, and
does not intersect the line x = x1. So ∂D passes through points (x0, y−) and (x0, y+)
where y− < y0 < y+. Now ẏ is single-signed for x ∈ (x1, x0) and for x > x0. So
∂D ⊂ (x1,∞) × (y−, y+). Since D is unbounded, for arbitrarily large x there exists
y ∈ (y−, y+) such that P (x, y) = 0. But this contradicts (3), so we obtain the required
result—(1.1) cannot have an isochronous center.

We also have the following result precluding the existence of an isochronous center.
Theorem 2.6. Suppose that p and q are not both identically zero and that (2.1)

has no critical points at infinity. Then the origin cannot be an isochronous center.
Proof. If the origin is an isochronous center with period annulus D, then the

trajectory through any finite point in ∂D is unbounded by Corollary 2.4. This is
impossible if there are no critical points at infinity; so D fills the plane and for any
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R > 0 there are periodic solutions entirely contained in the region r > R. But for any
M > 0, |θ̇| > M for r sufficiently large, and there are solutions of arbitrarily small
period—a contradiction.

Corollary 2.7. Suppose that the Hamiltonian system

(2.2) ẋ = −Hy, ẏ = Hx

of degree n ≥ 2 has an isochronous center. If H = H0 +H1 + · · · +Hn+1, where Hi

is a homogeneous polynomial in x and y of degree i, then Hn+1 has a repeated real
linear factor.

Proof. Corollary 2.4 and Theorem 2.6 together imply that either the line at in-
finity is composed entirely of critical points or there exists a critical point at infinity
with a hyperbolic sector. For system (2.2), the first of these is impossible, while a
necessary condition for the second is that Hn+1 have a repeated real linear factor.

We shall show later (Theorem 5.6) that if H3 ≡ · · · ≡ Hn ≡ 0, then the origin of
(2.2) cannot be an isochronous center.

It sometimes helps to think of (1.1) as a complex system—we thus allow x and y
to take complex values; however, we shall keep time t real, thus avoiding the difficulty
of solution curves becoming solution surfaces. The resulting complex system will be
denoted (1.1)∗.

Definition 2.8. We say that a critical point of the complex system (1.1)∗ is a
center if there is a deleted neighborhood of the point in C2 which consists entirely of
closed trajectories.

Theorem 2.9. A critical point of the real system (1.1) is isochronous if and only
if it is a center for system (1.1)∗.

Proof. (=⇒) Let (φ(t;x, y), ψ(t;x, y)) be the solution of (1.1)∗ passing through
the point (x, y) ∈ C2 at time t = 0. It is well known that φ and ψ are holomorphic
within their maximal interval of existence. Suppose that the origin is an isochronous
center for (1.1) with period T and take a sufficiently small deleted neighborhood of
the origin A ⊂ C2 so that for all (x, y) ∈ A, φ(t;x, y) and ψ(t;x, y) exist for 0 ≤ t ≤ T .
Consider a point (x, y) ∈ R2 ∩ A. Clearly, there is a product neighborhood of (x, y)
in A; call this U × V . First, fix v ∈ V ∩ R and consider φ(T ;u, v) − u. This is a
holomorphic function of u vanishing on the line U ∩R and hence identically zero on
U . Now consider φ(T ;u, v) − u with u ∈ U fixed. This is a holomorphic function of
v vanishing on the line V ∩R and hence identically zero on V . Hence φ(T ;u, v)− u
vanishes for all (u, v) ∈ U × V . A similar result holds for ψ(T, u, v) − v. The result
follows by analytic continuation throughout the deleted neighborhood.

(⇐=) It is clear that (1.1) has a center if (1.1)∗ has one, so it only remains to
prove isochronicity. Take φ(t;x, y), ψ(t;x, y), U , and V as before. Fix v ∈ V and
consider the period T (u) of the trajectory through (u, v) for u ∈ U . Since the function
T (u) is smooth, it must have level curves in U . (Otherwise, both partial derivatives
vanish throughout U and the result holds trivially.) Take one of these curves, say
T (u) = c; then the functions φ(c;u, v)− u and ψ(c;u, v)− v vanish on this curve and
hence on the whole of U . Thus the period function is constant for fixed v. Similarly,
the period function is constant for fixed u and the result follows.

3. An algorithm. From (2.1) and Theorem 2.4, we can bring system (1.1) with
an isochronous center to the form

(3.1) ẋ = −y +O(x2 + y2), ẏ = x+O(x2 + y2)
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by an affine transformation and a scaling of time by a constant. Furthermore, it
can be shown [20] that there is an analytic change of coordinates X = x + F (x, y),
Y = y +G(x, y), which brings (3.1) to the form

Ẋ = −Y f(X2 + Y 2), Ẏ = Xf(X2 + Y 2),

where f is analytic and f(0) = 1. If the center is to be isochronous, then f must be
constant [7]; so

(3.2) Ẋ = −Y, Ẏ = X.

Thus there is an analytic function H(x, y) of the form x+ F (x, y) such that

(3.3)
d2H

dt2
+H = 0.

Conversely, if there exists such a functionH(x, y) for a given system (3.1), then, taking
X = H and Y = −dH/dt, we obtain an analytic change of coordinates bringing (3.1)
to the form (3.2). The search for such a function provides the basis for our algorithm.

From (3.2), we can find an analytic first integral of the system

Φ(x, y) = X2 + Y 2 = x2 + y2 +O(x2 + y2)

such that dΦ/dt = 0; and it is easy to verify that if H is a solution of (3.3), then

(3.4)

(
aH + b

dH

dt

)
Φn = (ax− by)(x2 + y2)n +O((x2 + y2)n+1)

is also a solution of (3.3) for any constants a and b and for any positive integer n.
Hence if we write H =

∑
kHk, where deg(Hk) = k and H1 = x, then by the linearity

of (3.3), we have two degrees of freedom in the choice of Hk for each odd k ≥ 3.
We wish therefore to solve the following problem: find necessary and sufficient

conditions for the existence of an analytic function H(x, y) = x + O(x2 + y2) such
that

(3.5) P 2Hxx + 2PQHxy +Q2Hyy + (PxP + PyQ)Hx + (QxP +QyQ)Hy +H = 0.

We proceed by determining successive terms in the expansion of H. Suppose that the
polynomials Hj have been found for j ≤ k − 1. Equating the terms of degree k in
(3.5), we have

(3.6) y2Hkxx − 2xyHkxy + x2Hkyy + (1− k)Hk = G,

where G is a homogeneous polynomial of degree k whose coefficients are polynomials
in the coefficients of Hj(j ≤ k − 1). Consider the linear operator

(3.7) y2 ∂
2

∂x2
− 2xy

∂2

∂x∂y
+ x2 ∂

2

∂y2
+ (1− k)

acting on the space of monomials of degree k. To find the rank of this operator, we
consider (3.7) under the change of variables z = x+ iy, z = x− iy, which gives

(3.8) −z2 ∂
2

∂z2
+ 2zz

∂2

∂z∂z
− z2 ∂

2

∂z2 + (1− k).
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It is easy to see that (3.8) has eigenfunctions zrzs(r + s = k) with eigenvalues 1 −
(r − s)2. Hence for the real case (3.7), we have eigenfunctions azrzs + azszr with
eigenvalues 1− (r− s)2. Thus when k is even, the operator is of full rank and there is
a unique Hk which satisfies equation (3.6). When k is odd, the operator has nullity
two and the kernel consists of functions of the form

(a+ ib)z(k−1)/2z(k+1)/2 + (a− ib)z(k+1)/2z(k−1)/2 = 2(ax+ by)(x2 + y2)(k−1)/2.

This corresponds to the degrees of freedom (3.4) in our choice of H. Without loss of
generality, therefore, we can specify that for odd k the coefficients of xyk−1 and yk

in Hk vanish. Hence in order to solve (3.6), we will have two consistency conditions
imposed on the coefficients of G corresponding to the coefficients of z(zz)(k−1)/2 and
z(zz)(k−1)/2 vanishing. These will be our necessary conditions for the existence of
an isochronous center. Thus solving equation (3.6) for each k, we obtain an infinite
number of conditions.

Pleshkan [19] has shown that the infinite set of conditions produced is also suffi-
cient, but in practice it is simpler to prove that the conditions obtained are sufficient
by other means; some sufficient conditions are given in the next section. It is easy to
see by induction that the conditions will be polynomial equations in the coefficients
of P and Q, which can be reduced to a finite number by Hilbert’s basis theorem.

On experimenting with different classes of systems, we found that the method
seems to work most effectively when the center conditions are derived first and then
assimilated into the algorithm. This is indeed the method of Pleshkan. However, we
shall now give an example where the center conditions have to be derived alongside
those for isochronicity since the complete center conditions are unknown at present.

The Kukles system

(3.9) ẋ = y, ẏ = −x+ ax2 + bxy + cy2 + dx3 + ex2y + fxy2 + gy3

has been the subject of a number of recent investigations (see [9, 13, 16, 17], for
example). Although the general problem of finding complete conditions for (3.9) to
have a center at the origin remains unsolved, the extra conditions imposed by seeking
an isochronous center allow the problem to be solved completely. We are also able
to find necessary and sufficient conditions for the complex system (3.9)∗ to have an
isochronous center at the origin.

The first six pairs of conditions for the origin of (3.9) to be an isochronous cen-
ter were calculated as described above. The calculations were performed using the
computer algebra system REDUCE. For an isochronous center, it is necessary that
all twelve polynomials vanish. The zero-set of the polynomials can be obtained in
its simplest form using REDUCE’s Groebner basis procedure; however, to avoid un-
necessary computation time, REDUCE was first used interactively to simplify the
polynomials, as follows:

The first two conditions are

bc+ ab+ e+ 3g = 0, 4c2 + 10ac+ 10a2 + b2 + 9d+ 3f = 0.

Hence we can substitute for the variables e and f . One of the next pairs of conditions
now gives

(3.10)

(17c3+48ac2+45a2c+2b2c+10a3+ab2)b+6(c−a)bd+(15c2+42ac+15a2+3b2)g = 0.
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We first suppose that (c− a)b 6= 0. Since the transformation

(3.11) x 7→ x

k
, y 7→ y

k

preserves the form of the system, we can suppose that c − a = 1. If we also take
g = λb, then (3.10) gives

d = − [(72a2 + 72a+ 3b2 + 15)λ+ 120a3 + 192a2 + 99a+ 3ab2 + 2b2 + 17]

6
.

If a Groebner basis is now calculated for the remaining nine polynomials, we find that
we must have a = −1/2 and b2 + 1 = 0 for a common zero. This is obviously not
a real solution; however, if we consider (3.9) as a complex equation with a real time
parameter, we obtain a system of the following form after rescaling to compensate for
the transformation (3.11):

(3.12) ẋ = y, ẏ = −x+ µ(x± iy)2 + ν(x± iy)3,

where µ and ν are complex coefficients.
We next consider the case b = 0. If a Groebner basis is now calculated for the

remaining ten conditions (that is, including (3.10)), then a common zero only occurs
when a = c = 0 and d2 + g2 = 0. The system is then of the form (3.12) with µ = 0.
Finally, when a = c and b 6= 0, a Groebner basis calculation yields a = c = 0 and
d = −b2/9, and the system is

(3.13) ẋ = y, ẏ = −x+ bxy − b2x3

9
.

This has an isochronous center at the origin since the system

Ẋ = Y +
b(X2 − Y 2)

6
, Ẏ = −X +

bXY

3
,

which has an isochronous center at the origin by Theorem 4.4, can be transformed to
(3.13) by the substitution x = X, y = Y + b(X2 − Y 2)/6.

We have thus proved the following result.
Theorem 3.1. The real system (3.9) has an isochronous center at the origin if

and only if it is of the form (3.13).
The results on necessary conditions for an isochronous center which we have

derived above can easily be carried over to the corresponding complex Kukles system
(3.9)∗, the coefficients now being complex. We thus obtain systems (3.12) and (3.13)∗

as necessary for an isochronous center. System (3.13)∗ has an isochronous center as in
Theorem 2.8. We will show in the next section that system (3.12) has an isochronous
center. Thus we have the following result.

Theorem 3.2. The complex system (3.9)∗ has an isochronous center at the origin
if and only if it is of the form (3.12) or (3.13)∗.

4. Sufficient conditions for an isochronous center. The algorithm of the
previous section provides necessary conditions for an isochronous center. In this
section, we shall give some simple sufficient conditions.

Consider a polynomial system of the form

(4.1) ẋ = −y + p(x, y), ẏ = x+ q(x, y),
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where p and q do not contain linear terms. We first look at the apparently trivial case

θ̇ =
d(tan−1(y/x))

dt
= 1.

That is, xq(x, y)− yp(x, y) = 0. This will hold if and only if the system is of the form

(4.2) ẋ = −y + xf(x, y), ẏ = x+ yf(x, y)

for some polynomial f with f(0, 0) = 0. Clearly, if such a system has a center at the
origin, then it is isochronous. It only remains therefore to find conditions for system
(4.2) to have a center at the origin; however, this is a nontrivial problem.

In polar coordinates, we have

(4.3)
dr

dθ
=

m∑
i=1

ri+1fi(cos θ, sin θ),

where f =
∑

i fi, deg(fi) = i. We can now use Devlin [11] to obtain necessary
conditions for a center in terms of integrals of the functions fi; for example, if fi ≡
0 (i = 1, . . . , j), then ∫ 2π

0

fj+1dθ = 0,

∫ 2π

0

fj+2dθ = 0.

We can also give the following sufficient condition for an isochronous center.
Theorem 4.1. If there exist a 2π-periodic function σ(θ) and functions Ai(σ)

such that fi(cos θ, sin θ) = Ai(σ)dσ/dθ, then system (4.2) has an isochronous center
at the origin.

Proof. Let R(t;R0, t0) be the solution of the initial value problem

dR

dt
=

m∑
i=1

Ai(t)R
i+1, R(t0) = R0.

Then the solution of (4.2) with r(0) = r0 is r(θ) = R(σ(θ); r0, σ(0)); clearly, this
solution is 2π-periodic for r0 sufficiently small.

How comprehensive is this center condition for (4.2)? It is easily verified that The-
orem 4.1 includes the well-known symmetry condition for a center. If f is quadratic,
then it follows from the proof of Theorem 5.2 of [2] that the condition is necessary
as well as sufficient. The condition is also necessary if f is homogeneous; this follows
from the next result.

Corollary 4.2. If f is homogeneous, then the origin is an isochronous center
for system (4.2) if and only if∫ 2π

0

f(cos θ, sin θ)dθ = 0.

Proof. The sufficiency follows from Theorem 4.1, taking σ(θ) =
∫ θ
0
f(cos s, sin s)ds.

The necessity follows from the fact that, as above,
∫ 2π

0
fj+1 must vanish.

In general, however, the condition of Theorem 4.1 is not sufficient for the origin
of (4.2) to be an isochronous center: in [1], there is given an equation of the form (4.3)
with m = 2, deg(f1) = 3, and deg(f2) = 6 for which all solutions in a neighborhood
of the origin are 2π-periodic but this condition is not satisfied. Setting ξ = r3 in this
example, we obtain a counterexample with the fi of the correct degree.
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We now consider systems of the form (1.1) satisfying the Cauchy–Riemann
equations

(4.4) Px = Qy, Py = −Qx.

Thus P + iQ is an analytic function of the complex variable z = x + iy, and system
(1.1) can be written in the form

(4.5) ż = f(z).

We shall say that (1.1) is a Cauchy–Riemann system.
Theorem 4.3. System (4.5) has an isochronous center at z0 = x0+iy0 if and only

if f(z0) = 0 and f ′(z0) is nonzero and purely imaginary. The period is |2π/f ′(z0)|.
Proof. There is a critical point at z0 if and only if f(z0) = 0. Suppose that

we have an isochronous center at z0. From Theorem 2.4, we must have f ′(z0) 6= 0.
Furthermore, we also need Re(f ′(z0)) = 0; otherwise, the divergence of the vector
field at z0 will not vanish.

Conversely, suppose that the above conditions are satisfied. Let z1 be a point in
a neighborhood of z0. We define the contour integral

R(z) =

∫ z

z1

dz

f(z)
.

From Cauchy’s integral formula, as z moves once around z0, the value of R(z) in-
creases by 2πi/f ′(z0). Thus H(z) = exp(f ′(z0)R(z)) is a well-defined holomorphic
function in a neighborhood of z0. But d2H(z)/dt2 = f ′(z0)2H(z) and f ′(z0)2 is a
negative real number. So z 7→ H(z) defines an analytic change of coordinates to the
simple harmonic oscillator and z0 is an isochronous center. The period follows from
elementary considerations.

Corollary 4.4. A sufficient condition for system (1.1) to have an isochronous
center at a point p is that it satisfy the Cauchy–Riemann equations (4.4) and P (p) =
Q(p) = Px(p) = 0, and Py(p) 6= 0.

Remark. The relation of the Cauchy–Riemann equations to isochronicity seems
to have been noticed first by Pleshkan [19].

Corollary 4.5. Consider system (4.1) with p and q homogeneous polynomials of
degree n satisfying the Cauchy–Riemann equations. Then the origin is an isochronous
center of period 2π. There are exactly n − 1 other critical points and these are all
isochronous centers of period 2π/(n− 1).

Proof. From the hypothesis, the system can be written in the form

ż = f(z) = iz + azn

for some a ∈ C\{0}. Since f ′(0) = i, the origin is an isochronous center of period 2π.
Apart from the origin, there are n− 1 other critical points, corresponding to roots of
the equation zn−1 = −i/a. At these points, f ′(z) = i + nazn−1 = −(n − 1)i. The
result follows from Theorem 4.3.

We now use Theorem 4.3 to give a class of complex systems with isochronous
centers at the origin; this class includes the complex Kukles system (3.12).

Theorem 4.6. The origin is an isochronous center for the complex system

(4.6)± ẋ = y + p(x± iy), ẏ = −x+ q(x± iy),

where p and q are polynomials with complex coefficients and with all terms of degree
two or more.
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Proof. It suffices to show that the origin is an isochronous center for (4.6)+: if
we transform (4.6)− by y 7→ −y and t 7→ −t, we obtain a system of the form (4.6)+.
Let

u = x+ iy = [Re(x)− Im(y)] + i[Im(x) + Re(y)],

v = x− iy = [Re(x) + Im(y)] + i[Im(x)− Re(y)].

Then

(4.7) u̇ = −iu+ f(u), v̇ = iv + g(u),

where f = p+ iq, g = p− iq. By Theorem 4.3, u(t) is 2π-periodic for |u(0)| sufficiently
small. Hence we only need to prove that v(t) is 2π-periodic. But from (4.7),

v(t) = eit
[
v(0) +

∫ t

0

e−isg(u(s))ds
]
,

so it suffices to show that

(4.8)

∫ 2π

0

e−isg(u(s))ds = 0.

For this, more information on the solutions u is required.
Following the proof of Theorem 4.3, we set H(u) = u exp

∫ u
0
γ(ξ)dξ, where

1

(−iu+ f(u))
= i

(
1

u
+ γ(u)

)
.

Then dH(u)/dt = −iH(u), so H(u(t)) = H(u(0))e−it. But H(u) = u + O(u2)
as u → 0, so the inverse function H−1 exists in a neighborhood of the origin and
H−1(ξ) = ξ +O(ξ2) as ξ → 0. Hence

u(t) = H−1(H(u(0))e−it) = H(u(0))e−it +
∞∑
j=2

hje
−ijt.

Since g(u) is a polynomial, equation (4.8) follows for |u(0)| sufficiently small.

5. Systems with homogeneous nonlinearities. We now consider systems of
the form

(5.1) ẋ = y + p(x, y), ẏ = −x+ q(x, y),

where p and q are homogeneous polynomials of degree n. We shall derive an alternative
algorithm to find conditions for the origin of this system to be an isochronous center.
Expressing the system in polar coordinates, we have

(5.2) ṙ = f(θ)rn, θ̇ = −1 + g(θ)rn−1,

where f and g are homogenous polynomials of degree n + 1 in cos θ and sin θ. We
now take

(5.3) ρ =
rn−1

1− rn−1g(θ)
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to bring the system to the Abel equation

(5.4)
dρ

dθ
= −(n− 1)f(θ)g(θ)ρ3 + (g′(θ)− (n− 1)f(θ))ρ2.

There is much literature on the relationship between equations (5.1) and (5.4); many
of the results can be found in the survey paper [15]. We shall write ρ(θ; c) for the
solution of (5.4) with starting point c at θ = 0. Clearly, periodic solutions of (5.1)
sufficiently close to the origin are transformed to 2π-periodic solutions of (5.4).

Theorem 5.1. System (5.1) has an isochronous center at the origin if and only
if, for the corresponding system (5.4),

(5.5) ρ(2π; c) = c,

∫ 2π

0

g(θ)ρ(θ; c) = 0

for all sufficiently small c > 0.
Proof. The first condition is that for a center, so we need only consider the period.

Since θ̇ = −1 + grn−1 = −1/(1 + gρ), the period of the solution of (5.2) which is
transformed to ρ(θ; c) is∫ 2π

0

(1 + g(θ)ρ(θ; c))dθ = 2π +

∫ 2π

0

g(θ)ρ(θ; c)dθ.

The result follows.
As in [2, 11], we write ρ(θ; c) =

∑∞
i=1 ai(θ)c

i with a1(0) = 1 and ai(0) = 0 for
i > 1. Hence from Theorem 5.1, we have an isochronous center if and only if, for all
i ≥ 1,

(5.6) ai(2π) = ai(0),

∫ 2π

0

g(θ)ai(θ)dθ = 0.

A formula to calculate the coefficients ai(θ) is known [11]: if l, r, and σi are operators
C[0, 2π] → C[0, 2π] defined by

(lh)(θ) = −(n− 1)

∫ θ

0

f(s)g(s)h(s)ds, (rh)(θ) =

∫ θ

0

[g′(s)− (n− 1)f(s)]h(s)ds,

(σ0h)(θ) ≡ 0, (σ1h)(θ) = h(θ),

σi = (i− 2)σi−2l + (i− 1)σi−1r, i ≥ 2,

then ai(θ) = (σi1)(θ), where 1 is the constant function 1(θ) ≡ 1. This together with
(5.6) provides an alternative algorithm to that given in section 3. As an example of
this formulation, we give the first few necessary conditions explicitly.

Corollary 5.2. If system (5.1) has an isochronous center at the origin, then
the following conditions hold:
(A) ∫ 2π

0

g(θ)dθ = 0;

(B) ∫ 2π

0

f(θ)dθ = 0;
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(C) ∫ 2π

0

g

[
g − (n− 1)

∫ θ

0

f

]
dθ = 0;

(D) ∫ 2π

0

f(θ)g(θ)dθ = 0;

(E) (n− 1)

∫ 2π

0

g

[∫ θ

0

fg

]
dθ −

∫ 2π

0

g

[
g − (n− 1)

∫ θ

0

f

]2

dθ = 0;

(F) ∫ 2π

0

fg

[
g − (n− 1)

∫ θ

0

f

]
dθ = 0;

(G) ∫ 2π

0

fg

[
g − (n− 1)

∫ θ

0

f

]2

dθ = 0;

(H) (n−1)

∫ 2π

0

[g′− (n−1)f ] ·
[∫ θ

0

fg

]2

dθ−2

∫ 2π

0

fg

[
g − (n− 1)

∫ θ

0

f

]3

dθ = 0.

Condition (5.5) is sufficient as well as necessary, and we now give an example
where it is used to prove isochronicity.

Theorem 5.3. Suppose that there exist a positive integer l with 2l ≤ n and
polynomials U(x, y) and V (x, y) such that

xp+ yq = (x2 + y2)lU, xq − yp = (x2 + y2)lV,

(n− 1)Ux = (n+ 1− 2l)Vy, (n− 1)Uy = −(n+ 1− 2l)Vx.

Then the origin is an isochronous center for system (5.1).
Proof. Let m = n+1−2l. Then U and V are homogeneous polynomials of degree

m and (n− 1)U + imV is a holomorphic function of the complex variable z = x+ iy;
so

(n− 1)U + imV + (a+ ib)zm = rm(mσ − iσ′),

where σ(θ) = (a cos(mθ)− b sin(mθ))/m. Thus

(5.7) f(θ) =
U

rm
=

mσ

(n− 1)
, g(θ) =

V

rm
= −σ

′

m
,

and the Abel equation (5.4) reduces to dρ/dθ = ρ3σσ′. This has solution

ρ(θ; c) = (c−2 + σ(0)2 − σ(θ)2)−1/2

and since g(θ) = −σ′/m, condition (5.5) holds.
Using (5.7), it is straightforward to verify that the conditions of the theorem are

satisfied if and only if

ż = −iz + zlzl−1 [(n− l)(a+ ib)zm + (1− l)(a− ib)zm]

m(n− 1)
.
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(Note that for l = 1 this reduces to a Cauchy–Riemann system.) For z ∈ C\{0}, we
make the change of variables w = z(zz)(l−1)/m. This gives the system

ẇ = −iw +
(a+ ib)wm+1

m
;

by Corollary 4.5, all critical points of this system are isochronous centers. Hence we
have the following result.

Corollary 5.4. If the conditions of Theorem 5.3 are satisfied, then every critical
point of the system is an isochronous center.

A similar property holds for quadratic and cubic systems.
Theorem 5.5. If a polynomial system with quadratic or cubic homogeneous

nonlinearities has an isochronous center at the origin, then every critical point of the
system is an isochronous center.

Proof. For the quadratic case, the classification of isochronous centers is given by
Loud [14]: the origin is an isochronous center if and only if the system can be brought
to the form

ẋ = −y +Bxy, ẏ = x+Dx2 + Fy2

with (D/B,F/B) = (−1/2, 1/2), (0, 1), (0, 1/4), or (−1/2, 2). The first of these yields
a Cauchy–Riemann system and so is covered by Corollary 4.5. The second and third
have no other critical points, and the fourth has a symmetry x 7→ 2/B − x so that
the other critical point (2/B, 0) is also an isochronous center.

The cubic case was examined by Pleshkan [19], who gave the following condition:
the origin is an isochronous center if and only if the system can be brought to one of
the following forms:

(1)

{
ẋ = −y − ax3 − 3bx2y + 3axy2 + by3,

ẏ = x+ bx3 − 3ax2y − 3bxy2 + ay3,

(2)

{
ẋ = −y − ax3 + bx2y + axy2,

ẏ = x− ax2y + bxy2 + ay3,

(3)

{
ẋ = −y + 3ax2y,

ẏ = x− 2ax3 + 9axy2.

The first of these is a Cauchy–Riemann system, while for the second θ̇ = 1; the
result thus holds for these two cases. In the third case, if a ≤ 0 then there are no
other critical points, so we take a > 0. Since the system is symmetric about the
y-axis, we only need to consider the critical point at ((2a)−1/2, 0). The change of
coordinates

X =
1

2
−
(a

2

)1/2

x, Y =
1

2

(a
2

)1/2

y

brings this point to the origin, and the system becomes

Ẋ = −Y (1− 12P ), Ẏ = (P + 18Y 2)P ′,

where P = X −X2. In a neighborhood of the origin, define

u = (1− 12P )−3/2PP ′, v = Y (1− 12P )−3/2;
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this brings the system to the form u̇ = −v, v̇ = u, so the critical point is indeed an
isochronous center.

Finally, we consider Hamiltonian systems

(5.8) ẋ = −Hy, ẏ = Hx

with homogeneous nonlinearities. If the origin is an isochronous center, then by
Theorem 2.2 and by scaling time by a constant, we can suppose the Hamiltonian H
to be of the form H = (x2 + y2)/2 + h(x, y), where h is homogeneous. Under these
conditions, we can improve on Corollary 2.7.

Theorem 5.6. The Hamiltonian system (5.8) with H = (x2 +y2)/2+h(x, y) has
an isochronous center at the origin if and only if h ≡ 0.

Proof. Clearly, if h ≡ 0, then the origin is an isochronous center. For the converse,
we suppose that the origin is an isochronous center and that h 6≡ 0 and consider
trajectories in the period annulus, that is, the level curves H = c as c increases
from zero. By Corollary 2.4, there are level curves in the period annulus with points
arbitrarily far from the origin. Write H = r2/2 + g(θ)rn, where g is a homogeneous
polynomial in cos θ and sin θ of degree n. The distance of the curve H = c from the
origin achieves its maximum on the ray θ = θ0 where g(θ) achieves its minimum. By
Corollary 5.2, g(θ) changes sign and so g(θ0) < 0. Hence there is a critical point on
the ray θ = θ0 at the point where

r = (−ng(θ0))−1/(n−2).

Thus it is not possible for there to be points in the period annulus arbitrarily far from
the origin—a contradiction.

Acknowledgment. Both authors wish to thank the Science and Engineering
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Abstract. Let us consider the differential equation

ẋ = (A + εQ(t, ε))x, |ε| ≤ ε0,

where A is an elliptic constant matrix and Q depends on time in a quasi-periodic (and analytic)
way. It is also assumed that the eigenvalues of A and the basic frequencies of Q satisfy a diophantine
condition. Then it is proved that this system can be reduced to

ẏ = (A∗(ε) + εR∗(t, ε))y, |ε| ≤ ε0,

where R∗ is exponentially small in ε, and the linear change of variables that performs such a reduction
is also quasi-periodic with the same basic frequencies as Q. The results are illustrated and discussed
in a practical example.

Key words. quasi-periodic Floquet theorem, quasi-periodic perturbations, reducibility of linear
equations

AMS subject classifications. 34A30, 34C20, 34C27, 34C50, 58F30
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1. Introduction. The well-known Floquet theorem states that any linear peri-
odic system ẋ = A(t)x can be reduced to constant coefficients ẏ = By by means of a
periodic change of variables. Moreover, this change of variables can be taken over C
with the same period as A(t).

A natural extension is to consider the case in which the matrix A(t) depends on
time in a quasi-periodic way. Before beginning the discussion of this issue, let us recall
the definition and basic properties of quasi-periodic functions.

Definition 1.1. A function f is a quasi-periodic function with a vector of basic
frequencies ω = (ω1, . . . , ωr) if f(t) = F (θ1, . . . , θr), where F is 2π periodic in all its
arguments and θj = ωjt for j = 1, . . . , r. Moreover, f is called analytic on a strip of
width ρ if F is analytical on an open set containing |Im θj | ≤ ρ for j = 1, . . . , r.

It is also known that an analytic quasi-periodic function f(t) on a strip of width
ρ has Fourier coefficients defined by

fk =
1

(2π)r

∫
Tr
F (θ1, . . . , θr)e

−(k,θ)
√−1 dθ

such that f can be expanded as

f(t) =
∑
k∈Zr

fke
(k,ω)

√−1t

for all t such that |Im t| ≤ ρ/‖ω‖∞. We denote by ‖f‖ρ the norm

‖f‖ρ =
∑
k∈Zr

|fk|e|k|ρ,
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and it is not difficult to check that it is well defined for any analytical quasi-periodic
function defined on a strip of width ρ. Finally, to define an analytic quasi-periodic
matrix, we note that all of these definitions hold when f is a matrix-valued function.
In this case, to define ‖f‖ρ, we use the infinity norm (which will be denoted by | · |∞)
for the matrices fk.

With these definitions and properties, let us return to the problem of the re-
ducibility of a linear quasi-periodic equation ẋ = Â(t)x to constant coefficients. The
approach of this paper is to assume that the system is close to constant coefficients,
that is, Â(t) = A+εQ(t, ε), where ε is small. This case has already been considered in
many papers (see [2], [8], and [9] among others), and the results can be summarized as
follows. Let λi be the eigenvalues of A and let αij = λi− λj for i 6= j. Then if all the
values Reαij are different from zero, the reduction can be performed for |ε| < ε0, ε0
sufficiently small (see [2]). If some of the Reαij are zero (this happens, for instance,
if A is elliptic, that is, if all the λi are on the imaginary axis), more hypotheses are
needed—usually these are (i) a diophantine condition involving the αij and the basic
frequencies of Q(t, ε) and (ii) to assume a nondegeneracy condition with respect to
ε on the corresponding αij(ε) of the matrix A + εQ(ε) (Q(ε) denotes the average of
Q(t, ε)). This allows to prove (see [9] for details) that there exists a Cantorian set
E such that the reduction can be performed for all ε ∈ E . Moreover, the relative
measure of the set [0, ε0] \ E in [0, ε0] is exponentially small in ε0.

Our purpose here is somewhat different. Instead of looking for a total reduction to
constant coefficients (this seems to lead us to eliminate a dense set of values of ε; see [8]
or [9]), we try to minimize the quasi-periodic part without taking out any value of ε.
The result obtained is that the quasi-periodic part can be made exponentially small.
Since all of the proof is constructive (and can be carried out with a finite number
of steps), it can be applied to practical examples in order to perform an “effective”
reduction: if ε is small enough, the remainder will be so small that, for practical
purposes, it can be taken equal to zero. The error produced with this dropping can
be easily bounded by means of the Gronwall lemma. Finally, we want to stress that
we have also eliminated the nondegeneracy hypothesis of previous papers [8], [9].

Before finishing this introduction, we want to mention a similar result obtained
when the dynamics of the system is slow: ẋ = ε(A+εQ(t, ε))x. This case is contained
in [14], which is an extension of [12]. The result obtained is also that the quasi-periodic
part can be made exponentially small in ε. Total reducibility has been also considered
in this case: in [15], it is stated that the reduction can be performed except for a set
of values of ε of measure exponentially small.

There are many other results for the reducibility problem. For instance, in the
case of the Schrödinger equation with quasi-periodic potential, we mention [3], [4], [5],
[10], [11], and [13]. Another classical and remarkable paper is [7], where the general
case (that is, without asking to be close to constant coefficients) is considered. Finally,
classical results for quasi-periodic systems can be found in [6].

In order to simplify reading, the paper has been divided as follows. Section 2
contains the exposition (without technical details) of the main ideas and methodology,
section 3 contains the main theorem, sections 4 and 5 are devoted to the proofs and,
finally, section 6 contains an example to show how these results can be applied to a
concrete problem.

2. The method. The method used is based on the same inductive scheme as
[8]. Let us write our equation as

ẋ = (A+ εQ(t, ε))x,(1)



180 ÀNGEL JORBA, RAFAEL RAMÍREZ-ROS, AND JORDI VILLANUEVA

where A is an elliptic d× d matrix and Q(t, ε) is quasi-periodic with ω = (ω1, . . . , ωr)
as vector of basic frequencies and analytic on a strip of width ρ. First of all, let us
rewrite this equation as

ẋ = (A0(ε) + εQ̃(t, ε))x,

where A0(ε) = A+Q(ε) and Q̃(t, ε) = Q(t, ε)−Q(ε). Now let us assume that we are
able to find a quasi-periodic d × d matrix P (with the same basic frequencies as Q)
verifying

Ṗ = A0(ε)P − PA0(ε) + Q̃(t, ε)(2)

such that ‖εP (t, ε)‖σ < 1 for some σ > 0. In this case, it is not difficult to check that
the change of variables x = (I + εP (t, ε))y transforms equation (1) into

ẏ = (A0(ε) + ε2(I + εP (t, ε))−1Q̃(t, ε)P (t, ε))y.(3)

Since this equation is similar to (1) but with ε2 instead of ε, the inductive scheme
seems clear: average the quasi-periodic part of (3) and restart this process. The main
difficulty that appears in this process comes from equation (2) because the solution
contains the denominators λi(ε)−λj(ε)+

√−1(k, ω), 1 ≤ i, j ≤ d, where λi(ε) are the
eigenvalues of A0(ε). (This is shown in the proof of Lemma 4.2.) This divisor appears
in the kth Fourier coefficient of P . Note that if the values λi(ε)−λj(ε) are outside the
imaginary axis, the (modulus of the) divisor can be bounded from below, making it
easy to prove the convergence. On the other hand, the value λi(ε)−λj(ε)+

√−1(k, ω)
can be arbitrarily small, giving rise to convergence problems.

2.1. Avoiding the small divisors. Let us begin by assuming that the eigen-
values λi of the original unperturbed matrix A (see equation (1)) and the basic fre-
quencies of Q satisfy the diophantine condition

|λi − λj +
√−1(k, ω)| ≥ c

|k|γ ∀ k ∈ Zr \ {0},(4)

where |k| = |k1| + · · · + |kr|. Note that, in principle, we cannot guarantee that this
condition holds in equation (2) because the eigenvalues of A0(ε) have been changed
with respect to the ones of A (by an amount of O(ε)) and some of the divisors can
be very small or even zero.

The key point is to realize that as the eigenvalues of A move by an amount of O(ε)
at most, the quantities λi(ε)−λj(ε) are contained in a (complex) ball Bi,j(ε) centered
in λi − λj and with radius O(ε). Since the center of the ball satisfies condition (4),
the values (k, ω) cannot be inside that ball if |k| is less than some value M(ε). This
implies that it is possible to cancel all of the harmonics such that 0 < |k| < M(ε)
because they do not produce small divisors. (Note that we can have resonances only
when (k, ω) is inside Bi,j(ε).) The harmonics with |k| ≥M(ε) are exponentially small
in M(ε) (when M(ε) →∞), that is, exponentially small in ε (when ε→ 0), so we do
not need to eliminate them.

The idea of considering only frequencies less than some threshold M has already
been applied in other contexts (see, for instance, [1]).

2.2. The iterative scheme. To apply the considerations above, we define, as
before, A0(ε) = A+ εQ(ε), Q̃(t, ε) = Q(t, ε)−Q(ε) and we split Q̃(t, ε) into the sum

of two matrices Q0(t, ε) and R0(t, ε): Q0(t, ε) contains the harmonics Qke
(k,ω)

√−1t
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with |k| < M(ε) and R0(t, ε) contains those with |k| ≥ M(ε). Therefore, (1) can be
rewritten as

ẋ = (A0(ε) + εQ0(t, ε) + εR0(t, ε))x.(5)

Now the idea is to cancel Q0(t, ε) and to leave R0(t, ε). (It is already exponentially
small with ε.) Therefore, we compute P0 such that

Ṗ0 = A0(ε)P0 − P0A0(ε) +Q0(t, ε).

Then the change x = (I + εP0(t, ε))y gives

ẏ =
[
A0 + ε2(I + εP0)

−1Q0P0 + ε(I + εP0)
−1R0(I + εP0)

]
y.

This equation can be rewritten to be like (5) to repeat the process. Note that the
size of the harmonics with 0 < |k| < M(ε) has been squared. As we will see in the
proofs, this is enough to guarantee convergence of those terms to zero. Thus the final
equation has a purely quasi-periodic part that is exponentially small with ε.

2.3. Remarks. It is interesting to note that it is enough to apply a finite number
of steps of the inductive process. We do not need to completely cancel the harmonics
with 0 < |k| < M(ε), but we can stop the process when they are of the same size
as those of R. (From the proof, it can be seen that the number of steps needed to
achieve this is of order |ln|ε||.) This allows us to (with the help of a computer) apply
this procedure on a practical example.

Another remarkable point concerns the diophantine condition. Note that we need
the condition only up to a finite order (M(ε), which is of order (1/|ε|)1/γ , as we shall
see in the proofs). This means that in a practical example when the perturbing
frequencies are known with finite precision, the diophantine condition can be easily
checked.

3. The theorem. In what follows, Qd(ρ, ω) stands for the set of analytic quasi-
periodic d× d matrices on a strip of width ρ and that have ω as their vector of basic
frequencies. Moreover, i will denote

√−1.
Theorem 3.1. Consider the equation ẋ = (A + εQ(t, ε))x, |ε| ≤ ε0, x ∈ Rd,

where we have the following hypotheses:
1. A is a constant d× d matrix with different eigenvalues λ1, . . . , λd.
2. Q(·, ε) ∈ Qd(ρ, ω) with ‖Q(·, ε)‖ρ ≤ q ∀ |ε| ≤ ε0, for some ω ∈ Rr, and where

q, ρ > 0.
3. The vector ω satisfies the diophantine conditions

|λj − λ` + i(k, ω)| ≥ c

|k|γ ∀ k ∈ Zr \ {0} ∀ j, ` ∈ {1, . . . , d}(6)

for some constants c > 0 and γ > r − 1. As usual, |k| = |k1|+ · · ·+ |kr|.
Then there exist positive constants ε∗, a∗, r∗, and m such that for all ε, |ε| ≤ ε∗,

the initial equation can be transformed into

ẏ = (A∗(ε) + εR∗(t, ε))y,(7)

where
1. A∗ is a constant matrix with |A∗(ε)−A|∞ ≤ a∗|ε| and
2. R∗(·, ε) ∈ Qd(ρ, ω) and ‖R∗(·, ε)‖ρ−δ ≤ r∗ exp(−(m/|ε|)1/γδ) ∀ δ ∈ ]0, ρ].
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Furthermore, the quasi-periodic change of variables that performs this transformation
is also an element of Qd(ρ, ω). Finally, a general explicit computation of ε∗, a∗, r∗,
and m is possible:

ε∗ = min

(
ε0,

α

eqβ(3d− 1)

)
, a∗ =

eqβ2

e− 1
, r∗ = ea∗, m =

c

10eqβ

where e = exp(1), α = minj 6=`(|λj − λ`|), and β is the condition number of a regular
matrix S such that S−1AS is diagonal, that is, β = C(S) = |S−1|∞|S|∞.

Remark 3.1. For fixed values of λ1, . . . , λd and γ, hypothesis 3 is not satisfied for
any c > 0 only for a set of values of ω of zero measure if γ > r − 1.

Remark 3.2. In case the eigenvalues of the perturbed matrices move on balls
of radius O(εp) (that is, if the nondegeneracy hypothesis needed in [8] or [9] is not
satisfied), it is not difficult to show that the bound of the exponential can be improved:
‖R∗(·, ε)‖ρ−δ ≤ r∗ exp(−(m/|ε|)p/γδ). The proof is very similar but uses M(ε) =
(m/|ε|)p/γ instead of (m/|ε|)1/γ .

Remark 3.2 seems to show that this nondegeneracy hypothesis is not necessary,
and it is only used for technical reasons. In fact, the results seem to be better when
this hypothesis is not satisfied.

Remark 3.3. If the unperturbed matrix A has multiple eigenvalues (that is, if
hypothesis 1 is not satisfied), the theorem is still true, but the exponent of ε in the
exponential of the remainder is slightly worse. This happens because the (small) divi-
sors are now raised to a power that increases with the multiplicity of the eigenvalues.
The proof is not included since it does not introduce new ideas and the technical
details are rather tedious.

Remark 3.4. The values of ε∗, a∗, r∗, and m given in the theorem are rather
pessimistic. In the proof, we have used simple (but rough) bounds instead of cum-
bersome but more accurate ones. If one is interested in realistic bounds for a given
problem, the best thing to do is to rewrite the proof for that particular case. We have
done this in section 6 where, with the help of a computer program, we have applied
some steps of the method to an example. This allows us to obtain not only better
bounds but also (numerically) the reduced matrix as well as the corresponding change
of variables.

4. Lemmas. We will use some lemmas to simplify the proof of Theorem 3.1.

4.1. Basic lemmas.
Lemma 4.1. Let Q(t) =

∑
k∈ZrQke

i(k,ω)t be an element of Qd(ρ, ω) and M > 0.

Let us define Q = Q0, Q̃(t) = Q(t)−Q0,

Q≥M (t) =
∑
k∈Zr
|k|≥M

Qke
i(k,ω)t,

and Q̃<M = Q̃−Q≥M . Then we have the bounds

1. |Q|∞, ‖Q̃‖ρ, ‖Q̃<M‖ρ ≤ ‖Q‖ρ and
2. ‖Q≥M‖ρ−δ ≤ ‖Q‖ρe−Mδ ∀ δ ∈ ]0, ρ].

Proof. The proof follows immediately.
The next lemma is used to control the variation of the eigenvalues of a perturbed

diagonal matrix.
Lemma 4.2. Let D be a d×d diagonal matrix with different eigenvalues λ1, . . . , λd

and α = minj 6=`(|λj−λ`|). Then if A verifies |A−D|∞ ≤ b ≤ α/(3d− 1), the following
conditions hold:
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1. A has different eigenvalues µ1, . . . , µd and |λj − µj | ≤ b if j = 1, . . . , d.
2. There exists a regular matrix S such that S−1AS = D∗ = diag(µ1, . . . , µd)

satisfying C(S) ≤ 2.
Proof. The proof is contained in [8].
Lemma 4.3. Let (qn)n, (an)n, and (rn)n be sequences defined by

qn+1 = q2
n, an+1 = an + qn+1, rn+1 =

2 + qn
2− qn

rn + qn+1

with initial values q0 = a0 = r0 = e−1. Then (qn)n is decreasing to zero and (an)n
and (rn)n are increasing and convergent to some values a∞ and r∞, respectively, with
a∞ < 1/(e− 1) and r∞ < e/(e− 1).

Proof. It is immediate that qn goes to zero quadratically, and this implies that
an is convergent to the value a∞:

a∞ =
∞∑
j=0

qj <
∞∑
j=1

e−j =
1

e− 1
.

Then

rn ≤ p

r0 +
n∑

j=1

qj

 ≤ pa∞,

where p =
∏∞

j=0(2 + qj)/(2− qj). This product is convergent. In fact,

ln p =

∞∑
j=0

[
ln
(
1 +

qj
2

)
− ln

(
1− qj

2

)]
≤ 3

2
a∞ ≤ 3

2(e− 1)
< 1,

and so p < e, where we have used the fact that ln(1 + x) ≤ x and − ln(1 − x) ≤ 2x
for x ∈ (0, 1/2).

4.2. The inductive lemma. The next lemma is used to perform a step of the
inductive procedure.

Before stating the result, let us introduce some notation. Let D and α be as
in Lemma 4.2 and let ε∗, q∗, L, and M(ε) be positive constants. We consider the
equation at the step n of the iterative process:

ẋn = (An(ε) + εQn(t, ε) + εRn(t, ε))xn, |ε| ≤ ε∗,(8)

where Qn(·, ε), Rn(·, ε) ∈ Qd(ρ, ω) and Qn(ε) = Qn(·, ε)≥M(ε) = 0. We assume that
for some an, qn, rn ≥ 0 and |ε| < ε∗, the following bounds hold:

|An(ε)−D| ≤ q∗an|ε|, ‖Qn(·, ε)‖ρ ≤ q∗qn, ‖Rn(·, ε)‖ρ−δ ≤ q∗rne−M(ε)δ,

where δ is such that 0 < δ ≤ ρ. (The constant q∗ has been introduced to simplify the
proof of the theorem later on.) We want to see if it is possible to apply a step of the
iterative process to equation (8) to obtain

ẋn+1 = (An+1(ε) + εQn+1(t, ε) + εRn+1(t, ε))xn+1, |ε| ≤ ε∗,(9)

such that Qn+1(·, ε), Rn+1(·, ε) ∈ Qd(ρ, ω) and Qn+1(ε) = Qn+1(·, ε)≥M(ε) = 0. We
also want to relate the bounds an+1, qn+1, and rn+1 of the terms of this equation
with the corresponding bounds of equation (8).

Lemma 4.4. Let λ
(n)
1 (ε), . . . , λ

(n)
d (ε) be the eigenvalues of An(ε). Under the

previous notation, if
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1. L ≥ 8q∗, ε∗ ≤ α/q∗(3d− 1),
2. an ≤ 1, qn ≤ e−1, and
3. the condition

|λ(n)
j (ε)− λ

(n)
` (ε) + i(k, ω)| ≥ L|ε|, |ε| ≤ ε∗,

is satisfied for all j and ` and for all k ∈ Zr such that 0 < |k| < M(ε),
then equation (8) can be transformed into (9) and

qn+1 = q2
n, an+1 = an + qn+1, rn+1 =

2 + qn
2− qn

rn + qn+1 .

The quasi-periodic change of variables that performs this transformation is

xn = (I + εPn(t, ε))xn+1,(10)

where Pn(·, ε) is the (only) solution of

Ṗn = An(ε)Pn − PnAn(ε) +Qn(t, ε), Pn = 0,(11)

that belongs to Qd(ρ, ω). Moreover, ‖εPn(·, ε)‖ρ ≤ qn/2 < 1/2.

Remark 4.1. An, Qn, Rn, Pn, M , and λ
(n)
j depend on ε but, for simplicity, we

will not write this explicitly.
Proof of Lemma 4.4. Let us begin by studying the solutions of (11). Let Sn

be the matrix found in Lemma 4.2 with S−1
n AnSn = Dn = diag(λ

(n)
1 , . . . , λ

(n)
d ) and

C(Sn) ≤ 2. This lemma can be applied because

|An −D|∞ ≤ q∗an|ε| ≤ q∗ε∗ ≤ α

3d− 1
∀ |ε| ≤ ε∗.

Making the change of variables Pn = SnXnS
−1
n and defining Yn = S−1

n QnSn, equation
(11) becomes

Ẋn = DnXn −XnDn + Yn, Y n = 0.

Since Dn is a diagonal matrix, we can handle this equation as d2 unidimensional
equations, which can be easily solved by expanding in Fourier series. If Xn = (x`j,n)
and Yn = (y`j,n) with

x`j,n(t) =
∑
k∈Zr

0<|k|<M

xk`j,ne
i(k,ω)t, y`j,n(t) =

∑
k∈Zr

0<|k|<M

yk`j,ne
i(k,ω)t,

the coefficients must be

xk`j,n =
yk`j,n

λ
(n)
j − λ

(n)
` + i(k, ω)

,

and by hypothesis 3, they can be bounded by |xk`j,n| ≤ (L|ε|)−1|yk`j,n|, which implies

‖Pn‖ρ ≤ C(Sn)‖Xn‖ρ ≤ C(Sn)(L|ε|)−1‖Yn‖ρ ≤ C(Sn)2(L|ε|)−1‖Qn‖ρ
≤ 4(L|ε|)−1q∗qn ≤ |ε|−1 qn

2
.
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Hence ‖εPn‖ρ ≤ qn/2 < 1/2. Thus I + εPn is invertible and

‖(I + εPn)−1‖ρ ≤ 1

1− ‖εPn‖ρ < 2.

Now applying the change of (10) to (8) and defining Q∗n = ε(I+εPn)−1QnPn, An+1 =

An + εQ∗n, Qn+1 = (Q̃∗n)<M , and Rn+1 = (I + εPn)−1Rn(I + εPn) + (Q∗n)≥M , it is
easy to derive equation (9). Finally, we use Lemma 4.1 to bound the terms of this
equation:

‖Q∗n‖ρ ≤ ‖(I + εPn)−1‖ρ‖Qn‖ρ‖εPn‖ρ ≤ ‖Qn‖ρqn ≤ q∗q2
n = q∗qn+1,

‖Qn+1‖ρ ≤ ‖Q∗n‖ρ ≤ q∗qn+1,

|An+1 −D|∞ ≤ |An −D|∞ + |εQ∗n|∞ ≤ q∗(an + qn+1)|ε| = q∗an+1|ε|,
‖Rn+1‖ρ−δ ≤ 1 + ‖εPn‖ρ

1− ‖εPn‖ρ ‖Rn‖ρ−δ + ‖(Q∗n)≥M‖ρ−δ

≤
(

1 + qn/2

1− qn/2
rn + qn+1

)
q∗e−Mδ = q∗rn+1e

−Mδ ∀ δ ∈ ]0, ρ],

and the proof is complete.

5. Proof of Theorem 3.1. Let S be a regular matrix such that S−1AS = D =
diag(λ1, . . . , λd). We define ε∗, α, β, and m as in Theorem 3.1. We also define
q∗ = eβq, M = M(ε) = (m/|ε|)1/γ , and L = 8q∗.

The (constant) change x = Sx0 transforms the initial equation into

ẋ0 = (D + εQ∗(t, ε))x0,(12)

where Q∗ = S−1QS and so ‖Q∗‖ρ ≤ e−1q∗ for |ε| ≤ ε∗. We split equation (12) as
follows:

ẋ = (A0 + εQ0(t) + εR0(t))x0,

where A0 = D + εQ∗, Q0 = Q̃∗<M , and R0 = Q∗≥M . Using Lemma 4.1, it is easy to
see that

|A0 −D|∞ ≤ q∗a0|ε|, ‖Q0‖ρ ≤ q∗q0, ‖R0‖ρ−δ ≤ q∗r0e−Mδ

∀ δ ∈ ]0, ρ] and |ε| ≤ ε∗ if a0 = q0 = r0 = e−1.
We will show that in all of the steps, the hypotheses of Lemma 4.4 are satisfied.

Since hypothesis 1 and 2 are easy to check, we focus on hypothesis 3.
Now since an ≤ 1, |ε| ≤ ε∗, and |An − D|∞ ≤ q∗|ε| ≤ α/(3d− 1), Lemma 4.2

gives that

|α(n)
j` − αj`| < 2q∗|ε| ∀ j, `, |ε| ≤ ε∗,

where αj` = λj − λ` and α
(n)
j` = λ

(n)
j − λ

(n)
` , where λ

(n)
1 , . . . , λ

(n)
d are the eigenvalues

of An(ε).
Using hypothesis 3 of Theorem 3.1, we obtain that if k ∈ Zr and 0 < |k| < M(ε),

|α(n)
j` + i(k, ω)| ≥ |αj` + i(k, ω)| − |α(n)

j` − αj`| > c

|k|γ − 2q∗|ε|

>
( c

m
− 2q∗

)
|ε| = L|ε|,
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and hypothesis 3 of Lemma 4.4 is verified.
Consequently, the iterative process can be carried out and Lemma 4.3 ensures

the convergence of the process. The composition of all of the changes I + εPn is
convergent because ‖I + εPn‖ρ ≤ 1 + qn/2. Then the final equation is

ẋ∞ = (A∞(ε) + εR∞(t, ε))x∞, |ε| ≤ ε∗,(13)

where |A∞(ε)−D|∞ ≤ q∗a∞|ε| ≤ (eβ/(e− 1))q|ε| and

‖R∞(·, ε)‖ρ−δ ≤ q∗r∞e−M(ε)δ ≤ e2β

e− 1
q exp

{
−
(
m

|ε|
)1/γ

δ

}
∀ δ ∈ ]0, ρ].

To complete the proof, the change x∞ = S−1y transforms equation (13) into equation
(7) with the bounds that we were looking for.

6. An example. The results of this paper can be applied in many ways accord-
ing to the kind of problem we are interested in. Let us illustrate this with the help of
an example.

Let us consider the equation

ẍ+ (1 + εq(t))x = 0,(14)

where q(t) = cos(ω1t)+ cos(ω2t) with ω1 =
√

2 and ω2 =
√

3. Defining y as ẋ, we can
rewrite (14) as (

ẋ
ẏ

)
=

[(
0 1

−1 0

)
+ ε

(
0 0

−q(t) 0

)](
x
y

)
.(15)

Since λ1,2 = ±i, the diophantine condition (6) is satisfied for γ = 1 (because the
frequencies are quadratic irrationals). The value of c will be discussed later. For the
sake of simplicity, let us take ρ = 2 and δ = 1. This implies that q = ‖Q‖ρ = 2e2.
It is not difficult to derive β = 2 and, finally, ε∗ = 4.9787 . . . × 10−3 and r∗ =
2.5419 . . .× 102.

The value of c might be calculated for all k = (k1, k2), but better (larger) values
can be used since we need to consider |k| only up to a finite order. For instance, an
easy computation shows that for |k| ≤ 125, c is 0.149. If |k| = 126, then c must be
at most 0.013 due to the quasi resonance produced by k = (70,−56). In the range
126 ≤ |k| ≤ 105, there are no more relevant resonances, so the value c = 0.013 suffices.

To begin our discussion, let us suppose that the value of ε in (15) is ε = 2×10−6.
If we take c = 0.149, we obtain that m = 1.8545 . . . × 10−4 and M = 93. (Recall
that the process cancels frequencies such that |k| < M(ε).) If the value of M had
been larger than 125, we would have used the value c = 0.013 instead. Therefore,
we can reduce the system to constant coefficients with a remainder R∗ such that
‖R∗‖ρ−1 < 10−37.

If the given value of ε is smaller—for instance, ε = 10−7—the computed value
of M if c = 0.149 is 1855, so c = 0.013 must be used. This produces M = 162 and
‖R∗‖ρ−1 < 10−67. A value of ε = 5 × 10−8 implies that M = 324 and ‖R∗‖ρ−1 <
10−138. The computation of the reduced matrix as well as the quasi-periodic change
of variables will be discussed below.

Another interesting problem is the study of reducibility for a value of ε larger
than the ε∗ given above. Let us continue working with the same equation but with
ε = 0.1 as our example.
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To increase the value of ε∗, one may try to rewrite the proof using optimal bounds
at each step. This has not been done here in order to get an easy, clean, and short
proof. Instead of doing this, we think that it is much better to rewrite the proof for
our example using no bounds but exact values. This will produce the best results for
this problem.

For that purpose, we have implemented the algorithm used in the proof of the
theorem as a C program for a (given) fixed value of ε. The program computes and
performs a finite number of the changes of variables used to prove the theorem. As
a result, the reduced system (including the remainder) as well as the final change of
variables are written.

To simplify and make the program more efficient, all of the coefficients have been
stored as double-precision variables. During all of the operations, all of the coefficients
less than 10−20 have been dropped in order to control the size of the Fourier series
that appears during the process. Of course, this introduces some (small) numerical
error in the results.1

After four changes of variables, (15) is transformed into(
ẋ
ẏ

)
=

[(
0.0 b12
b21 0.0

)
+R(t)

](
x
y

)
,(16)

where b12 = 1.000000366251255 and b21 = −0.992421151834871. The remainder R
is very small: the largest coefficient it contains is less than 10−16. Note that the
accuracy (relative error) of this remainder is very poor due to the use of double-
precision arithmetic (15–16 digits) for the coefficients. During the computations, M
has not been given a value. Instead, we have tried to cancel all the frequencies with
amplitude larger than 10−16. (It turns out from the computations that all of these
frequencies satisfy |k| ≤ 20.) It is also possible to obtain a better accuracy in the
result, using a multiple-precision arithmetic.

Finally, to check the software, we have tabulated a solution of (16) for a timespan
of 10 time units. We have transformed this table by means of the (quasi-periodic)
change of variables given by the program. Then we have taken the first point of
the transformed table as initial condition of (15) to produce (by means of numerical
integration) a new table. The differences between these two tables are less than 10−13,
as expected.

Therefore, for practical purposes, this is an “effective” Floquet theorem in the
sense that it allows to compute the reduced matrix as well as the change of variables
with the usual accuracy used in numerical computations.

Acknowledgments. The authors want to thank C. Bonet and C. Simó for
fruitful discussions and remarks.
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188 ÀNGEL JORBA, RAFAEL RAMÍREZ-ROS, AND JORDI VILLANUEVA

[4] E. I. Dinaburg and J. G. Sinai, The one-dimensional Schrödinger equation with quasiperiodic
potential, Funct. Anal. Appl., 9 (1975), pp. 8–21.

[5] L. H. Eliasson, Floquet solutions for the 1-dimensional quasi-periodic Schrödinger equation,
Comm. Math. Phys., 146 (1992), pp. 447–482.

[6] A. M. Fink, Almost Periodic Differential Equations, Lecture Notes in Math. 377, Springer-
Verlag, Berlin, 1974.

[7] R. A. Johnson and G. R. Sell, Smoothness of spectral subbundles and reducibility of quasi-
periodic linear differential systems, J. Differential Equations, 41 (1981), pp. 262–288.
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[9] A. Jorba and C. Simó, On quasi-periodic perturbations of elliptic equilibrium points, SIAM
J. Math. Anal., 27 (1996), pp. 1704–1737.

[10] J. Moser and J. Pöschel, On the stationary Schrödinger equation with a quasiperiodic po-
tential, Phys. A, 124 (1984), pp. 535–542.
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Abstract. Using functional norms Lα(f), we introduce a two-parameter norm family L(α,β)(f)
by performing sections on the definition domain of f . These norms are used on the difference

function f(x)−f(y) to obtain the operators S
(α,β)
τ (f) which measure the irregularity of f . The order

of growth of S
(α,β)
τ (f) at 0 determines an irregularity index ∆(α,β)(f). In particular, ∆(∞,1)(f)

is the fractal dimension of the graph of f . We investigate the value of ∆(α,β)(f) for the series
f(x) =

∑∞
n=0

2−nH g(2n x + φn), where 0 < H < 1, (φn) is a real-number sequence, and g is a
continuous periodic function of period 1.

Key words. norm, fractal dimension, functional norm, oscillation, irregular function
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1. Introduction. In signal analysis, typical data sets can be represented by
irregular functions. There are many ways to give a mathematical meaning to the
word “irregular.” For example, we can say that a function is irregular if it is nowhere
differentiable. However, this criterion does not allow us to compare the irregularities
of two functions. We can define the irregularity degree of a function f defined in
a domain D of RN by evaluating the fractal dimension of its graph Gf . For this
evaluation, the procedure described in [11] has been used in many further studies of
profiles or surfaces [4, 10]. It consists of calculating for every x ∈ D and every τ > 0
the oscillation of f over the ball Bτ (x), that is, the difference betwen the supremum
and minimum of f(y) for ‖x − y‖ ≤ τ . The arithmetic mean of these oscillations
over D is a function of τ , called the τ -variation Vτ of f . When τ tends to 0, the order
of growth of Vτ is directly related to the graph dimension (in the sense of Minkowski
and Bouligand), which we denote by Dim(Gf ).

Many functions other than Vτ may be used to characterize the irregularity of f .
As a general rule, we first perform a local analysis of the irregularity on the ball Bτ (x)
and then use an averaging process over D to obtain some global measure. A number
of researchers prefer to discard the oscillation measurements since the extremal values
of a signal may be too sensitive to errors in the data acquisition. They may instead
choose an average of the differences |f(x) − f(y)| in the neighborhood of x. If we
choose, for example, to perform a quadratic mean both locally (over Bτ (x)) and
globally (over D), we obtain the standard deviation of |f(x) − f(y)| over the whole
definition domain, that is, Dτ = {(x, y) ∈ R2N / x ∈ D, ‖x−y‖ ≤ τ}. In this analysis,
the behavior of the function√√√√ 1

(2τ)N VolN (D)

∫
D

(∫
Bτ (x)

|f(x)− f(y)|2 dy
)
dx

at τ = 0 is used to characterize the irregularity of f .
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One of our aims is to gather various such irregularity functions into the same
family and to find their relationships. To achieve this goal, the seminorms Lα, α ≥ 1,
are introduced in section 2. By using cross-sections of the definition domain D of f ,
we show in section 3 how to construct a doubly indexed family L(α,β) of seminorms
for α ∈ [1,+∞] and β ∈ [1,+∞]. Then in section 4, we define our general irregularity

functions S
(α,β)
τ (f). For example,

S(α,α)
τ (f) =

(
1

Vol2N (Dτ )

∫
Dτ
|f(x)− f(y)|α dy dx

) 1
α

.

The case where α = β = 2 corresponds to the standard deviation. Another example
is

S(∞,1)
τ (f) =

1

VolN (D)

∫
D

(
sup

y∈Bτ (x)

|f(x)− f(y)|
)
dx,

a function equivalent to the variation of f . Also,

S(∞,∞)
τ (f) = sup

(x,y)∈Dτ
|f(x)− f(y)|

is the maximum oscillation of f over D.

We study the main properties of the operators S
(α,β)
τ and show that they are

continuous and increasing with respect to each of the variables α and β. For each of
them, we introduce in section 5 an irregularity index as follows:

∆(α,β)(f) = lim sup
τ→0

(
N + 1− log S

(α,β)
τ (f)

log τ

)
.

The special case ∆(∞,1)(f) gives the dimension of the graph of f , but all of these
indices are interesting in themselves for the characterization of irregularities. For
differentiable functions, they all have the same value N . For many fractal functions,
they still take a common value larger than N . However, they are not identical in

general since for some f , the irregularity functions S
(α,β)
τ (f) are not equivalent near 0.

We show that ∆(α,β)(f) as a function of α and β is increasing on [1,+∞] × [1,+∞]
and continuous on [1,+∞) × [1,+∞). Finally, in section 6, we study a well-known
family of nowhere-differentiable functions defined by the series

f(x) =

+∞∑
n=0

2−nHg(2nx+ φn),

where 0 < H < 1, φn ∈ R, and g is continuous and periodic with period 1. To simplify
the arguments, we consider only the functions g that verify the extra property

g(x) + g

(
x+

1

2

)
= constant.

Particular cases of such functions f are the Weierstrass and the Knopp–Takagi func-
tions. We give the conditions on g so that our irregularity indices ∆(α,β)(f) all take the
same value 2−H (for the same subject in a slightly different setting, see, e.g., [8, 1]).
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We also show that for other fuctions g, the indices may take a common value different
from 2−H or even take values that depend on the pair (α, β).

One application of this paper consists of providing approximations of the dimen-
sion Dim(Gf ) using other indices that may be more robust numerically. However,
our aim is really to exhibit a full range of irregularity indices and to show their re-
lationships in order to give the necessary theoretical support to their experimental
utilization.

2. (α) seminorms.

2.1. Definitions. Let D be a measurable set in RN , N ≥ 2, and VolN (D) be its
N -dimensional Lebesgue measure. We assume that 0 < VolN (D) < +∞. Let Mb(D)
be the set of all bounded, measurable functions f : D −→ R. For each f ∈ Mb(D)
and for each α > 0, let us define the following multiple integral:

Lα(f ; D) =

(
1

VolN (D)

∫
D

|f(x)|α dx
)1/α

,(1)

where x = (x1, . . . , xN ). If α ≥ 1, Lα is a seminorm on Mb(D). The extra term
1/VolN (D) constitutes a slight change with respect to the classical seminorm defini-
tion. Its introduction allows us to consider Lα as an average and implies that Lα(f ; D)
is increasing with respect to α (see Theorem 2.1 below), a crucial property in this
paper.

We complete (1) with the standard definition of the seminorm L∞, the essential
supremum of f over its definition domain:

L∞(f ; D) = ess supx∈D|f(x)|.(2)

For fixed D and f , Lα(f ; D) may be considered as a function of the variable α defined
on ]0,+∞], the set of positive, nonzero, real numbers completed with +∞. This will
allow us in section 2.3 to consider the continuity of Lα at +∞.

2.2. Seminorms on the cross-sections. Let N ≥ 2. We may also define the
(α) seminorms of f when restricted to a cross-section of D by a hyperplane.

Given k < N and t = (t1, . . . , tk), a point of the projection of D on Rk, we denote
by

D(t) = D ∩ {{t} ×RN−k}(3)

the cross-section of D by the hyperplane of equations x1 = t1, . . . , xk = tk. Let us
consider D(t) as a subset of RN−k and assume that 0 < VolN−k(D(t)) < +∞. Then
for all α > 0, we define

Lα(f ; D(t)) =

(
1

VolN−k(D(t))

∫
D(t)

|f(x)|α dxk+1 · · · dxN
)1/α

,(4)

where x = (t1, . . . , tk, xk+1, . . . , xN ). Also,

L∞(f ; D(t)) = ess supx∈D(t) |f(x)|.(5)
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2.3. Properties. Let us enumerate some fundamental properties of the operator
Lα(f ; D). They are verified by Lα(f ; D(t)) as well. The first three characterize a
seminorm.

Theorem 2.1. The operators Lα have the following properties:
1. Lα(f ; D) = 0 ⇐⇒ f(x) = 0 almost everywhere on D.
2. For every a, Lα(a f ; D) = |a|Lα(f ; D).
3. If f1, f2 ∈Mb(D) and α ∈ [1,+∞], then

Lα(f1 + f2; D) ≤ Lα(f1; D) + Lα(f2; D).(6)

This is the triangular inequality associated with the Minkowski inequality for finite
sums.

4. If f1, f2 ∈Mb(D) and if f1(x) ≤ f2(x) almost everywhere on D, then

Lα(f1; D) ≤ Lα(f2; D).(7)

5. Fix f ∈ Mb(D). Then Lα(f ; D) is a continuous, increasing function of α
on ]0,+∞].

6. For all α, β ∈ ]0,+∞],

Lα(|f |β ; D) = (Lαβ(f ; D))β .(8)

7. For all α ∈ ]0,+∞], β ∈ ]0,+∞], and β ≤ α,

Lβ(f ; D) ≤ Lα(f ; D) ≤ (Lβ(f ; D))
β
α (L∞(f ; D))1−

β
α .(9)

The proof of formula (9) uses the inequality∫
D

|f(x)|α dx ≤
(∫

D

|f(x)|β dx
)

ess supD|f(x)|α−β ,

which is true when β ≤ α. The proof of the other properties uses classical arguments
and they are left to the reader.

3. (α, β) seminorms.

3.1. Definitions. Let k be an integer, 1 ≤ k < N , and D be a measurable subset
of RN with the following two properties:

(i) 0 < VolN (D) < +∞.
(ii) If E is the orthogonal projection of D over Rk, then for all t ∈ E,

0 < VolN−k(D(t)) < +∞.

The cross-section D(t) is defined in section 2.2. We remark that Volk(E) > 0. An
example of such a set D is any bounded, open set in RN . Another example will be
presented in section 4.1. The two conditions above allow us to calculate the seminorms
of f over all cross-sections of D using formula (4).

Given f ∈ Mb(D), we may evaluate Lα(f ; D(t)) for all t ∈ E. The result is a
function of t. We may evaluate the seminorm of this function as well. We finally
obtain two-parameter operators as follows:

L(α,β)(f ; D) = Lβ(Lα(f ; D(t));E),(10)

where (α, β) ∈ ]0,+∞]× ]0,+∞]. As a particular case,

L(∞,∞)(f ; D) = L∞(f ; D) = ess supD|f(x)|.(11)
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3.2. Properties. The following is a direct consequence of Theorem 2.1.
Theorem 3.1. The operators L(α,β) have the following properties:

1. L(α,β)(f ; D) = 0 ⇐⇒ f(x) = 0 almost everywhere on D.
2. For all a, L(α,β)(a f ; D) = |a| L(α,β)(f ; D).
3. If f1, f2 ∈Mb(D) and α ∈ [1,+∞], β ∈ [1,+∞], then

L(α,β)(f1 + f2; D) ≤ L(α,β)(f1; D) + L(α,β)(f2; D).(12)

These three properties prove that L(α,β) is a seminorm for (α, β) ∈ [1,+∞] ×
[1,+∞].

4. If f ∈Mb(D) is fixed, then L(α,β)(f ; D) is a continuous, increasing function
of α and β on ]0,+∞]× ]0,+∞].

5. Let us fix D and f ∈Mb(D) and write

L(α,β)(f ; D) = L(α,β), L(∞,∞)(f ; D) = ‖f‖

for simplicity. Given real numbers α, β, γ, and δ in ]0,+∞), we seek relationships
between L(α,β) and L(γ,δ). Here are some inequalities:

If γ ≤ α,

L(γ,β) ≤ L(α,β) ≤
(
L(γ, βγα )

) γ
α ‖f‖1− γ

α .(13)

If δ ≤ β,

L(α,δ) ≤ L(α,β) ≤
(
L(α,δ)

) δ
β ‖f‖1− δ

β .(14)

If γ ≤ α and δ ≤ β,

L(γ,δ) ≤ L(α,β) ≤
(
L(γ, γδα )

) γδ
αβ ‖f‖1− γδ

αβ .(15)

Finally, if γ ≤ α and β ≤ δ,

L(γ,δ) ≤
(
L(α,β)

) β
δ ‖f‖1− β

δ ≤
(
L(γ, γδα )

) βγ
αδ ‖f‖1− βγ

αδ .(16)

Inequalities corresponding to the cases where α ≤ γ, δ ≤ β and α ≤ γ, β ≤ δ are
deduced from (15) and (16) by a change of variables.

6. For a fixed f ∈Mb(D), L(α,β)(f ; D) is continuous on ]0,+∞]× ]0,+∞].
Proof. Let us prove (13). The first inequality comes from the monotonicity of

L(α,β). The second is obtained by using (9). For all t ∈ E,

Lα(f ; D(t)) ≤ (Lγ(f ; D(t)))
γ
α (L∞(f ; D(t)))1−

γ
α .

Also, L∞(f ; D(t)) ≤ ‖f‖. Now using the seminorm Lβ , we get

Lβ(Lα(f ; D(t));E) ≤ Lβ((Lγ(f ; D(t)))
γ
α ;E) ‖f‖1− γ

α .

From (8), the right-hand side member of the above equation is simply

L
βγ
α (Lγ(f ; D(t));E)

γ
α ‖f‖1− γ

α .
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Hence we have formula (13).
For (14), use (9). For all g ∈Mb(E),

Lδ(g;E) ≤ Lβ(g;E) ≤ (Lδ(g;E))
δ
β (L∞(g;E))1−

δ
β .

Then replace g(t) by Lα(f ; D(t))).
Formulas (15) and (16) are obtained from (13) and (14). We may notice that

formulas (13)–(16) are all consequences of (9). We could get other formulas by instead
using the Hölder inequality for integrals.

For the continuity of L(α,β)(f ; D), α <∞, use (13) to get

L(γ,β) ≤ L(α,β) ≤ (L(γ,β))
γ
α ‖f‖1− γ

α .(17)

This implies that

lim
γ→α,γ<α

L(γ,β) = L(α,β).

This helps us to prove continuity on the left of α and on the right of γ.
Finally, use the Lebesgue convergence theorem to prove continuity at α = ∞.
The other elements of the proof are left to the reader.

4. Norms for the difference function.

4.1. Difference function. Given a measurable subset D ⊂ RN and a noncon-
stant function f ∈Mb(D), the difference function is defined as

F (x, y) = f(x)− f(y).(18)

Its definition domain is D×D ⊂ R2N , but we are only interested in values of F for x
and y close to each other. Only these values can help measure the irregularity of f .

Here are some notations:
If x = (x1, . . . , xN ) is in RN , then ‖x‖ = max1≤i≤N |xi| is the norm of the

maximum of x.
τ0 is a fixed real number > 0 and τ is a parameter in ]0, τ0].
Bτ (x) is the ball of center x and radius τ :

Bτ (x) = {y / ‖x− y‖ ≤ τ}.

Its volume is (2τ)N .
D is a compact subset of RN such that VolN (D) > 0.
D(τ) is the τ -Minkowski sausage of D, the compact set

D(τ) = ∪x∈DBτ (x)

of all points in RN at a distance ≤ τ from D.
Dτ is the compact set

Dτ = {(x, y) ∈ R2N / x ∈ D, ‖x− y‖ ≤ τ}.(19)

It is included in D×D(τ). For all x ∈ D, its x-cross-section is D
(x)
τ (see equation (3)),

identified here with Bτ (x). We may write

Dτ = ∪x∈D{x} ×Bτ (x).
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This set verifies the two conditions stated in section 3.1. It is therefore possible to
calculate the operators L(α,β) of a function defined on Dτ .

C(D) is the set of all continuous functions defined on D. Then C(D) ⊂Mb(D).
Henceforth, let us assume that the function f is in C(D(τ0)). Therefore, F ∈ C(Dτ )

for all τ ≤ τ0. The continuity assumption helps us to simplify the vocabulary. For
example, the seminorm ess sup(f) is the same as the norm sup(f). The seminorms
Lα, α ≥ 1, and L(α,β), (α, β) ∈ [1,+∞]× [1,+∞], become norms as well.

One method for measuring the local irregularity of f consists of evaluating the

(α) norm of the difference function F (x, y) over the cross-section D(x)
τ . The result is a

function of x since the local irregularity may vary on D. We get a global measure of the
irregularity by calculating the (β) norm of this function. The final result is denoted

by S
(α,β)
τ (f), or S

(α,β)
τ when there is no ambiguity. For all (α, β) ∈ ]0,+∞]× ]0,+∞],

we have

S(α,β)
τ (f) = L(α,β)(F ;Dτ ) = Lβ(Lα(F ;D(x)

τ ); D).(20)

When 0 < α < +∞ and 0 < β < +∞, this gives

S(α,β)
τ (f) =

 1

(2τ)
Nβ
α VolN (D)

∫
D

(∫
Bτ (x)

|f(x)− f(y)|α dy
) β

α

dx


1
β

.(21)

4.2. Particular cases.
1. If α = 1 and β = 1,

S(1,1)
τ (f) =

1

VolN (D) (2τ)N

∫
D

∫
Bτ (x)

|f(x)− f(y)| dy dx.(22)

This is the arithmetic mean of all values |f(x)− f(y)| over Dτ .
2. If α = 1 and β = ∞,

S(1,∞)
τ (f) = (2τ)−N sup

x∈D

(∫
Bτ (x)

|f(x)− f(y)| dy
)
.(23)

In this formula, the local arithmetic mean of values |f(x) − f(y)| is evaluated first;
then the supremum is taken over x.

3. If α = ∞ and β = 1,

S(∞,1)
τ (f) =

1

VolN (D)

∫
D

(
sup

y∈Bτ (x)

|f(x)− f(y)|
)
dx.(24)

For every x, the largest distance between f(x) and f(y) is calculated for y near x.
This gives an evaluation of the oscillation of f at x. Then the arithmetic mean of
oscillations is taken over D. The usual definition for the τ -oscillations of f at x is as
follows:

oscτ (f ;x) = sup { f(y)− f(y′) / ‖x− y‖ ≤ τ, ‖x− y′‖ ≤ τ} .
Using the triangle inequality, we get

1

2
oscτ (f ;x) ≤ sup

y∈Bτ (x)

|f(x)− f(y)| ≤ oscτ (f ;x).(25)
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The integral of τ -oscillations has been studied in [11, 3, 4] and in a number of subse-
quent publications under the name of the τ -variation of f :

Vτ (f) =

∫
D

oscτ (f ;x) dx.(26)

From (24), (25), and (26), we deduce that S
(∞,1)
τ (f) is equivalent as τ tends to 0 to

the τ -variation:

1

2VolN (D)
Vτ (f) ≤ S(∞,1)

τ (f) ≤ 1

VolN (D)
Vτ (f).(27)

We will see (equation (42)) how the order of growth to 0 of Vτ is directly related to

the fractal dimension of the graph of f . The same relationship stands for S
(∞,1)
τ .

4. If α = β = +∞,

S(∞,∞)
τ (f) = sup

x∈D

(
sup

y∈Bτ (x)

|f(x)− f(y)|
)

= sup
(x,y)∈Dτ

|f(x)− f(y)|.(28)

This is the maximum τ -oscillation of f over D.
5. If 0 < α = β < +∞,

S(α,α)
τ (f) =

(
1

Vol2N (Dτ )

∫
Dτ
|f(x)− f(y)|α dy dx

) 1
α

.(29)

This may be written as

S(α,α)
τ (f) = Lα(F ;Dτ ).(30)

Formula (29) is a continuous form of the discrete Kolmogorov means 2

n(n+ 1)

n∑
1≤j<i

|xi − xj |α
 1

α

,

where x1, . . . , xn are n real numbers. These mean values lead to the notion of transfi-
nite diameter (in the sense of Pólya and Szegö). For a full account of these diameters,
see [6].

When α = 2, formula (29) is a standard deviation between f(x) and f(y) values
over the domain Dτ .

4.3. Properties. Recall that f belongs to C(D(τ0)), α ∈ ]0,+∞], and β ∈
]0,+∞]. Properties 1–5 of S

(α,β)
τ come directly from those of L(α,β) (section 3.2).

We will give a proof only for property 6. In the particular case of the variation Vτ ,
properties 1–3 (which characterize a norm) can be found in [12].

Theorem 4.1. The operators S
(α,β)
τ have the following properties:

1. S
(α,β)
τ (f) = 0 ⇐⇒ f is constant over D.

2. For all a, S
(α,β)
τ (a f) = |a| S(α,β)

τ (f).
3. If f1, f2 ∈ C(D(τ0)), α ∈ [1,+∞], and β ∈ [1,+∞], then

S(α,β)
τ (f1 + f2) ≤ S(α,β)

τ (f1) + S(α,β)
τ (f2).(31)
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4. Let us fix f ∈ C(D(τ0)). S
(α,β)
τ (f) is an increasing and continuous function

with respect to the variables α and β over ]0,+∞].

5. Inequalities (13)–(16) are still true if we replace L(α,β) by S
(α,β)
τ (f) and ‖f‖

by S
(∞,∞)
τ . We do not present these new formulas.
6. For all (α, β) ∈ ]0,+∞]× ]0,+∞],

lim
τ→0

S(α,β)
τ (f) = 0.(32)

Proof. Since f is uniformly continuous over the compact set D(τ0), the function
supDτ |f(x)− f(y)| tends to 0 with τ . Hence (32) is true for α = β = +∞. When α

and β are real numbers, use the inequality S
(α,β)
τ (f) ≤ S

(∞,∞)
τ (f).

4.4. Behavior in the neighborhood of 0. When τ tends to 0, the order of

growth of S
(α,β)
τ (f) depends on f , α and β. If the domain D is convex, and α ≥ 1,

β ≥ 1, then we may show that this function does not tend to 0 faster than τ .
Theorem 4.2. Let D be a compact, convex subset of RN , τ0 > 0 be a real

number, and f be defined, continuous on D(τ0), and nonconstant on D. We can find
a constant c > 0 (depending only on D and f) such that for all (α, β) ∈ [1,+∞] ×
[1,+∞],

lim inf
τ→0

1

τ
S(α,β)
τ (f) ≥ c.(33)

Since S
(α,β)
τ (f) is increasing with respect to α and β (property 4 of Theorem 4.1),

it suffices to verify (33) when α = β = 1.
Since f is uniformly continuous over the compact set D(τ0), for all ε > 0, there

exists τ1(ε) > 0, smaller than τ0, such that

τ ≤ τ1(ε) =⇒ ∀x ∈ D, ∀y ∈ Bτ (x) : |f(x)− f(y)| ≤ ε.(34)

To prove the theorem, we will find two real numbers c1 > 0 and c2 such that

τ ≤ τ1(ε) =⇒
∫
Dτ
|f(x)− f(y)| dx dy ≥ (c1 − ε c2) τ

N+1.(35)

Using (22), the constant c of formula (33) is then equal to

c =
c1

2N VolN (D)
.

The cases where N = 1 and N ≥ 2 are studied separately.
Proof for N = 1. D is a closed interval [a, b] on the line and f is defined and

continuous on [a− τ0, b+ τ0]. Let

c1 = sup
x∈[a,b]

f(x)− inf
x∈[a,b]

f(x).

This number is strictly positive. There exist two points y1 < y2 of [a, b] such that

|f(y1)− f(y2)| = c1.

We can write∫
Dτ
|f(x)− f(y)| dx dy =

∫ τ

−τ

(∫ b

a

|f(x)− f(x+ u)| dx
)
du,
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where ∫ b

a

|f(x)− f(x+ u)| dx ≥
∣∣∣∣∫ y2

y1

(f(x)− f(x+ u)) dx

∣∣∣∣
=

∣∣∣∣∫ y1+u

y1

f(x) dx−
∫ y2+u

y2

f(x) dx

∣∣∣∣ .
Since the inequality | ∫ y1+u

y1
f(x) dx− u f(y1)| ≤ u ε is also valid near y2, we get

∫ b

a

|f(x)− f(x+ u)| dx ≥ u(c1 − 2 ε).(36)

Finally, by integrating with respect to u on [−τ, τ ],∫
Dτ
|f(x)− f(y)| dx dy ≥ (c1 − 2 ε)τ2.

This is formula (35), with N = 1, c1 = supx∈[a,b] f(x) − infx∈[a,b] f(x), and c2 = 2.
The constant c of Theorem 4.2 is

c =
1

2(b− a)

(
sup

x∈[a,b]

f(x)− inf
x∈[a,b]

f(x)

)
.

Proof for N ≥ 2. Let us use the Euclidean norm, defined as

‖(x1, . . . , xN‖2 =
√
x2

1 + · · ·+ x2
N .

The Euclidean ball of center x and radius τ is denoted by B
(2)
τ (x). When x ∈ D, this

ball is included in D(τ). To obtain (35), it suffices to find c1 and c2 such that

τ ≤ τ1(ε) =⇒
∫

D

∫
B

(2)
τ (0)

|f(x)− f(x+ u)| du dx ≥ (c1 − ε c2) τ
N+1(37)

with τ1(ε) as in (34).
For any u in RN , let us use the spherical coordinates u = (ρ, θ), where ρ =

‖u‖2 ≥ 0 and θ = (θ1, . . . , θN−1) belongs to a Cartesian product of intervals denoted
by Θ. The Jacobian of the change of coordinates from Cartesian to spherical is
J(θ) = ρN−1 a(θ) with a(θ) > 0 almost everywhere on Θ. The integral

∫
Θ
a(θ) dθ is

equal to 2N−1π. It is the (N − 1)-dimensional volume of the boundary of the unit

ball B
(2)
1 (0). Define

I(u) =

∫
D

|f(x)− f(x+ u)| dx.

The proof is in two parts:
(a) We will first show that there exist two positive functions c1(θ) and c2(θ)

defined on Θ such that∫
Θ

c1(θ) a(θ) dθ > 0,

∫
Θ

c2(θ) a(θ) dθ < +∞,(38)
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D(t, θ)

D

x1

x2

θ

tE(θ)

Fig. 1. The projection E(θ) and the line D(t, θ) in the case where N = 2.

and for all u = (ρ, θ),

I(u) ≥ ρ(c1(θ)− ε c2(θ)).(39)

Let us fix u, such that ρ 6= 0. Let us denote the following:
P (θ) is the hyperplane passing through 0 perpendicular to u.
E(θ) is the orthogonal projection of D over P (θ).
For all t ∈ E(θ), D(t, θ) is the line passing through t, parallel to u. Since D is

convex, the intersection of the line with D is a segment. (See Figure 1.)
c(t, θ) = supx∈D∩D(t,θ) f(x)− infx∈D∩D(t,θ) f(x) is the total oscillation of f on D∩

D(t, θ). It is a continuous function of (t, θ).
Using a linear, orthogonal change of variables, we can use the case where N = 1

and (36) to get ∫
D(t,θ)

|f(x)− f(x+ u)| dx ≥ ρ(c(t, θ)− 2ε).

Integrating with respect to t over E(θ),

I(u) ≥ ρ

(∫
E(θ)

c(t, θ) dt− 2 εVolN−1(E(θ))

)
.

This proves (39) with

c1(θ) =

∫
E(θ)

c(t, θ) dt(40)
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and

c2(θ) = 2 VolN−1(E(θ)).

Let us now verify the inequalities in (38). Since f is nonconstant over D, there
exists a pair (t0, θ0) such that c(t0, θ0) > 0. By continuity, c(t, θ) is strictly positive in
a neighborhood of (t0, θ0). Also, a(θ) is positive, continuous, and almost everywhere
nonzero. This implies ∫

Θ

∫
E(θ)

c(t, θ) a(θ) dt dθ > 0.

Hence the first inequality stands. The second follows from the boundedness of D.
(b) Now we use (39) to prove (37)∫

D

∫
B

(2)
τ (0)

|f(x)− f(x+ u)| du dx

≥
∫
B

(2)
τ (0)

ρ(c1(θ)− ε c2(θ)) J(θ) dθ dρ

=

∫ τ

0

ρN dρ

∫
Θ

(c1(θ)− ε c2(θ)) a(θ) dθ

=
τN+1

N + 1

(∫
Θ

c1(θ) a(θ) dθ − ε

∫
Θ

c2(θ) a(θ) dθ

)
.

To obtain (37), it suffices to choose

c1 =
1

N + 1

∫
Θ

c1(θ) a(θ) dθ, c2 =
1

N + 1

∫
Θ

c2(θ) a(θ) dθ.

From (38), we know that c1 > 0 and c2 < +∞. The constant c of Theorem 4.2 is

c =
1

(N + 1)2NVolN (D)

∫
Θ

∫
E(θ)

c(t, θ) a(θ) dt dθ.(41)

5. Critical exponents.

5.1. Orders of growth to 0. We keep the notations of section 4. Let us consider
a nonconstant function f in C(D(τ0)). Its graph Gf over D is

Gf = {(x, f(x)) / x ∈ D} ⊂ RN+1.

When the variation Vτ (f) tends slowly to 0, Gf shows some irregularities at all scales.
Such a graph may be called a fractal in a weak sense [12]. Let us denote by Dim(Gf )
the fractal dimension. It is a global irregularity index which is in direct relationship
with the order of growth of Vτ (f) near 0 [11]. We get

Dim(Gf ) = lim sup
τ→0

(
N + 1− log Vτ (f)

log τ

)
.(42)

Using (27), this formula is still true after replacing Vτ (f) by S
(∞,1)
τ (f). Analoguously,

any of the functions S
(α,β)
τ (f) can measure the irregularity of f in a certain sense and

gives raise to an irregularity index as follows:

∆(α,β)(f) = lim sup
τ→0

(
N + 1− log S

(α,β)
τ (f)

log τ

)
.(43)

In this formula, S
(α,β)
τ (f) tends to 0 with τ (see (32)).
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5.2. Properties. The properties of operators S
(α,β)
τ have the following conse-

quences:
Theorem 5.1. Let D be a compact, convex subset of RN . The indices ∆(α,β)

have the following properties:
1. For all (α, β) ∈ [1,+∞]× [1,+∞],

N ≤ ∆(α,β)(f) ≤ N + 1.(44)

2. ∆(α,β)(f) is increasing with respect to each of the variables α and β.
3. Here are some relationships between ∆(α,β)(f) and ∆(γ,δ)(f) for all strictly

positive real numbers α, β, γ, and δ:
If γ ≤ α,

∆(γ,β)(f) ≤ ∆(α,β)(f) ≤ γ

α
∆(γ, βγα )(f) +

(
1− γ

α

)
∆(∞,∞)(f).(45)

If δ ≤ β,

∆(α,δ)(f) ≤ ∆(α,β)(f) ≤ δ

β
∆(α,δ)(f) +

(
1− δ

β

)
∆(∞,∞)(f).(46)

If γ ≤ α and δ ≤ β,

∆(γ,δ)(f) ≤ ∆(α,β)(f) ≤ γδ

αβ
∆(γ, γδα )(f) +

(
1− γδ

αβ

)
∆(∞,∞)(f).(47)

Finally, if γ ≤ α and β ≤ δ,

∆(γ,δ)(f) ≤ β

δ
∆(α,β)(f) +

(
1− β

δ

)
∆(∞,∞)(f)

≤ βγ

αδ
∆(γ, γδα )(f) +

(
1− βγ

αδ

)
∆(∞,∞)(f).(48)

4. If α, β, γ, and δ belong to [1,+∞),

|∆(α,β)(f)−∆(γ,δ)(f)| ≤ 1− min{α, γ}min{β, δ}
max{α, γ}max{β, δ} .(49)

In particular, this shows that ∆(α,β)(f) is continuous with respect to the two vari-
ables α and β over [1,+∞)× [1,+∞).

Proof.
(a) Let us verify (44). The right-hand side inequality comes from (32). For-

mula (33) implies

lim inf

(
N + 1− log S

(α,β)
τ (f)

log τ

)
≥ lim

(
N − log c

log τ

)
= N.

Therefore, ∆(α,β)(f) ≥ N .

(b) Since S
(α,β)
τ is increasing, so is ∆(α,β).

(c) Formulas (45)–(48) can be obtained from (13)–(16). Let us assume that τ < 1.
Formula (13) gives

− log S
(γ,β)
τ

log τ
≤ − log S

(α,β)
τ

log τ
≤ γ

α

− log S
(γ, βγα )
τ

log τ

+
(
1− γ

α

)(
− log S

(∞,∞)
τ

log τ

)
.
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Now use the inequality

lim sup
τ→0

(g1(τ) + g2(τ)) ≤ lim sup
τ→0

g1(τ) + lim sup
τ→0

g2(τ),

true for any g1 and g2, to get (45).

(d) Formula (49) is implied by the increasing property of ∆(α,β) and by formulas
(44), (47), and (48).

If γ ≤ α and δ ≤ β, (47) implies

0 ≤ ∆(α,β) −∆(γ,δ) ≤
(

1− γδ

αβ

)
(∆(∞,∞) −∆(γ,δ))

≤ 1− γδ

αβ
.

If γ ≤ α and β ≤ δ, (48) implies

0 ≤ ∆(α,β) −∆(γ,δ) +

(
1− β

γ

)
(∆(∞,∞) −∆(α,β))

≤
(

1− βγ

αδ

)
(∆(∞,∞) −∆(γ,δ)).

Since βγ/αδ ≤ β/δ, we get

|∆(α,β) −∆(γ,δ)| ≤ 1− βγ

αδ
.

Similar results are obtained in the other cases.

6. The study of a nowhere-differentiable function.

6.1. A function defined as a series. Let f be defined on R as follows:

f(x) =
+∞∑
n=0

2−nHg(2nx+ φn),(50)

where 0 < H < 1, φn are real numbers, and g is continuous and periodic with
periodicity 1. Then f has also period 1. In this series, amplitudes tend to 0 more
slowly than the periods and hence the local oscillations of f . The convergence is
absolute so that f is continuous. The phases φn are here only to help give a more
“natural” look to the graph of f for a model of a rough profile, for example [2].

It is well known that such functions are nowhere differentiable and that their graph
is a fractal curve. Following the choice of g, we can obtain by this method a Weierstrass
function or a Knopp–Takagi function (see [7] for some historical references; see also
[9]). When g shows some kind of regularity (when it is continuously differentiable,
for example), the fractal dimension of Gf is 2−H. Finding a general condition on g
in order to get this particular result is a difficult task. See, for example, [8]. In this
section, we will assume that g verifies one more condition to simplify the calculations

of S
(α,β)
τ (f). Using this assumption, we will be able to establish relationships between

∆(α,β)(f) and ∆(α,β)(g), and we will show how to get a fractal dimension different
from 2−H.
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6.1.1. Definition domain. Functions g and f are defined on R, but the do-
main D must be a compact set. We take D = [0, 1] and

Dτ = {(x, y) ∈ R2 / x ∈ [0, 1], ‖x− y‖ ≤ τ}.

6.1.2. Notations. Let f1(τ) and f2(τ) be two positive functions defined in a
neighborhood of 0 that tends to 0 with τ . We write

f1 ' f2 if 0 < lim inf
τ→0

f1(τ)

f2(τ)
≤ lim sup

τ→0

f1(τ)

f2(τ)
< +∞,

f1 � f2 if lim sup
τ→0

f1(τ)

f2(τ)
< +∞,

f1 ≺ f2 if lim
τ→0

f1(τ)

f2(τ)
= 0.

The symbols � and � denote the converse relations. We recall that f1 is Hölderian
with exponent H at x if |f1(x + τ) − f1(x)| � τH . When f1 is defined on D, it is
uniformly Hölderian with exponent H on D if there exists a constant C such that
for all x ∈ D and y ∈ D, |f1(x) − f1(y)| ≤ C|x − y|H . An equivalent condition is

S
(∞,∞)
τ (f1) � τH .

6.2. Function g(x). We assume that g verifies the following condition:

There exists a constant c such that for all x,

g(x) + g

(
x+

1

2

)
= c.(51)

This constant then is equal to g(0) + g(1/2) = 2
∫ 1

0
g(x) dx.

Function g is therefore completely determined on the interval [0, 1/2]. It may be
extended to ]1/2, 1] using (51) and then to R by periodicity.

6.2.1. Examples.

1. If g(x) = cos(2πx), f is a Weierstrass function (see Figure 2). Function g

is continuously differentiable, and for all α and β in [1,+∞], S
(α,β)
τ (g) ' τ in the

neighborhhood of 0.
2. If g(x) = 2x on [0, 1/2], f is a Knopp–Takagi function [7, 5] (see Figure

3). Function g is not everywhere differentiable but rather uniformly Hölderian with

exponent 1. For all α and β in [1,+∞], S
(α,β)
τ (g) ' τ .

3. If g(x) = xγ on [0, 1/2], 0 < γ < 1 (see Figure 4), the norms S
(α,β)
τ (g) tend

to 0 at a rate depending on β. Using the relation

(x+ τ)γ − xγ ' τxγ−1

when x 6= 0, we can show that

S(α,β)
τ (g) ' τmin{1,γ+1/β}.

This result does not depend on α.



204 CLAUDE TRICOT

-2

0

2

0.0 0.5 1.0

Fig. 2. A Weierstrass function with g(x) = cos(2πx), H = 1/2, and a sequence (φn) of random
numbers.

6.2.2. Properties. The periodicity of g implies the following.
Proposition 6.1. For all k ≥ 1, α ∈ [1,+∞], and β ∈ [1,+∞],

S(α,β)
τ (g(kx)) = S

(α,β)
kτ (g(x)).(52)

Proof. By continuity, it suffices to prove (52) for finite α and β. A change of
variables gives

S(α,β)
τ (g(kx))β =

1

(2kτ)
β
α

1

k

∫ k

0

(∫ kτ

−kτ
|g(y)− g(y + v)|α dv

) β
α

dy.

By periodicity,

S(α,β)
τ (g(kx))β =

1

(2kτ)
β
α

∫ 1

0

(∫ kτ

−kτ
|g(y)− g(y + v)|α dv

) β
α

dy,

which gives the result.
The periodicity of g and assumption (51) imply the following.
Proposition 6.2. Assume that the constant c in (51) is 0. For any integer n

and real numbers φ1 and φ2,∫ 1

0

g(2nx+ φ1)g(x+ φ2) dx = 0.(53)
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0

1

2

0.0 0.5 1.0

Fig. 3. A Knopp–Takagi function with g(x) = 2x on [0, 1/2], H = 1/2, and a sequence (φn) of
random numbers.

0

1

2

0.0 0.5 1.0

Fig. 4. Function f obtained with g(x) =
√
x on [0, 1/2], H = 1/2, and a sequence (φn) of

random numbers.
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Proof. The change of variables x = y + 1/2 gives∫ 1

1/2

g(2nx+ φ1)g(x+ φ2) dx =

∫ 1/2

0

g(2ny + φ1 + n)g

(
y + φ2 +

1

2

)
dy.

Since g(2ny + φ1 + n) = g(2ny + φ1) (periodicity) and g(y + φ2 + 1/2) = −g(y + φ2)
(assumption (51)), we find∫ 1

1/2

g(2nx+ φ1)g(x+ φ2) dx = −
∫ 1/2

0

g(2nx+ φ1)g(x+ φ2) dx.

Hence we have the result.

Corollary 6.3. Let n and k be two integers, 0 < k < n, and φ1 and φ2 be two
real numbers. Then∫

Dτ
(g(2nx+ φ1)− g(2ny + φ1))(g(2

kx+ φ2)− g(2ky + φ2)) dx dy = 0.(54)

Proof. Without loss of generality, we can asume that the constant c in (51) is 0.
Writing the integral as∫ τ

−τ

[∫ 1

0

(g(2nx+ φ1)g(2
kx+ φ2)

− g(2nx+ φ1)g(2
kx+ φ2 + 2ku)− g(2nx+ φ1 + 2nu)g(2kx+ φ2)

+ g(2nx+ φ1 + 2nu)g(2kx+ φ2 + 2ku)) dx

]
du,

we see that it suffices to verify the equality∫ 1

0

g(2nx+ φ1)g(2
kx+ φ2) dx = 0.

This last integral can be written as

2−k
∫ 2k

0

g(2n−ky + φ1)g(y + φ2) dy

or (by periodicity) ∫ 1

0

g(2n−ky + φ1)g(y + φ2) dy.

This is equal to zero (Proposition 6.2).

6.3. Evaluations of ∆(α,β)(f). The previous results will be used for the fol-
lowing.

Theorem 6.4. For every α ≥ 1, β ≥ 1, and f as in (50), we have

S(α,β)
τ (f) � τH .(55)
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Proof. It suffices to prove (55) for α = β = 1. We take a function h(x, y) defined
on R×R such that sup |h| ≤ 1. Let us denote by I the integral

∫
Dτ |f(x)−f(y)| dx dy.

Then

I ≥
∫
Dτ
|h(x, y)(f(x)− f(y))| dx dy

≥
∣∣∣∣∫Dτ h(x, y)(f(x)− f(y)) dx dy

∣∣∣∣
=

∣∣∣∣∣
+∞∑
0

2−nH
∫
Dτ

h(x, y)(g(2nx+ φn)− g(2ny + φn)) dx dy

∣∣∣∣∣ .
If In =

∫
Dτ h(x, y)(g(2nx+ φn)− g(2ny + φn)) dx dy,

I ≥
+∞∑
0

2−nHIn.

Let k be the integer such that

2−k−1 < τ ≤ 2−k

and

h(x, y) =
1

2 sup |g| (g(2
kx+ φk)− g(2ky + φk)).

The condition sup |h| ≤ 1 is fulfilled. From Corollary 6.3, In = 0 for all n 6= k. On
the other hand, √

1

τ
Ik ' S(2,2)

τ (g(2kx+ φk)).

Periodicity implies S
(2,2)
τ (g(2kx + φk)) = S

(2,2)
τ (g(2kx)). From (52), this is the value

of S
(2,2)

2kτ
(g). Since 2kτ ' 1, S

(2,2)

2kτ
(g) ' S

(2,2)
1 (g), a constant value. Therefore,√
1

τ
Ik ' 1.

We can deduce that Ik ' τ . Since 2−kH ' τH ,

I � τ1+H .

Finally,

S(1,1)
τ (f) � 1

τ
I � τH .

Corollary 6.5. Functions g and f being as before, we have for all α ≥ 1 and
β ≥ 1 that

∆(α,β)(f) ≥ 2−H.(56)

Now let us prove an inequality in the other sense.
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Theorem 6.6. If g is uniformly Hölderian with exponent 1, then f is uniformly
Holderian with exponent H.

Proof. Extending the Minkowski inequality to series, we write

S(∞,∞)
τ (f) = sup

Dτ
|f(x)− f(y)| ≤

∞∑
0

2−nH S(∞,∞)
τ (g(2nx+ φn)).

Let k be such that 2−k−1 < τ ≤ 2−k. Then

S
(∞,∞)
τ (g(2nx+ φn)) = S

(∞,∞)
τ (g(2nx)) by periodicity

= S
(∞,∞)
2nτ (g(x)) from (52)

�
{

2nτ if n ≤ k since g is Hölderian,
1 if n > k since g is periodic.

Therefore,

S(∞,∞)
τ (f) �

k∑
0

2−nH2nτ +
∞∑
k+1

2−nH

' τ2k(1−H) + 2−kH

' τH .

Corollary 6.7. If g is uniformly Hölderian with exponent 1, then for all α ≥ 1
and β ≥ 1,

∆(α,β)(f) ≤ 2−H.(57)

Notice that we have used the relation S
(∞,∞)
τ (g) � τ in the proof of Theorem 6.6.

Since H < 1, this theorem is a particular case of the following.

Theorem 6.8. Let α ∈ [1,∞], β ∈ [1,∞], and ω > 0 be such that S
(α,β)
τ (g) � τω.

Then
(i) If ω 6= H, S

(α,β)
τ (f) � τmin{H,ω}.

(ii) If ω = H, S
(α,β)
τ (f) � τH | log τ |.

Proof. Use the inequality

S(α,β)
τ (f) ≤

∞∑
0

2−nHS(α,β)
τ (g(2nx+ φn)),

where S
(α,β)
τ (g(2nx+φn)) = S

(α,β)
2nτ (g) � (2nτ)ω. Let k be such that 2−k−1 < τ ≤ 2−k.

We get

k∑
0

2−nHS(α,β)
τ (g(2nx+ φn)) � τω

k∑
0

2n(ω−H).

The right-hand side member has the same order of growth as

τω2k(ω−H) ' τH if ω > H,
k τω ' τH | log τ | if ω = H,
τω if ω < H.
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On the other hand, S
(α,β)
2nτ (g) � 1 by periodicity, and

∞∑
k+1

2−nHS(α,β)
τ (g(2nx+ φn)) �

∞∑
k+1

2−nH ' τH .

Gathering these results, the proof is completed.
Corollary 6.9. For all α ≥ 1 and β ≥ 1,

∆(α,β)(f) ≤ max{2−H,∆(α,β)(g)}.(58)

Proof. Let ω be such that ∆(α,β)(g) ≤ 2 − ω and ω 6= H. There exists τ1 < 1
such that

τ ≤ τ1 =⇒ 2− log S
(α,β)
τ (g)

log τ
≤ 2− ω,

i.e., S
(α,β)
τ (g) ≤ τω. Theorem 6.8 implies S

(α,β)
τ (f) � τmin{H,ω}. Hence

∆(α,β)(f) ≤ 2−min{H,ω}.

With ω tending to 2−∆(α,β)(g), we get (58).

Conjecture. Let us denote by δ(α,β)(f) the following index:

δ(α,β)(f) = lim inf
τ→0

(
2− log S

(α,β)
τ

log τ

)
.

Then for all α ≥ 1 and β ≥ 1,

δ(α,β)(f) ≥ max{2−H, δ(α,β)(g)}.(59)

This formula would be the symmetric to (58).
A particular case. This conjecture is true if α = β = 2. To show this, we write

S(2,2)
τ (f)2 =

∞∑
0

2−2nHS(2,2)
τ (g(2nx+ φn))2

=
∞∑
0

2−2nHS
(2,2)
2nτ (g)2.

Let ω be such that δ(2,2)(g) ≥ 2− ω. Then S
(2,2)
τ (g) � τω. Let k be the integer such

that 2−k−1 < τ ≤ 2−k. Then

S(2,2)
τ (f)2 �

k∑
0

2−2nH(2nτ)2ω.

The second member of this relation has the same order of growth as

τ2ω22k(ω−H) ' τ2H if ω > H,
k τ2ω ' τ2H | log τ | if ω = H,
τ2ω if ω < H.
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Therefore,

S(2,2)
τ (f) �

{
τmin(H,ω) if ω 6= H,

τH
√| log τ | if ω = H.

This proves that δ(2,2)(f) ≥ 2−min{H,ω}. Letting ω tend to 2−δ(2,2)(g), we get (59).

Remarks.

1. Corollary 6.5 confirms the conjecture.
2. Corollaries 6.5 and 6.7 prove that ∆(α,β)(f) = 2−H for all α ≥ 1 and β ≥ 1

when g is uniformly Hölderian with exponent 1.

The irregularity indices may take values different from 2−H. First, let us prove
the following.

Proposition 6.10. We have

∆(1,1)(f) ≥ 2∆(2,2)(g)−∆(∞,∞)(g).(60)

Proof. Using the same notations as in the proof of Theorem 6.4, recall that

I ≥
+∞∑
0

2−nHIn.

Let us choose

h(x, y) =
g(x+ φ0)− g(y + φ0)

S
(∞,∞)
τ (g)

.

We get In = 0 for all n ≥ 1, and

I0 ' τ
S

(2,2)
τ (g)2

S
(∞,∞)
τ (g)

.

There exists a constant c1 > 0 such that

S(1,1)
τ (f) ≥ c1

S
(2,2)
τ (g)2

S
(∞,∞)
τ (g)

,

which can be written as

2− log S
(1,1)
τ (f)

log τ
≥ 2

(
2− log S

(2,2)
τ (g)

log τ

)
−
(

2− S
(∞,∞)
τ (g)

log τ

)
− log c1

log τ
.

Formula (60) is obtained by taking the lim sup on both sides of this inequality.

Corollary 6.11. If ∆(2,2)(g) = ∆(∞,∞)(g), then for all α ≥ 1 and β ≥ 1,

∆(α,β)(f) = max{2−H,∆(∞,∞)(g)}.(61)

Proof. With this assumption, the right-hand side member of (60) is ∆(∞,∞)(g).
Then ∆(α,β)(f) ≥ ∆(1,1)(f) ≥ ∆(∞,∞)(g). The proof is completed with the help
of (56) and (58).
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6.4. Some applications.
1. If g(x) = cos 2πx, f(x) is a Weierstrass function. Since g(x) is differentiable,

Corollaries 6.5 and 6.7 can be used, and

∆(α,β)(f) = 2−H

for all α ≥ 1 and β ≥ 1. The same result holds for the Knopp–Takagi function, where
g(x) = 2x on [0, 1/2]. This shows in particular that the fractal dimension of the graph
of the Takagi function is 2−H, a result that is very easy to prove when the phases φn
are all zero but more difficult otherwise. Another proof in a different context can be
found in [1].

2. Let g be the Weierstrass function

g(x) =
∞∑
0

2−nω cos(2π2nx+ φn)

on [0, 1/2]. The parameter ω is in ]0, 1[. Then S
(α,β)
τ (g) ' τω. Corollary 6.11 lets us

conclude that

∆(α,β)(f) = 2−min(H,ω)

for any α ≥ 1 and β ≥ 1.
3. Let g(x) =

√
x on [0, 1/2]. Then

S(α,β)
τ (g) ' τmin(1, 12+ 1

β )

(section 6.2.1). It follows that

∆(α,β)(g) = max

{
1,

3

2
− 1

β

}
.

(i) If β ≤ 2, then ∆(α,β)(g) = 1. From Corollaries 6.5 and 6.7, we deduce that

∆(α,β)(f) = 2−H

for all α ≥ 1. This is the value of the fractal dimension of Gf in particular.
(ii) If β ≥ 2, ∆(α,β)(g) = 3/2−1/β. If, for example, H = 3/4, then Corollary 6.9

gives

∆(α,β)(f) ≤


5

4
if 2 ≤ β ≤ 4,

3

2
− 1

β
if β ≥ 4.

The equality is conjectural.
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Abstract. Affine operators and Littlewood–Paley energy functions with matrix dilations are
considered in this paper. Estimates and comparisons of the infimum and supremum measurements
of these two operations are derived. These results are applied to the study of affine frames and
wavelets. In particular, multivariate matrix-dilated wavelet families are characterized and a matrix-
dilation oversampling theorem on preservation of frame-bound ratios is established.
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1. Introduction and results. The theory of s-dimensional discrete wavelet
transform is the mathematical analysis of a family

(1.1) {ψ`,b;j,k: 1 ≤ ` ≤ L, j ∈ ZZ, k ∈ ZZs}

of functions generated by some functions ψ1, . . . , ψL in L2 := L2(lRs), in the sense
that

(1.2) ψ`,b;j,k(x) := bs/2| detM |j/2ψ`(M jx− kb),

where b > 0 is the (discretization) sample period and M is a nonsingular s× s matrix
whose eigenvalues λ1, . . . , λs satisfy

(1.3) |λα| > 1, α = 1, . . . , s.

While the special case where M = 2Is, where Is denotes the s-dimensional identity
matrix, is a somewhat straightforward generalization of the univariate theory, this
paper is concerned with more general dilation matrices M . The objective of this
paper is to establish some inequalities on the Littlewood–Paley energy functions and
affine operators and to apply these results to the study of affine frames and wavelets
and the boundedness of the Littlewood–Paley g-function operators.

Let us first introduce some notations. For a given family

(1.4) Ψ := {ψ1, . . . , ψL}
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of functions in L2, the operator Tb, defined by

(1.5) (Tbf)(x) :=
L∑
`=1

∑
j∈ZZ,k∈ZZs

〈f, ψ`,b;j,k〉ψ`,b;j,k(x), f ∈ L2,

will be called an affine operator , and the infinite series

(1.6) LΨ(x) :=
L∑
`=1

∑
j∈ZZ

|ψ̂`((MT )jx)|2

will be called the corresponding Littlewood–Paley energy function associated with the
family Ψ. Here MT denotes the transpose of M and the Fourier transform ψ̂ of ψ is
defined, as usual, by

ψ̂(x) =

∫
lRs

ψ(t)e−ixtdt.

We will also use the standard operator norm notation ‖T‖ for bounded linear operators
T on L2. It is clear that

(1.7) ‖T‖ = sup
f,g∈D

‖f‖≤1,‖g‖≤1

〈Tf, g〉,

where ‖f‖ denotes the L2 norm of f and D denotes the set of all infinitely differentiable
and compactly supported functions. Let us also consider the measurement

(1.8) ‖T‖∗ := sup
‖f‖=1

|〈Tf, f〉|

and observe that ‖T‖∗ ≤ ‖T‖ always holds for any bounded operator on L2, but the
two quantities are different in general. For certain operators, however, such as the

affine operators in (1.5) and the Fourier multipliers defined by T̂ f = mf̂ , m ∈ L∞,
we do have equality.

The main contents of this paper are estimation and comparison of the quantities

‖LΨ‖∗ := ess inf
x

|LΨ(x)|,
‖LΨ‖∗ := ess sup

x
|LΨ(x)|,

‖Tb‖∗ := inf
‖f‖=1

|〈Tbf, f〉|, and

‖Tb‖∗ as defined in (1.8)

and applications of these results to the study of affine frames and wavelets.
In the one-dimensional setting with M = (2), b = 1, and L = 1, we recall from

Mallat and Zhong [5] that ψ is called a dyadic wavelet if the sequence

(Wjf)(x) := f ∗ (2jψ(2j ·))(x), j ∈ ZZ,

satisfies the so-called stability condition

A‖f‖2 ≤
∑
j∈ZZ

‖Wjf‖2 ≤ B‖f‖2, f ∈ L2,
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where 0 < A ≤ B <∞ are constants independent of f . This concept is instrumental
to the construction of dyadic duals for the recovery of f ∈ L2 from the sequence
Wjf , j ∈ ZZ. It is clear that ψ is a dyadic wavelet if and only if the corresponding
Littlewood–Paley energy function Lψ defined in (1.6) is bounded both from above and
away from zero. In our earlier work [2], we also established the critera for Lψ to have
these boundedness properties, namely, ψ ∈ L2 with

∫
ψ = 0,

ess inf

{
|ψ̂(ω)|: 1

2
a ≤ |ω| ≤ a

}
> 0

for some a > 0, and
|ψ(x)| ≤ Φ(|x|), x ∈ lR,

for some nonnegative and nonincreasing function Φ on (0,∞) that satisfies

Φ(0) +

∫ ∞

1

Φ(x)(lnx)1/2dx <∞.

However, the method used in [2] for establishing this one-variable result does not
generalize to the study of the multidimensional setting with a more general dilation
matrix M . In sections 2 and 3, we will establish certain upper-bound and lower-bound
results in the multidimensional setting with matrix dilations. Assuming that Φ is a
nonincreasing continuous function defined on [0,∞) and satisfies

(1.9) KΦ :=

∫
lRs

Φ(|x|)
(

1 +

√
ln+ |x|

)
dx <∞,

we will establish the following in section 2.
Theorem 1. Let Φ be a nonincreasing function on [0,∞) that satisfies (1.9) and

Ψ = {ψ1, . . . , ψL} be a collection of functions in L2.
(i) If ‖Tb‖ <∞, then

(1.10) ‖LΨ‖∗ ≤ ‖Tb‖∗ = ‖Tb‖.

(ii) Let Ψ satisfy

(1.11) |ψ`(x)| ≤ Φ(|x|), ` = 1, . . . , L.

Then there exists some positive constant C, independent of Φ, such that

(1.12) ‖LΨ‖∗ ≤ CK2
Φ

if and only if

(1.13)

∫
ψ`(x)dx = 0, ` = 1, . . . , L.

Furthermore, (1.11) cannot be replaced by the simple assumption ψ` ∈ L1 ∩ L2, ` =
1, . . . , L, to ensure ‖LΨ‖∗ <∞.

For certain more specific dilation matrices M , we can even compare the quantities
‖LΨ‖∗ and ‖Tb‖∗. More precisely, the following result will be established in section 3.
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Theorem 2. Let M = λU , where λ > 1 and U is a unitary matrix, and assume
that ‖Tb‖ <∞. Then

(1.14) ‖LΨ‖∗ ≥ ‖Tb‖∗.

In section 4, we will compare the values of ‖Tb‖∗ and ‖Tb‖∗ with those of their
corresponding oversampled operators. In particular, the following result is established.

Theorem 3. Suppose that M is any nonsingular square matrix with integer en-
tries and with all its eigenvalues satisfying (1.3). Let n be any natural number that
satisfies

(1.15) (n, | detM |) = 1

and Ψ be a finite family with corresponding affine operator Tb that satisfies ‖Tb‖∗ <∞.
Then

(1.16) ‖Tb‖∗ ≤ ‖Tb/n‖∗ ≤ ‖Tb/n‖∗ ≤ ‖Tb‖∗.

Furthermore, (1.16) does not hold in general without the assumption (1.15).
Finally, we will discuss, in section 5, an application of these results to the theory

of affine frames and wavelets and a study of the boundedness of Littlewood–Paley
g-function operators.

2. Proof of Theorem 1. This section is devoted to the proof of Theorem 1.

2.1. Preliminary results. To facilitate the proof of the theorem, we need the
following three lemmas. First, observe that if M satisfies (1.3), then we have for some
positive J ∈ ZZ,

(2.1) θ := min
x∈σ |(MT )Jx| > 1,

where σ denotes the unit sphere

σ := {x ∈ lRs: |x| = 1}.

By (2.1), we see that σ lies in the bounded component of the complement of its image

MJ(σ) := {y = (MT )Jx: x ∈ σ}

under (MT )J .
The following lemma is evident.
Lemma 1. If M satisfies (1.3), then for any x ∈ lRs\{0}, there exists some

j0 ∈ ZZ and x0 ∈ ΩJ(M) such that M j0Jx0 = x, where

(2.2) ΩJ(M) := ΩJ(M)0 ∪ σ

and ΩJ(M)0 denotes the open region with boundary σ∪MJ(σ). Furthermore, the pair
(j0,x0) is unique.

In the following, L2(Q) will denote the space of all square-integrable functions f
on a measurable set Q with norm

‖f‖L2(Q) :=

(∫
Q

|f(x)|2dx
)1/2

.
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Lemma 2. Let Q be any measurable set in lRs and {fj}j∈ZZ be a sequence in
L2(Q). Then the following two statements are equivalent:

(i) ‖∑j cjfj‖2
L2(Q) ≤ B

∑
j |cj |2, {cj} ∈ `2.

(ii)
∑
j |
∫
Q
ff̄j |2 ≤ B‖f‖2

L2(Q), f ∈ L2(Q).

The following lemma can be found in [7, p. 43].
Lemma 3. For any real number δ /∈ ZZ ∪ (ZZ + 1/2

)
, the identity

(2.3) 1− eiδt = F1(δ) + F2(δ, t) + F3(δ, t), t ∈ [−π, π],

holds, where

F1(δ) :=

(
1− sinπδ

πδ

)
,

F2(δ, t) :=
∞∑
k=1

(−1)k2δ sinπδ

π(k2 − δ2)
cos kt,

and

F3(δ, t) := i

∞∑
k=1

(−1)k2δ cosπδ

π
((
k − 1

2

)2 − δ2
) sin

(
k − 1

2

)
t.

2.2. Proof of Theorem 1(i). Let ‖Tb‖ <∞. Then for any f with ‖f‖ = 1, we
have

〈Tbf, f〉 =
bs

(2π)2s

L∑
`=1

∑
j∈ZZ,k∈ZZs

| detM |j
∣∣∣∣∫

lRs

f̂((MT )jx)ψ̂`(x)eibkxdx

∣∣∣∣2

=
L∑
`=1

∑
j∈ZZ

| detM |j
bs

∑
k∈ZZs

∣∣∣∣∣ 1

(2πb−1)s

∫
[0,2πb−1]s[ ∑

m∈ZZs

f̂((MT )j(x + 2πb−1m))ψ̂`(x+ 2πb−1m)eibkx

]2

dx

∣∣∣∣∣∣ .
Therefore,

L∑
`=1

∑
j∈ZZ

| detM |j
(2π)s

∫
[0,2πb−1]s

∣∣∣∣∣ ∑
m∈ZZs

f̂((MT )j(x + 2πb−1m))ψ̂`(x + 2πb−1m)

∣∣∣∣∣
2

dx

≤ ‖Tb‖∗.

On the other hand, by using the notation e := (1, . . . , 1) and considering any x0 ∈
lRs\{0}, we have for any positive integer J ′ that

L∑
`=1

J ′∑
j=−J′

| detM |j
(2π)s

∫
[(MT )−jx0−π−1

b
e,(MT )−jx0+πb−1e]

(2.4)

∣∣∣∣∣ ∑
m∈ZZs

f̂((MT )j(x + 2πb−1m))ψ̂`(x + 2πb−1m)

∣∣∣∣∣
2

dx ≤ ‖Tb‖∗.
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Now if we set f̂(x) = (πε−1)s/2χ
[x0−εe,x0+εe]

(x) in (2.4) and take the limit as ε→ 0 and
J ′ →∞ consecutively, we arrive at (1.10). This completes the proof of Theorem 1(i).

2.3. Proof of Theorem 1(ii). Assume that (1.11) holds. We will first show
that

(2.5)

L∑
`=1

∑
j∈ZZ

|ψ̂`((MT )Jjx)|2 ≤ C

{∫
lRs

Φ(|t|)(1 +

√
ln+ |t|)dt}2

, x 6= 0.

Observe that since

L∑
`=1

∑
j∈ZZ

|ψ̂`((MT )Jj((MT )Jx))|2 =

L∑
`=1

∑
j∈ZZ

|ψ̂`((MT )Jjx)|2,

an application of Lemma 1 shows that (2.5) is valid provided that it holds for any
x ∈ ΩJ(M). For this reason, we call ΩJ(M) a “fundamental region.”

By (1.11) and (1.13), we see that

|ψ̂`(MT )Jjx)| =
∣∣∣∣∫

lRs

ψ`(t)(e−it(M
T )Jjx − 1)dt

∣∣∣∣
≤ |(MT )Jjx|

∫
|t|≤|(MT )Jjx|−1

Φ(|t|)|t|dt + 2

∫
|t|≥|(MT )Jjx|−1

Φ(|t|)dt

=: K1,j +K2,j ,

and this gives

P1(x) :=
L∑
`=1

−1∑
j=−∞

|ψ̂`((MT )Jjx)|2(2.6)

≤ 2L
∞∑
j=1

|K1,−j |2 + 2L
∞∑
j=1

|K2,−j |2

=: 2P1,1(x) + 2P1,2(x).

Next, consider

µ0 :=

∫
|t|≤|(MT )−Jx|−1

Φ(|t|)|t|dt

and

µk :=

∫
|(MT )−Jkx|−1≤|t|≤|(MT )−J(k+1)x|−1

Φ(|t|)|t|dt, k = 1, 2, . . . .

Then we see that

P1,1(x) = L
∞∑
j=1

|(MT )−Jjx|2(µ0 + · · ·+ µj−1)2(2.7)

≤ L

 ∞∑
k=0

 ∞∑
j=k+1

|(MT )−Jjx|2µ2
k

1/2


2

≤ C2

( ∫
lRs

Φ(|t|)dt
)2

.
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As for P1,2(x), we first observe that

P1,2(x) = L
∞∑
j=1

 ∞∑
k=j

µk

2

≤ C3

 ∞∑
k=1

k−1∑
j=1

µ2
k

1/2


2

(2.8)

≤ C4

[ ∞∑
k=1

√
k

∫
|(MT )−Jkx|−1≤|t|≤|(MT )−J(k+1)x|−1

Φ(|t|)dt
]2

.

By (2.1), we see that if x ∈ ΩJ(M) and

|t| ≥ max(2, |(MT )−Jkx|−1),

then

|t| ≥ |(MT )−Jkx|−1 =
1

|x|
|x|

|(MT )−Jx|
|(MT )−Jx|
|(MT )−J2x| · · ·

|(MT )−J(k−1)x|
|(MT )−Jkx|

≥ θk

|x| ≥
θk

min
x∈ΩJ (M)

|x| .

Hence
√

ln |t| ≥ C5

√
k, and it follows from (2.8) that

(2.9) P1,2(x) ≤ C6

[∫
lRs

Φ(|t|)
(

1 +

√
ln+ |t|

)
dt

]2
.

Setting (2.7) and (2.8) into (2.6), we obtain

(2.10) P1(x) ≤ C7

[∫
lRs

Φ(|t|)
(

1 +

√
ln+ |t|

)
dt

]2
.

Next, let us estimate the sum

P2(x) :=
L∑
`=1

∞∑
j=0

|ψ̂`((MT )Jjx)|2.

To do so, we divide lRs into cubes

(2.11) Qm := m +Q0, m ∈ ZZs,

with
Q0 := {x ∈ lRs: 0 ≤ xα < 1, α = 1, . . . , s}

and set
ψ`(m;x) := ψ`(x)χQm

(x).

Then by the triangle inequality, we have

(2.12) P2(x) ≤ C8

 ∑
m∈ZZs

L∑
`=1

 ∞∑
j=0

|ψ̂`(m; (MT )Jjx)|2
1/2


2

.
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We claim that there exists a constant C9 depending only on s and M such that

(2.13)
∞∑
j=0

∣∣∣∣∫
Qm

g(t)e−it(MT )Jjxdt

∣∣∣∣2 ≤ C9

∫
Qm

|g(t)|2dt.

By Lemma 2, we see that this claim is equivalent to

(2.14)

∫
Qm

∣∣∣∣∣∣
∞∑
j=0

cje−it(M
T )Jjx

∣∣∣∣∣∣
2

dt ≤ C9

∞∑
j=0

|cj |2, {cj} ∈ `2.

It is sufficient to prove (2.14) for m = 0. For this purpose, we decompose Q0 into
2s equal cubes and denote by aα, α = 0, 1, . . . , 2s − 1, with a0 = 0 the vertices of
these cubes with smallest componentwise coordinates. By the Bessel inequality for
trigonometric systems, it is obvious that

(2.15)

∫
Q0

∣∣∣∣∣
2s−1∑
α=0

∑
k∈ZZs

bα,ke−it(aα+k)

∣∣∣∣∣
2

dt ≤ C10

∑
α,k

|bα,k|2, all {bα,k} ∈ `2,

where the constant C10 depends only on s. Now consider the cubes

Rα,k :=
1

2
Q0 + aα + k.

Since M satisfies (1.3), we see that there exist at most

λ :=

[
ln
√
s
/

ln
1

|||M−J |||
]

+ 1

numbers of points of the form (MT )Jjx in each cube Rα,k, where j ≥ 0, x ∈ ΩJ(M)
and ||| · ||| denotes the spectral norm of M . Therefore, by (2.15), we obtain

∫
Q0

∣∣∣∣∣∣
∑
α,k

∑
(MT )Jjx∈Rα,k

cje−it(aα+k)

∣∣∣∣∣∣
2

dt ≤ C11

∑
j

|cj |2, {cj} ∈ `2,

where the constant C11 depends only on s and M . Thus to establish (2.14), it is
sufficient to prove that for any {cj} ∈ `2, we have

(2.16)

∫
Q0

∣∣∣∣∣∣
∑
α,k

∑
(MT )Jjx∈Rα,k

cje−it(aα+k)(1− e−ith(j,α,k,x))

∣∣∣∣∣∣
2

dt ≤ C12

∑
|cj |2,

where
h(j, α,k,x) = (hj,1, hj,2, . . . , hj,s) := (MT )Jjx− (aα + k)

with

(2.17) |hj,α| ≤ 1

4
, α = 1, . . . , s.
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From (2.3), we see that

1− e−ith(j,α,k,x) = 1−
s∏

β=1

{1− F1(hj,β)− F2(hj,β , tβ)− F3(hj,β , tβ)}

=
∑′

F1(hj,β1) · · ·F1(hj,βp)F2(hj,βp+1 , tβp+1) · · ·F2(hj,βq , tβq )(2.18)

× F3(hj,βq+1 , tβq+1) · · ·F3(hj,βr , tβr ),

where (β1, . . . , βr) is a permutation of some subset of the set (1, . . . , s) and the sum∑′
is taken over all possible nonempty subsets of (1, . . . , s) and their permutations.

According to (2.16), we need to estimate the integral

I :=

∫
Q0

∣∣∣∣∣∣
∑
α,k

∑
(MT )Jjx∈Rα,k

cje−it(aα+k)F1(hj,β1) · · ·F1(hj,βp)

× F2(hj,βp+1 , tβp+1) · · ·F2(hj,βq , tβq )F3(hj,βq+1 , tβq+1)

· · ·F3(hj,βr , tβr )

∣∣∣∣2dt.
By the generalized Minkowskii inequality and (2.17), we see that

I1/2 ≤
∞∑

nβp+1
=1

· · ·
∞∑

nβr=1

∫
Q0

∣∣∣∣∣∣
∑
α,k

∑
(MT )Jjx∈Rα,k

cje−it(aα+k)(2.19)

× F1(hj,β1) · · ·F1(hj,βp)
(−1)nβp+1 2hj,βp+1 sinπhj,βp+1

π(n2
βp+1

− h2
j,βp+1

)

· · · (−1)nβq 2hj,βq sinπhj,βq
π(n2

βq
− h2

j,βq
)

(−1)nβq+1 2hj,βq+1 cosπhj,βq+1

π
((
nβq+1 − 1

2

)2 − h2
j,βq+1

)
· · · (−1)nβr 2hj,βr cosπhj,βr

π
((
nβr − 1

2

)2 − h2
j,βr

) cosnβp+1tβp+1 · · · cosnβq tβq

× sin

(
nβq+1 −

1

2

)
tβq+1 · · · sin

(
nβr −

1

2

)
tβr

∣∣∣∣2dt
)1/2

≤ C12

(
1− sin π

4
π
4

)p( ∞∑
n=1

1

π
(
n2 − 1

16

))q−p

×
( ∞∑
n=1

1

π
((
n− 1

2

)2 − 1
16

))r−q
∑

j

|cj |2
1/2

≤ C13

(∑
|cj |2

)1/2

.

Hence by (2.18) and (2.19), we arrive at (2.14) and then (2.13). By (2.13), we then
see that ∞∑

j=0

|ψ̂`(m; (MT )Jjx)|2 =
∞∑
j=0

∣∣∣∣∫
Qm

ψ`(t)e−it(M
T )Jjxdt

∣∣∣∣2
≤ C15

∫
Qm

|ψ`(t)|2dt.
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Therefore, it follows from (1.6) that

(2.20) P2(x) ≤ C16

[ ∑
m∈ZZs

(∫
Qm

(Φ(|t|))2dt
)1/2

]2

≤ C17

(∫
lRs

Φ(|t|)dt
)2

.

Combining (2.10) and (2.20), we obtain (2.5). It is clear that (2.5) implies (1.12).

Conversely, by the hypothesis stated in Theorem 1, the functions ψ̂` are continu-
ous on lRs. Therefore, if ψ̂`(0) 6= 0 for some `, then there exists a ball Bε := {x: |x| ≤
ε} on which |ψ̂`(x)|2 ≥ η > 0. By (1.1), for any x ∈ lRs\{0}, there exists a j0 such
that (MT )jx ∈ Bε for all j ≤ j0. Therefore, LΨ(x) = ∞. This is a contradiction to
the hypothesis and hence completes the proof of Theorem 1(ii).

2.4. Counterexamples. Finally, we will construct examples of ψ` ∈ L1 ∩ L2,
` = 1, . . . , L, each of which has zero mean, but ‖LΨ‖∗ = ∞. For this purpose, it is
sufficient to consider s = 1, L = 1, and M = (2). Denote by h the hat function with
supp h = [−1, 1] defined by h(x) := 1− |x| for |x| ≤ 1. Set

ψ(x) :=
∞∑
n=0

4−n(h(x−mn) + h(x+mn)),

with mn =
∏n
k=1 242k

. Then it is evident that ψ ∈ L1 ∩ L2 and
∫
ψ = 0. We also

observe that

(2.21) ψ̂(x) = −8i sin2 x
2

x2

∞∑
n=0

4−n sinmnx.

Next, we prove that the function

LΨ(x) =
∑
j∈ZZ

|ψ̂(2jx)|2

is not bounded. To do so, consider

P1(x) :=
∞∑
j=0

|ψ̂(2−jx)|2.

Then since ‖LΨ‖∗ ≥ ‖P1‖L[0,1], it is sufficient to show that

(2.22) ‖P1‖L[0,1] = ∞.
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To prove (2.22), we see that

∫ 1

0

|P1(x)|dx = C18

∞∑
j=0

23j

∫ 2−j+1

2−j

1

22j

∣∣∣∣∣
∞∑
n=1

4−n sinmnx

∣∣∣∣∣
2

dx

≥ C19

∫ 1

0

1

x

∣∣∣∣∣
∞∑
n=1

4−n sinmnx

∣∣∣∣∣
2

dx−O(1)

≥ C19

∞∑
k=1

∫ m−1
k

m−1
k+1

1

x

∣∣∣∣∣
∞∑

n=k+1

4−n sinmnx

∣∣∣∣∣
2

dx−O(1)

= C19

∞∑
k=1

∫ mk+1m
−1
k

1

1

x

( ∞∑
n=k+1

4−n sin
mn

mk+1
x

)2

dx−O(1)

≥ C19

∞∑
k=1

[mk+1
2πmk

]
−1∑

ν=1

1

2(ν + 1)π

∫ 2(ν+1)π

2νn

∣∣∣∣∣
∞∑

n=k+1

4−n sin
mn

mk+1
x

∣∣∣∣∣
2

dx−O(1)

= C19

∞∑
k=1

[mk+1
2πmk

]
−1∑

ν=1

1

ν + 1

∞∑
n=k+1

4−2n −O(1) = ∞.

This completes the proof of Theorem 1.

3. Proof of Theorem 2. To prove Theorem 2, we consider the sum

IJ ′ :=

L∑
`=1

−J′∑
j=−∞

| detM |j
(2π)s

∫
[(MT )−jx0−πb−1e,(MT )−jx0+πb−1e]∣∣∣∣∣ ∑

m∈ZZs

f̂((MT )j(x + 2πb−1m))ψ̂`(x + 2πb−1m)

∣∣∣∣∣
2

dx,

where f̂(x) := (πε−1)s/2χ
[x0−εe,x0+εe]

(x) as in the proof of Theorem 1(i). For any fixed
j ∈ ZZ, we decompose ZZs into a union of two disjoint sets

ZZs = ZZj,1 ∪ ZZj,2,

where ZZj,2 is the set of all m for which the function f̂((MT )j(x+2πb−1m)) is equal to
zero everywhere on the cube [(MT )−jx0−πb−1e, (MT )−jx0 +πb−1e]. If |(MT )je| >
π−1bε, then the cardinality n(ZZj,1) of the set ZZj,1 is bounded. If |(MT )je| ≤ π−1bε,
then n(ZZj,1) = O(εs| detM |j). Thus we have

(3.1) n(ZZj,1) = O(εs| detM |j + 1).

It follows from (3.2) that the function

gj(x) :=
∑

m∈ZZs

χ
[x0−εe,x0+εe]

((MT )j(x + 2πb−1m))
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is dominated by O(εs| detM |j + 1), where “O” is independent of ε and j. Hence by
the Cauchy inequality, we see that

IJ ′ ≤
L∑
`=1

−J′∑
j=−∞

| detM |j
(2ε)s

∫
[(MT )−jx0−πb−1e,(MT )−jx0+πb−1e]

gj(x)

×
∑

m∈ZZs

|ψ̂`(x + 2πm)|2χ
[x0−εe,x0+εe]

((MT )j(x + 2πb−1m))dx(3.2)

≤ C1

L∑
`=1

−J′∑
j=−∞

∫
(MT )−j([x0−εe,x0+εe])

{
|ψ̂`(x)|2 +

| detM |j
(2ε)s

|ψ̂`(x)|2
}
dx.

Since |||M−1||| <∞, we may choose for any fixed x0 6= 0 and any ball Br := {x: |x| ≤
r} some ε0 > 0 and sufficiently large J0 such that for any 0 < ε < ε0 and J ′ > J0, the
sets (MT )−j([x0 − εe,x0 + εe]), −∞ < j ≤ −J ′, are mutually disjoint and are also
disjoint with Br. Hence for an arbitrarily given η > 0, we have

L∑
`=1

−J′∑
j=−∞

∫
(MT )−j([x0−εe,x0+εe])

|ψ̂`(x)|2dx ≤ η

for all sufficiently large J and sufficiently small ε > 0. Therefore, by (3.2), we get

I ′J ′ :=
L∑
`=1

∞∑
j=−J′+1

| detM |j
(2π)s

∫
[0,2πb−1]s

(3.3)

∣∣∣∣∣ ∑
m∈ZZs

f̂((MT )j(x + 2πb−1m))ψ̂`(x + 2πb−1m)

∣∣∣∣∣
2

dx

= 〈Tbf, f〉 − IJ′ ≥ ‖Tb‖∗ − C2η

− C3

(2ε)s

∫
[x0−εe,x0+εe]

L∑
`=1

−J′∑
j=−∞

|ψ̂`((MT )−jx)|2dx.

On the other hand, it is clear that for any fixed J and all sufficiently small ε > 0, we
have

I ′J ′ =
L∑
`=1

∞∑
j=−J′+1

| detM |j
∫

(MT )−j([x0−εe,x0+εe])

|f̂((MT )jx)ψ̂`(x)|2dx

=
L∑
`=1

1

(2ε)s

∫
[x0−εe,x0+εe]

∞∑
j=−J′+1

|ψ̂`((MT )−jx)|2dx.

Hence in view of the boundedness of LΨ, we may take ε→ 0 in (3.3) to arrive at

(3.4)
L∑
`=1

∞∑
j=−J′+1

|ψ̂`((MT )−jx0)|2 ≥ ‖Tb‖∗ − C2η − C3

L∑
`=1

−J′∑
j=−∞

|ψ̂`((MT )−jx0)|2

for almost all x0. Since η is arbitrary, assertion (3.4) together with the boundedness
of LΨ yields ‖Tb‖∗ ≤ ‖LΨ‖∗. This completes the proof of Theorem 2.
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In the following, we consider the special case where supp ψ̂` ⊂ [−π/b, π/b]s,
` = 1, 2, . . . , L. For this case, we have

〈Tbf, f〉 =
L∑
`=1

∑
j∈ZZ

| detM |j
(2π)s

∫
[0,2πb−1]s

∣∣∣∣∣ ∑
m∈ZZs

f̂((MT )j(x + 2πb−1m))ψ̂`(x + 2πb−1m)

∣∣∣∣∣
2

dx

=
L∑
`=1

∑
j∈ZZ

| detM |j
(2π)s

∫
[0,2πb−1]s

∑
m∈ZZs

|f̂((MT )j(x + 2πb−1m))ψ̂`(x + 2πb−1m)|sdx

=
L∑
`=1

1

(2π)s

∫
lRs

∑
j∈ZZ

|ψ̂`((MT )−jx)|2|f̂(x)|2dx.

This implies that

(3.5) ‖Tb‖∗ = ‖LΨ‖∗ and ‖Tb‖∗ = ‖LΨ‖∗.

A more general formulation can be stated as follows. Set

E(ψ) := {ω: ψ̂(ω) = 0},

and for k ∈ ZZs, ` = 1, . . . , L, consider

Ek(ψ`) := {ω ∈ [−π/b, π/b]s: ω + 2kπ/b ∈ E(ψ`)}.

Then we have the following.
Corollary 1. Let ψ` ∈ L2, ` = 1, . . . , L, such that for each `, the sets Ek(ψ`),

k ∈ ZZs, are mutually disjoint. Then (3.5) holds.

4. Proof of Theorem 3. In this section, we establish a general result which
implies the multivariate (matrix-dilated) version of the so-called second oversampling
theorem introduced in [3].

4.1. A preliminary result. In order to prove Theorem 3, we first introduce
some notations and establish a lemma. For a natural number n ≥ 2, consider

Bn := {p = (p1, . . . , ps): p` ∈ ZZ, 0 ≤ p` ≤ n− 1, ` = 1, . . . , s}

and adopt the notation
B0
n := Bn\{0}.

Let a = (a1, . . . , as) and b = (b1, . . . , bs) be two integer vectors. If a and b satisfy
a` ≡ b` (mod n), ` = 1, . . . , s, then we write

a ≡ b (mod n).

We have the following result.
Lemma 4. Let M be an integer matrix with | detM | > 1 and n ≥ 2 be any natural

number that satisfies (1.15). Then the equation

(4.1) Mp ≡ 0 (mod n)

does not have any solution in B0
n.
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Proof. Suppose that p = (p1, . . . , ps) ∈ B0
n satisfies (4.1). Then there exists some

k = (k1, . . . , ks) ∈ ZZs that satisfies

Mp = nk.

Therefore, we have for some `, 1 ≤ ` ≤ s, that

(4.2) 1 ≤ p` ≤ n− 1

and

(4.3) p` =
n∆`

detM
,

where

∆` =

∣∣∣∣∣∣
m11 . . . m1,`−1 k1 m1,`+1 . . . m1s

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ms1 . . . ms,`−1 ks ms,`+1 . . . mss

∣∣∣∣∣∣ .
Since (n, | detM |) = 1 and p` is an integer, it follows from (4.3) that ∆`/ detM must
also be an integer. Hence (4.3) implies that p`/n is an integer as well. However, this
is a contradiction to (4.2).

4.2. Proof of Theorem 3. The proof of this theorem is divided into three
steps.

4.2.1. Decomposition. Let p1 be any vector in B0
n and consider the sequence

of vectors
M0p1 = p1, Mp1, M2p1, . . . .

By Lemma 4, we see that to every vector M jp1 in this sequence, there exists a vector
qj = (qj1, . . . , q

j
s) ∈ B0

n that satisfies

M jp1 ≡ qj (mod n).

Since B0
n is a finite set, there exist 0 ≤ j1 < j2 such that

(4.4) qj1 = qj2 .

If j1 and j2 are the smallest integers for which (4.4) holds, then j1 must be zero.
Therefore, we obtain an ordered system q0,q1, . . . ,qj2 with j2 > 0, q0 = p1 = qj2 ,
and qj 6= q0, where 0 < j < j2. Denote this system by F1 = (p1

1, . . . ,p
1
µ1), i.e.,

p1
1 = q0,p1

2 = q1, . . . ,p1
µ1 = qj2 . If F1 = B0

n, we terminate the process. Otherwise,
we choose p2

1 ∈ B0
n\F1 and the same process yields the second ordered system F2 =

(p2
1, . . . ,p

2
µ2). Continue this process until all the elements in B0

n are chosen. Then we
arrive at a decomposition

B0
n = F1 ∪ F2 ∪ · · · ∪ Fr,

which has the following two properties:
(a) Ft ∩ Ft′ = ∅ if t 6= t′.
(b) The periodic extension Fpt of Ft = (pt1, . . . ,p

t
µt), defined by

Fpt = (. . .pt−1,p
t
0,p

t
1, . . . ,p

t
µt , . . .) and pt

µ+
t ν

= ptν for all ν ∈ ZZ,
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satisfies Mptj ≡ ptj+1(mod n), where t = 1, . . . , r, j ∈ ZZ.
We now decompose the family of functions

S` := {ψ`,b/n;j,k(x): 1 ≤ ` ≤ L, j ∈ ZZ, k ∈ ZZs}

into ns subsets as follows:

S` = S`,0 ∪
r⋃
t=1

{St`,1 ∪ · · · ∪ St`,µt},

where
S`,0 := {ψ`,b;j,k(x): 1 ≤ ` ≤ L, j ∈ ZZ, k ∈ ZZs}

and

St`,µ :=

{
| detM |j/2ψ`

(
M jx− bptj+µ

n
− kb

)
: 1 ≤ ` ≤ L, j ∈ ZZ, k ∈ ZZs

}
,

where µ = 1, . . . , µ` and t = 1, . . . , r. By the definition of ‖Tb‖∗ and ‖Tb‖∗, we see
that for any f with ‖f‖ = 1, we have

(4.5) ‖Tb‖∗ ≤
L∑
`=1

∑
g∈S`,0

|〈f, g〉|2 ≤ ‖Tb‖∗.

4.2.2. Upper bound. Let j0 ∈ ZZ and consider

σµ,t`,j0(f) :=
∑
j≥j0

∑
k

∣∣∣∣〈| detM |j/2ψ`
(
M j · −ptj+µb

n
− kb

)
, f

〉∣∣∣∣2 ,
where µ = 1, . . . , µt and t = 1, . . . , r. If j ≥ j0, then since the property (b) implies
that

M j−j0ptj0+µ ≡ ptj+µ (mod n),

for any k ∈ ZZs, we have a unique k′ ∈ ZZs such that

M jx− bptj+µ
n

− kb = M j

(
x− bM−j0ptj0+µ

n

)
− k′b.

Therefore, the two collections of functions {M jx − bptj+µ/n − kb:k ∈ ZZs} and
{M j(x− bM−j0ptj0+µ/n)− kb: k ∈ ZZs} are identical. It then follows for any f ∈ L2

with ‖f‖ = 1 that

L∑
`=1

σµ,t`,j0(f) =
L∑
`=1

∑
j≥j0

∑
k∈ZZs

∣∣∣∣〈| detM |j/2ψ`
(
M j

(
· − bM−j0ptj0+µ

n

)
− kb

)
, f

〉∣∣∣∣2

=

L∑
`=1

∑
j≥j0

∑
k∈ZZs

∣∣∣∣〈| detM |j/2ψ`(M j · −k), f

(
·+ bM−j0ptj0+µ

n

)〉∣∣∣∣2
≤ ‖Tb‖∗.
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Thus we obtain

(4.6)

L∑
`=1

∑
g∈St

`,µ

|〈f, g〉|2 = lim
j0→−∞

L∑
`=1

σµ,t`,j0(f) ≤ ‖Tb‖∗.

Combining (4.5) and (4.6), we arrive at

L∑
`=1

∑
j∈ZZ

∑
k∈ZZs

|〈f, ψb/n,`;j,k〉|2

=
L∑
`=1

∑
g∈S`,0

|〈f, g〉|2 +
L∑
`=1

µ∑
t=1

µt∑
µ=1

∑
g∈St

`,µ

|〈f, g〉|2

≤ ns‖Tb‖∗

for any f ∈ L2 with ‖f‖ = 1. Therefore, we have ‖Tb/n‖∗ ≤ ‖Tb‖∗.
4.2.3. Lower bound. To establish a lower-bound estimate for ‖Tb/n‖∗, it is

sufficient to restrict our attention to compactly supported and bounded functions f
with ‖f‖ = 1. Suppose that supp f ⊂ [−K,K]s, K > 0. Set

θµ,t`,j0(f) :=
∑
j<j0

∑
k∈ZZs

|〈| detM |j/2ψ`(M j · −kb), fµ,tj0
〉|2,

where

(4.7) fµ,tj0
(x) := f

(
x +

bM−j0ptj0+µ
n

)
.

Then we have

L∑
`=1

∑
g∈St

`,µ

|〈f, g〉|2 =

L∑
`=1

∑
j∈ZZ

∑
k∈ZZs

∣∣∣∣〈| detM |j/2ψ`
(
M j · −ptj+µb

n
− kb

)
, f

〉∣∣∣∣2

≥
L∑
`=1

σµ,t`,j0(f) +
L∑
`=1

θµ,t`,j0(f)−
L∑
`=1

θµ,t`,j0(f)(4.8)

≥ ‖T‖∗ −
L∑
`=1

θµ,t`,j0(f).

We claim that

(4.9) lim
j0→−∞

θµ,t`,j0(f) = 0.

To prove (4.9), we first observe that by (4.7), supp fµ,t0 ⊂ Iµ,tj0
, where

Iµ,tj0
:=

[
−Ke− bM−j0ptj0+µ

n
,Ke− bM−j0ptj0+µ

n

]
.
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Hence by the Cauchy inequality, we see that

|〈| detM |j/2ψ`(M j · −k), fµ,tj0
〉|2 ≤ | detM |j(2K)s‖f‖∞

∫
Iµ,t
j0

|ψ`(M jx− kb)|2dx

= (2K)s‖f‖∞
∫
Mj
(
Iµ,t
j0

) |ψ`(x− kb)|2dx.

Thus for any positive J0, we have

θµ,t`,j0(f) ≤ (2K)s‖f‖∞
∑

j0−J0≤j<j0

∑
k∈ZZs

∫
kb+Mj

(
Iµ,t
j0

) |ψ`(x)|2dx

+ (2K)s‖f‖∞
∑

j≤j0−J0

∑
k∈ZZs

∫
kb+Mj

(
Iµ,t
j0

) |ψ`(x)|2dx.

On the other hand, observe that for k 6= k′ and sufficiently small j and j′, we have

{kb+M j(Iµ,tj0
)} ∩ {k′b+M j′(Iµ,tj0

)} = ∅.

If k is fixed, then the function ∑
j≤j0−J0

χ
kb+Mj

(
I
µ,t
j0

)(x)

is bounded and

lim
J0→∞

∣∣∣∣∣∣
⋃

j≤j0−J0

(kb+M j(Iµ,tj0
))

∣∣∣∣∣∣ = 0.

Therefore, for any ε > 0, since ψ` ∈ L2, we may find some positive J0 such that for
all J ′ ≥ J0,

(4.10) θµ,t`,j0(f) ≤ C1(2K)s‖f‖∞
∑

j0−J′≤j<j0

∑
k∈ZZs

∫
kb+Mj

(
Iµ,t
j0

) |ψ`(x)|2dx + ε.

Fix J ′ ≥ J0. Then taking the limit of the quantity on the right-hand side of (4.10) as
j0 → −∞, we get

lim
j0→∞

θµ,t`,j0(f) ≤ ε.

This establishes the claim in (4.9). Now applying (4.5), (4.8), and (4.9), we obtain

L∑
`=1

∑
j∈ZZ

∑
k∈ZZs

|〈f, ψ`,b/n;j,k〉|2

=
L∑
`=1

∑
g∈S`,0

|〈f, g〉|2 +
L∑
`=1

r∑
t=1

µt∑
µ=1

∑
g∈St

`,µ

|〈f, g〉|2 ≥ ns‖Tb‖∗.

That is, we have
‖Tb/n‖∗ ≥ ‖Tb‖∗.

This completes the proof of (1.16).
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That (1.16) does not hold in general without the assumption (1.15) follows from
Remark 2 in [3; p. 45].

5. Applications to wavelet analysis and a study of the boundedness of
g-function operators. In this section, we give some applications of Theorems 1–
3 to the analysis of wavelets and affine frames and study the boundedness of the
Littlewood–Paley g-function operators. In particular, a characterization of stable
matrix-dilated wavelet families is given, and the second oversampling theorem for the
matrix-dilated setting is established.

5.1. Matrix-dilated wavelets. Let M be an s × s real matrix that satisfies
(1.3). A family Ψ = {ψ1, . . . , ψL} ⊂ L2 is called a stable matrix-dilated wavelet family
relative to M if there exist two positive numbers A and B such that

(5.1) A‖f‖2 ≤
L∑
`=1

∑
j

‖W`,jf‖2 ≤ B‖f‖2, f ∈ L2,

where W`,jf is defined by

(5.2) (W`,jf)(x) := f ∗ (| detM |jψ`(M j ·))(x).

We call the constants A and B wavelet bounds .
Denote by η`(x), ` = 1, . . . , L, the functions determined by

(5.3) η̂`(x) :=
ψ̂`(x)

L∑
p=1

∑
j∈ZZ

|ψ̂p((MT )jx)|2
.

If Ψ is a stable matrix-dilated wavelet family relative to M , then any f ∈ L2 has a
decomposition

f(x) =

L∑
`=1

∑
j∈ZZ

((W`,jf) ∗ η̄−`,j)(x),

where (W`,jf)(x) is the integral wavelet transform of f relative to Ψ as defined in
(5.2), η`,j(x) := | detM |jη`(M jx) with η` given by (5.3), and g−(x) denotes g(−x).
For the one- and two-dimensional settings withM = (2) and M = ( 2

0
0
2 ), respectively,

this decomposition has been studied in the framework of signal analysis by Mallat
and Zhong [5] (see also [4] and [6]). It is clear that (5.1) holds if and only if the
corresponding Littlewood–Paley energy function (1.6) satisfies

A ≤ LΨ(x) ≤ B a.e.

Therefore, using Theorem 1, we may establish the following characterization of stable
matrix-dilated wavelet families.

Proposition 1. Let M be an s × s real matrix that satisfies (1.3), and assume
that the family Ψ = (ψ1, . . . , ψL) satisfies (1.11). Then Ψ is a stable matrix-dilated
wavelet family relative to M in the sense of (5.1) if and only if Ψ satisfies both of the
following.

(i)
∫
ψ`(x)dx = 0, ` = 1, . . . , L; and

(ii) LΨ(x) > 0 for any x ∈ ΩJ(M), where ΩJ(M) is defined in (2.2).
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Indeed, by Theorem 1, we see that (i) is a necessary condition for Ψ to be a stable
matrix-dilated wavelet family. It is also evident that (ii) is also a necessary condition.
On the other hand, if Ψ satisfies (1.11), then by the proof of Theorem 1, we see that

the series
∑
j∈ZZ |ψ̂`((MT )jx)|2 is uniformly convergent to a continuous function on

ΩJ(M). Thus (i) and (ii) imply that Ψ is a stable matrix-dilated wavelet family.
As a consequence of this proposition, we have the following criterion on stable

matrix-dilated wavelet families (see [2] for the one-variable setting).
Corollary 2. Let M be an s × s real matrix that satisfies (1.3) and Ψ =

(ψ1, . . . , ψL) be a family of functions that satisfy (1.11) and (1.13). If there exists

some j0 ∈ ZZ such that ψ̂(ω) 6= 0 on the set

(MT )j0JΩJ(M) := {ω: (MT )−j0Jω ∈ ΩJ(M)},

where ΩJ(M) is defined in (2.2), then Ψ is a stable matrix-dilated wavelet family
relative to M .

Recall that a family (1.2) is called a frame with frame bounds A and B, 0 < A ≤
B, if

(5.4) A‖f‖2 ≤
L∑
`=1

∑
j∈ZZ,k∈ZZs

|〈f, ψ`,b;j,k〉|2 ≤ B‖f‖2, f ∈ L2.

If A = B in (5.4), then the family (1.2) is called a tight frame.
By Theorems 1 and 2, we may establish the following.
Proposition 2. Let M = λU , where λ > 1 and U is an s × s unitary matrix.

If the family (1.2) constitutes a frame with frame bounds A and B, then Ψ is a stable
matrix-dilated wavelet family relative to M with wavelet frame bounds A and B.

Conversely, if ψ`, ` = 1, . . . , L, satisfy the condition in Corollary 1 and Ψ is a
matrix-dilated wavelet family relative to M with bounds A and B, then (1.2) constitutes
a frame with bounds A and B.

For the univariate setting, the first statement of this result was established in our
earlier work [1].

5.2. Oversampling for frames. As a consequence Theorem 3, we have the
following so-called second oversampling theorem for frames.

Proposition 3. Let all the entries of M be integers and the condition (1.3) be
satisfied. If the family (1.2) constitutes a frame with frame bounds A and B and n is
a natural number that satisfies (1.15), then the family

(5.5) {n−s/2ψ`,b/n;j,k(x): 1 ≤ ` ≤ L, j ∈ ZZ, k ∈ ZZs}

also constitutes a frame with the same bounds. However, this conclusion does not hold
in general without assumption (1.13).

This is a generalization of Theorem 4 in [3]. From this proposition, we see that
if M and n satisfy the assumptions in Proposition 3 and the family (1.2) constitutes
a tight frame, then the family (5.5) is a tight frame as well.

5.3. Boundedness of g-function operators. Let ψ be any square-integrable
function on lRs with

∫
ψ = 0 and set ψt(x) := t−sψ(x/t). Then the operator

(5.6) g(f)(x) :=

(∫ ∞

0

|ψt ∗ f(x)|2 dt
t

)1/2
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is called a Littlewood–Paley g-function operator associated with ψ. It is clear that∫
|g(f)(x)|2dx =

1

(2π)s

∫ ∞

0

dt

t

∫
lRs

|ψ̂t(x)f̂(x)|2dx

=
1

(2π)s

∫
lRs

|f̂(x)|2
∑
j∈ZZ

∫ 2j+1

2j

dt

t
|ψ̂(tx)|2

 dx.

Hence we have∫
|g(f)(x)|2dx ≤ 1

(2π)s

∫
lRs

|f̂(x)|2
∫ 2

1

∑
j∈ZZ

|ψ̂(2−jtx)|2dtdx ≤ 2

∫
|g(f)(x)|2dx.

and this yield the following result.
Proposition 4. The g-function operator (5.6) is bounded in L2 if and only if

the corresponding Littlewood–Paley energy function

Lψ(x) :=
∑
j∈ZZ

|ψ̂(2jx)|2

satisfies
∫ 2

1
Lψ(tx)dt ∈ L∞.

By combining this result and Theorem 1, we obtain the following.
Proposition 5. Let Φ be a nonincreasing function on [0,∞) that satisfies (1.9)

and ψ satisfies
∫
ψ = 0 and |ψ(x)| ≤ Φ(|x|), x ∈ lRs. Then the g-function operator

associated with ψ is bounded in L2.
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A MULTIVARIATE FORM OF HARDY’S INEQUALITY AND
Lp-ERROR BOUNDS FOR MULTIVARIATE LAGRANGE

INTERPOLATION SCHEMES*

SHAYNE WALDRON
†

Abstract. The multivariate generalization of Hardy’s inequality—that for m− n/p > 0,

(∗)
∥∥∥∥ x 7→

∫
[x,...,x︸︷︷︸

m

,Θ]

f

∥∥∥∥
p

≤ ‖f‖p
(m− 1)!(m− n/p)#Θ

,

valid for f ∈ Lp(IRn) and Θ an arbitrary finite sequence of points in IRn—is discussed.
The linear functional f 7→

∫
Θ
f was introduced by Micchelli in connection with Kergin in-

terpolation. This functional also naturally occurs in other multivariate generalizations of Lagrange
interpolation, including Hakopian interpolation and the Lagrange maps of section 5. For each of these
schemes, (∗) implies Lp-error bounds.

We discuss why (∗) plays a crucial role in obtaining Lp-bounds from pointwise integral error
formulas for multivariate generalizations of Lagrange interpolation.

Key words. Hardy’s inequality, Lagrange interpolation, Kergin interpolation, Hakopian inter-
polation, B-spline, simplex spline, Hermite–Genocchi formula

AMS subject classifications. Primary, 26D10, 41A10, 41A17, 41A63; Secondary, 41A05,
41A80

PII. S0036141094275506

1. Introduction.

1.1. Overview. The central result of this paper is the following inequality: for
m− n/p > 0,

(1.1.1)

∥∥∥∥ x 7→ ∫
[x,...,x︸ ︷︷ ︸

m

,Θ]

f

∥∥∥∥
Lp(Ω)

≤ 1

(m− 1)!(m− n/p)#Θ
‖f‖Lp(Ω), ∀f ∈ Lp(Ω),

where the functional
∫
[x,···,x,Θ]

is defined in Definition 2.1.1, Θ is a finite sequence of

points in IRn, and Ω is a suitable domain in IRn. This inequality is a multivariate
generalization of Hardy’s inequality—that for p > 1,

(1.1.2)

∥∥∥∥ x 7→ 1

x

∫ x

0

f

∥∥∥∥
Lp(0,∞)

≤ p

p− 1
‖f‖Lp(0,∞), ∀f ∈ Lp(0,∞).

Thus, we will refer to (1.1.1) as the multivariate form of Hardy’s inequality.

*Received by the editors October 11, 1994; accepted for publication (in revised form) October
10, 1995. This work was supported by the Chebyshev professorship of Carl de Boor and was completed
while at the Center for the Mathematical Sciences at the University of Wisconsin–Madison.

http://www.siam.org/journals/sima/28-1/27550.html.
†Department of Mathematics, University of Auckland, Private Bag 92019, Auckland, New

Zealand (waldron@math.auckland.ac.nz, http://www.math.auckland.ac.nz/˜waldron).

233



234 SHAYNE WALDRON

Our interest in (1.1.1) comes from a desire to obtain Lp-bounds from the many
integral error formulas for multivariate generalizations of Lagrange interpolation that
involve the linear functional

(1.1.3) f 7→
∫

[x,...,x︸ ︷︷ ︸
m

,Θ]

f.

The paper is structured in the following way. In the remainder of this section,
the notation that we will use and the facts about Sobolev spaces that we will need
are discussed. In section 2, some properties of the linear functional f 7→ ∫

Θ
f , and

its connection with simplex splines, are given. In section 3, the multivariate form of
Hardy’s inequality is proved. In section 4, the multivariate form of Hardy’s inequality
is applied to obtain Lp-bounds for the error in the scale of mean value interpolations,
which includes Kergin and Hakopian interpolation. In section 5, in a similar vein,
Lp-bounds for the error in Lagrange maps are obtained. In section 6, we discuss why
the multivariate form of Hardy’s inequality is applicable to the many error formulas
for multivariate Lagrange interpolation schemes and is likely to be so for others yet
to be obtained.

1.2. Some notation. The discussion takes place in IRn with the following def-
initions holding throughout. The space of n-variate polynomials of degree k will be
denoted by Πk(IR

n), and the space of homogeneous polynomials of degree k will be
denoted by Π0

k(IR
n). The differential operator induced by q ∈ Πk(IR

n) will be written
q(D). Let ‖·‖ be the Euclidean norm on IRn, and let Ω ⊂ IRn, with Ω̄ its closure. The
letters i, j, k, l, m, n will be reserved for integers, and 1 ≤ p ≤ ∞. We use standard
multivariate notation, so, e.g., {α : |α| = k} is the set of multiindices α of length k.

We find it convenient to make no distinction between the matrix [θ1, . . . , θk] and
the k-sequence θ1, . . . , θk of its columns. Since [θ1, . . . , θk]f is a standard notation for
the divided difference of f at Θ = [θ1, . . . , θk], we use for the latter the nonstandard
notation

δΘf = δ[θ1,...,θk]f.

Note the special case
δ[x]f = f(x).

Similarly, to avoid any confusion, the closed interval with endpoints a and b will be
denoted by [a . . b].

The derivative of f in the directions Θ is denoted

DΘf := Dθ1 · · ·Dθkf.

The notation Θ̃ ⊂ Θ means that Θ̃ is a subsequence of Θ, and Θ\Θ̃ denotes the
complementary subsequence. The subsequence consisting of the first j terms of Θ is
denoted Θj , and

x−Θ := [x− θ1, . . . , x− θk].

Thus, with Θ := [θ1, . . . , θ7], we have, for example, that

D[x−Θ\Θ5,x−θ3]f = Dx−θ6Dx−θ7Dx−θ3f.

The diameter and convex hull of a sequence Θ will be that of the corresponding
set and will be denoted by diam Θ and conv Θ, respectively.
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Many of the constants in this paper involve the shifted factorial function

(1.2.1) (a)n := (a)(a+ 1)(a+ 2) · · · (a+ n− 1) =
Γ(a+ n)

Γ(a)
,

where Γ is the gamma function. The gamma function satisfies the relation

Γ(a+ 1) = aΓ(a), ∀a > 0,

and has Γ(1) = 1. In particular,

(1.2.2) Γ(n+ 1) = n!, n = 0, 1, 2, . . . .

Some of our calculations require the beta integrals

(1.2.3)

∫ 1

0

ta−1(1− t)b−1 dt =
Γ(a)Γ(b)

Γ(a+ b)
, a, b > 0,

and the hypergeometric function

(1.2.4) 2F1

( a, b
c ;x

)
:=

∞∑
n=0

(a)n(b)n
n!(c)n

xn.

The standard reference to these is the monograph [E53].

1.3. Geometry of the domain Ω. We say that Ω ⊂ IRn is star-shaped with
respect to S, a set (resp. sequence) in IRn, when Ω contains the convex hull of S ∪{x}
for any x ∈ Ω. This condition is weaker than Ω being convex.

In our results, it will be required that Ω̄ be star-shaped with respect to Θ ∈ IRn×k,
where Ω is an open set in IRn. This condition is required of Ω̄, rather than of Ω, so as to
include cases where some points in Θ lie on the boundary of Ω. (See Figure 1.1.) One
such example of interest is the Lagrange finite element given by linear interpolation at
Θ, the vertices of a n-simplex; see, e.g., Ciarlet [Ci78, p. 46]. In this case, Ω̄ = conv Θ,
and none of the points of Θ are in the open simplex Ω.

Fig. 1.1. Examples of domains Ω (shaded) for which Ω̄ is star-shaped with respect to the points
in Θ (•).
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We now show that being star-shaped with respect to a finite sequence is equivalent
to being star-shaped with respect to its convex hull.

Proposition 1.3.1. If Ω ⊂ IRn and Θ ∈ IRn×k, then the following are equivalent:

(a) Ω is star-shaped with respect to Θ.

(b) Ω is star-shaped with respect to conv Θ.

Proof. (See Figure 1.2.) Only the implication (a) =⇒ (b) requires proof. Suppose
(a). To obtain (b), it suffices to prove that if Ω is star-shaped with respect to points u
and v, then conv{u, v, x} ⊂ Ω, ∀x ∈ Ω, i.e., Ω is star-shaped with respect to conv{u, v}.

Assume without loss of generality that u, v, x are affinely independent, and
z ∈ conv{u, v, x}. Let w be the point of intersection of the line through u and z with
the interval conv{x, v}. Since Ω is star-shaped with respect to v, we have that w ∈ Ω.
Thus, since Ω is star-shaped with respect to u, we have that z ∈ conv{u,w} ⊂ Ω.

u

v

z

x

w

Fig. 1.2. The proof of Proposition 1.3.1.

This equivalence ensures that if Ω̄ is star-shaped with respect to Θ, then f ∈
Lp(Ω) is defined over the region of integration in (1.1.3) for all x ∈ Ω.

1.4. Sobolev spaces. Let W
(k)
p (Ω) be the Sobolev space consisting of those

functions defined on Ω (a bounded open set in IRn with a Lipschitz boundary) with
derivatives up to order k in Lp(Ω), and equipped with the usual topology; see, e.g.,
Adams [Ad75]. It is convenient to include in the definition the condition that Ω have
a Lipschitz boundary so that Sobolev’s embedding theorem can be applied. The full
statement of Sobolev’s embedding theorem can be found in any text on Sobolev spaces,
see, e.g., [Ad75, p. 97]; however, we will need only the following consequence of it. If
j − n/p > 0, then

W
(k+j)
p (Ω) ⊂ Ck(Ω̄).

To measure the size of its kth derivative, it is convenient to associate with each

f ∈W (k)
p (Ω) the function |Dkf | ∈ Lp(Ω), given by the rule

(1.4.1) |Dkf |(x) := sup
Θ∈IRn×k
‖θi‖≤1

|DΘf(x)| = sup
θ∈IRn

‖θ‖=1

|Dk
θf(x)|,
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where the derivatives DΘf are computed from any (fixed) choice of representatives
for the partial derivatives Dαf ∈ Lp(Ω), |α| = k. The equality of the two suprema
follows from a classical result of Banach on the norm of a symmetric multilinear map
(cf. Harris [Har96]). It is also proved in Chen and Ditzian [CD90]. This definition
of |Dkf | is consistent with its standard univariate interpretation. From (1.4.1), it is
easy to see that |Dkf | is well defined and satisfies

(1.4.2) |DΘf | ≤ |Dkf | ‖θ1‖ · · · ‖θk‖

for all Θ ∈ IRn×k. The inequality (1.4.2) holds a.e. To emphasize that DΘf and |Dkf |
are in Lp(Ω), we will say that (1.4.2) holds in Lp(Ω). The Lp(Ω)-norm of |Dkf | gives

a seminorm for f ∈W (k)
p (Ω),

(1.4.3) f 7→ f
k,p,Ω

:= ‖ |Dkf | ‖Lp(Ω).

Because of (1.4.2), this coordinate-independent seminorm (1.4.3) is more appropriate
for the analysis that follows than other equivalent seminorms, such as

f 7→ ‖ (‖Dαf‖Lp(Ω) : |α| = k) ‖p.

2. The linear functional f 7→ ∫
Θ
f .

2.1. Definitions. The construction of the maps of Kergin and Hakopian de-
pends intimately on the following linear functional, called the divided difference func-
tional on IRn by Micchelli in [M79], and analyzed there and in [M80].

Definition 2.1.1. For any Θ ∈ IRn×(k+1), let

f 7→
∫

Θ

f :=

∫ 1

0

∫ s1

0

· · ·
∫ sk−1

0

f(θ0 + s1(θ1−θ0) + · · ·+ sk(θk−θk−1)) dsk · · · ds2 ds1

with the convention that
∫
[ ]
f := 0.

In addition to Kergin and Hakopian interpolation, the linear functional f 7→ ∫
Θ
f

also occurs when discussing other multivariate generalizations of Lagrange interpo-
lation, e.g., the Lagrange maps of section 5. It was used as early as 1878, when
in [Ge1878], Genocchi proved the Hermite–Genocchi formula, namely, that for Θ ∈
IR1×(k+1) and f ∈ Ck(conv Θ),

δΘf =

∫
Θ

Dkf.

In this section, we outline those properties of f 7→ ∫
Θ
f needed in the subsequent

sections. Many of these properties are apparent from the following observation.
Observation 2.1.2. If S is any k-simplex in IRm and A : IRm → IRn is any

affine map taking the k + 1 vertices of S onto the k + 1 points in Θ, then∫
Θ

f =
1

k! volk(S)

∫
S

f ◦A,

with volk(S) the (k-dimensional) volume of S.
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With the choice

A : IRk → IRn : (s1, . . . , sk) 7→ θ0 + s1(θ1−θ0) + · · ·+ sk(θk−θk−1),

S := {(s1, . . . , sk) ∈ IRk : 0 ≤ sk ≤ · · · ≤ s2 ≤ s1 ≤ 1},
this is simply Definition 2.1.1. The different choice

A : IRk+1 → IRn : (v0, . . . , vk) 7→ v0θ0 + · · ·+ vkθk,

S :=

{
(v0, . . . , vk) ∈ IRk+1 : vj ≥ 0,

k∑
j=0

vj = 1

}
shows that our definition of

∫
Θ
f coincides with the one used by Micchelli in [M80].

Properties 2.1.3.

(a) The value of
∫
Θ
f does not depend on the ordering of the points in Θ.

(b) The distribution

MΘ : C∞0 (IRn) → IR : f 7→ k!

∫
Θ

f

is the (normalized) simplex spline with knots Θ (cf. [M80]).
(c) If f ∈ C(conv Θ), then

∫
Θ
f is defined, and for some ξ ∈ conv Θ,∫

Θ

f =
1

k!
f(ξ).

(d) If g : IRs → IR and if B : IRn → IRs is an affine map, then∫
Θ

(g ◦B) =

∫
BΘ

g.

Remark 2.1.4. Let A| denote the restriction of A to the orthogonal complement
of its kernel, which is a 1–1 map onto the affine hull of Θ. The simplex spline MΘ of
(b) has support conv Θ. It can be represented by the nonnegative bounded function

conv Θ → IR : t 7→M(t|Θ) :=
volk−d(A−1t ∩ S)

| det(A|)| volk(S)
, d := dim conv Θ,

in the sense that

(2.1.5) MΘf =

∫
conv Θ

M(·|Θ)f.

In particular, if the points of Θ are affinely independent, then

(2.1.6) k!

∫
Θ

f =
1

volk(conv Θ)

∫
conv Θ

f = average value of f on conv Θ.

Thus
∫
Θ
f is defined (as a real number) if and only if M(·|Θ)f ∈ L1(conv Θ), in

which case

(2.1.7)

∣∣∣∣∫
Θ

f

∣∣∣∣ ≤ ∫
Θ

|f |.
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If f is nonnegative on conv Θ, then
∫
Θ
f ∈ [0 . .∞] is defined (by Definition 2.1.1).

Therefore, we will write (2.1.7) for all f which are defined on conv Θ—with the un-
derstanding that

∫
Θ
f is defined if and only if

∫
Θ
|f | <∞ or f is nonnegative. In the

univariate case, that is, when n = 1, M(·|Θ) is the (normalized) B-spline with knots
Θ. For additional details about MΘ and M(·|Θ), see, e.g., Micchelli [M79].

Example 2.1.8. As a special case of (2.1.5), we have∫
[0,...,0︸︷︷︸

m

, 1,...,1︸︷︷︸
k+1−m

]

f =
1

(m− 1)!(k −m)!

∫ 1

0

tk−m(1− t)m−1f(t) dt.

Thus, by Property 2.1.3(d) with B : t 7→ x+ t(v − x) and Θ = [0, . . . , 0, 1, . . . , 1],

(2.1.9)

∫
[x,...,x︸ ︷︷ ︸

m

, v,...,v︸︷︷︸
k+1−m

]

f =

∫
[0,...,0︸︷︷︸

m

, 1,...,1︸︷︷︸
k+1−m

]

f(x+ ·(v − x))

=
1

(m− 1)!(k −m)!

∫ 1

0

tk−m(1− t)m−1f(x+ t(v − x)) dt.

2.2. Some technical details.
Remark 2.2.1. In view of Properties 2.1.3(a),

Θ 7→
∫

Θ

f

could be thought of as a map defined on finite multisets in IRn rather than on se-
quences. However, adopting this definition leads to certain unnecessary complications.
For example, to discuss the continuity of Θ 7→ ∫

Θ
f , it would be necessary to endow

the set of multisets of k+ 1 points in IRn with the appropriate topology. Thus, in the
interest of simplicity, Θ 7→ ∫

Θ
f remains a map on sequences—but with the reader

encouraged to think of it, as does the author, as a map on multisets.
Finally, by (2.1.5), we can describe the continuity of Θ 7→ ∫

Θ
f as follows.

Proposition 2.2.2.

(a) For f ∈ C(IRn), the map

IRn×(k+1) → IR : Θ 7→
∫

Θ

f

is continuous.
(b) For f ∈ Lloc

1 (IRn), the map

{Θ ∈ IRn×(k+1) : vol n(conv Θ) > 0} → IR : Θ 7→
∫

Θ

f

is continuous.

3. The main results: The multivariate form of Hardy’s inequality and
Lp-inequalities. In this section, we prove the multivariate form of Hardy’s inequality.
This inequality is useful for obtaining Lp-bounds from integral error formulas for
various multivariate interpolation schemes.
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First, we need a technical lemma.

3.1. A lemma.
Lemma 3.1.1. Let m, k, be integers, and µ ∈ IR. If 1 ≤ m ≤ k and m+ µ > 0,

then ∫ 1

0

∫ s1

0

· · ·
∫ sk−1

0

(1− sm)µ dsk · · · ds1 =
1

(m− 1)!(m+ µ)k+1−m
.

Proof. This can be proved by successively evaluating the univariate integrals.
Instead, a proof using the properties of f 7→ ∫

Θ
f is given.

From Definition 2.1.1, it is seen that∫ 1

0

∫ s1

0

· · ·
∫ sk−1

0

(1− sm)µ dsk · · · ds1 =

∫
Θ

(·)µ,

where
Θ := [1, . . . , 1︸ ︷︷ ︸

m

, 0, . . . , 0︸ ︷︷ ︸
k+1−m

].

By (2.1.9), (1.2.3), and (1.2.2), it follows that∫
Θ

(·)µ =
1

(m− 1)!(k −m)!

∫ 1

0

tk−m(1− t)m−1(1− t)µ dt

=
1

(m− 1)!(k −m)!

Γ(k −m+ 1)Γ(m+ µ)

Γ(k + 1 + µ)

=
1

(m− 1)!(m+ µ)k+1−m
.

Here the condition that m + µ > 0 is needed to ensure that the beta integral is fin-
ite.

3.2. The multivariate form of Hardy’s inequality. We now prove the mul-
tivariate form of Hardy’s inequality.

Theorem 3.2.1. Let Θ be a nonempty finite sequence in IRn, and let Ω be an
open set in IRn for which Ω̄ is star-shaped with respect to Θ. If m−n/p > 0, then the
rule

(3.2.2) Hm,Θf(x) :=

∫
[x,...,x︸ ︷︷ ︸

m

,Θ]

f

induces a positive bounded linear map Hm,Θ : Lp(Ω) → Lp(Ω) with norm

(3.2.3) ‖Hm,Θ‖Lp(Ω) ≤ 1

(m− 1)!(m− n/p)#Θ
→∞ as m− n/p→ 0+.

This upper bound for ‖Hm,Θ‖Lp(Ω) is sharp when Θ involves only one point, i.e., when

Θ = [v, . . . , v],

and is also sharp when p = ∞. Furthermore, if Ω ⊂ Ω′, then

(3.2.4) ‖Hm,Θ‖Lp(Ω) ≤ ‖Hm,Θ‖Lp(Ω′).
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Proof. Suppose that m−n/p > 0. Then m > 0. Let k+ 1 := m+ #Θ, and write

[x, . . . , x︸ ︷︷ ︸
m

,Θ] =: [x, . . . , x︸ ︷︷ ︸
m

, θm, θm+1, . . . , θk].

By Definition 2.1.1,

(3.2.5) Hm,Θf(x) =

∫
S

f(Axs) ds,

where s := (s1, . . . , sk),∫
S

:=

∫ 1

0

∫ s1

0

· · ·
∫ sk−1

0

, ds := dsk · · · ds1,

and
Axs := x+ sm(θm − x) + sm+1(θm+1 − θm) + · · ·+ sk(θk − θk−1).

The domain of integration for f in (3.2.5) is conv[x,Θ], which by Proposition
1.3.1 is contained (up to a set of measure zero) in Ω for any x ∈ Ω. However, for
f ∈ Lp(Ω), it is not clear whether the integrals in (3.2.5) converge so as to define a
function Hm,Θf which is in Lp(Ω) (or is even measurable for that matter).

First, suppose that f is a nonnegative measurable function. Then (3.2.5) defines
a nonnegative measurable function Hm,Θf , as is now shown. The nonnegativity of
Hm,Θf , i.e., the positiveness of the map Hm,Θ, is obvious, and the measurability of
Hm,Θf is a consequence of Tonelli’s theorem (see, e.g., Folland [Fo84, p. 65]) as follows.

First, we prove that the map

(3.2.6) (x, s) 7→ f(Axs)

is measurable. Since f is measurable, the measurability of (3.2.6) is equivalent to
A−1(E) being measurable for each E ∈ E , where

A : (x, s) 7→ Axs,

and E is any family of sets that generates the Lebesgue σ-algebra. Take E as the
Borel sets together with all the subsets F of any Borel set B of measure zero. Since
A is continuous, the inverse image under A of a Borel set is a Borel set (which is
measurable). For F ⊂ B, A−1(F ) is contained within the Borel set A−1(B), which
has zero measure (see below), and hence is measurable. For sm 6= 1, the set

{x : Axs ∈ B} =
1

1− sm
(B − smθm − sm+1(θm+1 − θm)− · · · − sk(θk − θk−1)),

hence has zero measure, and so, by Tonelli’s theorem,

meas(A−1(B)) =

∫
S

meas({x : Axs ∈ B}) ds = 0.

This completes the proof of the measurability of (3.2.6). Since (3.2.6) is a nonnegative
measurable function, it follows from Tonelli’s theorem that

Hm,Θ : x 7→
∫
S

f(Axs)
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is measurable.
Apply Minkowski’s inequality for integrals (see, e.g., Folland [Fo84, p. 186]) to

the sum (integral)
∫
S

of functions x 7→ f(Axs) to obtain

(3.2.7) ‖Hm,Θf‖Lp(Ω) ≤
∫
S

‖x 7→ f(Axs)‖Lp(Ω) ds.

The case where 1 ≤ p <∞. Inequality (3.2.7) can be written as

‖Hm,Θf‖Lp(Ω) ≤
∫
S

(∫
Ω

f(Axs)p dx

)1/p

ds.

Make the change of variables
y = Axs

in the inner integral above. The new region of integration is contained in Ω, and
dy = (1− sm)ndx. Thus, by the change of variables formula (see, e.g., Rudin [Ru87,
p. 153]), it follows that

∫
S

(∫
Ω

f(Axs)p dx

)1/p

ds ≤
∫
S

(∫
Ω

f(y)p dy

(1− sm)n

)1/p

ds

=

(∫
S

(1− sm)−n/p ds
)
‖f‖Lp(Ω).

From Lemma 3.1.1 with k + 1−m = #Θ and µ = −n/p, it follows that

(3.2.8)

∫
S

(1− sm)−n/p ds =
1

(m− 1)!(m− n/p)#Θ
.

The case where p = ∞. Since x 7→ Axs maps sets of measure zero to sets of
measure zero, it follows from (3.2.7) that

(3.2.9) ‖Hm,Θf‖L∞(Ω) ≤
∫
S

‖f‖L∞(Ω) ds =
1

k!
‖f‖L∞(Ω)

with equality when f is constant. The fact that∫
S

ds =
1

k!
,

used above, follows from Observation 2.1.2 or from Lemma 3.1.1 with µ = 0.
So far, it has been shown that for a nonnegative measurable f , (3.2.2) defines a

nonnegative measurable function which satisfies

(3.2.10) ‖Hm,Θf‖Lp(Ω) ≤ 1

(m− 1)!(m− n/p)#Θ
‖f‖Lp(Ω).

In view of this inequality, Hm,Θ induces a map from the nonnegative functions in
Lp(Ω) to Lp(Ω). Each f ∈ Lp(Ω) can be written as

f = f+ − f−,
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a difference of nonnegative functions in Lp(Ω) (its positive and negative parts), and so
(due to its linearity) Hm,Θ induces a map on Lp(Ω), also denoted by Hm,Θ. Since

‖Hm,Θf‖Lp(Ω) ≤ ‖Hm,Θ(|f |)‖Lp(Ω), ∀f ∈ Lp(Ω),

inequality (3.2.10) holds for all f ∈ Lp(Ω), which gives (3.2.3).
Next, (3.2.4) is shown. Since the restriction map

Lp(Ω′) → Lp(Ω) : f 7→ f |Ω
is onto and (Hm,Θf)|Ω depends only on f |Ω,

‖Hm,Θ‖Lp(Ω) = sup
f∈Lp(Ω′)

‖Hm,Θ(f |Ω)‖Lp(Ω)

‖f |Ω‖Lp(Ω)
≤ sup

f∈Lp(Ω′)
f=χΩf

‖Hm,Θf‖Lp(Ω′)
‖f‖Lp(Ω′)

≤ sup
f∈Lp(Ω′)

‖Hm,Θf‖Lp(Ω′)
‖f‖Lp(Ω′)

= ‖Hm,Θ‖Lp(Ω′).

Finally, the sharpness is proved. Suppose that Θ = [v, . . . , v]. Let

f := ‖ · −v‖α, α ∈ IR.

Then by (2.1.9), and (1.2.3), for m+ α > 0,

Hm,Θf(x) =
1

(m− 1)!(#Θ− 1)!

∫ 1

0

t#Θ−1(1− t)m−1 ‖x+ t(v − x)− v‖α dt

=
1

(m− 1)!(#Θ− 1)!

∫ 1

0

t#Θ−1(1− t)m−1+α dt ‖x− v‖α

=
1

(m− 1)!(#Θ− 1)!

Γ(#Θ)Γ(m+ α)

Γ(#Θ +m+ α)
‖x− v‖α

=
1

(m− 1)!(m+ α)#Θ
‖x− v‖α,

so that f := ‖ · −v‖α, m+ α > 0, is an eigenvector of Hm,Θ with eigenvalue

λ :=
1

(m− 1)!(m+ α)#Θ
.

Thus

‖Hm,Θ‖Lp(Ω) ≥ sup

{
1

(m− 1)!(m+ α)#Θ
: ‖ · −v‖α ∈ Lp(Ω), α+m > 0

}
≥ sup

{
1

(m− 1)!(m+ α)#Θ
: α > −n/p

}
=

1

(m− 1)!(m− n/p)#Θ
,

giving equality in (3.2.3). The sharpness for the case where p = ∞ follows from the
observation that there is sharpness in inequality (3.2.9) for f constant and Ω bounded,
together with inequality (3.2.4).
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Remark 3.2.11. If voln(conv Θ) > 0, then by Remark 2.1.4, it follows that the
value of Hm,Θf(x) is the same for all representatives of f ∈ Lp(Ω). Indeed, by
Proposition 2.2.2, for all f ∈ Lp(Ω), we have that Hm,Θf ∈ C(Ω̄), regardless of
whether or not m− n/p > 0.

On the other hand, when voln(conv Θ) = 0, then the function Hm,Θf need not
be so well behaved. For example, if n > 1 and Θ consists of a single point θ, then
f ∈ Lp(Ω) can be altered on a null set so that Hm,Θf takes on arbitrary preassigned
values on any countable dense subset of Ω. For the details of one such construction,
see the end of this section.

3.3. Special case: Hardy’s inequality. In the very special case where n = 1,
m = 1, and Θ = [0], we have by (2.1.6) that

(3.3.1) Hm,Θf(x) =
1

x

∫ x

0

f.

With the choice Ω = (0,∞), (3.2.3) is Hardy’s inequality (1.1.2). This well-known
inequality was first proved by Hardy [Ha28]; see also [HLP67, section 9.8].

For a comprehensive survey of the literature connected with Hardy’s inequality,
see [FMP91, Chapter IV]. The only multivariate occurrence of Theorem 3.2.1 that the
author is aware of is, implicitly, in Arcangeli and Gout [AG76] for the case when Θ
consists of a single point. The bulk of the 174 references for [FMP91, Chapter IV]
deal with univariate generalizations of Hardy’s inequality—some of which are special
cases of Theorem 3.2.1.

3.4. Further Lp-bounds. Next, we use Theorem 3.2.1 to give a bound particu-
larly suited for obtaining Lp-bounds from integral error formulas, such as those given
in sections 4 and 5.

Theorem 3.4.1. Fix a1, . . . , as ∈ IRk+1 \ 0, where s ≥ 0. Let Θ ∈ IRn×k, and
let Ω be a bounded open set in IRn for which Ω̄ is star-shaped with respect to Θ. If
m− n/p > 0, then the rule

(3.4.2) Lf(x) :=

∫
[x,...,x︸ ︷︷ ︸

m

,Θ]

( s∏
j=1

D[x,Θ]aj

)
f

induces a bounded linear map L : W s
p (Ω) → Lp(Ω) with

(3.4.3) ‖Lf‖Lp(Ω) ≤
(

max
x∈Ω̄

s∏
j=1

‖[x,Θ]aj‖
)

1

(m− 1)!(m− n/p)#Θ
f
s,p,Ω

.

In addition, when p = ∞, we have the pointwise estimate

(3.4.4) |Lf(x)| ≤ 1

(#Θ +m− 1)!

( s∏
j=1

‖[x,Θ]aj‖
)
f
s,∞,Ω

, a.e. x ∈ Ω.

Proof. It follows from Theorem 3.2.1 that (3.4.2) induces a linear map W s
p (Ω) →

Lp(Ω). Next, (3.4.3) is proved.
Let x ∈ Ω and f ∈W s

p (Ω). By (1.4.2),

(3.4.5)

∣∣∣∣( s∏
j=1

D[x,Θ]aj

)
f

∣∣∣∣ ≤ ( s∏
j=1

‖[x,Θ]aj‖
)
|Dsf |
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in Lp(Ω). Here |Dsf | ∈ Lp(Ω) is defined by (1.4.1). Thus

Axf :=

( s∏
j=1

D[x,Θ]aj

)
f

defines a bounded linear map Ax : W s
p (Ω) → Lp(Ω) with

(3.4.6) |Axf | ≤ K |Dsf |

in Lp(Ω), where

K := K(a1, . . . , as,Ω) := max
x∈Ω̄

s∏
j=1

‖[x,Θ]aj‖.

Notice that
Lf(x) = (Hm,ΘAxf) (x).

Thus, (3.4.6) and the positiveness of Hm,Θ : Lp(Ω) → Lp(Ω) implies that

|Lf | ≤ Hm,Θ(K |Dsf |),

in Lp(Ω). Take the Lp(Ω)-norm of this inequality and then apply Theorem 3.2.1 to
obtain

‖Lf‖Lp(Ω) ≤ 1

(m− 1)!(m− n/p)#Θ
K ‖ |Dsf | ‖Lp(Ω).

Since
‖ |Dsf | ‖Lp(Ω) = f

s,p,Ω
,

this proves (3.4.3).
Similarly, from (3.4.5) and Theorem 3.2.1, we have for a.e. x ∈ Ω that

|Lf(x)| ≤
( s∏
j=1

‖[x,Θ]aj‖
)
‖Hm,Θ(|Dsf |)‖L∞(Ω)

≤
( s∏
j=1

‖[x,Θ]aj‖
)

1

(#Θ +m− 1)!
f
s,∞,Ω

,

which is (3.4.4).
In the special case when s = 0, Theorem 3.4.1 reduces to Theorem 3.2.1. Theorem

3.4.1 together with Property 2.1.3(d) can be used to obtain bounds for maps more
general than (3.4.2). One such example is the lift of an elementary liftable map; see
[Wa97].

3.5. An example. Finally, here is the example promised in Remark 3.2.11.
Let n > 1 and Θ consist of the single point θ. Suppose that Ω̄ is star-shaped with

respect to θ, and that B is a countable dense subset of Ω. It is possible to change
f ∈ Lp(Ω) on the intersection of Ω with the cone C with vertex θ and base B, which
is a null set, so that Hm,[θ]f , as computed from (3.2.2), takes on arbitrary preassigned
values on B.
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The cone C consists of the union of rays r emanating from θ and passing through
a point b ∈ B. Let r be such a ray, and order the points from B lying on r as b1, b2, . . .,
so that bi is closer to θ than bi+1. By Remark 2.1.4,

Hm,[θ]f(bi) =

∫
M(·| bi, . . . , bi︸ ︷︷ ︸

m

, θ) f

with the integration above being over the interval [θ . . bi] := conv{θ, bi} weighted by
a nonnegative polynomial. Thus, by redefining f to be an appropriate constant over
each of the intervals [θ . . b1], [b1 . . b2], [b2 . . b3], . . ., one can make Hm,[θ]f(bi) take on
any preassigned values.

The function Hm,[θ]f is more than simply an interesting example. It occurs
in the multipoint Taylor error formula for multivariate Lagrange interpolation given
by Ciarlet and Raviart [CR72]. From the multipoint Taylor formula, Arcangeli and
Gout [AG76] obtained Lp-bounds for multivariate Lagrange interpolation, long used
by those working in finite elements, but known to few approximation theorists. For
this reason, these bounds are discussed in some detail in Section 5.

4. Application: Lp-error bounds for Kergin and Hakopian interpola-
tion. In this section, we use Theorem 3.4.1 to obtain Lp-error bounds for the scale
of mean value interpolations, which includes the Kergin and Hakopian maps.

To describe the mean-value interpolations and the Lagrange maps of section 5,
we will need the following facts about linear interpolation.

4.1. Linear interpolation. Let F be a finite-dimensional space and Λ a finite-
dimensional space of linear functionals defined at least on F . We say that the cor-
responding linear interpolation problem, LIP(F,Λ) for short, is correct if for every g
upon which Λ is defined, there is a unique f ∈ F which agrees with g on Λ, i.e.,

λ(f) = λ(g), ∀λ ∈ Λ.

The linear map L : g 7→ f is called the associated (linear) projector with interpolants
F and interpolation conditions Λ. Each linear projector with finite-dimensional range
F is the solution of a LIP(F,Λ) for some unique choice of the interpolation conditions
Λ.

Notice that the correctness of LIP(F,Λ) depends only on the action of Λ on F .

4.2. The scale of mean value interpolations. Throughout this section, Θ ∈
IRn×k. For 0 ≤ m < k, we have the mean value interpolation

H(m)
Θ : {f : f is Ck−m−1 on conv Θ} → Πk−m−1(IR

n),

which is given by

H(m)
Θ f(x) := m!

k∑
j=m+1

∑
Θ̃⊂Θj−1

#Θ̃=m

∫
Θj

Dx−Θj−1\Θ̃f.

H(m)
Θ is a linear projector with interpolants Πk−m−1(IR

n) and interpolation conditions

span{f 7→
∫

Θ̃

q(D)f : Θ̃ ⊂ Θ, #Θ̃ ≥ m+ 1, q ∈ Π0
#Θ̃−m−1

(IRn)}.
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The map H(0)
Θ is Kergin’s map, and H(n−1)

Θ is Hakopian’s map. The Kergin
interpolant matches function values at Θ, as does the Hakopian interpolant in case
Θ is in general position; however, this latter fact is not obvious. For this reason, the

scale (H(m)
Θ : 0 ≤ m < k) of multivariate mean-value interpolations is thought of as a

multivariate generalization of Lagrange interpolation. For more details, see [Wa97].
For the remainder of this section, Ω will be a bounded open set in IRn with a

Lipschitz boundary. From [Wa97], we obtain the following integral error formulas for
the scale of mean-value interpolations.

Theorem 4.2.1. Suppose that Ω̄ is star-shaped with respect to Θ. If 0 ≤ j <

k −m, q ∈ Π0
j (IR

n), p > n, and f ∈W (k−m)
p (Ω), then

(4.2.2)

q(D)
(
f−H(m)

Θ f
)
(x) = (m+j)!

k∑
i=k−m−j

∑
Θ̃⊂Θi−1

#Θ̃=m+j+i−k

∫
[x,...,x︸ ︷︷ ︸
k+1−i

,Θi]

D[x−Θi−1\Θ̃,x−θi]q(D)f.

This formula involves only derivatives of f of order k −m.
Remark 4.2.3. In [Wa97], formula (4.2.2) was proved only for f ∈ Ck−m(IRn),

without any reference to p. We now outline how it can be extended to f ∈W (k−m)
p (Ω).

By Sobolev’s embedding theorem, the condition p > n implies that

W
(k−m)
p (Ω) ⊂ Ck−m−1(Ω̄) ⊂ C(Ω̄).

Thus H(m)
Θ f is defined for all f ∈ W (k−m)

p (Ω). To extend (4.2.2) to f ∈ W (k−m)
p (Ω),

use a density argument.

4.3. Lp-bounds for the scale of mean-value interpolations. Next, we ap-
ply Theorem 3.4.1 to (4.2.2) to obtain Lp-bounds for the scale of mean-value interpo-
lations. Let

hx,Θ := sup
θ∈Θ

‖x− θ‖, hΩ,Θ := sup
x∈Ω

hx,Θ ≤ diam Ω.

Theorem 4.3.1. Suppose that Ω̄ is star-shaped with respect to Θ. If 0 ≤ j <

k −m, p > n, and f ∈W (k−m)
p (Ω), then

(4.3.2) f −H(m)
Θ f

j,p,Ω
≤ Cn,p,j,k,m (hΩ,Θ)k−m−j f

k−m,p,Ω,

where

Cn,p,j,k,m :=
1

(1− n/p)k−m−j
.

The constant Cn,p,j,k,m → ∞ as p → n+. Additionally, if p = ∞, then we have the
pointwise estimate that for all x ∈ Ω̄,

|Dj(f −H(m)
Θ f)|(x) ≤ 1

(k −m− j)!
(hx,Θ)k−m−j f

k−m,∞,Ω
.

Proof. Choose q ∈ Π0
j (IR

n) so that

q(D) = Du1 · · ·Duj ,
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where u1, . . . , uj ∈ IRn with ‖ui‖ ≤ 1. By Theorem 3.4.1, we have for each of the
terms in (4.2.2) that∥∥∥∥x 7→ ∫

[x,...,x︸ ︷︷ ︸
k+1−i

,Θi]

D[x−Θi−1\Θ̃,x−θi]q(D)f

∥∥∥∥
Lp(Ω)

≤ Γ(k + 1− i− n/p)

Γ(k + 1− i)Γ(k + 1− n/p)
(hΩ,Θ)k−m−j f

k−m,∞,Ω
.

Notice that in the above, the constants

max
x∈Ω̄

∏
θ∈[Θi−1\Θ̃,θi]

‖x− θ‖

were replaced by the possibly larger but far less complicated constant (hΩ,Θ)k−m−j .
This gives the first inequality with

Cn,p,j,k,m := (m+ j)!
k∑

i=k−m−j

(
i− 1

m+ j + i− k

)
1

(k − i)!(k + 1− i− n/p)i

=
(k − 1)!

(k −m− j − 1)!(1− n/p)
2F1

(−m− j, 1− n/p

1− k
; 1
)
.

By the Chu–Vandermonde convolution identity:

2F1

(−n, b
c

; 1
)

=
(c− b)n

(c)n
,

which is the special case a = −n of equation (14) in [E53, p. 61], it follows that

Cn,p,j,k,m =
1

(1− n/p)k−m−j
.

The second inequality, which is proved in [Wa97], follows from the pointwise
estimate (3.4.4).

By considering the special case of Taylor interpolation at a point by polynomials
of degree ≤ k, we obtain the following estimate of the distance of smooth functions
from Πk.

Corollary. Suppose that Ω ⊂ IRn is a bounded, open, star-shaped region that
has a Lipschitz boundary. Then for p > n and 0 ≤ j ≤ k + 1,
(4.3.3)

dist ·
j,p,Ω

(f,Πk) := inf
g∈Πk

f − g
j,p,Ω

≤ 1

(1− n/p)k+1−j
(diam Ω)k+1−j f

k+1,p,Ω
, ∀f ∈W k+1

p (Ω).

Note that
1

(1− n/p)k+1−j
→∞ as p→ n+.

That an inequality of the form of (4.3.3) holds for j = 0, where the constant
1/(1− n/p)k+1−j is replaced by some unknown constant depending only on n, k, and
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p, is the content of the paper by Dechevski and Quak [DQ90]. From this, they obtain
the corresponding “improved” version of the Bramble–Hilbert lemma (see [BH70]).

4.4. A related result of Lai and Wang. The only related result in the liter-
ature is an Lp-bound for the error in Hakopian interpolation given by Lai and Wang
[LW84]. In that paper they show the following.

Theorem 4.4.1 ([LW84, Theorem 1]). Let |α| ≤ k − n. Then for any positive
integer ` ≤ k + |α| − n+ 1, we have
(4.4.2)

Dα(f −H(n−1)
Θ )(x)

=(|α|+ n− 1)

|α|+n∑
µ1=1

n∑
i1=1

(x− θ|α|+n−µ1+1)i1

µ1∑
µ2=1

n∑
i2=1

(x− θ|α|+n−µ2+2)i2

× · · · ×
µ`−1∑
µ`=1

n∑
i`=1

(x− θ|α|+n−µ`+`)i`

∫
[x,...,x︸ ︷︷ ︸

µ`

,θ1,...,θ|α|+n−µ`+`]
D
α+
∑`

j=1
eij
f

−
k−1∑

j=|α|+n−1+`

∑
|γ|=j−n+1

Dαωγ(x)

∫
[θ1,...,θj ]

Dγf.

The above uses standard multiindex notation. The ith component of x ∈ IRn is
xi, and ei is the ith unit vector in IRn. To (4.4.2), Lai and Wang apply the integral
form of Minkowski’s inequality in the form

(4.4.3)

∥∥∥∥x 7→ ∫
[x,...,x︸ ︷︷ ︸

µ

,θ1,...,θk+1−µ]

Dβf

∥∥∥∥
Lp(G)

≤ C2 ‖Dβf‖Lp(G), µ = 1, . . . , |α|+ n,

to obtain the following.

Theorem 4.4.4 ([LW84, Theorem 2]). Let G be a convex set containing Θ with

diameter h. If p > n, |α| ≤ k − n, and f ∈W (k−n+1)
p (G), then

(4.4.5) ‖Dα(f −H(n−1)
Θ f)‖Lp(G) ≤ C hk−n+1−|α| max

|β|=k−n+1
‖Dβf‖Lp(G),

where C is a constant independent of f .

Since f 7→ max|β|=k+1−n ‖Dβf‖Lp(Ω) and f 7→ f
k+1−n,p,Ω are equivalent semi-

norms, Theorem 4.4.4 follows from Theorem 4.3.1. Had Lai and Wang attempted
to compute the C2 of (4.4.3) using the multivariate form of Hardy’s inequality, they
would have obtained

C2 ≤ 1

(µ− 1)!(µ− n/p)k+1−µ
.

Thus their constant C in (4.4.5) would have the same qualitative behavior as our
Cn,p,j,k,m of (4.3.2), namely, that C →∞ as p→ n+.

4.5. The behavior of Cn,p,j,k,m as a function of its parameters. In [Wa97],
it is shown that, in an appropriate sense, the constant Cn,p,j,k,m of (4.3.2) is the best
possible when p = ∞. The question then arises whether or not the overestimation
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committed in using the multivariate form of Hardy’s inequality to obtain Cn,p,j,k,m is
significant for p <∞. In particular, does the best possible constant C in the inequality

(4.5.1) f −H(m)
Θ f

j,p,Ω
≤ C (hΩ,Θ)k−m−j f

k−m,p,Ω

become unbounded as p→ n+? In the univariate case, at least, the answer is no—the
best possible constant in (4.5.1) does not become unbounded.

Before we show this, let us clarify a little the role that the condition p > n
plays in Theorems 4.3.1 and 4.4.4. The condition p > n is necessary if these results

are to be stated in terms of the Sobolev space W
(k−m)
p (Ω)—in particular, so that

H(m)
Θ f is defined for f ∈ W (k−m)

p (Ω). However, it makes good sense to ask what the
best constant C is for which (4.5.1) holds for all sufficiently smooth functions f—say,
e.g., f ∈ Ck−m(Ω̄). The condition p > n is again needed when we seek to apply
the multivariate form of Hardy’s inequality to the integral error formulas (4.2.2) and
(4.4.2).

We now show that in the univariate case, i.e., when n = 1, there is a best possible
constant C in (4.5.1) for all sufficiently smooth f which can be bounded independently
of 1 ≤ p ≤ ∞. The crucial step in the argument to follow is the use of the B-spline
Lp-estimate that

(4.5.2) ‖M(·|Θ)‖Lp(IR) ≤
(

#Θ− 1

diam Θ

)1−1/p

when diam Θ > 0; see de Boor [B73].

In line with [Wa97], the univariate case of the map H(m)
Θ , termed the generalized

Hermite map, will be emphasized by writing it as H
(m)
Θ . This map has the simple

form
H

(m)
Θ f = Dm(HΘD−mf),

where HΘ is the Hermite interpolator at the points Θ and D−mf is any function for
which Dm(D−mf) = f .

Theorem 4.5.3. Let Θ be a k-sequence in the interval [a . . b]. If 1 ≤ p, q ≤ ∞,
0 ≤ j < k −m, and f ∈ Ck−m[a . . b], then

‖Dj(f −H
(m)
Θ f)‖Lp[a..b] ≤

(m+ j)!

(k −m− j)!

k1/q

k!
(b− a)k−m+ 1

p− 1
q ‖Dk−mf‖Lq [a..b].

Proof. Fix x ∈ [a . . b]. For Θ a finite sequence in IR, let

ωΘ(x) :=
∏
θ∈Θ

(x− θ).

With this notation, replacing each occurrence in (4.2.2) of a linear functional of the
form f 7→ ∫

Θ
f by integration against a B-spline, we obtain that

Dj(f −H
(m)
Θ f)(x)

= (m+ j)!
k∑

i=k−m−j

∑
Θ̃⊂Θi−1

#Θ̃=m+j+i−k

ωΘi−1\Θ̃(x) (x−θi) 1

k!

∫
Dk−mf M(·|x,Θi).
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By Hölder’s inequality and (4.5.2), we have that∣∣∣∣∫ Dk−mf M(·|x,Θi)

∣∣∣∣ ≤ (
k

diam[x,Θi]

)1/q

‖Dk−mf‖Lq [a..b].

Since ∣∣∣∣ωΘi−1\Θ̃(x) (x−θi)
(diam[x,Θi])1/q

∣∣∣∣ ≤ (b− a)k−m−1/q,

we obtain that

|Dj(f −H
(m)
Θ f)(x)|

≤ (m+ j)!
k∑

i=k−m−j

(
i− 1

m+ j + i− k

)
k1/q

k!
(b− a)k−m−1/q‖Dk−mf‖Lq [a..b]

=
(m+ j)!

(k −m− j)!

k1/q

k!
(b− a)k−m−1/q‖Dk−mf‖Lq [a..b].

Finally, take ‖ · ‖Lq [a..b] of both sides.
To adapt this argument to the multivariate case, it is necessary to have the simplex

spline analogue of the B-spline Lp-estimate (4.5.2). This is provided by Dahmen [D79],
who shows that when voln(conv Θ) > 0,

(4.5.4) ‖M(·|Θ)‖Lp(IRn) ≤ k!(k + 1)!

n!(n+ 1)!(n− k)!

(
1

voln(conv Θ)

)1−1/p

with k + 1 := #Θ. Yet, with this in hand, it does not seem possible to apply the
argument of Theorem 4.5.3 in any satifactory form.

Remark 4.5.5. Incidentally, the constant in (4.5.4) is not the best possible. Al-
ready, by using the fact that

∫
M(·|Θ) = 1 together with the case of (4.5.4) where

p = ∞, we obtain

‖M(·|Θ)‖Lp(IRn) ≤
(

k!(k + 1)!

n!(n+ 1)!(n− k)!

1

voln(conv Θ)

)1−1/p

.

In the univariate case this overestimates (4.5.2) by a factor of ((k + 1)!/2)1−1/p.
The key step in proving (4.5.2) is the bound

(4.5.6) M(·|Θ) ≤ k

diam Θ
,

which follows from the partition of unity property of B-splines. Thus, a close exami-
nation of the simplex-spline analogue of the B-spline partition of unity, given recently
by Dahmen, Micchelli, and Seidel [DMS92], should give tighter bounds than those of
(4.5.4). However, we make no attempt here to give such an argument.

Remark 4.5.7. There are other integral error formulas for the scale of mean-value
interpolations to which Theorem 3.4.1 can be applied to give Lp-bounds. These include
those of Lai and Wang [LW86] (Kergin interpolation), Gao [Ga88], and Hakopian
[BHS93, p. 200] (Hakopian interpolation). See [Wa97] for a discussion of the relative
merits of each of these formulas.



252 SHAYNE WALDRON

5. Application: Lp-error bounds for multivariate Lagrange interpola-
tion. In this section, we use Theorem 3.4.1 to obtain Lp-error bounds for multivariate
Lagrange interpolation schemes.

5.1. Lagrange maps. A linear interpolation problem for which the space of
interpolation conditions is spanned by point evaluations at Θ, a finite sequence in IRn,
is called a Lagrange interpolation problem. If P is the space of interpolants for such
a problem and the problem is correct, then the associated linear projector, called the
Lagrange map, will be denoted by LP,Θ. The Lagrange form of a Lagrange map is
given by

(5.1.1) LP,Θf =
∑
θ∈Θ

f(θ)`θ.

Here (5.1.1) uniquely defines
`θ := `θ,P,Θ ∈ P,

the Lagrange function for θ ∈ Θ. In other words, (δ[θ])θ∈Θ is dual (biorthonormal) to
(`θ)θ∈Θ.

Lagrange maps into a space containing polynomials of degree k are frequently
used to interpolate to scattered data; see, e.g., Alfeld [Al89]. Particular examples
receiving much attention lately are maps where the interpolants include radial basis
functions or multivariate splines and de Boor and Ron’s least solution for the polyno-
mial interpolation problem [BR90] (also see [BR92] for its generalization). In addition,
there are, of course, the maps of Kergin and Hakopian.

For such maps, there is the multipoint Taylor formula for the error. This formula
was initiated by the work of Ciarlet and Wagschal [CW71]; most of the relevant papers
are in French, and it is not well known outside the area of finite elements. It is for
these reasons and because our Theorem 3.4.1 implies Lp-estimates from the multipoint
Taylor formula that we discuss the formula here.

5.2. The multipoint Taylor formula.
Formula 5.2.1 (multipoint Taylor formula; see [CR72]). Let Θ be a finite se-

quence in IRn, and let Ω be an open set in IRn for which Ω̄ is star-shaped with respect
to Θ. If LP,Θ is a Lagrange map with Πk(IR

n) ⊂ P ⊂ Ck(Ω̄), then for f ∈ Ck+1(Ω̄),
q ∈ Πk(IR

n), and x ∈ Ω̄, its error satisfies

(5.2.2)
(
q(D)(f − LP,Θf)

)
(x) = −

∑
θ∈Θ

(∫
[x,...,x︸ ︷︷ ︸
k+1

,θ]

Dk+1
θ−xf

)
(q(D)`θ)(x).

The term multipoint Taylor formula comes from the fact that

θ 7→
∫

[x,...,x︸ ︷︷ ︸
k+1

,θ]

Dk+1
θ−xf

is the error in Taylor interpolation of degree k at the point x, a special case of the
error in Kergin interpolation. The proof of (5.2.2) further justifies the use of this term.

The region of integration in (5.2.2) consists of line segments from x to θ ∈ Θ (see
Figure 5.1).
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x

Θ

Fig. 5.1. The region of integration in (5.2.2) for Θ consisting of six points.

From the multipoint Taylor formula, Arcangeli and Gout [AG76] obtain Lp-
bounds for the error in a Lagrange map. These bounds are precisely those obtained
by applying Theorem 3.4.1 to (5.2.2). The crucial step in the argument presented in
[AG76, Proposition 1-1] is the use of the multivariate form of Hardy’s inequality for
the map

(5.2.3) x 7→ Hk+1,[v]f(x) :=

∫
[x,...,x︸ ︷︷ ︸
k+1

,v]

f.

This inequality is not explicitly stated, though the proof of their (weaker) Proposition
1–1 would imply it.

Remark 5.2.4. The key step in the proof of Proposition 1-1 in [AG76] is an
application of Hölder’s inequality to the splitting∫

[x,...,x︸ ︷︷ ︸
k+1

,v]

f =
1

k!

∫ 1

0

(1− t)−1/q−ε
(

(1− t)k+1/q−εf(x+ t(v − x))

)
dt,

where ε := (k + 1 − n/p)/q and 1/p + 1/q = 1, as opposed to our use of the integral
form of Minkowski’s inequality.

Having identified the precise role of the multivariate form of Hardy’s inequality
in [AG76], it is possible to use it to run through Arcangeli and Gout’s calculation
for a much more general class of norms, including those most often used in numerical
analysis. The resulting bounds, given below, have smaller (and simpler) constants
than those one might hope to obtain by applying the inequalities for similar norms to
the results of [AG76].

For the remainder of this section, Ω will denote a bounded open set in IRn with
a Lipschitz boundary, and Θ will denote a finite sequence in IRn. Recall that

hΩ,Θ = sup
x∈Ω

sup
θ∈Θ

‖x− θ‖ ≤ diam Ω.

Corollary 5.2.5. Suppose that Ω̄ is star-shaped with respect to Θ and that LP,Θ
is a Lagrange map with Πk(IR

n) ⊂ P ⊂ Ck(Ω). If k + 1 − n/p > 0, g ∈ Πk, and

f ∈W (k+1)
p (Ω), then

(5.2.6)
‖g(D)(f − LP,Θf)‖Lp(Ω)

≤ 1

k!(k + 1− n/p)

(∑
θ∈Θ

‖g(D)`θ‖L∞(Ω)

)
f
k+1,p,Ω

(hΩ,Θ)k+1,



254 SHAYNE WALDRON

and so, in particular,

(5.2.7) |f − LP,Θf |p,Ω ≤ 1

k!(k + 1− n/p)

(∑
θ∈Θ

|`θ|∞,Ω

)
f
k+1,p,Ω

(hΩ,Θ)k+1,

where | · |p,Ω is any seminorm on W k
p (Ω) of the form

|f |p,Ω := ‖ (‖gi(D)f‖Lp(Ω))
m
i=1 ‖IRm ,

where the gi ∈ Πk(IR
n)’s are fixed and ‖ · ‖IRm is any monotone norm on IRm.

Proof. By Sobolev’s embedding theorem, the condition k + 1 − n/p > 0 implies
that

W
(k+1)
p (Ω) ⊂ C(Ω̄),

and so the Lagrange map LP,Θ is well defined. As in Remark 4.2.3, (5.2.2) can be

extended to f ∈ W
(k+1)
p (Ω). Fix f ∈ W

(k+1)
p (Ω) and x ∈ Ω. Let h := hΩ,Θ. By

(1.4.2),
|Dk+1

θ−xf | ≤ |Dk+1f | ‖θ − x‖k+1 ≤ |Dk+1f |hk+1

in Lp(Ω). Thus, from (5.2.2), it follows that for a.e. x ∈ Ω,

|(g(D)(f − LP,Θf))(x)| ≤
∑
θ∈Θ

(∫
[x,...,x︸ ︷︷ ︸
k+1

,θ]

|Dk+1f |
)
‖g(D)`θ‖L∞(Ω) hk+1.

To this, the condition k + 1 − n/p > 0 allows us to apply the multivariate form of
Hardy’s inequality to obtain (5.2.6).

In [AG76, Theorem 1-1], (5.2.7) is proved when | · |p,Ω is of the form · i,p,Ω for
some 0 ≤ i ≤ k, with hΩ,Θ replaced by diam Ω. In that paper, some bounds on the
size of the Lagrange functions `θ together with relevant applications are given. One
application is bounding the error in a finite element scheme; also see Ciarlet [Ci78,
p. 128]. Another, of interest to approximation theorists, is to estimate the distance of
smooth functions from Πk(IR

n) and to give the corresponding constructive version of
the Bramble–Hilbert lemma; see [BH70].

The condition in Corollary 5.2.5 that k+1−n/p > 0 plays an analogous role to the
condition in Theorem 4.3.1 that n > p. Namely, it is required so that the results can
be stated in terms of Sobolev spaces and to apply the multivariate form of Hardy’s
inequality. Additionally, by Theorem 4.5.3, the unboundedness of the constant in
(5.2.7) as k + 1− n/p→ 0+ is not a true reflection of the behavior of the error in the
invariate case.

With the multivariate form of Hardy’s inequality in hand, it is also possible to
obtain pointwise error bounds for Lagrange maps.

Corollary 5.2.8. Suppose that Ω̄ is star-shaped with respect to Θ and that LP,Θ

is a Lagrange map with Πk(IR
n) ⊂ P ⊂ Ck(Ω). With f ∈W (k+1)

∞ ⊂ C(Ω̄) and x ∈ Ω̄,
we have the (coordinate-independent) pointwise error bound

(5.2.9) |f(x)− LP,Θf(x)| ≤ 1

(k + 1)!
f
k+1,∞,Ω

∑
θ∈Θ

‖θ − x‖k+1|`θ(x)|

and the (coordinate-dependent) pointwise error bound

(5.2.10) |f(x)− LP,Θf(x)| ≤
∑
θ∈Θ

∑
|α|=k+1

1

α!
‖Dαf‖L∞(Ω) |(θ − x)α`θ(x)|.
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Proof. The proof runs along the same lines as that for Corollary 5.2.5, except
that for (5.2.10), we first expand Dk+1

θ−xf as

Dk+1
θ−xf =

∑
|α|=k+1

(k + 1)!

α!
(θ − x)αDαf

by using the multinomial identity.
Neither of (5.2.9) or (5.2.10) occurs in the literature. For f ∈ Ck+1(Ω), they can

be obtained more simply by applying the mean-value theorem, as given by Properties
2.1.3(c), to the integrals occurring in (5.2.2).

Remark 5.2.10. The results of [AG76] have been extended in the following ways.
In [Go77], Gout treats the error in certain forms of Hermite interpolation—that is
where, in addition to function values, certain derivatives are matched at the points in
Θ. In [AS84], Arcangeli and Sanchez bound the error in a Lagrange map for functions
from fractional-order Sobolev spaces.

5.3. The error formula of Sauer and Xu. There is another error formula,
one for the error in a Lagrange map with range (interpolants) Πk(IR

n), that has been
given recently by Sauer and Xu; see [SX95].

Sauer and Xu order the dim Πk(IR
n) points in Θ so that each Lagrange interpo-

lation problem with points Θj (by definition, the initial segment of Θ consisting of
the first dim Πj(IR

n) terms) and interpolants Πj(IR
n) is correct for j = 0, . . . , k. They

consider the collection Ψ of all (k + 1)-sequences Ψ = [ψ0, . . . , ψk], which they call
paths, with ψj ∈ Θj\Θj−1 for all j. Given this notation, Sauer and Xu state their
result in the following form.

Theorem 5.3.1 ([SX95, Theorem 3.6]). Suppose that LP,Θ := LΠk(IRn),Θ is a
Lagrange map and that f ∈ Ck+1(IRn). Then

(5.3.2) LP,Θf(x)− f(x) =
∑
Ψ∈Ψ

pΨ(x)

∫
[x,Ψ]

Dx−ψkDψk−ψk−1 · · ·Dψ2−ψ1Dψ1−ψ0f,

where pΨ ∈ Πk(IR
n) is given by

pΨ(x) := (k + 1)! `ψk,Πk(IRn),Θ(x)
k∏
i=1

`ψi,Πi(IRn),Θi(ψi+1).

The region of integration in each term of (5.3.2) is the convex hull of x and Ψ
(see Figure 5.2).

x

Θ

Fig. 5.2. The region of integration in (5.3.2) for Θ consisting of six points.
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From (5.3.2), the following pointwise estimate is obtained.
Corollary 5.3.3 ([SX95, Corollary 3.11]). Suppose, in addition to the hypothe-

ses of Theorem 5.3.1, that Ω̄ is star-shaped with respect to Θ. Then for all x ∈ Ω̄,
(5.3.4)
|f(x)− LP,Θf(x)|

≤ 1

(k + 1)!

∑
Ψ∈Ψ

‖Dx−ψkDψk−ψk−1 · · ·Dψ2−ψ1Dψ1−ψ0f‖L∞(Ω)|pΨ(x)|.

The bound (5.3.4) is of a form similar to those of (5.2.9) and (5.2.10). For a more
direct comparison, we obtain from (5.2.2) the bound

(5.3.5) |f(x)− LP,Θf(x)| ≤ 1

(k + 1)!

∑
θ∈Θ

‖Dk+1
θ−xf‖L∞(Ω)|`θ(x)|.

This last bound has #Θ =
∑k
j=0 #Θj terms, as opposed to #Ψ =

∏k
j=0 #Θj for

(5.3.4), and requires no ordering of Θ. For the purposes of comparison, in the bivariate
case, i.e., when n = 2, we have that #Θ = (k + 2)(k + 1)/2, while #Ψ = (k + 1)!. In
addition, bounds analogous to (5.3.5) can be obtained from (5.2.2) for the derivatives
of the error in LP,Θ.

To obtain Lp-bounds from (5.3.2), it is necessary to bound

(5.3.6) x 7→ L1,Ψf(x) :=

∫
[x,Ψ]

f

in terms of ‖f‖Lp(Ω). This can be done by using the multivariate form of Hardy’s
inequality. Thus, we have the following instance of Theorem 3.4.1.

Corollary 5.3.7. Suppose the hypotheses of Corollary 5.3.3. If 1 − n/p > 0,
then

‖f − LP,Θf‖Lp(Ω) ≤ 1

(1− n/p)k+1

(∑
Ψ∈Ψ

‖pΨ‖L∞(Ω)

)
f
k+1,p,Ω

(hΩ,Θ)k+1.

The condition 1 − n/p > 0 is needed so that the multivariate form of Hardy’s
inequality can be applied to (5.3.6). By comparison, to obtain (5.2.7) from (5.2.3),
only the weaker condition that k + 1− n/p > 0 was needed.

6. Other error bounds.

6.1. Discussion. Most of the integral error formulas for Lagrange maps given
in the literature, including those of section 5, can be obtained from

f(x)− LP,Θf(x) =
∑
θ∈Θ

(∫
[x]

f −
∫

[θ]

f

)
`θ(x),

which is valid whenever P contains the constants, by appropriately using the identity

(6.1.1)

∫
[Θ,v]

f −
∫

[Θ,w]

f =

∫
[Θ,v,w]

Dv−wf

and integration by parts.
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For example, in Gregory [Gr75] integration by parts is used to give a Taylor-type
expansion for f . From this is obtained an integral error formula for linear interpolation
on a triangle, i.e., when Θ consists of three affinely independent points in IR2, and the
interpolants are the linear polynomials P := Π1(IR

2). Such an argument is frequently
referred to as a Sard kernel theory argument, as developed by Sard [Sa63]. The
resulting formula is complicated—it has four line integrals and five area integrals.
Another example is given by Hakopian [H82], who uses (6.1.1) to obtain an integral
error formula for tensor-product Lagrange interpolation.

In view of their derivations, all of these integral error formulas involve terms which
consist of a function (obtained appropriately from the Lagrange functions) multiplied
by the integral of some derivative against a simplex spline. Thus it is possible to apply
the multivariate form of Hardy’s inequality to all such formulas (and those likely to
be obtained in the future) to obtain Lp-bounds—with the caution that, as pointed
out for the examples in sections 4 and 5, for small p, this may not accurately reflect
the behavior of the error.

Exactly how to use (6.1.1) and integration by parts to obtain the best possible
error formula for a given purpose is far from clear. In a future paper, the author
considers the simplest case, that of linear interpolation on a triangle. There the
formulas of Ciarlet and Wagschal [CW71], Gregory [Gr75], Sauer and Xu [SX95], and
others are discussed.

Acknowledgments. The author would like to thank the referees, Carl de Boor,
Shaun Cooper, and Geoff Pritchard for their considered comments and help with this
paper.
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Abstract. We prove blowup in finite time of the solutions to some reaction-diffusion systems
that preserve nonnegativity and for which the total mass of the components is uniformly bounded.
(These are natural properties in applications.) This is done by presenting explicit counterexamples
constructed with the help of formal computation software. Several partial results of global existence
had been obtained previously in the literature. Our counterexamples explain a posteriori why extra
conditions are needed. Negative results are also provided as a by-product for linear parabolic equa-
tions in nondivergence form and with discontinuous coefficients and for nonlinear Hamilton–Jacobi
evolution equations.

Key words. parabolic system, reaction-diffusion, global existence, blowup, parabolic equation
in nondivergence form, Hamilton–Jacobi equation
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1. Introduction. We are mainly interested in global existence in time or blowup
in finite time of solutions to reaction-diffusion systems of the form

∂u

∂t
− d1∆u = f(u, v) on (0,∞)× Ω,(1)

∂v

∂t
− d2∆v = g(u, v) on (0,∞)× Ω(2)

for which the following two main properties hold:
• the positivity of the solutions is preserved with time, which is equivalent to

∀u, v ≥ 0, f(0, v) ≥ 0, g(u, 0) ≥ 0;(3)

• the total mass of the components u and v is nonincreasing with time, which is
essentially ensured by the structure condition

f + g ≤ 0.(4)

Here f and g are regular functions from [0,∞[2 into IR, d1 and d2 are positive con-
stants, and Ω is a smooth bounded open subset of IRN . As usual, “good” boundary
conditions should be prescribed for u and v, for instance,

u = 0, v = 0 on ∂Ω,(5)

as well as initial conditions,

u(0, .) = u0 ≥ 0, v(0, .) = v0 ≥ 0.(6)
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The main consequence of properties (3) and (4) is that the solutions u and v
satisfy an a priori L1-estimate uniformly in time. Indeed, integrating the sum of (1)
and (2) and taking (5) into account leads to

∂

∂t

∫
Ω

u(t) + v(t) ≤
∫

Ω

f + g ≤ 0,

∫
Ω

u(t) + v(t) ≤
∫

Ω

u0 + v0.(7)

Since u and v are nonnegative, this is a uniform estimate of their L1-norms. It
is well known that local existence of nonnegative solutions holds for the system (1),
(2), (5), (6) when u0, v0 ∈ L∞(Ω). Moreover, existence is global as soon as u(t) and
v(t) satisfy an a priori L∞-estimate uniformly in time.

Here the a priori estimate is only in L1(Ω). Much work has been done to analyze
how this L1-estimate or, more generally, structure conditions like (4) help to provide
global existence.

Note, for instance, that if d1 = d2, summing (1) and (2) leads—thanks to (4)—to

∂

∂t
(u+ v)− d1∆(u+ v) ≤ 0,

and by the maximum principle,

||(u+ v)(t)||∞ ≤ ||u0 + v0||∞,

so global existence holds.
Note also that properties (3) and (4) imply global existence (for nonnegative data)

for the associated ordinary differential system

u̇ = f(u, v), v̇ = g(u, v).

For the complete system with different diffusion coefficients d1 6= d2, the question
is considerably more delicate. One of the main result is that, in general, if one of u or
v is a priori bounded, then so is the other. This is the case if, for instance, we have
the extra information

f ≤ 0.(8)

Obviously, by the maximum principle, this implies ||u(t)||∞ ≤ ||u0||∞. If g is of at
most polynomial growth, then global existence can be proved [2], [4], [6], [7], [8].

However, it was still an open problem to decide what happens for systems without
any a priori L∞-bound on either u or v and whether extra conditions must be added
to (3) and (4). This is precisely the goal of this paper, where we prove that blowup
in L∞ may occur in finite time for these systems.

In order to better understand the question, let us discuss some explicit examples
of “systems” that naturally appear in this class. We have, for instance, the following:

ut − d1∆u = λu3v2 − u2v3,(9)

vt − d2∆v = −u2v3 + u3v2.(10)
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Here f + g = (λ− 1)u3v2 ≤ 0 if λ ∈ [0, 1]. If d1 = d2 or, more generally, if d1 is close
to d2, then the system (9), (10), (5), (6) has a global solution. (See the remark above
when d1 = d2 and see [1] and [10] in general.)

Now if d1 and d2 are distinct and not close to each other, the question is more
serious. If λ = 0, we are in the situation described above where (8) also holds. Then
u is a priori uniformly bounded and global existence can be proved. The case when
λ is small enough can also be taken care of similarly [10]. Now the question is open
when λ ∈ ]0, 1]. Note that here we even have

f + λg = (λ− 1)u2v3 ≤ 0,(11)

so if λ ∈ [0, 1[, inequalities (4) and (11) are linearly independent. This implies, for
instance, an a priori L1-bound on the nonlinear terms.

We will see here that similar systems with these properties may present blowup
in L∞.

Let us also discuss another example, which is specifically studied in [3], [9], and
[10]:

ut − d1uxx = −c(x)uαvβ ,

vt − d2vxx = c(x)uαvβ ,

where c : (−1, 1) → IR is given. Here Ω = (−1, 1) and f and g also depend on the
space variable x and satisfy f + g = 0.

If c ≡ 1, we are in the situation of (8) and global existence follows. The same
holds if c(.) is of constant sign. Now the situation is quite different if c(.) changes
sign. The following specific case is analyzed in [9]:

c(x) > 0 on (0, 1), c(0) = 0, c(x) < 0 on (−1, 0).

It can be shown that u and v are uniformly bounded in L∞loc([0,∞) × (0, 1]) and
L∞loc([0,∞) × [−1, 0)). Therefore, blowup can only occur at x = 0 and, if so, will
occur for u and v at the same time. If c(.) vanishes fast enough at 0, then no blowup
occurs (see [9]). The question is still open for a general c(.). However, here we present
similar examples where blowup in L∞ does happen.

It is interesting to remark that in all of our examples, although solutions blow up
in L∞(Ω) for some T , they can be extended across T as global “weak” solutions, for
instance, in the sense of distributions.

Finally, let us mention that the blowup examples described in this paper pro-
vide interesting by-products for two questions of independent interest related to the
following equations: {

ut − a(x, t)∆u = f on (0, T )× Ω,
u|∂Ω

= 0, u(0, .) = 0,
(12)

where

0 < d1 ≤ a(x, t) ≤ d2,(13)

and {
ut −max(d1∆u, d2∆u) = f on (0, T )× Ω,
u|∂Ω

= 0, u(0, .) = 0.
(14)



262 MICHEL PIERRE AND DIDIER SCHMITT

We prove that problem (14) is ill-posed for f ∈ Lp(QT ) when p is close to 1
(although it is well-posed if p ≥ 2). For problem (12), we prove there is no estimate
of the form

||u(T )||L1(Ω) ≤ C||f ||Lp(QT )(15)

with a constant C depending only on d1, d2, T , and Ω when p is close to 1. Here also,
such estimates are valid if p ≥ 2. Note also that (15) holds when a(., .) is continuous
with C depending on its modulus of continuity. Indeed, we have an Lp-theory, and
ut and ∆u are bounded in Lp. Obviously, the question here concerns a subclass of
parabolic operators of nondivergence form with discontinuous coefficients.

2. The main results. We denote by B the Euclidian unit ball in IRN , QT =
(0, T )×B, and ΣT = (0, T )× ∂B.

Theorem 2.1. There exist f, g ∈ C∞([0,∞)2, IR), d1, d2 > 0, T > 0, u0,
v0 ∈ C∞(B), u0 ≥ 0, v0 ≥ 0, α1, α2 ∈ C∞([0, T ]), λ ∈ ]0, 1[, and u, v ≥ 0, classical
solutions of

∂u

∂t
− d1∆u = f(u, v) on QT ,(16)

∂v

∂t
− d2∆v = g(u, v) on QT ,(17)

u(t, x) = α1(t), v(t, x) = α2(t) on ΣT ,(18)

u(0, x) = u0(x), v(0, x) = v0(x) on B(19)

such that

f + g ≤ 0, f + λg ≤ 0,(20)

∃k > 0, p ≥ 1, ∀u, v ≥ 0, |f(u, v)|+ |g(u, v)| ≤ k(up + vp + 1),(21)

∀r, s ≥ 0, f(0, s) ≥ 0, g(r, 0) ≥ 0,(22)

and

lim
t↑T
||u(t)||L∞(B) = lim

t↑T
||v(t)||L∞(B) = +∞.(23)

Theorem 2.2. There exist α, β > 1, d1, d2 > 0, T > 0, u0, v0 ∈ C∞(B), u0 ≥ 0,
v0 ≥ 0, α1, α2 ∈ C∞([0, T ]), c1, c2 ∈ Ck(QT ) with k ≥ 0, and u, v ≥ 0, classical
solutions of

∂u

∂t
− d1∆u = c1(t, x)uαvβ on QT ,(24)

∂v

∂t
− d2∆v = c2(t, x)uαvβ on QT ,(25)

u(t, x) = α1(t), v(t, x) = α2(t) on ΣT ,(26)

u(0, x) = u0(x), v(0, x) = v0(x) on Ω(27)

such that

c1(x, t) + c2(x, t) ≤ 0 on QT(28)
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and

lim
t↑T
||u(t)||L∞(B) = lim

t↑T
||v(t)||L∞(B) = +∞.(29)

Remark 2.1. In both theorems, u and v satisfy

∂u

∂t
− d1∆u+

∂v

∂t
− d2∆v ≤ 0.(30)

Together with the boundary conditions on u and v, this implies, in particular,
that the L1-norms of u(t) and v(t) are bounded on (0, T ). Actually, as will appear
clearly in the examples in the next section, in both cases, there exists p∗ ∈ (1,∞)
such that

∀p < p∗, sup
t∈(0,T )

(||u(t)||Lp(B) + ||v(t)||Lp(B)) <∞,(31)

∀p ≥ p∗, lim
t↑T
||u(t)||Lp(B) = lim

t↑T
||v(t)||Lp(B) = +∞.(32)

The proofs of both theorems will be obtained by presenting explicit solutions u
and v satisfying the fundamental inequality (30). Many consequences may be derived
from this together with the nonnegativity of u and v. We have already mentioned the
uniform L1-bound on u and v. It also implies (see [2] and [6]) that for all p ∈ (1,∞),
there exists C = C(p, T,Ω, α1, α2, ||u0||∞, ||v0||∞) such that

∀t ∈ (0, T ), ||u||Lp(QT ) ≤ C||v||Lp(QT ), ||v||Lp(QT ) ≤ C||u||Lp(QT ).(33)

Consequently, u and v can only blow up at the same time t when (30) holds.
Remark 2.2. Another interesting consequence of (30) may be obtained by setting

w(t, x) := u(t, x) + v(t, x), a(t, x) =
d1u(t, x) + d2v(t, x)

u(t, x) + v(t, x)
.(34)

Then (30) can be rewritten as

∂w

∂t
−∆(aw) ≤ 0.(35)

Here, thanks to the positivity of u and v, we have the a priori estimate

0 < min(d1, d2) ≤ a(t, x) ≤ max(d1, d2).(36)

A natural question is whether the parabolic inequality (35) implies the existence of a
constant C depending only on d1, d2, T, α1, and α2 such that for p large,

||w||Lp(QT ) ≤ C(||w0||∞ + 1).(37)

By duality, this is equivalent (see the next section) to the existence of a similar
constant C such that

||z(T )||L1(QT ) ≤ C||θ||Lq(QT ),(38)

where 1/q + 1/p = 1 and z is solution of the dual problem

zt − b∆z = θ on QT , b(t) = a(T − t),(39)
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z(0, .) = 0, z|∂Ω
= 0.(40)

It turns out that (38) is valid for all q ≥ 2. Indeed, for q = ∞, it is an easy
consequence of the maximum principle which holds for (39). For q = 2, we may
(formally) multiply (39) by −∆z to obtain

∂

∂t

1

2

∫
Ω

|∇z(t)|2 +

∫
Ω

b(∆z)2 = −
∫

Ω

θ∆z.

Using the uniform estimate (36) and Young’s inequality, we deduce that

1

2

∫
Ω

|∇z(t)|2 + min(d1, d2)

∫ t

0

∫
Ω

(∆z)2 ≤ 1

2
min(d1, d2)

∫ t

0

∫
Ω

(∆z)2 + C

∫ t

0

∫
Ω

θ2,

which implies ∫
QT

||∆z||L2(QT ) ≤ C||θ||L2(QT ),(41)

where C depends only on d1 and d2. Therefore, estimate (38) is true for q = 2 (and,
by interpolation, for any q ∈ [2,∞]). We even have that zt and ∆z (and not only z
itself) are bounded in L2(QT ).

As a consequence of the counterexamples in Theorems 2.1 and 2.2, we will see
that (38) is false when q is close to 1. More precisely, we have the following.

Proposition 2.3. There exists p ∈ (1, 2), bn ∈ C∞(QT ), d1, d2 > 0, θn ∈
C∞(QT ), θn ≥ 0, and zn ∈ C∞(QT ), the solution of

∂zn
∂t
− bn∆zn = θn on QT ,(42)

zn(0, .) = 0, zn|∂B = 0(43)

such that

0 < d1 ≤ bn ≤ d2,(44)

||θn||Lp(QT ) = 1,(45)

lim
n→∞

||zn||L∞(0,T ;L1(B)) = +∞.(46)

Finally, we mention a final consequence of independent interest for the following
nonlinear Hamilton–Jacobi evolution equations.

Proposition 2.4. There exist p ∈ (1, 2), d1, d2 > 0, θn ∈ C∞(QT ), and zn ∈
L2(QT ) with ∆zn , ∂zn/∂t ∈ L2(QT ) the solution of

∂zn
∂t
−max(d1∆zn, d2∆zn) = θn on QT ,(47)

zn(0, .) = 0, zn|∂B = 0(48)

such that

||θn||Lp(QT ) = 1,(49)

lim
n→∞

||zn||L∞(0,T ;L1(B)) = +∞.(50)
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3. The proofs.
Preliminary remarks. As stated in section 2, the proofs of Theorems 2.1 and 2.2

are obtained by constructing explicit functions u and v satisfying the inequality

ut − d1∆u+ vt − d2∆v ≤ 0.(51)

It will turn out that they are also solutions of systems of the form (16), (17) and (24),
(25) with the properties listed in the statements of the theorems.

For reasons that come from a precise analysis of the problem and a guess of the
possible singularities, we look a priori for functions u and v of the form

u(t, x) =
a(T − t) + b|x|2
(T − t+ |x|2)γ

, v(t, x) =
c(T − t) + d|x|2
(T − t+ |x|2)γ

,(52)

where |.| denotes the Euclidian norm and a, b, c, d > 0 and γ > 1 are to be determined
so that (51) holds for some d1, d2 > 0, also to be determined. This has been done
with the help of the formal computation software Maple, where the unknown coeffi-
cients can be progressively adapted “by hand” to satisfy (51). As a consequence, the
solutions that we found in this way are not numerically simple.

Here we give one solution which can also be explicitly checked by direct compu-
tations. For this, we choose

N = 10 (for the dimension), γ = 5/4,(53)

a = 1/25, b = 1, c = 11/2, d = 1/10,(54)

d1 = 1, d2 = 1/10.(55)

Lengthy but straightforward computations show that u and v given by (52) with the
data (53)–(55) satisfy inequality (51) and, more precisely,

ut − d1∆u =
A1(T − t)2 +B1(T − t)|x|2 + C1|x|4

(T − t+ |x|2)γ+2
,(56)

vt − d2∆v =
A2(T − t)2 +B2(T − t)|x|2 + C2|x|4

(T − t+ |x|2)γ+2
,(57)

ut + vt − d1∆u− d2∆v =
A(T − t)2 +B(T − t)|x|2 + C|x|4

(T − t+ |x|2)γ+2
,(58)

where

A1 = −1899/100, B1 = −323/100, C1 = 496/100,(59)

A2 = 1194/80, B2 = 281/80, C2 = −427/80,(60)

A = −1626/400, B = 113/400, C = −151/400.(61)

We check that B2 − 4AC < 0 so that (51) holds.
Remark. Note that other explicit solutions are also found in dimension N =

1. We easily show that they satisfy (24) and (25) in Theorem 2.2. However, the
corresponding functions f and g of Theorem 2.1 are technically difficult to present.
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Table 1

k λ̃k µ̃k ν̃k

0 2−3 × 37 × 58 × 43× 653 −2−2 × 37 × 59 × 3023 −2−3 × 39 × 58 × 239

1 2−2 × 35 × 58 × 7× 7703 −2−4 × 35 × 58 × 11× 20717 −2−4 × 35 × 58 × 12203

2 −2× 35 × 57 × 19× 359 2−3 × 34 × 57 × 29× 61× 131 −2−3 × 34 × 57 × 7× 79× 173

3 −24 × 3× 56 × 23× 31× 397 3× 56 × 409× 9011 −32 × 56 × 281159

4 −3−1 × 27 × 55 × 61× 4567 3−1 × 23 × 58 × 28591 −3−1 × 23 × 55 × 883517

5 −3−1 × 213 × 53 × 17× 192 3−1 × 26 × 54 × 59× 2087 −3−1 × 26 × 53 × 13× 73× 179

Proof of Theorem 2.1. We will show that u and v defined as above satisfy the
conclusions of the theorem. Obviously, u(0), v(0) ∈ C∞(B̄), u|∂B = α1 ∈ C∞([0, T ]),
v|∂B = α2 ∈ C∞([0, T ]), and, since γ > 1,

lim
t↑T
||u(t)||∞ = lim

t↑T
||v(t)||∞ = +∞.(62)

More precisely, all of the Lp-norms for p ≥ 20 blow up at t = T .
Now we need to determine f and g. Starting from (56) and (57), we look for

polynomial functions P and Q, homogeneous and of degree 5 in u and v, such that

ut − d1∆u = P (u, v), vt − d2∆v = Q(u, v).(63)

Formal computations lead to the following expressions, which can be checked directly
by, again, lengthy but straightforward computations:

P (u, v) =

5∑
k=0

λku
5−kvk, Q(u, v) =

5∑
k=0

µku
5−kvk(64)

with λk = (229)−5λ̃k and µk = (229)−5µ̃k and where λ̃k and µ̃k are given in Table 1.

We check that P +Q =
∑5
k=0 νku

5−kvk, where all the νk = (229)−5ν̃k’s are neg-
ative so that for λ close to 1, P + λQ also has negative coefficients. Therefore, (20)
holds for P and Q. However, P and Q do not satisfy (22). Since u and v are bounded
from below on QT by

m1 =
min(a, b)

(T + 1)γ−1
, m2 =

min(c, d)

(T + 1)γ−1
,

respectively, we can always modify P and Q on a neighborhood of {0} × [0,∞[ ∪
[0,∞[ × {0}. Let ϕ ∈ C∞(IR2) be a function which is identically one on [m1,∞) ×
[m2,∞) and such that

∀u, v ≥ 0, ϕ(0, v) = ϕ(u, 0) = 0.
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We set

∀u, v ≥ 0, f(u, v) := ϕ(u, v)P (u, v), g(u, v) := ϕ(u, v)Q(u, v).

Then for the same values of λ close to 1 as above,

f + λg = ϕ(P + λQ) ≤ 0,

so (16), (17), (20), (21), and (22) are satisfied.
Proof of Theorem 2.2. We use the same functions u and v as above. We only have

to prove that the expressions in (56) and (57) can be written as in (24) and (25). For
this we choose α, β > 1 such that

α+ β > (γ + 2)/(γ − 1)(65)

and (see (52), (56), and (57))

c1(t, x) :=
A1(T − t)2 +B1(T − t)|x|2 + C1|x|4

(a(T − t) + b|x|2)α(c(T − t) + d|x|2)β
(T − t+ |x|2)(α+β)γ−γ−2,

c2(t, x) :=
A2(T − t)2 +B2(T − t)|x|2 + C2|x|4

(a(T − t) + b|x|2)α(c(T − t) + d|x|2)β
(T − t+ |x|2)(α+β)γ−γ−2.

Obviously, with this choice of c1 and c2, relations (24) and (25) hold. The sign of
c1 + c2 is the same as the sign of A(T − t)2 +B(T − t)|x|2 +C|x|4 in (58), which has
already been checked to be negative. Now, thanks to the choice of (6.5), c1 and c2 are
at least continuous on QT . Actually, they are C∞ except at the point (T, 0), where
they tend to 0. We can make them more regular by choosing α and β even larger.

Proof of Proposition 2.3. We take u and v as in (52) and we set

wn(t, x) := u

(
t− 1

n
, x

)
+ v

(
t− 1

n
, x

)
,(66)

an(t, x) :=

[
d1u

(
t− 1

n
, x

)
+ d2v

(
t− 1

n
, x

)]
/wn(t, x).(67)

Note that

0 < min(d1, d2) ≤ an ≤ max(d1, d2).

By (51),

∂wn
∂t
−∆(anwn) ≤ 0 on QT .(68)

For θ ∈ C∞(QT ), θ ≥ 0, and bn(t) = an(T − t), let z ∈ C∞(QT ), z ≥ 0 be the solution
of

∂z

∂t
− bn∆z = θ on QT ,(69)

z(0, .) = 0, z|∂B = 0.(70)
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The existence of z is classical (see, e.g., [5]). We set z̃(t) = z(T − t) so that

− (z̃t + an∆z̃) = θ̃, θ̃(t) = θ(T − t).(71)

Now let ϕ ∈ C∞0 (B) with 0 ≤ ϕ ≤ 1 and ϕ ≡ 1 on B(0, 1/2). Using (68)–(71),
we have∫
QT

θ̃wnϕ =

∫
QT

−wnϕ(z̃t + an∆z̃) =

∫
Ω

wn(0)ϕz̃(0) +

∫
QT

z̃(wntϕ−∆(anwnϕ))

=

∫
Ω

wn(0)ϕz(T ) +

∫
QT

z̃[ϕ(wnt −∆(anwn))− 2∇ϕ∇(anwn)− anwn∆ϕ].

Since ∇ϕ and ∆ϕ are identically zero around the origin, the terms ∇ϕ∇(anwn) and
anwn∆ϕ are uniformly bounded independently of n. Also using inequality (68), we
obtain ∫

QT

θ̃wnϕ≤
∫

Ω

wn(0)z(T ) + C

∫
QT

z

≤ (||wn(0)||∞ + CT )||z||L∞(0,T,L1(B)).

(72)

If we had

||z||L∞(0,T,L1(B)) ≤ k||θ||Lp(QT )(73)

for some p ∈ (1, 2), some k = k(d1, d2, p, T ), and all θ ∈ C∞(QT ), then from (72) we
would deduce by duality that for some C independent of n,

||wnϕ||Lp′ (QT ) ≤ C.

This is false for p′ large enough (that is, for p small enough) by the construction of
u and v and the definition (66) of wn. Therefore, the solutions of (69) and (70) do
not satisfy estimate (73) (see (72)) for some p close to 1, whence the statement of
Proposition 2.3 follows.

Proof of Proposition 2.4. For θn ∈ C∞(QT ), it is classical (see, e.g., [1] and [10])
that there exists a solution of (47) and (48) whose regularity is at least such that

zn ∈ L∞(QT ), znt ,∆zn ∈ L2(QT ),

and (47) is satisfied at least a.e. x, t ∈ QT . We choose θn as in the statement of
Proposition (2.3). We obviously have that

max(d1∆zn, d2∆zn) ≥ bn∆zn a.e.

so that

∂zn
∂t
− bn∆zn ≥ θn.

By the maximum principle applied to the operator ∂/∂t − bn∆, this solution zn is
greater than the one defined in Proposition 2.3. As a consequence, (50) follows from
(46).
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Abstract. In this note, we prove Lmloc(Ω), 1 < m < ∞, estimates of the gradients of equilibria

U ∈ W 1,p(Ω; RN ) for a class of variational integrals
∫
Ω f(DU) dx. Our proof employs a bootstrap

argument based on a result of DiBenedetto and Manfredi [Amer. J. Math., 115 (1993), pp. 1107–
1134].
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1. Introduction and main result. Let Ω ⊂ Rn, n ≥ 2, be a bounded domain.
For U ∈W 1,p(Ω; RN ), 1 < p <∞, define

(1.1) F(U) =

∫
Ω

f(DU)dx,

where f has the form

(1.2) f(A) = |A|p + g(A)

and g is a rank-one convex function such that

(1.3) 5g(A) exists for all A ∈MN×n,

(1.4) |g(A)| ≤ a|A|q + b

for real numbers a, b, and 1 ≤ q < p <∞. By the rank-one convexity of g, we mean
that

(1.5) g(λA+ (1− λ)B) ≤ λg(A) + (1− λ)g(B)

holds for all 0 ≤ λ ≤ 1 and A,B ∈MN×n with rank {A−B} ≤ 1. Our result concerns
equilibrium points of F , i.e., functions U ∈W 1,p(Ω; RN ) which satisfy

(1.6) div

(
∂f

∂A
(DU)

)
= 0 in D′(Ω; RN ).

We prove the following.
Theorem. Suppose U ∈ W 1,p(Ω; RN ), 1 < p < ∞, is an equilibrium point of

(1.1) and that (1.2)–(1.4) hold. Then for each subset Ω′ b Ω and every m ∈ (1,∞),
there exists a constant C = C(a, b,m, p, n,N,Ω′,Ω) such that

(1.7) ‖DU‖Lm(Ω′) ≤ C
(
1 + ‖DU‖Lp(Ω) + ‖U‖Lp(Ω)

)
.
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Remark 1. In particular, the result holds for minimizers of (1.1)–(1.5) when they
exist, i.e., functions U ∈ W 1,p(Ω; RN ) such that F(U) ≤ F(V) whenever U − V ∈
W 1,p

0 (Ω; RN ).
Remark 2. By the Sobolev embedding theorem, we have U ∈ Cα(Ω; RN ) for

all α ∈ (0, 1). Previously, local Hölder continuity of minimizers for 0 < α < 1 was
established in [F].

2. Background and examples. Rank-one convex functions satisfying (1.2)–
(1.4) arise in optimization problems [K-S] and as approximate energies for models
from nonlinear elasticity [B-P]. Such functions f(A) have the feature that they can
depend nonlinearly on the subdeterminants of A. For example, if we let n = N and
g(A) = h(detA) with h convex, then g is rank-one convex. If p > n and

(2.1) |h(d)| ≤ C(|d|+ 1),

then

(2.2) f(A) = |A|p + h(detA)

is an example of an integrand satisfying (1.2)–(1.4). Functionals of this type but with
a much more singular dependence on d are used in nonlinear elasticity theory. There
one assumes h(d) = +∞ for d ≤ 0. Existence of minimizers for the singular problem
is established but little is known about the minimizers themselves. One approach in
studying the elasticity problem is to consider a sequence of approximate problems
with

(2.3) |hk(d)| ≤ ck(|d|+ 1)

and

(2.4) hk(d) ↑ h(d) as k −→∞.

These problems do have equilibrium points. The motivation for the present work is
the investigation of gradient estimates for solutions to the approximate problem.

Prior work on estimating the gradient of solutions to such problems was done in
[C-E] and [G-M]. In these papers, it was assumed that f is C2 and

(2.5) lim
|A|→∞

D2(|A|p)−D2f(A)

|A|p−2
= 0,

where p ≥ 2. These works show that minimizers have locally bounded gradients.
However, for a large class of integrands (such as (2.1)–(2.2), for instance), one must
have p > 2n in order for (2.5) to hold. To see this for our example, let d ∈ R such
that h′′(d) > 0 and λ > 0 and set

(2.6) A = diag[A11, . . . , Ann],

where A11 = dλ1−n and Aii = λ for 2 ≤ i ≤ n. Then

(2.7)
∂2h(detA)

∂A11∂A11

∣∣∣∣
A

= h′′(d)λ2n−2.

If we then consider (2.5) with A = A(λ) and let λ −→ ∞, it follows that p > 2n is
required.

Thus for many examples with n < p ≤ 2n, our theorem provides Lm estimates
for the gradient of solutions for all m < ∞. Moreover, this information is new even
for minimizers. In cases where (1.2)–(1.4) hold, our result establishes Lm estimates
for equilibria in general.
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3. Lemmas and proof of theorem. The proof will utilize the following lem-
mas.

Lemma 3.1. Given (1.3)–(1.5), there exists a constant C <∞ such that

(3.1) |5 g(A)| ≤ C(1 + |A|q−1)

holds for all A ∈MN×n.
Lemma 3.2. If U ∈ W 1,p(Ω; RN ), 1 < p < ∞, is an equilibrium point of (1.1)–

(1.5), then U satisfies the Euler–Lagrange equations in the weak sense:

(3.2) p · div(|DU|p−2DU) = −div(5g(DU)).

That is, for each ϕ ∈W 1,p
0 (Ω; RN ),

(3.3)

∫
Ω

p|DU|p−2 〈DU , Dϕ〉 dx = −
∫

Ω

〈5g(DU), Dϕ〉 dx.

The first lemma can be found in [Dac, section 4.2.1.2]. The second lemma is a
straightforward application of the dominated convergence theorem, (3.1), and Hölder’s
inequality. Our final lemma is a result of DiBenedetto and Manfredi [DB-M, Theorem
2.1] (see also Iwaniec [I, Theorem 2]).

Lemma 3.3. Let F ∈ Lp(Ω; RnN ). Suppose U ∈ W 1,p(Ω; RN ) is a weak solution
of

(3.4) div(|DU|p−2DU) = div(|F |p−2F ) in Ω,

i.e.,

(3.5)

∫
Ω

|DU|p−2〈DU , Dϕ〉dx =

∫
Ω

|F |p−2〈F,Dϕ〉dx

for all ϕ ∈ W 1,p
0 (Ω; RN ). Assume d > 0 and Bd, B2d, B4d ⊂ Ω are concentric balls

of radii d, 2d, and 4d, respectively. Let η ∈ C∞0 (B2d), 0 ≤ η ≤ 1, and η ≡ 1 in Bd. If
|F | ∈ Lrloc(Ω) for some r ∈ [p,∞), then |DU| ∈ Lrloc(Ω), and for each B4d ⊂ Ω, there
exists γ = γ(n,N, p, r, d) such that

(3.6) ‖D(ηU)‖Lr(Ω) ≤ γ
(
‖ηF‖Lr(Ω) + ‖ηU‖Lp(Ω)

)
.

Proof of Theorem. We begin by rewriting the Euler–Lagrange equations (3.2) in
the form of (3.4). We do this by taking

|F |p−2F = −1

p
5 g(DU),

that is,

(3.7) F = −
(

1

p

) 1
p−1

|5g(DU)|
2−p
p−1 5 g(DU).

In particular,

(3.8) |F | =
(

1

p

) 1
p−1

|5g(DU)|
1

p−1 .
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Without loss of generality, assume q > 1. From (3.1), we have that

(3.9) |5 g(DU)| ≤ C(1 + |DU|q−1) ∈ L
p

q−1 (Ω).

Thus

(3.10) |F | ∈ L(p−1)· p
q−1 (Ω).

By Lemma 3.3, we have

(3.11) |DU| ∈ Lp·
p−1
q−1

loc (Ω),

and an estimate from (3.6). Note that r ≡ p · p−1
q−1 > p.

The other gradient estimates follow from the first by a bootstrap argument. Since

we have proved that |DU| ∈ Lp·(p−1)/(q−1)
loc (Ω), we can further say that

(3.12) |5 g(DU)| ∈ Lp·
p−1
q−1 ·

1
q−1

loc (Ω),

which implies that

(3.13) |F | ∈ Lp·(
p−1
q−1 )2

loc (Ω),

which by Lemma 3.3 gives

(3.14) |DU| ∈ Lp·(
p−1
q−1 )2

loc (Ω).

By induction, we get |DU| ∈ Lmloc(Ω) for each m ∈ (p,∞).
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Abstract. In this paper, we prove that solutions of the anisotropic Allen–Cahn equation in
double-obstacle form with kinetic term

εβ(∇ϕ)∂tϕ− ε∇A′(∇ϕ)− 1

ε
ϕ =

π

4
u in [|ϕ| < 1],

where A is a convex function homogeneous of degree two and β depends only on the direction of ∇ϕ,
converge to an anisotropic mean-curvature flow

β(N)VN = −tr(B(N)D2B(N)R)−B(N)u.

Here N, VN , and R denote the normal, the normal velocity, and the second fundamental form of
the interface, respectively, and B :=

√
2A.

Key words. anisotropic Allen–Cahn equation, mean-curvature flow, viscosity solutions, double-
obstacle problem

AMS subject classifications. 35R35, 35K22

PII. S0036141095286733

1. Introduction. The Allen–Cahn equation

ε∂tϕε − ε∆ϕε +
1

ε
W ′(ϕε) = cWu,(1)

where W (t) := (t2 − 1)2 is a double well potential and cW is a certain constant
depending only on W , was introduced by Allen and Cahn in [1] as a model for grain
boundary motion. It is the L2-gradient flow of the energy functional

Fε(ϕ) :=

∫
ε

2
|∇ϕ|2 +

1

ε
W (ϕ)− cWuϕ.(2)

In its double-obstacle form (see Blowey and Elliott in [5]), the Allen–Cahn equation
is replaced by a parabolic variational inequality with constraint that reads

∀η ∈ L2(H1,2), |η| ≤ 1 :∫
ε∂tϕ (ϕ− η) + ε∇ϕ (∇ϕ−∇η)− 1

ε
ϕ(ϕ− η)− π

4
u(ϕ− η) ≤ 0,(3)

|ϕ| ≤ 1.

The convergence of solutions of the Allen–Cahn equation to the mean-curvature flow

VN = −κ− u(4)

was proved by Chen in [6], de Mottoni and Schatzmann in [10], Evans, Soner, and
Souganidis in [13], and Bellettini and Paolini in [3]; in double-obstacle form, this was
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proved by Chen and Elliott in [8], Nochetto, Paolini, and Verdi in [17] and Nochetto
and Verdi in [18].

Anisotropy is now introduced by replacing the gradient in (2) and considering the
functional

Fε(ϕ) :=

∫
εA(∇ϕ) +

1

ε
W (ϕ)− cWuϕ,(5)

where A is convex and homogeneous of degree two. Moreover, we do not consider
the gradient flow of this functional but introduce a kinetic factor depending on ∇ϕ
in front of ∂tϕ. Then the Allen–Cahn equation takes the form

εβ(∇ϕ)∂tϕε − ε∇A′(∇ϕε) +
1

ε
W ′(ϕε) = cWu,(6)

where β is a positive function homogeneous of degree zero. McFadden et al. [15],
Wheeler and McFadden [21], and Bellettini and Paolini [4] with β = 1 used formal
asymptotics to provide the conjecture that (6) approximates the anisotropic mean-
curvature flow, which reads, in two space dimensions,

β(N)VN = −γ(γ + γ′′)(θ(N))κ− γ(θ(N))u,(7)

where γ is 2π-periodic, θ is the angle, and γ(θ(N)) :=
√

2A(N). This conjecture was
proved by the authors in [11] without the kinetic factor in the case when the evolution
of the anisotropic mean-curvature flow is smooth. Moreover, it is proved there that
the Hausdorff distance between the zero-level set of ϕε, the solution of (6) in its
double-obstacle form, and the interface of the flow is of order O(ε2). In the isotropic
case, this bound was established by Nochetto, Paolini, and Verdi in [17].

The first difficulty that arises from (6) is how to define a weak solution for this
equation. The problem is that, unless β is constant, β is discontinuous at 0. Thus far,
it is not clear how to give such a definition. Instead, we consider (6) and its double-
obstacle variant in the viscosity sense. For viscosity solutions see, for example, the
article [9] of Crandall, Ishi, and Lions. In spite of (6) not admitting a comparison
principle in the presence of a nonconstant kinetic factor, we will prove that it has a
solution. This will be done by proving uniform convergence of solutions of regularized
equations to (6) in section 2.

In section 4, we prove that solutions of (6) in double-obstacle form approximate
the corresponding anisotropic mean-curvature flow. The existence of a level-set solu-
tion describing this flow was proved by Chen, Giga, and Goto in [7]. The approxima-
tion is then meant in the sense that ϕε, the solution of (6) in double-obstacle form,
converges to 1 (respectively, to −1) where the level-set solution is positive (respec-
tively, negative). This is proved by constructing suitable sub- and supersolutions of
(6) in double-obstacle form. The construction is similar to that given by Nochetto
and Verdi in [18]. Because of the anisotropic nature of the problem, instead of the
ordinary distance function, we had to use a distance function that is induced by a
Finsler geometry as outlined by Bellettini and Paolini in [4]; see section 3. These sub-
and supersolutions are finally compared with the solutions, yielding our result.

The convergence result determines the limit of ϕε uniquely when the interface of
the flow does not develop an interior. Otherwise—that is, in the case called fattening—
there remains an ambiguity.

For applications, it may be easier to consider equations where the kinetic term
does not have a discontinuity at 0. After completing this paper, in [12], we considered
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βε ∈ C0(Rn) with βε(p) = β(p) for |p| ≥ ε. The corresponding Allen–Cahn equation
reads

εβε(ϕ̃ε)∂tϕ̃ε − ε∇A′(∇ϕ̃ε) +
1

ε
W (ϕ̃ε) = cWu.

In [12], we proved that the Hausdorff distance between the zero-level set of the so-
lutions of its double-obstacle variant and the interface of the flow is of order O(ε2)
when this flow is smooth.

2. Existence and comparison.

2.1. Notation. Let β ∈ C0,1
loc (Rn−{0}), A ∈ C2,1

loc (Rn−{0}), and u ∈W 2,1
∞ (Rn×

[0, T ]) be given. We assume that β is homogeneous of degree zero and that A is
homogeneous of degree two. Set B :=

√
2A. We assume the following bounds:

n, T, ‖β‖C0,1(B2(0)−B1/2(0)), ‖B‖C2,1(B2(0)−B1/2(0)),

‖A‖C2,1(B2(0)−B1/2(0)), ‖u‖W 2,1
∞ (Rn×[0,T ]) ≤ Λ,

Λ−1 ≤ β(p), A(p), B(p) ≤ Λ for |p| = 1, and
Λ−1I ≤ D2A.

(8)

Define F ∈ C0(Rn × [0, T ] × (Rn − {0}) × S(n)), where S(n) denotes the set of all
real, symmetric n× n matrices endowed with the usual ordering by

F (x, t, p,X) := −β(p)−1tr(B(p)D2B(p)X)− β(p)−1B(p)u(x, t).(9)

Since B is homogeneous of degree one, it follows that F is geometric in the sense that

F (x, t, λp, λX + σ(p⊗ p)) = λF (x, t, p,X) for λ > 0, σ ∈ R,

where ⊗ denotes the tensor product p⊗ q = (piqj)i,j on Rn.
Our limit problem, the fully anisotropic mean-curvature flow, is

β(∇ω)∂tω − tr(B(∇ω)D2B(∇ω)D2ω)−B(∇ω)u = 0,(10)

with the evolving interface given by Γt := [ω(., t) = 0]. Equation (10) was treated
by Chen, Giga, and Goto in [7] when u was independent of space, but all of their
methods apply to general u. In order to give meaning to (10), we seek a solution in
the viscosity sense of

∂tω + F (x, t,∇ω,D2ω) = 0.

Existence and comparison for (10) were proved in [7].
We recall the definition of viscosity solutions. In the following, we denote by

LSC(. . .) and USC(. . .) the sets of lower semicontinuous and upper semicontinuous
functions.

Definition 2.1. Let K ∈ C0(Rn× [0, T ]×R×R×(Rn−{0})×S(n)). A function
v : Q→ R, where ∅ 6= Q ⊆ Rn× ]0, T [ is open, is called a viscosity subsolution of

K(x, t, v, ∂tv,∇v,D2v) = 0 in Q,(11)

written as

K(x, t, v, ∂tv,∇v,D2v) ≤ 0 in Q,
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if v ∈ USC(Q) and

∀(a, p,X) ∈ P
2,+v(x, t), (x, t) ∈ Q: K?(x, t, v(x, t), a, p,X) ≤ 0,

where K? is the lower semicontinuous envelope of K, that is,

K?(x, t, r, a, p,X)

:= inf{lim inf
j→∞

K(xj , tj , rj , aj , pj , Xj) | (xj , tj , rj , aj , pj , Xj)→ (x, t, r, a, p,X)}.

P
2,+ is the set of superdifferentials and is defined in the next subsection. A supersolu-

tion is defined analogously by considering K?, the upper semicontinuous envelope of
K, and the set of subdifferentials P

2,−. v is a solution of (11) when it is both a sub-
and a supersolution. It is necessary to introduce the semicontinuous envelopes since
K is not continuous when p = 0.

The double-obstacle problem corresponding to (11) is given by

max(v − 1,min(v + 1,K(x, t, v, ∂tv,∇v,D2v))) = 0 in Q.(12)

Equivalently, v is a subsolution of (12) if

v ∈ USC(Q),

v ≤ 1,

and

∀(a, p,X) ∈ P
2,+v(x, t), (x, t) ∈ Q, with v(x, t) > −1:

K?(x, t, v(x, t), a, p,X) ≤ 0.

In this article, we mainly study parabolic equations and their double-obstacle
problems, that is, where K is given by

K(x, t, v, ∂tv,∇v,D2v) = ∂tv +H(x, t, v,∇v,D2v).

Definition 2.2. For v : Q→ R, where ∅ 6= Q ⊆ Rn× ]0, T [ is open, (x0, t0) ∈ Q,
we define the sets of superdifferentials

P
2,+v(x0, t0) := {(a, p,X) ∈ R× Rn × S(n) | v(x, t) ≤ v(x0, t0)

+ a(t− t0) + p(x− x0) + 1
2 (x− x0)TX(x− x0)

+ o(|t− t0|+ |x− x0|2) as t→ t0, x→ x0},

and

P
2,+v(x0, t0) := {(a, p,X) ∈ R× Rn × S(n) | ∃(aj , pj , Xj) ∈ P

2,+v(xj , tj) :
(aj , pj , Xj)→ (a, p,X), (xj , tj)→ (x0, t0), v(xj , tj)→ v(x0, t0)}.

The sets of subdifferentials P
2,− and P

2,− are defined analogously.
Remark 2.3. It is seen easily that for ϕ ∈ C2,1(Q) with v−ϕ ≤ (v−ϕ)(x0, t0) in

Q, the triple of derivatives (∂tϕ,∇ϕ,D2ϕ)(x0, t0) ∈ P
2,+v(x0, t0).

Conversely, for all superdifferentials (a, p,X) ∈ P
2,+v(x0, t0), there is a ϕ ∈

C2,1(Q) with v − ϕ ≤ (v − ϕ)(x0, t0) in Q and (a, p,X) = (∂tϕ,∇ϕ,D2ϕ)(x0, t0).
A proof of the second statement can be found in [19, section 14A].
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2.2. The equation. We consider the anisotropic Allen–Cahn equation

εβ(∇ϕ)∂tϕ− ε∇A′(∇ϕ) +
1

ε
W ′(ϕ)− cWu = 0 in Rn × [0, T ],(13)

where W (t) := (t2 − 1)2. As already pointed out in the introduction, it is not clear
how to define a weak solution of (13). Therefore, we treat (13) and its double-obstacle
variant in the viscosity sense. To be precise, we define Gε, G̃ε ∈ C0(Rn× [0, T ]×R×
(Rn − {0})× S(n)) by

(14)

Gε(x, t, r, p,X) := −εβ(p)−1tr(D2A(p)X)− 1

ε
β(p)−1r − β(p)−1π

4
u(x, t)

and

G̃ε(x, t, r, p,X) := −εβ(p)−1tr(D2A(p)X) +
1

ε
β(p)−1W ′(r)− β(p)−1cWu(x, t).

Then in the viscosity formulation, the Allen–Cahn equation (13) reads

∂tϕ+
1

ε
G̃ε(., ., ϕ,∇ϕ,D2ϕ) = 0,(15)

and its double-obstacle variant is given by

max

(
ϕ− 1,min

(
ϕ+ 1, ∂tϕ+

1

ε
Gε(., ., ϕ,∇ϕ,D2ϕ)

))
= 0.(16)

As already mentioned, existence and comparison for (10) were proved by Chen,
Giga, and Goto in [7]. We will state these theorems without proof.

Throughout this article, we will compute on the whole of Rn and we will consider
only space-periodic functions; therefore, we assume u and the initial data to be peri-
odic in space. Here and in the following, periodic means space periodic and that there
are n linearly independent periods.

Theorem 2.4. Let ∅ 6= Ω ⊆ Rn be open, 0 < T ≤ Λ, and H ∈ C0(Ω × [0, T ] ×
R× (Rn − {0})× S(n)) satisfy

(i) |H(x, t, r, p,X)| ≤ C(Γ) for |r|, |p|, ‖X‖ ≤ Γ,
(ii) H(x, t, r, p,X) ≥ H(x, t, r, p, Y ) when X ≤ Y ,
(iii) H(x, t, r, p,X)−H(x, t, s, p,X) ≥ −Λ(r − s) when r ≥ s,
(iv) |H(x, t, r, p,X)−H(y, t, r, p,X)| ≤ Λ|x− y|(1 + |p|), and
(v) H?(x, t, r, 0, 0) = H?(x, t, r, 0, 0).

Further, let v ∈ USC(Ω̄× [0, T ]) and w ∈ LSC(Ω̄× [0, T ]) satisfy

∂tv +H?(., ., v,∇v,D2v) ≤ 0,

and

∂tw +H?(., ., w,∇w,D2w) ≥ 0,

either
(a) in Ω× ]0, T [

or
(b) in Ω× ]0, T [ in the double-obstacle sense.
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Next, we assume that either
(α) Ω = Rn and v and w are periodic with the same period

or
(β) Ω ⊂⊂ Rn and v ≤ w on ∂Ω× [0, T [.

Then

v(., 0) ≤ w(., 0) in Ω

implies

v ≤ w in Ω× [0, T [.

Proof. This comparison principle was proved by Chen, Giga, and Goto in [7].
Properly, they considered H to be independent of x and they did not consider the
double-obstacle problem. However, their proof applies to the general case. See also
Theorem 2.12, where the ideas of [7] are applied to prove a modified comparison
principle for the double-obstacle Allen–Cahn equation.

Theorem 2.5. For periodic, continuous initial data, (10) has a unique solution.
Proof. We again refer to [7].
Remark 2.6. When β is constant, one can easily check that Gε and G̃ε of (14)

satisfy the assumptions for H in Theorem 2.4. Therefore, the corresponding parabolic
equations admit a comparison principle when they are considered in the viscosity
sense. For nonconstant β, a comparison principle of this kind does not hold. This can
be seen as follows. We take u = 0 and consider solutions which are constant in space.
Such solutions w satisfy the ordinary differential equation

εβ?(t)w′(t)− 1

ε
w(t) = 0

and the inequality |w(t)| < 1, where β? is any function satisfying inf β ≤ β? ≤ supβ.
Taking β? = inf β and β? = supβ, comparison is easily contradicted. Since (15) does
not admit a comparison principle, the existence of solutions to (15) cannot be proved
by Perron’s method.

The rest of this section is devoted to proving existence of solutions to (15) and
a modified comparison principle in which the sub- or supersolution in Theorem 2.4
satisfies additional conditions.

Existence is proved by approximating (15) through regularized equations. We will
establish a uniform bound on the Hölder continuity of solutions of these regularized
equations, hence getting a solution of (15). To carry out the limit procedure, we recall
a definition of [9, section 6], which is stated below in Definition 2.7.

In section 4, we will construct sub- and supersolutions which admit the additional
condition required in the modified comparison principle (Theorem 2.12). Therefore,
we will be able to compare these sub- and supersolutions with a solution and conclude
the desired convergence as ε→ 0 for these solutions.

Definition 2.7. For a family of functions vδ : Q ⊆ RN → R, we define

v := lim
δ→0?

vδ

by

v(z0) := inf

{
lim inf
j→∞

vδj (zj) | δj → 0, zj → z0

}
.

limδ→0
?vδ is defined analogously.
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2.3. Regularization. First, we consider (13) when β ∈ C∞(Rn), A ∈ C∞(Rn),
W ′ is replaced by any f ∈ C∞(R), and u ∈ C∞(Rn× [0, T ]) is periodic in space. We
drop the homogeneity assumptions on β and A, but we demand

Λ−1≤ β ≤ Λ,

Λ−1I ≤ D2A,

Λ−1|p|2 − Λ≤ A(p),(17)

‖u‖L∞(Rn×[0,T ]), ‖∇u‖L∞(Rn×[0,T ]), |f(0)| ≤ Λ, and

f ′≥ −Λ.

We consider the equation

(18)

∂tϕ− β(∇ϕ)−1tr(D2A(∇ϕ)D2ϕ) + β(∇ϕ)−1f(ϕ)− β(∇ϕ)−1u = 0 in Rn × [0, T ]

with periodic initial data ϕ0 ∈ C∞(Rn) and

‖ϕ0‖C0,1(Rn) ≤ Λ.(19)

Since (18) admits a comparison principle, we conclude from (19) that a solution of
(18) satisfies

‖ϕ‖L∞(Rn×[0,T ]), ‖∇ϕ‖L∞(Rn×[0,T ]) ≤ C(Λ).(20)

With this a priori bound, we find using techniques of [14] that (18) has a unique,
periodic solution ϕ ∈ C∞(Rn × [0, T ]).

We write (18) in divergence form as

β(∇ϕ)∂tϕ−∇A′(∇ϕ) + f(ϕ)− u = 0,

multiply by ∂tϕ, integrate over Kt0 := K × [0, t0], where K is a periodic cell, and get∫
Kt0

β(∇ϕ)|∂tϕ|2 +A′(∇ϕ)∂t∇ϕ+ f(ϕ)∂tϕ =

∫
Kt0

u∂tϕ.(21)

We define F (t) :=
∫ t

0
(f(s) − f(0) + (Λ + 1)s)ds and get F ′(t) = f(t) − f(0) +

(Λ + 1)t, F ′(0) = 0, and F ′′ ≥ 1. From (20) and (21), we conclude

Λ−1

∫
Kt0

|∂tϕ|2 +

∫
K

A(∇ϕ(t0)) + F (ϕ(t0))

≤
∫
K

A(ϕ0) + F (ϕ0) +

∫
Kt0

((Λ + 1)ϕ− f(0) + u)∂tϕ

≤
∫
K

A(∇ϕ0) + F (ϕ0) + C(Λ)|K|+ 1

2Λ

∫
Kt0

|∂tϕ|2.

Assuming ∫
K

A(∇ϕ0) + F (ϕ0) ≤ Λ(22)

we obtain, noting (17),

‖∂tϕ‖L2(0,T ;L2(K)), ‖A(∇ϕ)‖L∞(0,T ;L2(K)),
‖F (ϕ)‖L∞(0,T ;L1(K)), ‖ϕ‖L2(0,T ;H1,2(K)) ≤ C(Λ).

(23)
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As in [11], the above L2(0, T ;L2(K)) estimate on ∂tϕ together with (20) yields

‖ϕ‖H1/n+1,1/2(n+1)(Rn×[0,T ]) ≤ C(Λ),(24)

where Hα,α/2 denotes the space of functions that are Hölder continuous of exponent
α in space and exponent α

2 in time.
Now we approximate β, A, and u of section 2.1 appropriately by βδ, Aδ, uδ ∈ C∞

as in (17). In the case of the smooth well, we take fδ = W ′; for the double-obstacle
problem, we take fδ := g′ + 1

δh
′ with g ≥ 0, g′(t) = −t for |t| ≤ 1, |g′′| ≤ Λ,

h(t) = 0 for |t| ≤ 1, th′(t) > 0 for |t| > 1, and 0 ≤ h′′ ≤ Λ. Taking the approximation
such that Aδ → A uniformly on compact subsets of Rn, we have in the smooth case∫

K

Aδ(∇ϕ0) + Fδ(ϕ0) ≤ C(Λ)(25)

for small δ. Since |ϕ0| ≤ 1 is required in the double-obstacle problem, we have∫
K

(
g +

1

δ
h

)
(ϕ0) =

∫
K

g(ϕ0) ≤ C(g)|K|,

which yields (25) as well. From (22) and (23), we conclude that (24) is satisfied for the
unique solution ϕδ of (18) when (β,A, f, u) is substituted by (βδ, Aδ, fδ, uδ). Equation
(18) can be considered as a viscosity equation of the form

∂tϕδ +Hδ(., ., ϕδ,∇ϕδ, D2ϕδ) = 0 in Rn× ]0, T [.

Choosing βδ and Aδ as convolutions—that is, βδ(p) :=
∫

R β(q)ηδ(p−q)dq and Aδ(p) :=∫
R A(q)ηδ(p− q)dq, where ηδ(p) := δ−1η(pδ ) with η ∈ C∞(R), η ≥ 0, and

∫
η = 1—it

is easily seen that

lim
δ→0

(?)

?
(βδ(p)(a+Hδ(x, t, r, p,X))) = (β(p)(a+ G̃1(x, t, r, p,X)))

(?)
?

when the smooth well is considered and that

lim
δ→0?

(a+Hδ(x, t, r, p,X)) ≤ 0

⇒ max(r − 1,min(r + 1, a+G1(x, t, r, p,X)))? ≤ 0

and

lim
δ→0

?(a+Hδ(x, t, r, p,X)) ≥ 0

⇒ max(r − 1,min(r + 1, a+G1(x, t, r, p,X)))? ≥ 0

when the double-obstacle problem is considered. Taking a uniformly convergent sub-
sequence, passing to the limits, and applying [9, Lemma 6.1], we obtain a solution
of (15) and its double-obstacle variant. Since only an estimate of ‖ϕ0‖C0,1(Rn) was
required, we have proved the following existence theorem.

Theorem 2.8. For every periodic ϕ0 ∈ C0,1(Rn), there are periodic viscos-
ity solutions ϕ, ϕ̃ ∈ H1/(n+1),1/2(n+1)(Rn × [0, T ]) to the anisotropic double-obstacle
Allen–Cahn and its smooth form, that is,

max

(
ϕ− 1,min

(
ϕ+ 1, ∂tϕ+

1

ε
Gε(., ., ϕ,∇ϕ,D2ϕ)

))
= 0 in Rn× ]0, T [,

∂tϕ̃+
1

ε
G̃ε(., ., ϕ̃,∇ϕ̃,D2ϕ̃) = 0 in Rn × ]0, T [,

and
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ϕ(., 0) = ϕ̃(., 0) = ϕ0 in Rn.

Here Gε and G̃ε are defined in (14).
Remark 2.9. Taking H = 1

εGε in Theorem 2.4, we observe that it satisfies all
conditions except

(v) Gε,?(x, t, r, 0, 0) = G?ε(x, t, r, 0, 0).

In the next theorem, we impose an additional condition on the sub- or superso-
lution of Theorem 2.4 for H = 1

εGε which is sufficient to establish comparison. To
prove this theorem, we apply the following theorem, which is given in a more general
version in [9, Theorem 8.3]. Since we apply it to the double-obstacle problem, we
must state it with one detail slightly changed.

Theorem 2.10. Let v ∈ USC(Rn × ]0, T [) and w ∈ LSC(Rn × ]0, T [), and
define Φ(t, x, y) := v(x, t) − w(y, t) − α|x − y|2, where α ≥ 0. We suppose that
Φ(t0, x0, y0) = sup]0,T [×Rn×Rn Φ, where (t0, x0, y0) ∈ ]0, T [×Rn × Rn. We assume

that there is an r > 0 such that for Γ > 0, (a, p,X) ∈ P
2,+v(x, t),

|x− x0|+ |t− t0|+ |v(x, t)− v(x0, t0)| ≤ r and |p|+ ‖X‖ ≤ Γ
implies a ≤ C(Γ);

likewise, for (a, p,X) ∈ P
2,−w(y, t),

|y − y0|+ |t− t0|+ |w(y, t)− w(y0, t0)| ≤ r and |p|+ ‖X‖ ≤ Γ
implies a ≥ −C(Γ).

Then there are a ∈ R and X,Y ∈ S(n) such that

(a, 2α(x0 − y0), X)∈ P
2,+v(x0, t0),

(a, 2α(x0 − y0), Y )∈ P
2,−w(y0, t0),

and

X ≤ Y.

Moreover, when α = 0, we get

X ≤ 0 ≤ Y.

Remark 2.11. We observe that the condition about the boundedness of the time
derivative of v is satisfied if v is a subsolution of a parabolic equation. In this case, it
is indeed sufficient to require merely that |v(x, t)| ≤ Γ, as is done in [9, Theorem 8.3].
If v is a solution of a double-obstacle problem, this bound can only be concluded if
v(x, t) > −1. Therefore, we have to replace |v(x, t)| ≤ Γ by |v(x, t) − v(x0, t0)| ≤ r
since we will apply the theorem when v(x0, t0) > −1.

Theorem 2.12. We assume that v and w are periodic with the same period, that
they are sub- and supersolutions, respectively, of

max

(
ϕ− 1,min

(
ϕ+ 1, ∂tϕ+

1

ε
Gε(., ., ϕ,∇ϕ,D2ϕ)

))
= 0 in Rn × ]0, T [,

and that v(., 0) ≤ w(., 0). Moreover, we assume that for (a, 0, X) ∈ P
2,−w(x0, t0) with

(x0, t0) ∈ Rn × ]0, T [ and w(x0, t0) < 1,

lim sup
p→0, p 6=0

(
εβ?a− εtr(D2A(p)X)− 1

ε
w(x0, t0)− π

4
u(x0, t0)

)
≥ 0(26)
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holds for any inf β ≤ β? ≤ supβ. Then the following comparison inequality holds:

v ≤ w in Rn × [0, T [.

Proof. We prove the theorem by contradiction. Suppose there is (x̄, t̄) ∈ Rn×]0, T [
such that v(x̄, t̄) > w(x̄, t̄). Choose T0 so that 0 < t̄ < T0 < T . We know that v and
w are upper and lower semicontinuous, respectively, so periodicity implies

sup
y∈Rn

(v(y, T0)− w(y, T0)) <∞;

hence for λ large enough, we have

∀y ∈ Rn: exp(−λt)(v(x, t)− w(x, t)) > exp(−λT0)(v(y, T0)− w(y, T0)).(27)

We assume additionally that λ > C(Λ)ε−2.
We define

ṽ(x, t) := exp(−λt)v(x, t)

and

w̃(x, t) := exp(−λt)w(x, t).

We conclude from (27) that

sup
Rn×[0,T0]

(ṽ − w̃) =: δ > 0,

and, since ṽ and w̃ are upper and lower semicontinuous, respectively, that there exists
(x0, t0) ∈ Rn × [0, T0] such that

ṽ(x0, t0)− w̃(x0, t0) = sup
Rn×[0,T0]

(ṽ − w̃),(28)

and, noting that (ṽ − w̃)(., 0) ≤ 0, for any such (x0, t0),

0 < t0 < T0.(29)

For proving comparison for viscosity solutions, we proceed with the standard technique
of doubling the number of space variables and penalizing this doubling. We define for
α > 0 and η ∈ Rn the upper semicontinuous functions

Ψ(t, x, y) := ṽ(x, t)− w̃(y, t),

Φα(t, x, y) := Ψ(t, x, y)− α|x− y|2, and(30)

Φα,η(t, x, y) := Ψ(t, x, y)− α|x− y − η|2.

We distinguish two cases and in each derive a contradiction.
Case (i). There is a µ > 0 such that for all |η| < µ one of the maximum points

(tη, xη, yη) of Φα,η, that is

Φα,η ≤ Φα,η(tη, xη, yη) in [0, T0]× Rn × Rn,

satisfies

xη − yη = η.(31)
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We define f(η) := supx−y=η Ψ and get

f(η) ≥ Ψ(tη, xη, yη) = Φα,η(tη, xη, yη) ≥ sup
x−y=ξ

Φα,η = f(ξ)− α|ξ − η|2

for all ξ, η ∈ Uµ(0). Therefore, f : Uµ(0)→ R is constant and

sup
x−y=η

Ψ = f(η) = f(0) = sup
x=y

Ψ = sup
Rn×[0,T0]

(ṽ − w̃) = ṽ(x0, t0)− w̃(x0, t0)

by (28). This yields

∀x, y ∈ Uµ/2(x0): ∀t ∈ [0, T0]: ṽ(x, t)− w̃(y, t) ≤ ṽ(x0, t0)− w̃(x0, t0).

Applying Theorem 2.10 to Φ = Ψ, we get

∃ã, X̃, Ỹ : (ã, 0, X̃) ∈ P
2,+v(x0, t0),

(ã, 0, Ỹ ) ∈ P
2,−w(x0, t0),

X̃ ≤ 0 ≤ Ỹ .

Setting a := ã exp(λt0), X := X̃ exp(λt0), and Y = Ỹ exp(λt0) and noting that
exp(λ(t− t0))v(x0, t0) = (1 + λ(t− t0))v(x0, t0) +O(|t− t0|2), we have

(a+ λv(x0, t0), 0, X) ∈ P
2,+v(x0, t0),

(a+ λw(x0, t0), 0, Y ) ∈ P
2,−w(x0, t0),

and
X ≤ 0 ≤ Y.

Furthermore, the inequality 1 ≥ v(x0, t0) > w(x0, t0) ≥ −1 holds. Since v and w are
sub- and supersolutions, respectively, we obtain

a+ λv(x0, t0) +
1

ε
Gε,?(x0, t0, v(x0, t0), 0, X)≤ 0 and

a+ λw(x0, t0) +
1

ε
G?ε(x0, t0, w(x0, t0), 0, Y )≥ 0.

(32)

Using the definition of the semicontinuous envelope, we conclude from (32) that

0 ≥ lim inf
p→0, p 6=0

(
εβ(p)(a+ λv(x0, t0))− εtr(D2A(p)X)− 1

ε
v(x0, t0)− π

4
u(x0, t0)

)
≥ lim inf
p→0, p 6=0

(
εβ(p)(a+ λv(x0, t0))− 1

ε
v(x0, t0)− π

4
u(x0, t0)

)
since X ≤ 0. Therefore,

0 ≥ εβ?(a+ λv(x0, t0))− 1

ε
v(x0, t0)− π

4
u(x0, t0)(33)

for some inf β ≤ β? ≤ supβ. Taking this β? and (ã, 0, Ỹ ) ∈ P
2,−w(x0, t0) in (26),

(34)

0 ≤ lim sup
p→0, p 6=0

(εβ?(a+ λw(x0, t0))− εtr
(
D2A(p)Y )− 1

ε
w(x0, t0)− π

4
u(x0, t0)

)
≤ εβ?(a+ λw(x0, t0))− 1

ε
w(x0, t0)− π

4
u(x0, t0)
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since Y ≥ 0. From (33) and (34), we obtain

0 ≥
(
εβ?λ− 1

ε

)
(v(x0, t0)− w(x0, t0)) > 0,

which is a contradiction.
Case (ii) For all µ > 0, there is an |η| < µ such that one of the maximum points

(tη, xη, yη) of Φα,η, that is,

Φα,η ≤ Φα,η(tη, xη, yη) in [0, T0]× Rn × Rn,

satisfies

xη − yη 6= η.(35)

From periodicity and upper semicontinuity, we obtain for a subsequence

(tη, xη, yη)→ (tα, xα, yα) ∈ [0, T0]× Rn × Rn, Φα ≤ Φα(tα, xα, yα) and
ṽ(xη, tη)− w̃(yη, tη)→ ṽ(xα, tα)− w̃(yα.tα).

(36)

From [9, Proposition 3.7], for a subsequence α→∞, we get

(tα, xα, yα)→ (t0, x0, y0) ∈ [0, T0]× Rn × Rn, x0 = y0,
ṽ(xα, tα)− w̃(yα, tα)→ ṽ(x0, t0)− w̃(x0, t0) = sup

Rn×[0,T0]

(ṽ − w̃).(37)

It follows from (28) that

0 < t0 < T0;
hence 0< tα < T0, v(xα, tα)> w(yα, tα) for α large

and 0< tη < T0, v(xη, tη)> w(yη, tη) for |η| small.

Applying Theorem 2.10 to Φ = Φα,η(., ., .−η) yields, after multiplying with exp(λt0),

∃a, X, Y : (a+ λv(xη, tη), pη, X)∈ P
2,+v(xη, tη),

(a+ λw(yη, tη), pη, Y )∈ P
2,−w(yη, tη),

X ≤ Y,
pη = 2α(xη − yη − η) exp(λtη).

It also holds that 1 ≥ v(xη, tη) > w(yη, tη) ≥ −1. Since v and w are sub- and
supersolutions, we obtain

0 ≥ ε(a+ λv(xη, tη)) +Gε(xη, tη, v(xη, tη), pη, X)

− ε(a+ λw(yη, tη))−Gε(yη, tη, w(yη, tη), pη, Y )

≥
(
ελ− C(Λ)

1

ε

)
(v(xη, tη)− w(yη, tη))− C(Λ)|u(xη, tη)− u(yη, tη)|

→
(
ελ− C(Λ)

1

ε

)
(v(x0, t0)− w(x0, t0)) > 0,

which is again a contradiction.
Therefore, v ≤ w in Rn × [0, T [.
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Remark 2.13. The conclusion of the above proposition remains true if (26) is
replaced by the analogous condition for v. More precisely, instead of (26), we require

for (a, 0, X) ∈ P
2,+v(x0, t0) with (x0, t0) ∈ Rn × ]0, T [ and v(x0, t0) > −1 that

lim inf
p→0, p 6=0

(
εβ?a− εtr(D2A(p)X)− 1

ε
v(x0, t0)− π

4
u(x0, t0)

)
≤ 0

for any inf β ≤ β? ≤ supβ.
This modified comparison principle is also valid for the smooth Allen–Cahn equa-

tion with obvious changes.

3. The distance function. As already pointed out in the introduction, we use
a distance function that is induced by a Finsler metric for the construction of the sub-
and supersolutions. This section is devoted to the presentation of some definitions
and properties of the Finsler metric (see [4]) and the induced distance function. Most
of these properties are known in the isotropic case; see [2]. However, Lemma 3.4 and
the viscosity estimate of the time derivative of the distance function in Proposition 3.6
were not required in the isotropic case, but they will be used in section 4 for proving
convergence in the anisotropic case.

3.1. The dual. We consider β, A, B, and u as in (8). As in [4], we define the
dual of B,

B◦(q) := sup{qp | B(p) ≤ 1}.(38)

B◦ is convex and homogeneous of degree one. Since A ∈ C2(Rn − {0}) is strictly
convex, B◦ ∈ C2(Rn − {0}) and satisfies

c0(Λ) ≤ B◦(q)≤ C(Λ) for |q| = 1,
B(∇B◦(q)) = 1 for q 6= 0,

∇B(∇B◦(q))D2B◦(q) = 0 for q 6= 0, and
‖B◦‖C2(B2(0)−B1/2(0))≤ C(Λ).

(39)

3.2. The distance function. We define a nonsymmetric metric d in Rn by

d(x, y) := B◦(x− y).(40)

We easily obtain for x, y, z ∈ Rn that

d(x, z)≤ d(x, y) + d(y, z),
d(x+ z, y + z) = d(x, y), and
c0(Λ)|x− y| ≤ d(x, y) ≤ C(Λ)|x− y|.

(41)

Let ω ∈ LSC(Rn × [0, T [) be a supersolution of

β(∇ω)∂tω − tr(B(∇ω)D2B(∇ω)D2ω)−B(∇ω)u≥ 0 in Rn × ]0, T [, or
∂tω + F ?(., .,∇ω,D2ω)≥ 0,

(42)

where F is defined in (14). We define the distance function δ as follows:

δ(x, t) := inf
y,ω(y,t)≤0

d(x, y).(43)

(41) implies

|δ(x, t)− δ(y, t)| ≤ C(Λ)|x− y|.(44)
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We will prove some properties of δ; most of them are well known.

The next three lemmas were proved by Barles, Soner, and Souganidis in [2] in the
isotropic case.

Lemma 3.1. ω∞ := χ[ω>0] is a supersolution of (42).

Proof. From [7], we know that ωε := min(1,max(ωε , 0)) is a supersolution of (42).
Because ω∞ = limε→0?ωε, defined in Definition 2.7, we get from [9, Lemma 6.1] that
ω∞ is a supersolution as well.

Lemma 3.2. We define δk(x, t) := infy∈Rn(kω∞(y, t) + d(x, y)). Then

(i) δk = min(δ, k) ∈ LSC(Rn × [0, T [) and

(ii) ∂tδ
k + F ?(., .,∇δk, D2δk) + C(Λ)|∇δk|δk ≥ 0 in Rn × ]0, T [ in the viscosity

sense.

Proof. (i) Trivially, we get

0 ≤ δk(x, t) ≤ kω∞(x, t) + d(x, x) ≤ k.

Second, if δ(x, t) = d(x, y) with ω(y, t) ≤ 0, then ω∞(y, t) = 0 and

δk(x, t) ≤ d(x, y) = δ(x, t);

hence

0 ≤ δk ≤ min(δ, k).

Moreover, ∀y ∈ Rn : [ω(y, t) ≤ 0⇒ d(x, y) ≥ δ(x, t)]. This yields

kω∞(y, t) + d(x, y) ≥ min(δ(x, t), k);

hence

δk ≥ min(δ, k).

Now let (xj , tj) → (x0, t0) ∈ Rn × [0, T [ and δk(xj , tj) = kω∞(yj , tj) + d(xj , yj). We
obtain d(xj , yj) ≤ k and, for a subsequence, yj → y0. This yields

lim inf
j→∞

δk(xj , tj) ≥ kω∞(y0, t0) + d(x0, y0) ≥ δk(x0, t0).

(ii) Let ϕ ∈ C2,1(Rn × [0, T [) with δk − ϕ ≥ (δk − ϕ)(x0, t0), 0 < t0 < T , and
δk(x0, t0) = kω∞(y0, t0) + d(x0, y0). Defining

ψ(y, t) := ϕ(y − y0 + x0, t), ψ ∈ C2,1(Rn × [0, T [),

we get, for (y, t) ∈ Rn × ]0, T [ and x := y − y0 + x0,

kω∞(y, t) + d(x, y)− ψ(y, t)≥ δk(x, t)− ϕ(x, t)
≥ δk(x0, t0)− ϕ(x0, t0) = kω∞(y0, t0) + d(x0, y0)− ψ(y0, t0).

(45)

Since x− y = x0 − y0, we get d(x, y) = d(x0, y0), and (45) together with Lemma 3.1
yields

∂tψ(y0, t0) + F ?(y0, t0,∇ψ(y0, t0), D2ψ(y0, t0)) ≥ 0.
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This implies

∂tϕ(x0, t0) + F ?(x0, t0,∇ϕ(x0, t0), D2ϕ(x0, t0))

≥ F ?(x0, t0,∇ϕ(x0, t0), D2ϕ(x0, t0))− F ?(y0, t0,∇ϕ(x0, t0), D2ϕ(x0, t0))

= β(∇ϕ(x0, t0))−1B(∇ϕ(x0, t0))(u(y0, t0)− u(x0, t0))

≥ −C(Λ)|∇ϕ(x0, t0)||x0 − y0|
≥ −C(Λ)|∇ϕ(x0, t0)|δk(x0, t0)

since δk(x0, t0) = kω∞(y0, t0) + d(x0, y0) ≥ d(x0, y0) ≥ c0(Λ)|x0 − y0|.
Proposition 3.3. δ is lower semicontinuous and is a viscosity supersolution of

∂tδ + F ?(., .,∇δ,D2δ) + C(Λ)|∇δ|δ ≥ 0 in Rn × ]0, T [.

Proof. Let (xj , tj)→ (x0, t0) and choose k > δ(x0, t0). We obtain

lim inf
j→∞

δ(xj , tj) ≥ lim inf
j→∞

δk(xj , tj) ≥ δk(x0, t0) = δ(x0, t0),

where we have used the lower semicontinuity of δk, established in Lemma 3.2(i).
To prove that δ is a viscosity supersolution, we pass to the limit in Lemma 3.2(ii).

According to [9, Lemma 6.1], viscosity supersolutions are preserved under the limit
procedure defined in Definition 2.7. Hence it suffices to prove

δ = lim
k→∞?

δk.(46)

From Lemma 3.2(i),

δ = lim
k→∞

δk ≥ lim
k→∞?

δk.

Conversely, let (xj , tj)→ (x0, t0) and kj →∞ with

lim sup
j→∞

δkj (xj , tj) ≤
(

lim
k→∞?

δk
)

(x0, t0) + τ ≤ δ(x0, t0) + τ

for some τ > 0. For j large, we get δkj (xj , tj) < kj ; hence

δ(x0, t0) ≤ lim inf
j→∞

δ(xj , tj) = lim inf
j→∞

δkj (xj , tj) ≤
(

lim
k→∞?

δk
)

(x0, t0) + τ,

and (46) is established, concluding the proof.
Lemma 3.4. For x0 ∈ Rn and 0 ≤ t0 ≤ t1 < T , the inequality

µ(δ(x0, t1)) ≥ µ(δ(x0, t0))− C(Λ)(t1 − t0)(47)

holds, where µ(r) :=
∫ r

0
s

1+sds.
Proof. The function µ, used below to define a subsolution for (51), appears in [7].
It suffices to prove the assertion when % := δ(x0, t0) > 0. We define v(x, t) :=

µ(%)− Γ(t− t0)− µ(B◦(x0 − x)) for some positive constant Γ chosen below, and we
observe from Lemma 3.1 that v ∈ C2,1((Rn − {x0})× [0, T [). For x 6= x0, we get

∂tv(x, t) = −Γ,
∇v(x, t) = µ′(B◦(x0 − x))∇B◦(x0 − x)

= B◦(x0 − x)∇B◦(x0 − x)(1 +B◦(x0 − x))−1, and
D2v(x, t) = −B◦(x0 − x)D2B◦(x0 − x)(1 +B◦(x0 − x))−1

−∇B◦(x0 − x)⊗∇B◦(x0 − x)(1 +B◦(x0 − x))−1

+B◦(x0 − x)∇B◦(x0 − x)⊗∇B◦(x0 − x)(1 +B◦(x0 − x))−2.

(48)
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We observe that v ∈ C1,1(Rn × [0, T [) and satisfies

∇v(x0, t) = 0 and
‖D2v(x, t)‖≤ C(Λ)(1 +B◦(x0 − x))−1,

(49)

where we have used (39). We conclude that for x 6= x0,

∂tv(x, t) + F (x, t,∇v(x, t), D2v(x, t))

≤ −Γ + (1 +B◦(x0 − x))−1F (x, t, B◦(x0 − x)∇B◦(x0 − x),−C(Λ)I)

≤ −Γ + C(Λ)(1 +B◦(x0 − x))−1F (x, t, c0(Λ)B◦(x0 − x)∇B◦(x0 − x),−I)

≤ −Γ + C(Λ) ≤ 0

when Γ ≥ C(Λ). Here we have used

F (x, t, p,−I) ≤ C(Λ)(1 + |p|),(50)

which can easily be derived from the definition of F and (8).
To prove that v is a subsolution of

∂tv + F?(., .,∇v,D2v) ≤ 0(51)

on the whole Rn × ]0, T [, we consider ψ ∈ C2,1(Rn× ]0, T [) with

(v − ψ) ≤ (v − ψ)(x0, s0)

for some 0 < s0 < T . We get from (49) that

∇ψ(x0, s0) = ∇v(x0, s0) = 0.

Adding |x−x0|4 + |t− s0|2 to ψ, we may assume (v−ψ)(x, t) < (v−ψ)(x0, s0) for all
(x, t) 6= (x0, s0). We define ψτ (x, t) := ψ(x, t) + τ x ∗N for some N 6= 0. As τ → 0,
we get

(v − ψτ )(., s0) ≤ (v − ψτ )(xτ , s0)

on a neighborhood U(x0) of x0 and xτ → x0. This yields

∇v(xτ , s0) = ∇ψτ (xτ , s0) = ∇ψ(xτ , s0) + τN 6= ∇ψ(xτ , s0);

hence xτ 6= x0. Furthermore, we have

D2ψ(x0, s0)← D2ψτ (xτ , s0) ≥ D2v(xτ , s0) ≥ −(1+B◦(x0−xτ ))−1C(Λ)I → −C(Λ)I.

Using (50), we get

∂tψ(x0, s0) + F?(x0, s0,∇ψ(x0, s0), D2ψ(x0, s0))
≤ −Γ + F?(x0, s0, 0,−C(Λ)I) ≤ −Γ + C(Λ) ≤ 0;

hence (51) is established.
We define U := {x ∈ Rn | B◦(x0 − x) < %}. For x ∈ U , we see that

d(x0, x) = B◦(x0 − x) < % = δ(x0, t0);

hence
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ω(x, t0) > 0

and

v(x, t0) ≤ µ(%) ≤ µ(%)ω∞(x, t0).

For x ∈ ∂U and t ∈ [t0, T [, we get v(x, t) ≤ 0 ≤ µ(%)ω∞(x, t). We conclude with the
comparison principle (Theorem 2.4),

∀x ∈ U : ∀t ∈ [t0, T [: v(x, t) ≤ µ(%)ω∞(x, t).(52)

We choose y0 ∈ [ω(., t1) ≤ 0] such that δ(x0, t1) = B◦(x0− y0). If y0 6∈ U , we see that
δ(x0, t1) = B◦(x0 − y0) ≥ % = δ(x0, t0) and

µ(δ(x0, t1)) ≥ µ(%) ≥ µ(δ(x0, t0)).

If y0 ∈ U , we obtain from (52)

0 = µ(%)ω∞(y0, t1) ≥ v(y0, t1) = µ(%)− Γ(t1 − t0)− µ(B◦(x0 − y0)).

Taking into account that % = δ(x0, t0) and B◦(x0− y0) = δ(x0, t1), (47) follows.
Proposition 3.5. δ is continuous from below ; that is, if (xj , tj) → (x0, t0) and

tj ≤ t0 < T , then

δ(xj , tj)→ δ(x0, t0).

Proof. Because of the already established lower semicontinuity of δ, it suffices to
show

lim sup
j→∞

δ(xj , tj) ≤ δ(x0, t0).(53)

From (47), we get

µ(δ(x0, t0)) ≥ lim sup
j→∞

(µ(δ(x0, tj))− C(Λ)(t0 − tj)) = µ

(
lim sup
j→∞

δ(x0, tj)

)
,

where µ is defined in (3.4), since µ is continuous and increasing. Since µ is strictly
increasing, it follows that

δ(x0, t0) ≥ lim sup
j→∞

δ(x0, tj),

which yields (53) when taking into account that |δ(xj , tj)−δ(x0, tj)| ≤ C(Λ)|xj−x0| →
0.

Proposition 3.6. δ is a viscosity supersolution of

B(∇δ)≥ 1, −B(∇δ) ≥ −1,

−∇B(∇δ)D2δ∇B(∇δ)≥ 0, −D2δ ≥ −C(Λ)δ−1I,

and

∂tδ ≥ −C(Λ)

(
1 +

1

δ

)
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in [δ > 0] ∩ (Rn × ]0, T [).
Proof. Let ϕ ∈ C2,1(Rn× ]0, T [), (x0, t0) ∈ Rn× ]0, T [ with δ(x0, t0) > 0 and

(δ − ϕ) ≥ (δ − ϕ)(x0, t0) = 0 in Rn × ]0, T [. We choose y0 ∈ [ω(., t0) ≤ 0] with

0 < δ(x0, t0) = d(x0, y0) = B◦(x0 − y0);

note in particular that x0 6= y0. For all x ∈ Rn, we get B◦(x− y0) ≥ δ(x, t0); hence

B◦(x− y0)− ϕ(x, t0) ≥ B◦(x0 − y0)− ϕ(x0, t0).

Since x0 6= y0 and B◦ ∈ C2(Rn − {0}), we get

∇ϕ(x0, t0) = ∇B◦(x0 − y0)

and
D2ϕ(x0, t0) ≤ D2B◦(x0 − y0) ≤ C(Λ)I|x0 − y0|−1 = C(Λ)δ(x0, t0)−1I,

where we have used the fact that D2B◦ is homogeneous of degree −1. From (39), we
get

B(∇ϕ(x0, t0)) = 1

and
−∇B(∇ϕ)D2ϕ∇B(∇ϕ)(x0, t0) ≥ 0.

From (3.4), for 0 ≤ t < t0, we get

µ(ϕ(x0, t0)) = µ(δ(x0, t0)) ≥ µ(δ(x0, t))− C(Λ)(t0 − t)
≥ µ(ϕ(x0, t))− C(Λ)(t0 − t),

and

−C(Λ) ≤ µ(ϕ(x0, t))− µ(ϕ(x0, t0))

t− t0
→ µ′(ϕ(x0, t0))∂tϕ(x0, t0)

=
ϕ(x0, t0)

1 + ϕ(x0, t0)
∂tϕ(x0, t0).

Since ϕ(x0, t0) = δ(x0, t0), this yields

∂tϕ(x0, t0) ≥ −C(Λ)(1 + δ(x0, t0)−1).

4. Convergence.
Remark 4.1. In this section, we construct sub- and supersolutions for the double-

obstacle Allen–Cahn problem which satisfy the additional condition of the modified
comparison principle (Theorem 2.12).

We consider β, A, B, and u as in (8) and ω and δ as in section 3.2.
Definition 4.2. We define the following auxiliary functions, which appear in

formal asymptotics for the double-obstacle Allen–Cahn equation:

ψ0(r) :=


1, r≥ π

2
,

sin(r), |r| ≤ π

2
,

−1, r≤ −π
2
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and

ψ1(r) :=


1

2
(rψ0(r)− π

2
+ ψ′0(r)), |r| ≤ π

2
,

0, |r| ≥ π

2
.

We see that ψ0, ψ1 ∈ C2([−π2 ,
π
2 ]) ∩ C1,1(R). Moreover,

ψ′′0 + ψ0 = 0 on
[
−π

2
,
π

2

]
and

ψ′′1 + ψ1 = ψ′0 −
π

4
on

[
−π

2
,
π

2

]
.

(54)

We define

ψ(r, v) := ψ0(r) + εvψ1(r)

and

λε(x, t) :=
δ(x, t)

ε
− π − f(t),

where f(t) := α exp(−γ2t) with 1 ≤ α, γ ≤ C(Λ) chosen below. We set v := u + εg,
where g(t) := αγ exp(−γ2t), and

ψε := ψ(λε, v).

Proposition 4.3. For 0 < ε < ε0(Λ), ψε is a supersolution of

(55)

max

(
ψε − 1,min

(
ψε + 1, ∂tψε +

1

ε
G?ε(., ., ψε,∇ψε, D2ψε)

))
≥ 0 in Rn × ]0, T [.

Moreover, ψε satisfies the additional condition (26) of the modified comparison prin-

ciple; that is, for (a, 0, X) ∈ P
2,−ψε(x0, t0), 0 < t0 < T , and ψε(x0, t0) < 1,

lim sup
p→0, p 6=0

(
εβ∗a− εtr(D2A(p)X)− 1

ε
ψε(x0, t0)− π

4
u(x0, t0)

)
≥ 0(56)

holds for any inf β ≤ β? ≤ supβ.
Proof. We take ε so small that εf, εg, ε|f ′|, ε|g′| ≤ 1. We have |ψ1(r)|, |ψ′1(r)| ≤

ψ′0(r). For |v| ≤ C(Λ), this yields

ψr(r, v) = ψ′0(r) + εvψ′1(r) = ψ′0(r)(1 +OΛ(ε));

hence

1

2
ψ′0(r) ≤ ψr(r, v) ≤ 2ψ′0(r)(57)

when 0 < ε < ε0(Λ). Therefore, ψε ∈ LSC(Rn × [0, T [) since δ ∈ LSC(Rn × [0, T [).
Since ψ(r, v) = −1 for r ≤ −π2 , we get

ψε ≥ −1.
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Suppose (x̄, t̄) ∈ Rn× ]0, T [ is such that ψε(x̄, t̄) < 1. It follows that λε(x̄, t̄) <
π
2 .

From Remark 2.3, we see that for any (ā, p̄, X̄) ∈ P
2,−ψε(x̄, t̄), there is a ϕ ∈ C2,1(Rn×

[0, T [) such that

(ā, p̄, X̄) = (∂tϕ,∇ϕ,D2ϕ)(x̄, t̄) and
ψε − ϕ≥ (ψε − ϕ)(x̄, t̄),

(58)

and, without loss of generality, (ψε −ϕ)(x̄, t̄) = 0 and (x̄, t̄) is a strict minimum. Our
aim is to prove that ψε is a supersolution. By Definition 2.1, it remains to show that

ā+
1

ε
G?ε(x̄, t̄, ψε(x̄, t̄), p̄, X̄)) ≥ 0.(59)

We distinguish two cases.
(i) λε(x̄, t̄) < −π2 . Using the continuity from below in time of δ (see Proposition

3.5), we conclude that

λε(x, t) < −
π

2
for (x, t) ∈ U(x̄, t̄) and t ≤ t̄,

and for these (x, t), it follows that ψε(x, t) = −1. This yields

X̄ = D2ϕ(x̄, t̄) ≤ 0, ā = ∂tϕ(x̄, t̄) ≥ 0,

and

p̄ = ∇ϕ(x̄, t̄) = 0.

For p 6= 0 and inf β ≤ β? ≤ supβ, we obtain

εβ?ā− εtr(D2A(p)X̄)− 1

ε
ψε(x̄, t̄)−

π

4
u(x̄, t̄) ≥

(
1

ε
− C(Λ)

)
≥ 0(60)

when 0 < ε < ε0(Λ). Taking β? = β(p) and letting p tend to p̄ = 0, we obtain

ā+
1

ε
G?ε(x̄, t̄, ψε(x̄, t̄), p̄, X̄)

≥ lim sup
p→0,p 6=0

(
ā+

1

ε
Gε(x̄, t̄, ψε(x̄, t̄), p, X̄)

)
= lim sup
p→0,p 6=0

(
ā− 1

εβ(p)

(
εtr(D2A(p)X̄) +

1

ε
ψε(x̄, t̄) +

π

4
u(x̄, t̄)

))
≥ 0,

which is (59).
(ii) −π2 ≤ λε(x̄, t̄) <

π
2 . In the next two subsections, we will establish the existence

of subsequences (xτ , tτ ) and ψτε (xτ , tτ ) such that as τ → 0,

(xτ , tτ )→ (x̄, t̄),
ψτε (xτ , tτ )→ ψε(x̄, t̄),
∇ϕ(xτ , tτ ) 6= 0,

(61)

and

Rτε :=

(
εβ?∂tϕ− εtr(D2A(∇ϕ)D2ϕ)− 1

ε
ψτε −

π

4
u)(xτ , tτ

)
≥ ε− ε−1%Λ(τ),
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where inf β ≤ β? ≤ supβ and β? = β(∇ϕ(xτ , tτ )). Furthermore, if |∇ϕ(xτ , tτ )| ≤ Λε,
then the last inequality holds for any inf β ≤ β? ≤ supβ. Here %Λ(τ)→ 0.

Taking β? = β(∇ϕ(xτ , tτ )) in the definition of Rτε , we find from (61) that

ε∂tϕ(x̄, t̄) +G?ε(x̄, t̄, ψε(x̄, t̄),∇ϕ(x̄, t̄), D2ϕ(x̄, t̄))

≥ lim sup
τ→0

(ε∂tϕ(xτ , tτ ) +Gε(xτ , tτ , ψ
τ
ε (xτ , tτ ),∇ϕ(xτ , tτ ), D2ϕ(xτ , tτ )))

= lim sup
τ→0

(β(∇ϕ(xτ , tτ ))−1Rτε ) ≥ 0,

which is (59). Thus ψε is a supersolution.

We now turn to the proof of (56). First, we observe that for any (x̄, t̄) ∈ Rn×]0, T [
with ψε(x̄, t̄) < 1 and ϕ satisfying (58) with |p̄| = |∇ϕ(x̄, t̄)| ≤ Λε,

lim sup
q→p̄,q 6=0

(
εβ?ā− εtr(D2A(q)X̄)− 1

ε
ψε(x̄, t̄)−

π

4
u(x̄, t̄)

)
≥ 0(62)

for inf β ≤ β? ≤ supβ.

To prove (62), we again distinguish two cases. In case (i), λε(x̄, t̄) < −π2 , (62) is
an immediate consequence of (60). In case (ii), −π2 ≤ λε(x̄, t̄) < −π2 , it follows from
(61), for any inf β ≤ β? ≤ supβ, that

lim sup
q→p̄,q 6=0

(
εβ?ā− εtr(D2A(q)X̄)− 1

ε
ψε(x̄, t̄)−

π

4
u(x̄, t̄)

)
≥ lim sup
q→∇ϕ(x̄,t̄),q 6=0

(
εβ?∂tϕ(x̄, t̄)− εtr(D2A(q)D2ϕ(x̄, t̄))− 1

ε
ψε(x̄, t̄)−

π

4
u(x̄, t̄)

)
≥ lim sup

τ→0
Rτε ≥ 0,

which is (62).

Now we consider (a, 0, X) ∈ P
2,−ψε(x0, t0) with ψε(x0, t0) < 1. From the defini-

tion of P
2,−, we get (aj , pj , Xj) ∈ P

2,−ψε(xj , tj), which, as j →∞, satisfies

(aj , pj , Xj)→ (a, 0, X),

(xj , tj)→ (x0, t0),

and
ψε(xj , tj)→ ψε(x0, t0).

We apply (62) to (x̄, t̄) = (xj , tj) and obtain

lim sup
q→pj , q 6=0

(
εβ?aj − εtr(D2A(q)Xj)−

1

ε
ψε(xj , tj)−

π

4
u(xj , tj)

)
≥ 0,

which yields the existence of qj 6= 0 with qj → 0 and

εβ?aj − εtr(D2A(qj)Xj)−
1

ε
ψε(xj , tj)−

π

4
u(xj , tj) ≥ −

1

j
.

From this we infer (56), concluding the proof.
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4.1. Approximation. In this section, we approximate ψε by a smooth ψτε , and
we will get (xτ , tτ )→ (x̄, t̄) as in (61).

We take the notation of the preceding subsection, and we assume −π2 ≤ λε(x̄, t̄) <
π
2 .

From the definition of λε, it follows that π
2 ε < δ(x̄, t̄), and from the lower semi-

continuity of δ (see Proposition 3.3), we get

δ≥ π

2
ε,

λε≥ −π
in U(x̄, t̄)(63)

for some neighborhood U(x̄, t̄) of (x̄, t̄). We take a Dirac sequence ητ (r) = τ−1η( rτ )
for η ∈ C∞0 (R), η ≥ 0,

∫
η = 1, and define

ψτ0 (r) :=
∫
ψ0(s)ητ (r − s)ds,

ψτ1 (r) :=
∫
ψ1(s)ητ (r − s)ds.

We get (ψτ0 )′, ψτ1 ∈ C∞0 (R), and

|ψτ1 |, |(ψτ1 )′| ≤ C(Λ)(ψτ0 )′.(64)

We define

ψτ (r, v) := ψτ0 (r) + εvψτ1 (r) + τr,

and for |v| ≤ C(Λ), 0 < ε < ε0(Λ), we get

ψτr (r, v) ≥ τ > 0.(65)

We choose uτ ∈ C∞(Rn × [0, T ]) with

‖uτ‖C2,1(R×[0,T ]) ≤ C(Λ)

and

‖uτ − u‖L∞(Rn×[0,T ]) ≤ %(τ)→ 0 for τ → 0.

We define vτ := uτ + εg and get

‖vτ‖C2,1(Rn×[0,T ]) ≤ C(Λ).

We set

ψτε := ψτ (λε, v
τ ).

Using the above approximation properties in τ and (63), we obtain %Λ(τ) → 0 as
τ → 0 such that

ψτε − ψε ≥ −‖ψτ0 − ψ0‖L∞(R) − ε‖vτ − v‖L∞(Rn×[0,T ])‖ψτ1‖L∞(R)

− ε‖v‖L∞(Rn×[0,T ])‖ψτ1 − ψ1‖L∞(R) − τπ
≥ −%Λ(τ)

on U(x̄, t̄) and

|ψτε (x̄, t̄)− ψε(x̄, t̄)| ≤ %Λ(τ).
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Therefore, for small τ ,

∃(xτ , tτ ) ∈ U(x̄, t̄) : ψτε − ϕ≥ (ψτε − ϕ)(xτ , tτ ) on U(x̄, t̄),

(xτ , tτ )→ (x̄, t̄) as τ → 0, and(66)

(ψτε − ϕ)(xτ , tτ ) =: ντ → (ψε − ϕ)(x̄, t̄) = 0.

The last convergence yields

1 > ψε(x̄, t̄) = lim
τ→0

ψτε (xτ , tτ )

≥ lim sup
τ→0

ψ(λε(xτ , tτ ), v(xτ , tτ )) ≥ ψ
(

lim sup
τ→0

λε(xτ , tτ ), v(x̄, t̄)

)
;

hence

λε(xτ , tτ ) <
π

2
for τ small.(67)

Because of (65) and since ψτ is smooth, there is δτ ∈ C2,1(U(x̄, t̄)) such that

ϕ(x, t) = ψτ (λτε (x, t), vτ (x, t))− ντ and

λτε (x, t) =
δτ (x, t)

ε
− π − f(t),

(68)

where ντ is defined in (66). For (x, t) ∈ U(x̄, t̄), we obtain

ψτ (λε, v
τ )− ϕ(x, t) = (ψτε − ϕ)(x, t) ≥ ντ = (ψτ (λτε , v

τ )− ϕ)(x, t),

and equality holds for (x, t) = (xτ , tτ ). From (65), we conclude

δ≥ δτ in U(x̄, t̄) and

δ(xτ , tτ ) = δτ (xτ , tτ ) ≥ π

2
ε,

(69)

where we have used (63).

4.2. Computation. In this section, we will carry out the computations to es-
tablish the fourth line of (61). We again use the notation of the preceding sections.

We continue from (69). Observing Remark 2.3, we have that

(∂tδ
τ ,∇δτ , D2δτ )(xτ , tτ ) ∈ P

2,−δ(xτ , tτ ),

and from the definition of supersolutions, using Proposition 3.6, we obtain

B(∇δτ (xτ , tτ )) = 1, c0(Λ) ≤ |∇δτ (xτ , tτ )| ≤ C(Λ),

−∇B(∇δτ )D2δτ∇B(∇δτ )(xτ , tτ )≥ 0,(70)

D2δτ (xτ , tτ ) ≤ C(Λ)δ(xτ , tτ )−1I ≤ C(Λ)ε−1I, and

∂tδ
τ (xτ , tτ ) ≥ −C(Λ)(1 + δ(xτ , tτ )−1)≥ −C(Λ)ε−1.

Further, from Proposition 3.3, we get

(β(∇δτ )∂tδ
τ − tr(B(∇δτ )D2B(∇δτ )D2δτ )−B(∇δτ )u+ C(Λ)|∇δτ |δ)(xτ , tτ ) ≥ 0,

and, since D2A = BD2B +B′ ⊗B′, we conclude

(β(∇δτ )∂tδ
τ − tr(D2A(∇δτ )D2δτ )− u+ C(Λ)δ)(xτ , tτ ) ≥ 0.(71)
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From (68), we compute

∇ϕ = ε−1ψτr∇δτ + εψτ1∇vτ = ε−1ψτr (∇δτ +OΛ(ε2)).(72)

From (65) and |∇δτ (xτ , tτ )| ≥ c0(Λ), we get

∇ϕ(xτ , tτ ) 6= 0,(73)

which is the third line of (61).

Differentiating again, we get

D2ϕ= ε−2ψτrr∇δτ ⊗∇δτ + ε−1ψτrD
2δτ

+ (ψτ1 )′(∇vτ ⊗∇δτ +∇δτ ⊗∇vτ ) + εψτ1D
2vτ

= ε−2ψτrr∇δτ ⊗∇δτ + ε−1ψτrD
2δτ +OΛ(1)

(74)

since |∇δτ (xτ , tτ )| ≤ C(Λ).

Further, we obtain

ε∂tϕ = ψτr (∂tδ
τ − εf ′) + ε2ψτ1∂tv

τ = ψτr (∂tδ
τ − εf ′ +OΛ(ε2)).(75)

We recall the definition of Rτε in (61),

Rτε :=

(
εβ?∂tϕ− εtr(D2A(∇ϕ)D2ϕ)− 1

ε
ψτε −

π

4
u

)
(xτ , tτ )(76)

for inf β ≤ β? ≤ supβ and β? = β(∇ϕ(xτ , tτ )) or |∇ϕ(xτ , tτ )| ≤ Λε.

Using (72), (74), and (75), we get

Rτε ≥−ε−1(ψτrr∇δτD2A(∇ϕ)∇δτ + ψτ )

+ ψτrβ
?∂tδ

τ − π

4
u

− ψτr tr(D2A(∇ϕ)D2δτ )
− εψτrβ?f ′ − C(Λ)ε.

(77)

Using the homogeneity of A and β, (8), and (72), we obtain

D2A(∇ϕ) = D2A(∇δτ +OΛ(ε2)) = D2A(∇δτ ) +OΛ(ε2),
∇δτD2A(∇δτ )∇δτ = 2A(∇δτ ) = B(∇δτ )2 = 1, and

β(∇ϕ) = β(∇δτ +OΛ(ε2)) = β(∇δτ ) +OΛ(ε2).
(78)

From (77) and (78), it follows that

Rτε ≥ − ε−1(ψτrr + ψτ )
+ ψτr (β?∂tδ

τ − tr(D2A(∇ϕ)D2δτ )− u)

+
(
ψτr −

π

4

)
u

− εc0(Λ)ψτr f
′ − C(Λ)ε,

(79)

where again |∇δτ (xτ , tτ )| ≤ C(Λ) was used.

In the following lemma, we will prove that

ψτr (β?∂tδ
τ − tr(D2A(∇ϕ)D2δτ )− u) ≥ −C(Λ)(δ + ε).(80)
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From (63) and (67), we know that |λε(xτ , tτ )| ≤ π. This yields δ(xτ , tτ ) ≤ ε(λε(xτ , tτ )
+ π + f(tτ )) ≤ C(Λ)ε(1 + f(tτ )). Plugging (80) in (79), we obtain

Rτε ≥ − ε−1(ψτrr + ψτ )

+
(
ψτr −

π

4

)
u

− εψτr c0(Λ)f ′ − C(Λ)ε(1 + f)
≥−ε−1(ψτrr + ψτ )

+
(

(ψτ0 )′ − π

4

)
u

− ε(ψτ0 )′c0(Λ)f ′ − C(Λ)ε(1 + f)

(81)

since |εf ′|, |εf | ≤ 1.
Setting r := λε(xτ , tτ ), we compute

−ε−1(ψτrr + ψτ ) +
(

(ψτ0 )′ − π

4

)
vτ

=

∫
R

(
−ε−1(ψ′′0 + ψ0)(s)− (ψ′′1 + ψ1)(s)vτ +

(
ψ′0 −

π

4

)
(s)vτ

)
ητ (r − s)ds− ε−1τr

=

∫
|s|≥π2

(
−ε−1(ψ′′0 + ψ0)(s)− (ψ′′1 + ψ1)(s)vτ +

(
ψ′0 −

π

4

)
(s)vτ

)
ητ (r − s)ds− ε−1τr,

where we have used (54). We know from (67) and the definition of ητ that ητ (r−s) = 0
when s ≥ π

2 , r = λε(xτ , tτ ), and τ is small since lim supτ→0 λε(xτ , tτ ) < π
2 . Therefore,

the term above is estimated for small τ by∫ −π2
−∞

(
−ε−1(ψ′′0 + ψ0)(s) +

(
−ψ′′1 − ψ1 + ψ0 −

π

4

)
(s)vτ

)
ητ (r − s)ds− ε−1τr

≥
∫ −π2
−∞

(ε−1 − C(Λ))ητ (r − s)ds− ε−1τr

≥ −ε−1%Λ(τ).

Using the above computations, we get

Rτε ≥
(

(ψτ0 )′ − π

4

)
(u− vτ )

− c0(Λ)ε(ψτ0 )′f ′ − C(Λ)ε(1 + f)− ε−1%Λ(τ)
≥ ε(ψτ0 )′(−c0(Λ)f ′ − g)

+ ε
(π

4
g − C(Λ)− C(Λ)f

)
− ε−1%Λ(τ),

(82)

where we have used vτ = uτ + εg.
Since f(t) = α exp(−γ2t) and g(t) = αγ exp(−γ2t), we obtain

Rτε ≥ ε− ε−1%Λ(τ)(83)

when γ ≥ C(Λ) and α ≥ exp(γ2T ), which is the fourth line of (61).
Proof of (80). We now prove (80), that is,

ψτr (β?∂tδ
τ − tr(D2A(∇ϕ)D2δτ )− u) ≥ −C(Λ)(δ + ε).

We again take the notation of the previous subsection.
Since ψτr > 0, we need only consider the situation when

β?∂tδ
τ − tr(D2A(∇ϕ)D2δτ )− u ≤ 0.
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From (70), we know

∂tδ
τ ≥ −C(Λ)ε−1

and
D2δτ ≤ C(Λ)ε−1I.

When ∂tδ
τ ≥ 0, since 0 ≤ D2A ≤ C(Λ)I, we infer

c0(Λ)∂tδ
τ ≤ β?∂tδτ ≤ tr(D2A(∇ϕ)D2δτ ) + u ≤ C(Λ)ε−1;

hence in any case,

|∂tδτ | ≤ C(Λ)ε−1.

SinceD2δτ is symmetric, there is an orthonormal basis {v1, . . . , vn} of Rn and γ1, . . . , γn
∈ R such that

D2δτ =
n∑
i=1

γivi ⊗ vi

and

γi ≤ C(Λ)ε−1.

We define

αϕi := vTi D
2A(∇ϕ)vi

and

αδi := vTi D
2A(∇δτ )vi.

We know

c0(Λ) ≤ αϕi , αδi ≤ C(Λ)

since c0(Λ)I ≤ D2A ≤ C(Λ)I. From (78), we obtain |αϕi − αδi | ≤ C(Λ)ε2 and

exp(−C(Λ)ε2) ≤ αϕi
αδi
≤ exp(C(Λ)ε2)

when 0 < ε < ε0(Λ).
We compute

tr(D2A(∇ϕ)D2δτ )

=
n∑
i=1

γiα
ϕ
i =

∑
γi>0

γiα
ϕ
i +

∑
γi<0

γiα
ϕ
i

≤ exp(C(Λ)ε2)
∑
γi>0

γiα
δ
i + exp(−C(Λ)ε2)

∑
γi<0

γiα
δ
i

≤ exp(−C(Λ)ε2)
n∑
i=1

γiα
δ
i + C(Λ)ε = exp(−C(Λ)ε2)tr(D2A(∇δτ )D2δτ ) + C(Λ)ε.



300 CHARLES M. ELLIOTT AND REINER SCHÄTZLE

Multiplying by exp(C(Λ)ε2) yields

tr(D2A(∇ϕ)D2δτ )

≤ tr(D2A(∇δτ )D2δτ ) + C(Λ)ε+ (1− exp(C(Λ)ε2))tr(D2A(∇ϕ)D2δτ ).

Taking into account the fact that tr(D2A(∇ϕ)D2δτ ) ≥ β?∂tδ
τ − u ≥ −C(Λ)ε−1, we

obtain

tr(D2A(∇ϕ)D2δτ ) ≤ tr(D2A(∇δτ )D2δτ ) + C(Λ)ε.(84)

In the case where β? = β(∇ϕ), we observe from (78) that

|β(∇ϕ)∂tδ
τ − β(∇δτ )∂tδ

τ | ≤ C(Λ)ε.

On the other hand, when |∇ϕ| ≤ Λε, we conclude from (72) that ψτr ≤ C(Λ)ε2; hence

|ψτr (β?∂tδ
τ − β(∇δτ )∂tδ

τ )| ≤ C(Λ)ε.

Together with (71) and (84), we obtain

ψτr (β?∂tδ
τ − tr(D2A(∇ϕ)D2δτ )− u)

≥ ψτr (β(∇δτ )∂tδ
τ − tr(D2A(∇δτ )D2δτ )− u)− C(Λ)ε

≥ −C(Λ)(ε+ δ),

which concludes the proof.
Remark 4.4. Subsolutions can be constructed in an analogous way.
With these sub- and supersolutions and the modified comparison principle (The-

orem 2.12), we are now able to prove the convergence result.
We consider the following situation. Let D ⊂ Rn be an open, periodic subset

with ∅ 6= D, D 6= Rn, and define Γ0 := ∂D. We denote by δ0 the signed distance
function of Γ0, positive on D, induced by the metric d of section 3.2, that is,

δ0(x) :=

 inf
y∈Γ0

d(x, y) for x ∈ D,

− inf
y∈Γ0

d(x, y) for x 6∈ D.

δ0 is periodic, bounded, and Lipschitz continuous,

|∇δ0| ≤ C(Λ).

Since ∅ 6= D, D 6= Rn, for Λ large enough, we have

|δ0| ≤ Λ,
sup δ0≥ Λ−1, and
inf δ0≤ −Λ−1.

From Theorem 2.5, we obtain the existence of a unique periodic ω ∈ C(Rn × [0, T [)
which solves

∂tω + F (., .,∇ω,D2ω) = 0 in Rn× ]0, T [ and
ω(., 0) = δ0,

(85)

where F is defined in section 2.1. We assume that for 0 ≤ t < T ,

supω(., t) ≥ Λ−1

and
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inf ω(., t) ≤ −Λ−1.

From Theorem 2.8, we get a periodic viscosity solution ϕε ∈ C(Rn × [0, T [) of the
double-obstacle Allen–Cahn problem,

(86)

max

(
ϕε − 1,min

(
ϕε + 1, ∂tϕε +

1

ε
Gε(., ., ϕε,∇ϕε, D2ϕε)

))
= 0 in (Rn × ]0, T [).

For the initial conditions, we assume

ϕε(., 0) = 1 for δ0 ≥ C(Λ)ε and
ϕε(., 0) = −1 for δ0 ≤ −C(Λ)ε;

(87)

for example, ϕε(., 0) = ϕε,0 = max(−1,min(1, δ0ε )).
The convergence theorem can now be stated.
Theorem 4.5.

ϕε→ 1 pointwise on [ω > 0]

and
ϕε→ −1 pointwise on [ω < 0].

Moreover, this convergence is uniform on compact subsets of [ω > 0], respectively,
[ω < 0].

Proof. We define ω+
ε := ω + Γε for Γ = C(Λ) chosen below. According to [7], ω+

ε

is a supersolution of (42). As in section 3.2 and Definition 4.2, we define

δ+
ε (x, t) := inf

y, ω+
ε (y,t)≤0

d(x, y),

λ+
ε (x, t) :=

δ+
ε (x, t)

ε
− π − f(t), and

ψ+
ε := ψ(λ+

ε , v).

For 0 < ε < ε0(Λ), we claim that

ψ+
ε ≥ ϕε.(88)

From Theorem 2.12 and Proposition 4.3, it suffices to verify that

ψ+
ε (., 0) ≥ ϕε(., 0).(89)

When ϕε(x, 0) = −1, the inequality is satisfied since ψ+
ε ≥ −1.

Now we assume ϕε(x, 0) > −1. From (87), we get ω(x, 0) = δ0(x) ≥ −C(Λ)ε and

ω+
ε (x, 0) ≥ −C(Λ)ε+ Γε ≥ Γ

2
ε > 0

when Γ ≥ C(Λ). Therefore, there is a y ∈ [ω+
ε (., 0) ≤ 0] such that δ+

ε (x, 0) = d(x, y) >
0. This yields

Γ

2
ε ≤ ω+

ε (x, 0)− ω+
ε (y, 0) = ω(x, 0)− ω(y, 0)

= δ0(x)− δ0(y) ≤ C(Λ)|x− y| ≤ C(Λ)d(x, y) = C(Λ)δ+
ε (x, 0).
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We conclude

λ+
ε (x, 0) =

δ+
ε (x, 0)

ε
− π − α ≥ c0(Λ)Γ− π − α.

Since α ≤ C(Λ), we can choose Γ ≥ C(Λ) to get

λ+
ε (x, 0) ≥ π

2
;

hence

ψ+
ε (x, 0) = 1 ≥ ϕε(x, 0),

establishing (89) and therefore (88).
We take (x0, t0) with ω(x0, t0) < 0. There is τ > 0 and a neighborhood U(x0, t0)

such that

ω ≤ −τ on U(x0, t0);

hence

ω+
ε ≤ −

τ

2
on U(x0, t0) for 0 < ε < ε0(Λ, τ).

On U(x0, t0), we have

δ+
ε = 0;

hence

λ+
ε ≤ −π

and, finally,

ϕε ≤ ψ+
ε = −1 on U(x0, t0).

Remark 4.6. When Hn([ω = 0]) = 0, then the limit of ϕε is uniquely determined
in L1(Rn × [0, T [) by Theorem 4.5.

When fattening occurs—that is, Hn([ω = 0]) > 0—there remains an ambiguity.

Acknowledgments. We thank Maurizio Paolini and Mete Soner for several dis-
cussions related to the topic of this article.
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motions of fronts, Quaderno 39, Universitá degli Studi di Milano, Milan, Italy, 1994.

[19] H. M. Soner, Motion of a set by the curvature of its boundary, J. Differential Equations, 101
(1993), pp. 313–372.

[20] J. E. Taylor and J. W. Cahn, Linking anisotropic sharp and diffuse surface motion laws via
gradient flows, J. Statist. Phys., 77 (1993), pp. 183–197.

[21] A. A. Wheeler and G. B. McFadden, A ξ-vector formulation of anisotropic phase-field
models: 3-D asymptotics, Mathematics Research Report AM-94-05, University of Bristol,
Bristol, UK, 1994.



THE ASYMPTOTIC BEHAVIOR OF THE HYPERBOLIC
CONSERVATION LAWS WITH RELAXATION ON THE

QUARTER-PLANE∗

SHINYA NISHIBATA† AND SHIH-HSIEN YU‡

SIAM J. MATH. ANAL. c© 1997 Society for Industrial and Applied Mathematics
Vol. 28, No. 2, pp. 304–321, March 1997 004

Abstract. The hyperbolic conservation laws with relaxation appear in many physical models
such as those for gas dynamics with thermo-nonequilibrium, elasticity with memory, flood flow with
friction, and traffic flow. The main concern of this article is the long-time behavior of the interaction
between the relaxations and the boundary conditions. In this article, we investigate this problem for
a simple model of a 2×2 system. It is proven that the solution of the system asymptotically converges
to a traveling wave moving away from the boundary under suitable conditions on the boundary.

Key words. equilibrium state, subcharacteristic condition, boundary condition
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1. Introduction. The phenomena of relaxation are present in the kinetic theory
of gas, e.g., the Broadwell model [1], [2], [8], [13], elasticity with memory, gas flow
with thermo-nonequilibrium, water waves, etc. Liu [9] gave a 2×2 strictly hyperbolic
system as a model equation for the relaxation phenomenon, where he studied the
asymptotic behavior of the solution for both rarefaction waves and traveling waves. In
the same paper, the validity of the Chapman–Enskog expansion was also investigated.
In most of the physical situations where relaxations occur, it is inevitable to take
boundary effects into account. In this paper, we would like to extend the results of
Liu [9] to cases where the boundary effects are taken into consideration.

In the case of the initial value problem, the asymptotic behavior of Liu’s 2× 2
system is governed by an equilibrium equation. However, for the initial-boundary
value problem in the first quadrant, we must consider the effect of the boundary
condition. The number of boundary conditions required for the equilibrium equation
is one or zero depending on whether the equilibrium characteristic speed is positive
or not. For the 2× 2 system, the number of the boundary conditions required is the
same as the number of characteristics out of the boundary, which could be zero, one,
or two depending on the directions of the characteristics. Therefore, for the 2× 2
system and for the equilibrium equation, they may not require the same number of
boundary conditions. In the case where the numbers are different, there might be
some boundary layer appearing; cf. [8] and [15]. In [8], there are various interesting
behaviors due to the boundary conditions. In this paper, we consider the case when
both the 2× 2 system and the equilibrium equation require one boundary condition.

Previously, Chen [3] studied the nonlinear diffusion wave for Liu’s model. Nishi-
bata [12] followed Liu’s model equation to study the stability of the stationary solution
for the initial-boundary problems, which is closely related to the work in this paper.
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Consider the following system of two quasi-linear linear hyperbolic equations as
a model of relaxation [9]:{

ut + f(u, v)x = 0 for x, t > 0,
vt + g(u, v)x = h(u, v).

(1.1)

The first equation represents a conservation law for and the second equation represents
a rate equation. Suppose that this system is a strictly hyperbolic; λ1(u, v) < λ2(u, v),
where λ1 and λ2 are the eigenvalues of the Jacobian matrix(

fu(u, v) fv(u, v)
gu(u, v) gv(u, v)

)
.

In order to make the conservation law and the rate equation strongly coupled, we
assume that

fv(u, v) 6= 0 for all (u, v) under consideration.

The term h(u, v) acts as the a source (or a sink) when v is less (or greater) than the
equilibrium state v∗(u). h(u, v) often assumes the form

h(u, v) =
v∗(u)− v
τ̃(u)

for some positive function τ̃(u), the relaxation time. We make the general assumption

∂h(u, v)

∂v
< 0, h(u, v∗(u)) = 0,

for all (u, v) under consideration. We impose boundary values on u:

u(0, t) = u−, u(∞, t) = u+,(1.2)

where u− and v− are constants. Since the solution at x = ∞ is permanent, it is an
equilibrium state:

v(∞, t) = v∗(u−).(1.3)

When the solution is close to the equilibrium state, we often ignore the rate
equation and replace the conservation law with the equilibrium equation:

∂u

∂t
+
∂f∗(u)

∂x
= 0, f∗(u) =: f(u, v∗(u)).(1.4)

When (u−, v∗(u−) and (u+, v∗(u+)) are connected by a shock wave for the system
(1.1), we have the Rankine–Hugoniot relation with the shock speed σ:

σ =
f∗(u−)− f∗(u+)

u− − u+
.

For the stability of (1.1), we require the subcharacterisitc condition λ1 < σ < λ2. Here
we are interested in the case σ > 0. In order to make the equilibrium equation (1.4)
and system (1.1) require the same number of boundary conditions on the boundary
x = 0, we assume the following:

λ1(u, v) < 0 < σ < λ2(u, v) for all (u, v) under consideration.(1.5)
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Furthermore, for simplicity, we assume that

f
′′

∗ (u) > 0.(1.6)

We define û as the number uniquely determined to satisfy

f ′∗(û) = σ.

We denote by (φ(x − σt), ψ(x − σt)) a traveling-wave solution of the Cauchy
problem of system (1.1) that connects the end states (u−, v∗(u−)) and (u+, v∗(u+)).
When |u− − u+| tends to 0, the curve L = {(φ(x), ψ(x)) : x ∈ R} degenerates to the
point (û, v∗(û)) by (1.6), i.e., when |u− − u+| is sufficiently small,

‖φ(x)− û‖∞ + ‖ψ(x)− v∗(û)‖∞ ≤ K0|u− − u+|.(1.7)

where K0 is an constant depending on û only (see [9]).
Henceforth, we normalize the traveling wave as follows:

φ(0) = û.

Remark. In the remainder of this paper, all of the constants depend only on
∇if(û, v̂), ∇ig(û, v̂), and ∇ih(û, v̂) (i = 0, 1, 2), where v̂ = v∗(û) unless otherwise
mentioned.

The initial conditions are chosen so that (u(x, 0), v(x, 0)) = (u0(x), v0(x)) with
u0, v0 ∈ C3[0,∞) and that the following is satisfied:

3∑
i=0

|∇i (u0(x)− φ(x− x0))|2 +

3∑
i=0

|∇i (v0(x)− ψ(x− x0))|2

≤
{
δ1|φ(x− x0)− u+| if x> x0,
δ1|φ(x− x0)− u−| if 0< x < x0,

(1.8)

where δ1 and x0 are certain constants to be determined later.
Recall that we set the boundary conditions in (1.2). In addition, suppose that λ1

and λ2 satisfy the following condition:

− λ2(u, v) < λ1(u, v) < 0 < − (λ1 + λ2)

λ1λ2(u, v)
< σ < λ2(u, v)(1.9)

for all (u, v) under consideration

This additional assumption will later be necessary to estimate the rate of conver-
gence of v(0, t)− v∗(u−) on the boundary.

We introduce the perturbations ū and v̄:{
u(x, t) = φ(x− σt− x0) + ū(x, t),
v(x, t) = φ(x− σt− x0) + v̄(x, t).

(1.10)

Note that in the rest of this section, (φ, ψ) will stand for (φ(x−σt−x0), ψ(x−σt−x0))
unless otherwise mentioned.

From (1.1), we have the system of differential equations for the perturbation
(ū, v̄): {

ūt + (∇f · (ū, v̄))x = −M(f)x,
v̄t + (∇g · (ū, v̄))x = ∇h · (ū, v̄)−M(g)x +M(h),

(1.11)
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where M(f) =: f(φ+ ū, ψ+ v̄)− f −∇f · (ū, v̄) for any function f , where f , ∇f , ∇g,
and ∇h are evaluated at (φ(x− σt− x0), ψ(x− σt− x0)).

Remark. The function M(f) is a function of higher than second order in (ū, v̄).
Theorem 1.1 (local existence theorem). For system (1.1), there is a δ3 > 0

such that for any
∑1
i=0

(
‖∂ix(u(·, 0)− û)‖∞ + ‖∂ix(v(·, 0)− v∗(û))‖∞

)
≤ δ3/2, there

is constant τ(δ3) > 0 such that the solution (u, v) exists in [0,∞) × [0, τ(δ3)) and
satisfies

sup
0<t<τ(δ3)

(
1∑
i=0

‖∂ix(u(·, t)− û)‖∞ + ‖∂ix(v(·, t)− v∗(û))‖∞

)
≤ δ3.

The proof is given by the standard iteration method (see [7]).
We denote

N(t) =: ‖φ′‖∞ + ‖ψ′‖∞ + sup0<τ<t

(
1∑
i=0

‖∂ixū(·, τ)‖∞ +
1∑
i=0

‖∂xv̄(·, τ)‖∞

)
,

tn =:nτ(δ2), n ∈ N.

Lemma 1.2 (main lemma). For given small δ0 and δ2 satisfying |u−−u+| < δ0 <
δ2 � δ3, we choose δ1 and x0 so that δ1, e−|u−−u+|x0 , and δ1x0 are sufficiently small.
Suppose that N(tn−1) < δ2/2 holds. Then we have N(tn) < δ2/2.

Proof. See section 3.
Theorem 1.3 (global existence theorem). For given small δ0 and δ2 satisfying

|u− − u+| < δ0 < δ2 � δ3, we choose δ1 and x0 to satisfy the requirement that δ1,
e−|u−−u+|x0 , and δ1x0 are sufficiently small. Then the solution (u(x, t), v(x, t)) exists
globally and satisfies

sup
t>0

(
‖φ′‖∞ + ‖ψ′‖∞ + |u− − u+|+

1∑
i=0

‖∂ix(u(·, t)− φ(· − σt− x0))‖∞

+

1∑
i=0

‖∂ix(v(·, t)− ψ(· − σt− x0))‖∞

)
<
δ2
2
.

Proof. From Theorem 1.1 and Lemma 1.2, Theorem 1.3 follows.
Theorem 1.4 (the convergence theorem). Given that |u− − u+| < δ0 < δ2 �

δ3 are small, suppose that δ1, e−|u−−u+|x0 , and δ1x0 are sufficiently small. Then
there is a unique s∞ < ∞ such that (u(x, t), v(x, t)) converges to the traveling wave
(φ(x− σt− s∞), ψ(x− σt− s∞)) when t tends to ∞.

Proof. See section 3.
The difficulty in the present problem is due to the fact that the wave is moving

away from the boundary, so we cannot determine the location error. In section 2,
this difficulty is resolved by introducing the Riemann invariants and a suitable weight
function to obtain an a priori estimate for the rate of v(0, t) − v∗(u−) converging to
0.

The same difficulty in determining the location error also arises in the initial-
boundary problem for viscous conservation laws and the Cauchy problem for under-
compressible flow. For the initial-boundary problems for the Burgers equation, Yu
[14] and Liu and Yu [10] used the boundary gradient estimate to obtain the location
error and get the asymptotic stability. In case of undercompressible flow, Zumbrum
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and Liu [11] used the pointwise estimate to overcome the difficulty of determining the
location error.

In section 3, we introduce a sequence of the location error associated with a time
sequence tending to a infinity. By using the sequence of the location error and the
decreasing rate of |v(0, t) − v∗(u−)|, the standard energy method can be applied to
show the global existence. We also show that the solution asymptotically converges
to the traveling wave.

2. Initial-boundary problem and boundary-value estimate.

2.1. Convergence of boundary value. We introduce new variables r1 and r2
to diagonalize the linear parts of (1.11).

Notation. (
r1
r2

)
:= L(x, t) ·

(
ū
v̄

)
(2.1)

with L(x, t) := R(x, t)−1, where

R(x, t) :=

(
−fv −fv

fu − λ1 fu − λ2

)
.

Substitute the variables r1 and r2 into (1.1); it then follows that(
r1
r2

)
t

+

(
λ1 0
0 λ2

)(
r1
r2

)
x

− L(x, t)

(
0

∇h(ū, v̄)

)
= L(x, t)tR(x, t)

(
r1
r2

)
−
(
λ1 0
0, λ2

)
L(x, t)R(x, t)x

(
r1
r2

)
(2.2)

+L(x, t)

(
0

M(h)

)
+ L(x, t)

(
−M(f)x
−M(g)x

)
.

Next, we set

lW (x, t) := e
2H·(x−σt)
c2−c1 ,

µ(u, v) := fu(u, v)− (fvhuh
−1
v )(u, v),

H := hv(û, v̂) < 0,
ci =: λi(û, v̂) with i = 1, 2,

b=
(c2 − σ)

(σ − c1)
,

where the variable µ(u, v) is the dynamic characteristic speed defined in [9]. From the
definition of W , it follows that

Wx

W
=

2H

(c2 − c1)
.(2.3)

We multiply (2.2) by W (x, t)(r1, b r2) and integrate it over 0 < x <∞. We sub-
stitute (1.7) into this integration. We then substitute (2.3) and Schwartz’s inequality
into this integration. Then there is a positive constant K1 such that

(2.4)

d
dt

∫ ∞
0

W · (r21 + b r22)(x, t)dx+ ((−λ1r
2
1 − b λ2r

2
2) ·W )(0, t)
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≤ −kH
c2 − c1

∫ ∞
0

W · (r21 + b r22)dx

+K1

(
N(t)(r21(0, t) + b r22(0, t)) + |u− − u+|

∫ ∞
0

W · (r21 + b r22)(x, t)dx

)
,

where

k = −2(c2 − σ) +

√
4(c2 − σ)2 +

((c2 − σ) + (σ − c1)b)2

b
.

Next, we compute the terms of (2.4) evaluated at x = 0. Substituting x = 0 into
(1.10), it follows that

ū(0, t) = u− − φ(−x0 − σt).(2.5)

From (2.5) and (2.1), we have that

− fv (r1 + r2)(0, t) = u− − φ(−σt− x0).(2.6)

From (2.6), we have that

r22(0, t) =

(
−(u− − φ(−x0 − σt))

fv
− r1(0, t)

)2

.(2.7)

Substituting (2.7) in the boundary term on the left-hand side (LHS) of (2.4), we
obtain

(2.8)

−(λ1r
2
1 + λ2b r

2
2)(0, t) = −

(
λ1r

2
1 + b λ2

(
r1 +

(u− − φ(−σt− x0))

fv

)2
)

> − (λ1 + b λ2)r21(0, t)

2
−K0λ2

(
(u− − φ(−x0 − σt)

fv

)2

,

where K0 is a positive constant depending only on û. From assumption (1.9), −(λ1 +
bλ2) > 0. Hence if N(t)K1 � −(λ1 + b λ2)/8, then the boundary term on the right-
hand side (RHS) of (2.4) can be absorbed into the positive boundary term on the
LHS of (2.4). Therefore, there are constants K2 and K1 such that

(2.9)

d
dt

∫ ∞
0

W (r21 + b r22)dx ≤ −H(k +K1(N(t) + |u− − u+|))
c2 − c1

∫ ∞
0

W (r21 + b r22)dx

+K2(φ(x0 − σt)− u−)2W (0, t).

Lemma 2.1.

d := −2c2 +

√
4(c2 − σ)2 +

((c2 − σ) + (σ − c1)b)2

b
< 0.

Proof. Due to an algebraic manipulation of (1.9), Lemma 2.1 follows.



310 SHINYA NISHIBATA AND SHIH-HSIEN YU

Lemma 2.2. If K1(|u− − u+|+N(t)) < −d/4, then for t′ ∈ (0, t),∫ 1

0

(
r21(x, t′) + b r22(x, t′)

)
dx ≤ e

−dHt′
(c2−c1)

∫ ∞
0

(r21(x, 0) + b r22(x, 0))W (x, 0)dx

+K2e
−2H

(c2−c1)

∫ t′

0

e
−dH(t′−s)
2(c2−c1) (φ(−x0 − σs)− u−)2ds.(2.10)

Proof. From (2.9), we have that for t′ ∈ (0, t),∫ 1

0

(r21(x, t′) + b r22(x, t′))W (1, t′)dx <

∫ ∞
0

(
(r21 + b r22)W

)
(x, t′)dx

≤ e
−H(k+K1(N(t′)+|u−−u+|))t

′

c2−c1

∫ ∞
0

(
(r21 + b r22)W )

)
(x, 0)dx(2.11)

+

∫ t′

0

K2(φ(−σs− x0)− u−)2W (0, s)e
−H(k+K1(N(t′)+|u−−u+|))(t

′−s)
c2−c1 ds.

Dividing both sides of (2.11) by W (1, t′) and substituting the condition K1(|u−−
u+|+N(t)) < −d/4 into (2.11), Lemma 2.2 follows.

Theorem 2.3. Suppose for a given δ2 (< −d/4K1) that the following holds:

if |u− − u+|+N(t) ≤ δ2, |u− − u+| � 1, and x0 � 1,(2.12)

then there is a constant K3 such that for t′ ∈ (0, t),

|v(0, t′)− v∗(u−)|(2.13)

≤ K3

{
δ
1/2
2 δ

1/4
1 + δ

1/2
1

}[
(φ(−x0 − σt′)− u−)2 + |φ(−x0/2)− u−|edt

′/2
]1/4
.

Proof. By the condition on the initial value ((1.8)) and Lemma 2.2, we have∫ ∞
0

W (x, 0)(ū2(x, 0) + v̄2(x, 0))dx

= O(1)δ1

(∫
[0,x0/2]

+

∫
[x0/2,x0]

)
W (x, 0)|φ(x− x0)− u−|2dx

(2.14)

+O(1)δ1

∫ ∞
x0

W (x, 0)|φ(x− x0)− u+|2dx

= O(1)δ1

{
|φ(−x0/2)− u−|+ e

Hx0
c2−c1

}
.

Hence from (2.14) and Lemma 2.2, we have∫ 1

0

ū2(x, t′) + v̄2(x, t′)dx(2.15)

= O(1)δ1

{
|φ
(
−x0

2

)
− u−|edt

′/2 +

(
φ

(
−x0 − σt′

2

)
− u−

)2
}
.

From N(t) + |u− − u+| < δ2, we have that for t′ ∈ (0, t),∫ 1

0

|ūx(x, t′)|2 + |v̄x(x, t′)|2dx ≤ N(t)2 ≤ δ22 .(2.16)
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From (2.16) and (2.15),

sup
0≤x,x′≤1

|v(x, t′)− v(x′, t′)|(2.17)

≤ K ′3δ
1/2
2 δ

1/4
1

[
(φ(−x0 − σt′)− u−)2 + |φ(−x0/2)− u−|edt

′/2
]1/4

,

and from (2.15), there is an x̄ ∈ [0, 1] satisfying

(2.18)

|v(x̄, t′)| ≤
{
K ′3δ1

(∣∣∣φ(−x0

2

)
− u−

∣∣∣ edt′/2 +

(
φ

(
−x0 − σt′

2

)
− u−

)2
)}1/2

,

where K ′3 is a constant depending only on û. From (2.17) and (2.18), Theorem 2.3
follows. Here note that by standard ordinary differential equation theory, the first
term of the RHS of (2.13) converges to zero with an exponential rate. Hence v(0, t)
converges to v∗(û) with an exponential rate.

2.2. The sequence of the location error. From the a priori boundary esti-
mate Theorem 2.3, we obtain that v(0, t) converges to v∗(û) with an exponential rate.
Once we get the rate of convergence, we can handle the boundary terms that appear
in the usual energy estimate. However, we still have to deal with the asymptotic state
caused by the location error, which is thus far unexamined. In order to resolve this
difficulty, we introduce a sequence of the location error.

Definition 2.4. The sequence of the location error {σt + sn}n∈N is associated
with the time sequence {tn|tn = nτ(δ2), n ∈ N} (cf. the comment below Theorem
1.1). We define {sn}n∈N by the following implicit equation:∫ ∞

0

u(x, tn)− φ(x− σtn − sn)dx = 0.(2.19)

Here sn is uniquely determined because φ is monotonic (see Liu [9]).
From (2.19), we have the following identity due to the conservation laws:

(2.20)

0 =

∫ ∞
0

u(x, tn)− φ(x− sn − σtn)dx

=

∫ ∞
0

u(x, tn)− φ(x− x0 − σtn)dx+

∫ ∞
0

φ(x− x0 − σtn)− φ(x− sn − σtn)dx

=

∫ ∞
0

u(x, 0)− φ(x− x0)dx+

∫ tn

0

d
dt

{∫ ∞
0

u(x, t)− φ(x− x0 − σt)dx
}
dt

+

∫ ∞
0

φ(x− x0 − σtn)− φ(x− sn − σtn)dx

=

∫ tn

0

f(u−, v(0, t))− f(φ(−x0 − σt), ψ(−x0 − σt))dt+

∫ ∞
0

u(x, 0)− φ(x− x0)dx

+

∫ sn

x0

(φ(−σtn − s)− u+)ds

= O(1)

∫ tn

0

|ψ(−x0 − σt)− v∗(u−)|+ |v(0, t)− v∗(u−)|dt
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+O(1)

{∫ tn

0

|φ(−x0 − σt)− v∗(u−)|dt+ |u− − u+||x0 − sn|
}

+

∫ ∞
0

u(x, 0)− φ(x− x0)dx.

Hence we have that when |u− − u+| � 1, it follows from Theorem 2.3 that

|sn − x0| <
O(1)

(
δ1 + δ

1/4
1 δ

1/2
2

∣∣∣φ(−x0

4

)
− u−

∣∣∣)
|u− − u+|3

.(2.21)

3. Proof of Lemma 1.2. We will split this section into five subsections in order
to prove the main lemma. Then in the last subsection, we will show that the wave
(u, v) converges to the asymptotic wave (φ(x− σt− s∞), ψ(x− σt− s∞)), where the
asymptotic location error σt+ s∞ is defined formally as

s∞ = lim
n→∞

sn.(3.1)

The existence of the above limit will be shown at the end of this paper. In the next
four subsections, we will show that

N(tn) + |u− − u+| ≤
δ2
2

for n ∈ N(3.2)

by induction.

3.1. Preliminaries for the global existence theorem (Theorem 1.3). Be-
cause of the assumption of Lemma 1.2, N(t0) + |u− − u+| ≤ δ2/2 holds for t0 = 0.
Hence we assume that the solution (u, v) exists in [0, tn−1] and that (3.2) holds for
n−1. Then by the local existence theorem (Theorem 1.1), the existence of the solution
(u, v) can be extended to [0,∞)× [0, tn], and it satisfies

N(tn) + |u− − u+| < δ2.

We define the function z(x, t):

z(x, t) = −
∫ ∞
x

u(y, t)− φ(y − σt− sn)dy.(3.3)

Then from Theorem 2.3, we have the following for 0 < t ≤ tn:

|z(0, t)| =(3.4)

O(1)

{
δ
1/2
2 δ

1/4
1

(
(φ(−x0 − σt)− u−)2 +

∣∣∣φ(−x0

2

)
− u−

∣∣∣ edt/2)1/4

+ |φ(x0 − σt)− u−|
}

|u− − u+|
,

|zt(0, t)| =(3.5)

O(1)

{
δ
1/2
2 δ

1/4
1

(
(φ(−x0 − σt)− u−)2 +

∣∣∣φ(−x0

2

)
− u−

∣∣∣ edt/2)1/4

+ |φ(x0 − σt)− u−|
}
.

Define ũ and ṽ as follows:

u(x, t) = φ(x− σt− sn) + ũ(x, t), v(x, t) = ψ(x− σt− sn) + ṽ(x, t).
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zx(0, t) = u− − φ(−σt− sn).

Substitute the function z(x, t) in (1.1). From the conservation law in (1.1), we
have that

zt + f(φ(x− σt− sn) + zx, ψ(x− σt− sn) + ṽ))

− f(φ(x− σt− sn), ψ(x− σt− sn)) = 0.(3.6)

In the next three subsections, the functions f , g, ∇f , ∇g, λ1, λ2, and h are evaluated
at (φ(x− σt− sn), ψ(x− σt− sn)) unless otherwise specified. Therefore,

ṽ(x, t) = −f−1
v (zt + fuzx +Q0(f)),(3.7)

where Q0(f) = f(zx + φ, ṽ+ψ)− f(φ, ψ)−∇f(zx, ṽ). Hence Q0(f) = O(1)(z2
x + ṽ2).

Substitute (3.7) into the rate equation in (1.1); then it follows that

ztt+(λ1 + λ2)zxt + λ1λ2zxx − hv(zt + µzx)(3.8)

= f−1
v (fvt + gvfvx − gvx) (zt + fuzx) +Q0(f)(f−1

v gvfvx − gvx + hv)

− fvQ0(h)−Q0(f)t − gvQ0(f)x + fvQ0(g)x(3.9)

:= (RHS)3.8

=: f−1
v (fvt + gvfvx − gvx) (zt + fuzx) + (RHS)′(3.8).

Without loss of generality, we may assume that

hv(û, v∗(û)) = −2(3.10)

by rescaling the coordinates (x, t). This condition is given simply for convenience of
calculation.

3.2. Step I: The telegraph equation. Before we carry out the calculation for
the nonlinear equation (1.1), we introduce the linear telegraph equation in order to
arrange the nonlinear terms in (1.1). By assuming for the moment that in equation
(3.8), λ1, λ2, and µ are all constant and the RHS is identically zero, we have{

ξtt + (c1 + c2)ξxt + c1c2ξxx + 2(ξt + σξx) = 0 for x, t > 0,
c1 < 0 < σ < c2,

(3.11)

Integrate (3.11)ξ+ (3.11)ξt + (3.11)((c1 + c2)/2)ξx over 0 < x < ∞, 0 < τ < t. We
obtain that

(3.12)∫ ∞
0

(
−c1c2

2
ξ2x +

(ξt + (c1 + c2)ξx)2

4
+

(ξt + 2ξ)2

4

)
(x, t)dx− (c1 + c2)

2
ξ2(0, t)

+

∫ t

0

(
−σξ2 − c1c2ξxξ −

(c1 + c2)

4
c1c2ξxξt −

(c1 + c2)

2
ξ2t

)
(0, t)dτ

+

∫ τ

0

∫ ∞
0

ξ2t + 2σξxξt + (σ(c1 + c2)− c1c2)ξ2xdxdτ

=

∫ ∞
0

(
−c1c2

2
ξ2x +

(ξt + (c1 + c2)ξx)2

4
+

(ξt + 2ξ)2

4

)
(x, 0)dx− c1 + c2

2
ξ2(0, 0).

The integrand in the double integral in (3.12) is positive due to the subcharacteristic
condition. Except for the integral on the boundary (x = 0), all of the integrals in
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(3.12) are positive. The defect of this model is that there is no lower derivative in the
double integral of (3.12), which prevents us from using energy estimates. However, this
defect can be resolved by adding the following two conditions due to the nonlinearity
of (1.1):

for some constant K4,

0 < K4(|φ′|+ |ψ′|) < −µ(φ, ψ)x,(3.13)

|µ(φ, ψ)− σ| � 1.(3.14)

The reasoning behind these conditions can be found in Liu [9].

3.3. Step II: Preliminaries for the energy estimate. In the following, we
assume (2.12) for t = tn a priori.

Integrate (3.8)z over 0 < τ < tn and 0 < x <∞.

(3.15)∫ ∞
0

(
ztz + (λ1 + λ2)zxz −

hv
2
z2

)
(x, tn)dx+

∫ t

0

(
−λ1λ2zzx − hvµz2

)
(0, τ)dτ

+

∫ t

0

∫ ∞
0

−z2
t − ((λ1 + λ2)z)t zx︸ ︷︷ ︸

B1

−(λ1λ2zx)zx︸ ︷︷ ︸
B2

dxdτ +

∫ t

0

∫ ∞
0

(hvt + hvxµ)z2 + hvµxz
2dxdτ

=

∫ t

0

∫ ∞
0

f−1
v (fvt + gvfvx − gvx) (zt + fuzx)zdxdτ︸ ︷︷ ︸

B3

+

∫ t

0

∫ ∞
0

(RHS)
′
(3.8)zdxdτ +

∫ ∞
0

(
ztz + (λ1 + λ2)zxz −

hvz
2

2

)
(x, 0)dx.

First, we evaluate B3 as follows:
If δ2 is sufficiently small, then from (3.13) and (3.14), we have

(hvt + hvxµ)z2 + hvuxz
2 = (hvvφx + hvuψx)(µ− σ) + hvµxz

2 >
1

2
|hvµx|z2.(3.16)

Next, we evaluate B1 by the following inequality. Since the magnitude of the shock
is sufficiently small (i.e., |u− − u+| � 1), we have

|φ′|+ |ψ′| � |φ′′|+ |ψ′′|.(3.17)

Hence

B1 =

∫ t

0

∫ ∞
0

((λ1 + λ2)z)tzxdxdτ(3.18)

=

∫ t

0

∫ ∞
0

(λ1 + λ2)tzzx + (λ1 + λ2)ztzxdxdτ

= O(1)(‖φ′‖∞ + ‖ψ′‖∞)

∫ t

0

z2(0, τ)dτ

+

∫ t

0

∫ ∞
0

(λ1 + λ2)ztzxdxdz + o(1)

∫ t

0

∫ ∞
0

(|φ′|+ |ψ′|)z2dxdτ.
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Similarly to (3.18), we have

B2 =

∫ t

0

∫ ∞
0

−(λ1λ2z)xzxdxdτ

= o(1)

∫ t

0

∫ ∞
0

(|φ′|+ |ψ′|)z2dxdτ(3.19)

+O(1)(‖φ′‖∞ + ‖ψ′‖∞)

∫ t

0

z2(0, τ)dτ −
∫ t

0

∫ ∞
0

(λ1λ2)z2
xdxdτ.

Also, we have

B3 =

∫ t

0

∫ ∞
0

f−1
v (fvt + gvfvx − gvx) (zt + fuzx)zdxdτ(3.20)

= O(1)(‖φ′‖∞ + ‖ψ′‖∞)

(∫ ∞
0

z2(x, t) + z2(x, 0)dx+

∫ t

0

z2(0, τ)dτ

)
+ o(1)

∫ τ

0

∫ ∞
0

(|φ′|+ |ψ′|)z2(x, τ)dxdτ.

Using (3.16)–(3.20), we have that∫ ∞
0

(
ztz + (λ1 + λ2)zzx −

hv
2
z2

)
(x, t)dx(3.21)

+

∫ t

0

∫ ∞
0

−z2
t − (λ1 + λ2)ztzx − λ1λ2z

2
x +

1

2
|hvµx|z2dxdτ

+

∫ t

0

(−λ1λ2zzx − hvµz2)(0, τ)dτ +

(
c1 + c2

2
−O(1)δ0

)
z2(0, t)

=

∫ ∞
0

(
ztz + (λ1 + λ2)zxz −

hv
2
z2

)
(x, 0)dx

+O(1)δ2

(∫ t

0

∫ ∞
0

(z2
t + z2

x + z2
tt + z2

xx + z2
xt)dxdτ

+

∫ t

0

z2(0, τ)dτ +

∫ t

0

z2(x, t) + z2(x, 0)dx

)
+O(1)(‖φ′‖∞ + ‖ψ′‖∞)

∫ ∞
0

z2(0, τ)dτ.

The double integrals on the RHS of (3.21) come from the nonlinear terms in (RHS)(3.8).
Note that the double integral in (3.21) has zero-order derivatives. Next, we use con-
dition (3.10) and integrate (3.8)z + (3.8)zt + (3.8)((c1 + c2)/2)zx over the intervals
0 < x < ∞ and 0 < τ < t. By the same method as used to derive (3.21), we have
that

(1−O(1)δ2)

(∫ ∞
0

(
−λ1λ2

2
z2
x +

(zt + (λ1 + λ2)zx)2

2
+

(zx + 2z)2

2

)
(x, t)dx

+

∫ t

0

∫ ∞
0

(
z2
t + 2σzxzt + (µ(λ1 + λ2)− λ1λ2)z2

x +
hvµx

2
z2

)
dxdτ

)
− (1 +O(1)δ2)

c1 + c2
2

z2(0, t) + (1−O(1)δ2)
c1 + c2

2
z2(0, 0)(3.22)
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+

∫ t

0

(
σ(1 +O(1)δ2)z2 − λ1λ2zxz

)
|x=0

dτ

+

∫ t

0

−
(
λ1 + λ2

2
z2
x − λ1λ2zxzt

(
−c1 + c2

2
−O(1)δ2

)
z2
t

)
|x=0

dτ

= (1 +O(1)δ2)

∫ ∞
0

(
−λ1λ2

2
z2
x +

(zt + (λ1 + λ2)zx)2

2
+

(zx + 2z)2

2

)
(x, 0)dx

+O(1)δ2

∫ t

0

∫ ∞
0

z2
t + z2

x + z2
xx + z2

xt + z2
ttdxdτ.

We denote

x1 := x, x2 := t.

Integrate (3.22)i and (3.22)ij below (for i, j = 1, 2) over [0,∞)× [0, tn]. We have

(3.23)

(3.23)i

∫ t

0

∫ ∞
0

(3.8)xizxi + (3.8)xizxix2 + (3.8)xizxix1

(c1 + c2)

2
dxdτ,

(3.23)ij

∫ t

0

∫ ∞
0

(3.8)xixjzxixj + (3.8)xixjzxixjx2
+ (3.8)xixjzxixjx1

(c1 + c2)

2
dxdτ.

For the nonlinear terms on the RHS of (3.23)ij , there are some integrals whose inte-
grands have some terms of the fourth derivatives as follows:∫ t

0

∫ ∞
0

W (zx1
, zx2

)zxixjxkxlzxixjxmdxdτ for i, j,m, l = 0, 1,(3.24)

where lim(x2+y2)→0W (x, y)/(x2 + y2)1/2 exists. If m ∈ {k, l}, then let m = k. Hence∫ t

0

∫ ∞
0

W (zx1
, zx2

)zxixjxkxlzxixjxkdxdτ(3.25)

=
1

2

∫ t

0

∫ ∞
0

W (zx1
, zx2

)∂xlz
2
xixjxk

dxdτ = (RHS)(3.25).

By using integration by parts and the condition |zxp |+ |zxixj | ≤ N(t) + |u−− u+| for
p = 1, 2,

(RHS)(3.25) = O(1)δ2

(∫ t

0

∫ ∞
0

(
z2
xixjx1

+ z2
xixjx2

)
dxdτ +

∫ t

0

z2
xixjxk

(0, τ)dτ

+

∫ ∞
0

z2
xixjxk

(x, t)dx+

∫ ∞
0

z2
xixjxk

(x, 0)dx

)
.

If m 6= k, l, then we may assume that m = 1 and k = l = 2.
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(3.26)∫ t

0

∫ ∞
0

W (zx1 , zx2)zxixjx2x2zxixjx1dxdτ

=

∫ t

0

∫ ∞
0

(
∂x2

(W (zx1
, zx2

)zxixjx1zxixjx2)− (∂x2
W (zx1

, zx2
))zxixjx1zxixjx2

)
dxdτ

−
∫ t

0

∫ ∞
0

W (zx1
, zx2

)zxixjx2x1
zxixjx2

dxdτ

= (RHS)(3.26).

The last term on the RHS of (3.26) is handled similarly to (3.25). Consequently, the
order of the other terms remaining on the RHS of (3.26) is at most three.

(3.23)ij can be rewritten as follows using (3.25) and (3.26):

(3.23)′ij

(1−O(1)δ2)

(∫ ∞
0

−λ1λ2

2
z2
xixjx1

+
(zxixjx2

+ (λ1 + λ2)zxixjx1
)2

2
(x, t)dx

+

∫ ∞
0

(zxixjx1
+ 2zxixj )

2

2
(x, t)dx

+

∫ t

0

∫ ∞
0

z2
xixjx2

+ 2σzxixjx1zxixjx2 + (µ(λ1 + λ2)− λ1λ2)z2
xixjx1

+
hvµx

2
z2
xixjdxdτ

)
− (1 +O(1)δ2)

c1 + c2
2

z2
xixj (0, t)− (1−O(1)δ2)

c1 + c2
2

z2
xixj (0, 0)

+

∫ t

0

(
σ(1 +O(1)δ2)z2

xixj − λ1λ2zxixjx1zxixj

)
(0, t)dτ

+

∫ t

0

−
(
λ1 + λ2

2
z2
xixjx1

− λ1λ2zxixjx1zxixjx2 +

(
−c1 + c2

2
−O(1)δ2

)
z2
xixjx2

)
(0, t)dτ︸ ︷︷ ︸

Iij

= (1 +O(1)δ2)

∫ ∞
0

(
−λ1λ2

2
z2
xixjx1

+
(zxixjx2

+ (λ1 + λ2)zxixjx1
)2

2

+
(zxixjx1

+ 2zxixj )
2

2

)
(x, 0)dx

+ O(1)δ2

∫ t

0

∫ ∞
0

2∑
i=1

z2
xi +

∑
1≤i,j≤2

z2
xixj +

∑
1≤i,j,k≤2

z2
xixjxk

dxdτ.

In what follows, we look for suitable positive linear combinations of (3.22), (3.23)i,
and (3.23)ij to treat the integrals on the boundary x = 0.

3.4. Step III: The estimate of the boundary integral at x = 0. In (3.4)
and (3.5), we have already estimated the lower derivative terms, i.e., those of order
zero and one on the boundary x = 0. From (3.8) and zx(0, t) = u−−φ(−σt− sn), we
have that

ztt(0, t) = −(1 +O(1)δ2)λ1λ2zxx(0, t) +O(1)|φ′(−σt− sn)|.(3.27)

From (3.27), all of the second derivatives on the boundary (x = 0) can be expressed
in terms of the linear combination of ztt(0, t) and the lower derivatives that have
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been estimated in (3.4) and (3.5). Similarly, for the third derivatives at the boundary
x = 0, we have

zxtt(0, t) = −σ2φ′′(−σt− sn).(3.28)

From (3.28), (3.8)t, and (3.8)x, we have the following:

(3.29)

zttt(0, t) = −(1 +O(1)δ2)(λ1λ2zxxt(0, t) + 2ztt(0, t)) + O(1)δ2|zt(0, t)|,
(λ1 + λ2)zxt(0, t) = −(1 +O(1)δ2)(λ1λ2zxxx(0, t)− 2σzxx(0, t)) + O(1)δ2|zt(0, t)|.

From (3.27) and (3.29), we can express the third derivatives zxixjxk(0, t) in terms of
zttt(0, t), ztt(0, t), and the other terms whose rates of convergence are known.

In (3.23)′12, look at the integral that contains the third derivatives at the boundary
x = 0 except for the quadratic term zxtt:

(3.30)∫ t

0

−λ1λ2zxtt(0, τ)zxxt(0, τ)− λ1 + λ2

4
λ1λ2z

2
xxt(0, τ)dτ

[
let ε(t) =

λ1 + λ2

8
> 0

]
≥
∫ t

0

λ1λ2

ε(t)
z2
xtt(0, τ) + ε(t)λ1λ2z

2
xxt(0, τ)− λ1 + λ2

4
λ1λ2z

2
xxt(0, τ)dτ

≥
∫ t

0

λ1λ2

ε(t)
z2
xtt(0, τ)− λ1 + λ2

8
λ1λ2z

2
xxt(0, τ)dτ [from (3.28)]

= O(1)

∫ t

0

z2
t (0, τ)dτ − (1 +O(1)δ2)

c1 + c2
8(c1 + c2)

∫ t

0

(
1

2
z2
ttt −

9

c21c
2
2

z2
tt

)
dτ.

Conclusion. Using the inequalities in (3.30), we can find constants Dij > 0 such
that

|Iij(t)| ≤ Dij

∫ t

0

3∑
i=0

(zt)
2(0, τ)dτ,(3.31)

where Iij(t) is the integral defined at the boundary x = 0 in (3.23)′ij .

In order to evaluate the integral
∫ t
0
ztt

2(0, τ)dτ , we need the following lemma.
Lemma 3.1. The following inequality holds for an arbitrary positive constant C

and an arbitrary function q(t) ∈ C3[0,∞):

√
C

∫ t

0

q2tt(0, τ)dτ + C1/4q2tt(0, t)− 12(C3/4 + C1/4)
(
q2t (0, t) + q2tt(0, 0) + q2tt(0, 0)

)
≤ C

∫ t

0

q2t (τ)dτ + 10

∫ t

0

q2ttt(τ)dτ.

Proof. By using the Schwartz inequality and integration by parts,

(3.32)∫ t

0

Cq2t + q2tttdτ

>

∣∣∣∣∫ t

0

2
√
Cqtqtttdτ

∣∣∣∣
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=

∣∣∣∣2√C ∫ t

0

∂t(qttqt)dτ − 2
√
C

∫ t

0

q2ttdτ

∣∣∣∣
≥ 2
√
C

(∫ t

0

q2ttdτ − |qtqtt(t)| − |qtqtt(0)|
)

≥ 2
√
C

(∫ t

0

q2ttdτ − (C1/4q2t (t) + C−1/4q2tt(t))−
(
C1/4q2t (0) + C−1/4q2tt(0)

))
.

On the other hand, ∫ t

0

√
Cq2tt + 9q2tttdτ > 6C1/4

∣∣∣∣∫ t

0

qttqtttdτ

∣∣∣∣(3.33)

> 3C1/4
(
q2tt(t)− q2tt(0)

)
.

The proof follows from (3.32) and (3.33).

From Lemma 3.1, we estimate the integral
∫ t
0
ztt(0, τ)dτ by

∫ t
0
z2
t (0, τ)dτ and∫ t

0
z2
ttt(0, τ)dτ . Namely, Lemma 3.1 allows us to bound

∫ t
0
ztt(0, τ)dτ by a positive

linear combination of
∫ t
0
zt(0, τ)dτ and

∫ t
0
zttt(0, τ)dτ . Keeping the above calculation

in mind, we complete the proof of Lemma 1.2. At first, we show that all the boundary
terms can be treated precisely. To this end, we take the positive constant F0 such
that

−c1 + c2
8c1c2

F0 > 2
∑

1≤i,j≤2

Dij .(3.34)

Then from (3.34), (3.31), and (3.30), we have that∑
(i,j)6=(1,2),(2,1)

Iij(t) + 2F0I12(t)(3.35)

≥ −c1 + c2
16c1c2

∫ t

0

zttt(0, τ)dτ −
∑

(i,j)6=(1,2),(2,1)

Dij

2∑
i=0

∫ t

0

(∂itz)
2(0, τ)dτ.

From the positive linear combination in (3.35), we evaluate the integrals of the third
derivatives at the boundary x = 0. Actually, from Lemma 3.1, the integrals of the
second derivatives at x = 0 can be bounded by the third and first derivatives at the
boundary. Hence for a large constant C,

C

∫ t

0

z2
t (0, τ)dτ +

∑
(i,j)6=(1,2),(2,1)

Iij(t) + 2F0I12(t)(3.36)

≥ −O(1)C

∫ t

0

z2(0, τ)dτ +

√
C

10

∫ t

0

z2
tt(0, τ)dτ.

Thus we finish the evaluation of the boundary integrals. Next, we complete the energy
estimate for the following equation over the interval (0, t]× [0,∞):

(3.37) ∑
(i,j)6=(1,2),(2,1)

(3.23)′ijzxixj + (3.23)′ijzxixjx2 +
c1 + c2

2
(3.23)′ijzxixjx1
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+ 2F0(3.23)′12zx1x2 + 2F0(3.23)′12zx1x2x2 + 2F0
c1 + c2

2
(3.23)′12zx1x2x1

+
∑

1≤i≤2

(3.23)izxi + (3.23)izxix2
+
c1 + c2

2
(3.23)izxix1

+ (3.23)z + (3.23)zx2
+
c1 + c2

2
(3.23)zx1

.

Hence by (3.23)′ij , we have

(3.38)∫ ∞
0

 ∑
1≤i,j≤2

z2
xixj +

∑
1≤i≤2

z2
i + z2

 (x, t)dx+

∫ t

0

∫ ∞
0

3∑
i=1

|∇i(x,t)z|2dxdτ

≤ O(1)

∫ ∞
0

 ∑
1≤i,j≤2

z2
xixj +

∑
1≤i≤2

z2
i + z2

 (x, 0)dx+ O(1)C

∫ t

0

(z2 + z2
t )(0, τ)dτ

=: (RHS)(3.38).

From (3.3), we have that

(3.39){
|z(x, 0)| = |(x0 − sn)φ′|+O(1)δ1|φ(x− x0)− u+|/|u− − u+| for x > x0,
|z(x, 0)| = |(x0 − sn)φ′|+O(1)δ1x0 for 0 < x < x0.

From (2.21), (3.4), and (3.5), if we choose δ1, e−|u−−u+|x0 , and δ1x0 sufficiently
small for fixed δ2 � 1 and |u− − u+| ≤ δ2, then by substituting (3.39) in (3.38), we
get the a priori estimate

N(tn) + |u− − u+| ≤
δ2
2
.(3.40)

At last, we have shown that (3.2) holds for n. This completes the proof of Lemma
1.2.

3.5. The convergence theorem (Theorem 1.4). Since we have the global
existence theorem (Theorem 1.3) and (3.2) for all n ∈ N, Theorem 1.4 is valid for
t = ∞. This asserts the validity of asymptotic shock location s∞ + σt. Actually,
replacing x0 by sm in (2.20), we have

|sn − sm| ≤
K4|φ(−x0 − σtn)− φ(−x0 − σtm)|

|u− − u+|3

for some constantK4. Hence {sn}n∈N is a Cauchy sequence, and thus s∞ = limn→∞ sn
exists. From the definition of {sn}n∈N, we have that

lim
t→∞

∫ ∞
0

(u(x, 0)− φ(x− σt− s∞)) dx = 0.

Let z∞(x, t) := −
∫∞
x
u(x, t)−φ(x−σt−s∞)dx and w∞(x, t) := v(x, t)−ψ(x−σt−s∞).

From assumption (1.8) of the initial value, we obtain∫ ∞
0

3∑
j=1

|∂jxz∞|2(x, 0)dx+

∫ ∞
0

2∑
j=0

|∂jxw∞|2(x, 0)dx
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arbitrarily small when we choose δ1 and x0 to have exp(−x0|u− − u+|), where δ1x0

and δ1 are sufficiently small. By the same method as used to show global existence,
we have the following energy estimate:∫ ∞

0

∫ ∞
0

3∑
j=1

(
|∂jxz∞|2 + |∂jt z∞|2

)
(x, τ)dxdτ +

∫ ∞
0

z2
∞(x, t)dx < C,(3.41)

where C is a constant independent of t. By making use of (3.41), it follows that the
solution converges to the asymptotic traveling wave (φ(x−σt− s∞), ψ(x−σt− s∞)).
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Abstract. In this paper, the existence and regularity of solutions of a system of Maxwell
equations in periodic structures are established. The diffraction (scattering) problem is reformulated
in a bounded domain by introducing the transparent boundary conditions. An indirect approach is
then used to carry out the regularity analysis. This problem arises in the modeling of the surface-
enhanced second harmonic generation of nonlinear optics.

Key words. existence and regularity of solutions, Maxwell equations, second harmonic genera-
tion, nonlinear grating
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1. Introduction. Consider a plane wave of frequency ω1 incident on a grating
or periodic structure ruled on some nonlinear optical material. Because of the pres-
ence of the nonlinear material, the nonlinear optical interaction gives rise to diffracted
waves of frequencies ω1 and ω2 = 2ω1. This process represents the simplest situation
in nonlinear optics—second harmonic generation (SHG). In this paper, we study ques-
tions on the existence and regularity of solutions of the PDE that governs SHG. As
a first step, we use the well-known undepleted-pump approximation, which allows us
to reduce the model to a system of generalized Helmholtz equations. We are seeking
a “quasi-periodic” solution at frequency ω1 or ω2 which satisfies the “radiation condi-
tion at infinity”; this means that near x2 = ±∞, the solution is a linear combination
of plane waves propagating away from the structure.

This work is motivated by the recent research on surface-enhanced nonlinear op-
tical effects. One of the many important applications of nonlinear optical phenomena
is a method for obtaining coherent radiation at a wavelength shorter than that of
available lasers through SHG. Unfortunately, nonlinear optical effects are generally so
weak that their observation requires extremely high-intensity laser beams. Recently,
in the sequence of papers [13], [14], [12], a PDE model was introduced to model non-
linear SHG in periodic structures. In particular, it was shown in [13] and [14] that
SHG can be greatly enhanced by using diffraction gratings or periodic structures and
that the PDE model can accurately predict the field propagation. Our goal is to
examine the well-posedness of the PDE model by using our variational formulation.

Our main well-posedness result is as follows: there exists a unique quasi-periodic
solution of frequencies ω1 and ω2 = 2ω1 of the nonlinear diffraction problem with the
radiation condition for all but possibly a discrete set of parameters. The proof of this
result follows in principle an earlier work of DiBenedetto, Elliott, and Friedman [6].
However, because of weaker regularity assumptions on the coefficients in our model
PDE, essential modifications must be made.

Results on existence and uniqueness for Maxwell equations in linear media with
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periodic structures were obtained by Chen and Friedman [5] assuming that the di-
electric coefficient ε is a piecewise-constant function. They showed that for all but
possibly a discrete number of ε’s, there exists a unique solution to the Maxwell equa-
tions by an integral-equation approach. Little is known concerning the questions of
existence and uniqueness for nonlinear Maxwell equations in periodic structures. In
two simple cases where the Maxwell equations can be reduced to a system of nonlinear
Helmholtz equations, existence and uniqueness results have recently been obtained in
[2] and [3]. Computational results have also been obtained by using a combination of
the method of finite elements and the fixed-point iteration algorithm. In this work,
using a different approach, we study the well-posedness of a more complicated but
linear PDE model. Its main advantage over previous results is that the current model
supports a larger class of nonlinear optical materials with cubic symmetry structures.
An interesting future project is to tackle the nonlinear model directly.

A good background on the linear theory of diffractive optics in grating structures
may be found in Petit [11]. A brief description of the present problem along with a
discussion of some other mathematical problems arising from industrial applications
of diffractive optics can be found in Friedman [7, Chapter 5]. For the underlying
physics of nonlinear optics, we refer the reader to the classic books of Bloembergen
[4] and Shen [15].

The outline of this paper is as follows. The governing system of Maxwell equations
is introduced in section 2, and it is reformulated inside a periodic “box” with boundary
conditions derived from our knowledge of the fundamental solutions in linear media.
We then proceed in section 3 to study the corresponding PDEs of frequencies ω1 and
ω2 = 2ω1 by a variational approach. The existence and regularity of solutions of the
diffraction problem are established.

2. Modeling of the scattering problem. Throughout, the media are assumed
to be nonmagnetic with constant magnetic permeability. For convenience, the mag-
netic permeability constant is assumed to be equal to unity everywhere. We also
assume that no external charge or current is present in the field.

The time-harmonic Maxwell equations that govern SHG then take the form

∇×E = − iω
c

H, ∇ ·H = 0,(2.1)

∇×H =
iω

c
D, ∇ ·D = 0,(2.2)

along with the constitutive equation

D = εE + 4πχ(2)(x, ω) : EE,(2.3)

where E is the electric field, H is the magnetic field, D is electric displacement, ε is
the dielectric coefficient, c is the speed of light, ω is the angular frequency, and χ(2)

is the second-order nonlinear susceptibility tensor of third rank, i.e., χ(2) : EE is a

vector whose jth component is
∑3
k,l=1 χ

(2)
jklEkEl.

Remarks. The medium is said to be linear if D = εE or χ(2) vanishes. In principle,
all optical media are essentially nonlinear, i.e., D is a nonlinear function of E.

The physics of SHG may be described as follows: when a plane wave at frequency
ω = ω1 is incident on a nonlinear medium, because of the interaction of the incident
wave and nonlinear medium, diffracted waves of frequencies ω = ω1 and ω = 2ω1 are
generated. The fact that new frequency components are present is the most striking
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difference between nonlinear and linear optics. However, for most media, nonlinear
optical effects are so weak that they may reasonably be ignored. In particular, the
conversion of energy into the new frequency component is very small. The observation
of nonlinear phenomena in the optical region can normally only be made by using
high-intensity beams, say by application of a high-intensity laser.

We assume that the depletion of energy from the pump waves (at frequency ω =
ω1) may be neglected, which is the well-known undepleted-pump approximation in the
literature; see [13] and [14]. Under the approximation, equation (2.3) at frequencies
ω = ω1 and ω = ω2 = 2ω1, respectively, may be written as

D(x, ω1) = ε(x, ω1)E(x, ω1),(2.4)

D(x, ω2) = ε(x, ω2)E(x, ω2) + 4πχ(2)(x, ω2) : E(x, ω1)E(x, ω1).(2.5)

Next, we want to further reduce the nonlinear coupled system (2.1)–(2.2). Through-
out the paper, all of the fields are assumed to be invariant in the x3 direction. Here, as
in the linear case, in transverse electric (TE) polarization the electric field is transver-
sal to the (x1, x2)-plane and in transverse magnetic (TM) polarization the magnetic
field is transversal to the (x1, x2)-plane. In the nonlinear case, however, the polariza-
tion is determined by group symmetry properties of χ(2). In this paper, motivated
by applications, we assume that the electromagnetic fields are TM polarized at fre-
quency ω1 and TE polarized at frequency ω2. This polarization assumption is known
to support a large class of nonlinear optical materials, for example, crystals with cubic
symmetry structures.

Therefore,

H(x, ω1) = u(x1, x2, ω1) ~x3,(2.6)

E(x, ω2) = v(x1, x2, ω2) ~x3.(2.7)

For convenience, we define

εj = ε(x1, x2, ωj), j = 1, 2,(2.8)

kj =
ωj
c

√
εj , Imkj ≥ 0.(2.9)

At frequency ω1, system (2.1)–(2.2) can be simplified to

∇ ·
(

1

k2
1

∇u
)

+ u = 0.(2.10)

Because of equation (2.2),

E(x, ω1) =
c

iω1ε1
∇×H(x, ω1)

=
c

iω1ε1
(∂x2

u,−∂x1
u, 0).

Hence the second harmonic field satisfies[
4+ k2

2

]
v = −4πω2

2

c2

∑
j,l=1,2,3

χ
(2)
3jl(x, ω2)(E(x, ω1))j(E(x, ω1))l(2.11)

=
∑
j,l=1,2

χjl∂xju ∂xlu,(2.12)
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Fig. 1. Problem geometry.

where 4 is the usual Laplace operator and χjl = (−1)j+l(16π/ε21)χ
(2)
3,j,l(x, ω2).

Let us further specify the problem geometry. We assume that the medium and
material are periodic in the x1 variable of period 2π and are invariant in the x3

variable. We may then restrict ourselves to one period in x1, as shown in Figure 1.
We introduce the following notation:

Γj = {x2 = (−1)j−1b, 0 < x1 < 2π}, Sj = {0 < x1 < 2π, x2 = φj(x1)},
Ω1 = {0 < x1 < 2π, φ1(x1) < x2 < b}, Ω2 = {0 < x1 < 2π, −b < x2 < φ2(x1)},
Ω+

1 = {0 < x1 < 2π, x2 ≥ b}, Ω+
2 = {0 < x1 < 2π, x2 ≤ −b},

Ω0 = {0 < x1 < 2π, φ2(x1) < x2 < φ1(x1)}, Ω = {0 < x1 < 2π, −b < x2 < b}.

Suppose that the whole space is filled with material in such a way that the “indexes
of refraction” k1 and k2 satisfy

kj(x) =

 kj1 in Ω+
1 ∪ Ω̄1,

kj0 in Ω0,
kj2 in Ω+

2 ∪ Ω̄2,

for j = 1, 2, where kj1 and kj2 are constants, kj1 are real and positive, and Rekj2 > 0
and Imkj2 ≥ 0. The case Imkj2 > 0 accounts for materials which absorb energy.

Throughout, we make the following regularity assumptions on the material and
geometry:

kj0(x) ∈ C1(Ω0), φj(x1) ∈ C1,γ(0, 2π) for some 0 < γ < 1,(2.13)
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χj ∈ L∞(Ω) and χj = 0 in Ω1 ∪ Ω2.(2.14)

We wish to solve system (2.10)–(2.12) when an incoming plane wave

uI = uie
iα1x1−iβ11x2(2.15)

is incident on S1 from Ω+
1 , where ui is a real constant, α1 = k11 sin θ, β11 = k11 cos θ,

and −π/2 < θ < π/2 is the angle of incidence.
We are interested in “quasi-periodic” solutions (u, v), that is, solutions (u, v) such

that

uα = ue−iα1x1 and vα = ve−iα2x1 (α2 = k21 sin θ)

are 2π-periodic in the x1 direction.
It follows from system (2.10)–(2.12) that

∇α1 ·
(

1

k2
1

∇α1uα

)
+ uα = 0,(2.16) [

4α2
+ k2

2

]
vα =

∑
j,l=1,2

χαjl∂
α1
xj u ∂

α1
xl
u,(2.17)

where

4α2
= 4+ 2iα2∂x1

− |α2|2, ∇α1
= ∇+ i(α1, 0),

and

χαjl = χjle
i(2α1−α2)x1 , ∂α1

x1
= ∂x1

+ iα1, ∂α1
x2

= ∂x2
.

We next derive the transparent boundary conditions.
Expand uα and vα in a Fourier series:

uα(x1, x2) =
∑
n∈Z

unα(x2)einx1 ,(2.18)

vα(x1, x2) =
∑
n∈Z

vnα(x2)einx1 ,(2.19)

where

unα(x2) =
1

2π

∫ 2π

0

uα(x1, x2)e−inx1dx1,

vnα(x2) =
1

2π

∫ 2π

0

vα(x1, x2)e−inx1dx1.

For j = 1, 2, define the coefficients

βn1j(α) = eiγ1j/2
∣∣k2

1j − (n+ α1)2
∣∣1/2 , n ∈ Z,(2.20)

βn2j(α) = eiγ2j/2
∣∣k2

2j − (n+ α2)2
∣∣1/2 , n ∈ Z,(2.21)

where

γ1j = arg(k2
1j − (n+ α1)2), 0 ≤ γ1j < 2π

γ2j = arg(k2
2j − (n+ α2)2), 0 ≤ γ2j < 2π.
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Throughout, we assume that k2
1j 6= (n+α1)2 and k2

2j 6= (n+α2)2 for all n ∈ Z, j = 1, 2;
this assumption excludes the “resonant” cases, where waves can propagate along the
x1-axis. The assumption also ensures that a fundamental solution for (2.16) and
(2.17) exists inside Ω1 and Ω2. It then follows from our knowledge of the fundamental
solution (see, e.g., [5]) that inside Ω1 and Ω2, uα and vα can be expressed as a sum
of plane waves: for j = 1, 2,

uα|Ωj =
∑
n∈Z

anj e
±iβn1j(α)x2+inx1 ,(2.22)

vα|Ωj =
∑
n∈Z

bnj e
±iβn2j(α)x2+inx1 ,(2.23)

where anj and bnj are complex scalars. Since βnsj is real for at most finitely many
n’s, there are only a finite number of propagating plane waves in the sum (2.22) and
(2.23); the remaining waves are exponentially damped (or unbounded) as |x2| → ∞.
We are only interested in the case where (uα, vα) is composed of bounded outgoing
plane waves in Ω1 and Ω2 plus the incident incoming wave uI in Ω1. From (2.18),
(2.19), (2.22), and (2.23), we have

unα(x2) =


unα(b)eiβ

n
11(α)(x2−b), n 6= 0, in Ω1,

u0
α(b)eiβ11(x2−b) + uie

−iβ11x2 − uieiβ11(x2−2b), n = 0, in Ω1,
unα(−b)e−iβn12(α)(x2+b) in Ω2

(2.24)

and

vnα(x2) =

{
vnα(b)eiβ

n
21(α)(x2−b) in Ω1,

vnα(−b)e−iβn22(α)(x2+b) in Ω2.
(2.25)

Let ν be the unit outward normal vector defined by

ν =

{
~x2 on Γ1,
− ~x2 on Γ2,

where ~x2 is the unit vector of the x2-axis.
We can then calculate the derivative of unα(x2) and vnα(x2) with respect to ν:

∂unα
∂ν

∣∣∣∣
Γj

=

 iβn11u
n
α(b), n 6= 0, on Γ1,

iβ11u
0
α(b)− 2iuiβ11e

−iβ11b, n = 0, on Γ1,
iβn12u

n
α(−b) on Γ2

(2.26)

and

∂vnα
∂ν

∣∣∣∣
Γj

=

{
iβn21(α)vnα(b) on Γ1,
iβn22(α)vnα(−b) on Γ2.

(2.27)

Therefore,

∂uα
∂ν

∣∣∣∣
Γ1

=
∑
n∈Z

iβn11u
n
α(b)einx1 − 2iuiβ11e

−iβ11b,(2.28)

∂uα
∂ν

∣∣∣∣
Γ2

=
∑
n∈Z

iβn12u
n
α(−b)einx1 ,(2.29)

∂vα
∂ν

∣∣∣∣
Γ1

=
∑
n∈Z

iβn21v
n
α(b)einx1 ,(2.30)

∂vα
∂ν

∣∣∣∣
Γ2

=
∑
n∈Z

iβn22v
n
α(−b)einx1 .(2.31)
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Since the fields uα and vα are 2π-periodic in x1, without loss of generality, we can
move the problem from IR2 to the quotient space (cylinder) IR2/(2πZ×{0}). For the
remainder of the paper, we shall identify Ω with the cylinder Ω/(2πZ × {0}) and do
similarly for the boundaries Γj ≡ Γj/2πZ. Thus from now on, all functions defined
on Ω and Γj are implicitly 2π-periodic in the x1 variable.

For functions f ∈ H1/2(Γj) (the Sobolev space of complex-valued functions on
the circle), define the operator Tαsj by

(Tαsjf)(x1) =
∑
n∈Z

iβnsj(α)fneinx1(2.32)

for s, j = 1, 2, where fn = (1/2π)
∫ 2π

0
f(x1)e−inx1 and equality is taken in the sense

of distributions.
From (2.32) and the definition of βnsj(α), it is clear that Tαsj is a standard pseu-

dodifferential operator (in fact, a convolution operator) of order one.
From (2.28)–(2.31), we see that for j = 1, 2,

Tα11(uα|Γ1
) =

∂uα
∂ν
|Γ1

+ 2iuiβ11e
−iβ11b,

Tα12(uα|Γ2) =
∂uα
∂ν
|Γ2 ,

Tα2j(vα|Γj ) =
∂vα
∂ν
|Γj ,

that is, Tαsj are Dirichlet–Neumann maps. We will use the abbreviated notations
Tα1juα and Tα2jvα to mean Tα1j(uα|Γj ) and Tα2j(vα|Γj ), respectively.

Thus the scattering problem has been formulated as follows:

∇α1
·
(

1

k2
1

∇α1
uα

)
+ uα = 0 in Ω,(2.33)

(4α2
+ k2

2)vα =
∑
j,l=1,2

χαjl∂
α1
xj uα∂

α1
xl
uα in Ω,(2.34)

(
Tα11 −

∂

∂ν

)
uα = 2iuiβ11e

−iβ11b on Γ1,(2.35) (
Tα12 −

∂

∂ν

)
uα = 0 on Γ2,(2.36) (

Tα21 −
∂

∂ν

)
vα = 0 on Γ1,(2.37) (

Tα22 −
∂

∂ν

)
vα = 0 on Γ2.(2.38)

3. Existence and regularity of the scattering problem. We are now ready
to present the main result of this paper.

Theorem 3.1. Assume that the regularity assumptions (2.13) and (2.14) hold.
Then for all but possibly a discrete set of frequencies ω, the scattering problem (2.33)–
(2.38) admits a unique solution

uα ∈ H1(Ω) ∩ C1,σ(Ω+
1 ∪ Γ1) ∩ C1,σ(Ω0) ∩ C1,σ(Ω+

2 ∪ Γ2),

and vα ∈W 2,p(Ω) for some 0 < σ < 1 and any 1 < p <∞.
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The proof may be given by proving Theorems 3.3 and 3.10 below.
We first establish C1,σ estimates of the pump field uα. As in [1], we introduce

a smooth 2π-periodic function u0 supported near Γ1 such that u0(x1, b) = 0 and
∂x2u0(x1, b) = −2iuiβ11e

−iβ11b. Recall that ui is the fixed constant given in (2.15).
Then uα − u0, still denoted by uα, satisfies

∇α1 ·
(

1

k2
1

∇α1uα

)
+ uα = −f in Ω,(3.1) (

Tα11 −
∂

∂ν

)
uα = 0 on Γ1,(3.2) (

Tα12 −
∂

∂ν

)
uα = 0 on Γ2,(3.3)

where

f = ∇α1
·
(

1

k2
1

∇α1
u0

)
.

By examining the variational formulation of (3.1)–(3.3), the following result holds;
see [1] for the proof.

Theorem 3.2. Under the assumptions (2.13) and (2.14), for all but possibly a
discrete set of frequencies ω, the problem (3.1)–(3.3) admits a unique weak solution
uα ∈ H1(Ω).

According to the standard elliptic regularity theory [9], [10], uα ∈ Cβ(Ω̃) for some
0 < β < 1 and ||uα||Cβ(Ω̃) ≤ C with Ω̃ b Ω, where C depends on k1, f , and dist(Ω̃,Ω).

Denote Ω̃ = {(x1, x2), 0 < x1 < 2π, −b1 < x2 < b1}, where b1 < b is chosen such
that Ω̃ ⊆ Ω\supp{u0} and −b1 < φ2(x) < φ1(x) < b1 ∀x1 ∈ (0, 2π).

Theorem 3.3. Under the assumptions (2.13) and (2.14), for all but possibly a
discrete set of frequencies ω, the problem (3.1)–(3.3) admits a unique solution

uα ∈ H1(Ω) ∩ C1,σ(Ω+
1 ∪ Γ1) ∩ C1,σ(Ω0) ∩ C1,σ(Ω+

2 ∪ Γ2)

for some 0 < σ < 1.
Moreover,

‖∇uα‖Cσ(Ω+
1 ∪Γ1) + ‖∇uα‖Cσ(Ω0) + ‖∇uα‖C1,σ(Ω+

2 ∪Γ2) ≤ C,(3.4)

where the constant C depends on k1, α1, ui, and ‖uα‖Cγ(Ω̃).

Note that near the boundary Γ1 or Γ2, the problem (3.1)–(3.3) becomes a Helmholtz
equation with constant coefficients and smooth pseudodifferential boundary condi-
tions. The C1,σ regularity of uα then follows.

The standard elliptic regularity results [9] indicate the C1,σ regularity of uα away
from a tubular neighborhood of the two interfaces S1 and S2 due to the definition of
k1 and (2.13).

Thus it suffices to prove the regularity result in the tubular neighborhood of each
interface. We shall restrict our attention to the interface S1. The C1,σ regularity of
uα in the tubular neighborhood of S2 can be established in the same manner; hence
its proof will be omitted.

For simplicity, we shall drop the subscript of uα. By using the definition of ∇α1

and f = 0 away from near S1, equation (3.1) may be rewritten as

∇ ·
(

1

k2
1

∇u
)

+ iα1
1

k2
1

∂u

∂x1
+ iα1

∂

∂x1

(
1

k2
1

u

)
+

(
1− α2

1

1

k2
1

)
u = 0.(3.5)
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For any fixed (x0
1, x

0
2) ∈ S1, x0

2 = φ1(x0
1), and r > 0, denote

Qr = {(x1, x2), |x1 − x0
1| < r, |x2 − x0

2| < r}.

One may choose R such that QR ⊂ Ω. Consider the transformation in QR:

(3.6)

x′1 = x1 − x0
1, x′2 = x2 − φ1(x1), u′(x′1, x

′
2) = u(x1, x2), k′1(x′1, x

′
2) = k1(x1, x2).

Using this transformation, QR is mapped into a set containing a neighborhood QR0

of the origin. Without loss of generality, the preimage of QR0 is assumed to contain
QR/2. For simplicity, we shall omit the primes and set (in the new coordinate system)

Q+
R0

= QR0
∩ {x2 > 0}, Q−R0

= QR0
∩ {x2 < 0}.

Consider a more general model problem in QR0
:

∂

∂xi

(
aij

∂u

∂xj

)
+

∂

∂xj
(bju) + cj

∂u

∂xj
+ du+ f = 0.(3.7)

Suppose that u ∈ Cγ(QR0) ∩ H1(QR0). Suppose also that the coefficients aij , bj ∈
Cγ(Q±R0

) and cj , d, f ∈ C(Q±R0
) have a jump at x2 = 0, bj , and a1j , a2j are linearly

independent, and the principle part of the operator is elliptic in QR0
, i.e., there is a

constant c0 such that ∣∣∣∑ aijξiξ̄j

∣∣∣ ≥ c0|ξ|2.
Theorem 3.4. Under the above assumptions, the solution of (3.7) satisfies

u ∈ C1,σ(Q±R0/4
)(3.8)

for some 0 < σ < 1.
Before proving Theorem 3.4, we make the following remarks.
Theorem 3.4 holds with the same proof in the multidimensional case.
Theorem 3.3 may be proved by using Theorem 3.4. Actually, using the transfor-

mation (3.6), equation (3.5) becomes a special case of (3.7) with

a11 =
1

k2
1

, a12 = a21 =− 1

k2
1

φ1x1 , a22 =
1

k2
1

(φ2
1x1

+ 1),

b1 = iα1
1

k2
1

, b2 =−iα1φ1x1

1

k2
1

, f = 0,

c1 = iα1
1

k2
1

, c2 =−iα1
1

k2
1

φ1x1
, d= 1− α2

1

k2
1

.

It is easy to check that according to (2.13), the regularity assumptions of Theorem
3.4 are satisfied. By Theorem 3.4, the solution of (3.7) with the above choices of the
coefficients satisfies

∇u ∈ Cσ(Q±R0/4
)

for some 0 < σ < 1. Theorem 3.3 then follows.
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The proof of (3.8) roughly follows an approach introduced by DiBenedetto, Elliott,
and Friedman in [6]. They established the same regularity as in (3.8) for the solution
of

∂

∂xi

(
aij

∂u

∂xj

)
+Bj

∂u

∂xj
+ Cu = F

under the assumptions that

aij ∈ Cγ(Q±R0
), |∇Bj |, C, F ∈ L∞loc(QR0

).

However, in our case, since bj and cj have a jump across the interface x2 = 0, the
functions ∇Bj = ∇(bj +cj) and C = ∂bj/∂xj +d may not belong to L∞loc(QR0

). Thus
the weak regularity assumptions on the coefficients in our case require more delicate
estimates.

Also, in [6], a crucial step for the proof of Hölder continuity of ∂x1
u is to establish

the inequality∫
Qρ

|∂x1u− (∂x1u)ρ|2 ≤ CR2β

∫
QR

|∇u|2 + C
( ρ
R

)4
∫
QR

|∂x1u− (∂x1u)R|2.(3.9)

Again due to the jump of k at x2 = 0, we are unable to show (3.9) in our case.
Fortunately, by some careful estimates, we can obtain a weaker estimate (3.18) below
instead of (3.9), which also implies the Hölder continuity of ∂x1

u.
We now present our proof of Theorem 3.4. We first assume that b2 = 0 in

equation (3.7). The general case may be reduced to the case of b2 = 0 by considering
the transformation ũ = ueλ·x, where λj are determined by

2∑
j=1

aijλj + bi = 0.

Consider the auxiliary problem

∂

∂xi
(a0
ij(x1, x2)Pxj ) = 0 in QR0

,(3.10)

P = u on ∂QR0
,(3.11)

where a0
ij = aij(0, 0). Because of the jump, equation (3.10) is not an equation with

constant coefficients.
Set

wR =
1

|QR|

∫
QR

wdx, w±R =
1

|Q±R|

∫
Q±
R

wdx.

As shown in [6], the following result holds.
Lemma 3.5. For any 0 < ρ < R0/16,∫

Qρ

|Px1 − (Px1)ρ|2dx ≤ C
(
ρ

Ro

)4 ∫
QR0

|Px1 − (Px1)R0 |2dx,(3.12) ∫
Q±ρ

|∇P − (∇P )±ρ |2dx ≤ C
(
ρ

R0

)4 ∫
QR0

|Px1 |2dx.(3.13)
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Returning to u, we have

− ∂

∂xi
(a0
ij(x1, x2)(u− P )xj ) =− ∂

∂xi
((aij(x1, x2)− a0

ij(x1, x2))uxj)

+
∂

∂x1
(b1(x1, x2)u) + cj(x1, x2)

∂u

∂xj
+ d(x1, x2)u+ f(x1, x2).(3.14)

Lemma 3.6. There is a constant C that depends on ‖aij‖Cγ(Q±
R0

), ‖b1‖Cγ(Q±
R0

),

and ‖u‖Cγ(QR0
) such that∫

QR0

|∇(u− P )|2 ≤ CR2γ
0

∫
QR0

|∇u|2 + CR2+2γ
0 .(3.15)

Proof. Note that aij ∈ Cγ(Q±R0
) implies that aij − a0

ij ∈ Cγ(QR0
).

Multiplying (3.14) by u− P and integrating over QR0 , by using the ellipticity of
the operator, we obtain∫

QR0

|∇(u− P )|2 ≤ CR0
2γ

∫
QR0

|∇u|2 +

∣∣∣∣∣
∫
QR0

∂

∂xj
(b1u)(u− P )

∣∣∣∣∣
+

∣∣∣∣∣
∫
QR0

cj
∂u

∂xj
(u− P )

∣∣∣∣∣+

∣∣∣∣∣
∫
QR0

(du+ f)(u− P )

∣∣∣∣∣ .(3.16)

Note that no boundary term occurs from the integration by parts since u−P = 0
on the boundary. We next estimate the last three terms in (3.16). First,∣∣∣∣∣

∫
QR0

cj(x1, x2)
∂u

∂xj
(u− P )

∣∣∣∣∣ ≤
∫
QR0

|cj(x1, x2)|
∣∣∣∣ ∂u∂xj

∣∣∣∣ |u− P |
≤ CR2γ

0

∫
QR0

|∇u|2 +R−2γ
0

∫
QR0

|u− P |2.

From Poincaré’s inequality,∫
QR0

|u− P |2 ≤ 1

2
R2

0

∫
QR0

|∇(u− P )|2,

for R2−2γ
0 ≤ 1/2,∣∣∣∣∣
∫
QR0

cj(x1, x2)
∂u

∂xj
(u− P )

∣∣∣∣∣ ≤ CR2γ
0

∫
QR0

|∇u|2 +
1

4

∫
QR0

|∇(u− P )|2.

Next, ∣∣∣∣∣
∫
QR0

(d(x1, x2)u+ f(x1, x2))(u− P )

∣∣∣∣∣ ≤
∫
QR0

(|d| |u|+ |f |)|u− P |

≤ CR2+2γ
0 +

1

8

∫
QR0

|∇(u− P )|2.
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Similarly, integration by parts yields∫
QR0

∂

∂x1
(b1u)(u− P ) = −

∫
QR0

(b1u− (b1u)(0, 0))
∂(u− P )

∂x1

≤ CRγ0
∫
QR0

|∇(u− P )|

≤ CR2+2γ
0 +

1

8

∫
QR0

|∇(u− P )|2.

Estimate (3.15) follows by combining the above estimates.
The next result is an analogue of Lemma 3.5 on u.
Lemma 3.7. For any 0 < ρ < ηR, 0 < η < 2−4, R ≤ R0,

(3.17) ∫
Q±ρ

|∇u− (∇u)±ρ |2 ≤ C
[
R2γ +

( ρ
R

)4
] ∫

QR

|∇u|2 + CR2+2γ ,

(3.18)∫
Qρ

|∂x1
u− (∂x1

u)ρ|2 ≤ CR2γ

∫
QR

|∇u|2 + C
( ρ
R

)4
∫
QR

|∂x1
u− (∂x1

u)R|2

+ CR2+2γ .

Proof. For any R > 0, we decompose u on QR0
into the sum of P and P −u such

that P solves the auxiliary problem (3.10)–(3.11) on QR. By using (3.13) and (3.15),
we obtain∫

Q±ρ

|∇u− (∇u)±ρ |2 ≤
∫
Q±ρ

|∇u−∇P |2 + |(∇u)±ρ − (∇P )±ρ |2

+ |∇P − (∇P )±ρ |2

≤ 2

∫
Q±ρ

|∇u−∇P |2 +

∫
Q±ρ

|∇P − (∇P )±ρ |2

+ CR2γ

∫
QR

|∇u|2 + CR2+2γ + C
( ρ
R

)4
∫
QR

|∂x1
P |2.

From a simple energy estimate of the auxiliary problem (3.10)–(3.11) on QR,∫
QR

|∇P |2 ≤ C
∫
QR

|∇u|2.

Thus ∫
Q±ρ

|∇u− (∇u)±ρ |2 ≤ CR2γ

∫
QR

|∇u|2 + C
( ρ
R

)4
∫
QR

|∇u|2 + CR2+2γ .

Next, from (3.12) and (3.15),∫
QR

|∂x1
u− (∂x1

u)ρ|2 ≤ 2

∫
Qρ

|∇u−∇P |2 +

∫
Q±ρ

|∇P − (∇P )ρ|2

≤ C
( ρ
R

)4
∫
QR

|∂x1P − (∂x1P )R|2 + CR2γ

∫
QR

|∇u|2

+ CR2+2γ .(3.19)
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Also, ∫
QR

|∂x1
P − (∂x1

P )R|2 ≤ 2

∫
QR

|∇(P − u)|2 +

∫
QR

|∂x1
u− (∂x1

u)R|2.(3.20)

Substituting (3.20) into (3.19) yields estimate (3.18).
Lemma 3.8. For any ε > 0, there exist R1 ∈ (0, R0) and C > 0 such that for any

0 < ρ < R < R1, ∫
Qρ

|∇u|2 ≤ C
( ρ
R

)2−ε ∫
QR

|∇u|2 + Cρ2−ε,(3.21)

where the constants R1 and C depend on ε.
Proof. Apply Lemma 3.7 with ρi = ηiR, R < R1, and R2γ

1 < η4, where η < 2−4

is to be determined.
Integrating the inequality

|(∇u)±ρi+1
− (∇u)±ρi |

2 ≤ 2|∇u− (∇u)±ρi |
2 + 2|∇u− (∇u)±ρi+1

|2

over Q±ρi+1
and dividing by |Q±ρi+1

|, we get from (3.17)

|(∇u)±ρi+1
− (∇u)±ρi |

2 ≤ C

ρ2
i+1

(ρ2γ
i + η4)

∫
Qρi

|∇u|2 +
Cρ2+2γ

i

ρ2
i+1

+
C

ρ2
i+1

(ρ2γ
i−1 + η4)

∫
Qρi−1

|∇u|2 +
Cρ2+2γ

i−1

ρ2
i+1

.(3.22)

Next, apply (3.17) with R = ρi, ρ = ρi+1:∫
Q±ρi+1

|∇u|2 ≤
∫
Q±ρi+1

∣∣∣(∇u)±ρi+1

∣∣∣2 + C(ρ2γ
i + η4)

∫
Qρi

|∇u|2 + Cρ2+2γ
i

≤ |Q±ρi+1
||(∇u)±ρi+1

|2 + C(ρ2γ
i + η4)

∫
Qρi

|∇u|2 + Cρ2+2γ
i .(3.23)

Observe that ∣∣∣Q±ρi+1

∣∣∣ ∣∣(∇u)±ρi
∣∣2 =

|Q±ρi+1
|

|Q±ρi |2

∣∣∣∣∣
∫
Q±ρi

∇u
∣∣∣∣∣
2

≤
|Q±ρi+1

|
|Q±ρi |

∫
Q±ρi

|∇u|2 = η2

∫
Q±ρi

|∇u|2.(3.24)

From (3.22) and (3.24), we have∣∣∣Q±ρi+1

∣∣∣ ∣∣∣(∇u)±ρi+1

∣∣∣2 ≤ η2

∫
Q±ρi

|∇u|2 + C(ρ2γ
i + η4)

∫
Qρi

|∇u|2

+ Cρ2+2γ
i + C(ρ2γ

i−1 + η4)

∫
Qρi−1

|∇u|2 + Cρ2+2γ
i−1 .(3.25)

Substituting (3.25) into (3.23), we have∫
Q±ρi+1

|∇u|2 ≤ C(η2 + ρ2γ
i )

∫
Qρi

|∇u|2 + C(ρ2γ
i−1 + η4)

∫
Qρi−1

|∇u|2

+ Cρ2+2γ
i + Cρ2+2γ

i−1 .
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By the choice of ρi, η
i, and R1,

ρ2γ
i < ρ2γ

i−1 < · · · < ρ2γ
0 = R2γ < R2γ

1 < η4,

we have ∫
Q±ρi+1

|∇u|2 ≤ Cη2

∫
Qρi

|∇u|2 + Cη4

∫
Qρi−1

|∇u|2 + Cρ2+2γ
i−1 .

Iterating with respect to i, we obtain∫
Q±ρn

|∇u|2 ≤ Cη2(n−1)

∫
QR

|∇u|2 + C(ρ2+2γ
n−2 + ρ2+2γ

n−3 η
2 + · · ·+ ρ2+2γ

0 η2(n−1))

≤ Cη2(n−1)

∫
QR

|∇u|2 + Cρ2+2γ
0

≤ C0η
2(n−1)

∫
QR

|∇u|2 + CR2+2γ ,

where C > 0 is independent of n.
We choose η such that

ηε =
1

C0
.

Then ∫
Q±ρn

|∇u|2 ≤ η2(n−1)−ε
∫
QR

|∇u|2 + CR2+2γ

≤ ηn(2−ε)−2+(n−1)ε

∫
QR

|∇u|2 + CR2+2γ

≤
(ρn
R

)(2−ε)
η(n−1)ε−2

∫
QR

|∇u|2 + CR2+2γ

≤ C
(ρn
R

)(2−ε) ∫
QR

|∇u|2 + CR2+2γ ,(3.26)

where we have used ρn/R = ηn and |η(n−1)ε−2| ≤ |η−2| ≤ C; here the constant C
depends on ε.

Assertion (3.21) follows by the following interpolation of (3.26). In fact, for ρk+1 <
ρ < ρk, ∫

Q±ρ

|∇u|2 ≤
∫
Q±ρk

|∇u|2 ≤ C
(ρk
R

)2−ε ∫
QR

|∇u|2 + CR2+2γ

= C

(
ρk+1

ηR

)2−ε ∫
QR

|∇u|2 + CR2+2γ

≤ C
( ρ
R

)2−ε ∫
QR

|∇u|2 + CR2+2γ .

The estimate of (3.21) follows from Campanato’s lemma [8, p. 86., Lemma
2.1].



336 GANG BAO AND YUNMEI CHEN

Lemma 3.9. For any 0 < ρ < R̃, where R̃ = R1(ε) is determined in Lemma 3.8
for ε = γ,∫

Qρ

|∂x1
u− (∂x1

u)ρ|2 ≤ C
( ρ
R

)2+γ
∫
QR

|∂x1
u− (∂x1

u)R|2 + Cρ2+γ .(3.27)

Proof. Combining (3.18) and (3.21), with ρ = R, R = R̃, 0 < ρ < ηR, and
η < 2−4, we have∫
Qρ

|∂x1
u− (∂x1

u)ρ|2 ≤ CR2γ

∫
QR

|∇u|2 + C
( ρ
R

)4
∫
QR

|∂x1
u− (∂x1

u)R|2 + CR2+2γ

≤ CR2γ

[
C

(
R

R̃

)2−γ ∫
QR̃

|∇u|2 + CR2−γ
]

+ C
( ρ
R

)4
∫
QR

|∂x1
u− (∂x1

u)R|+ CR2+2γ

≤ CR2+γ + C
( ρ
R

)4
∫
QR

|∂x1u− (∂x1u)R|.

Hence (3.27) follows from the Campanato lemma.
Using the same arguments as in [6], we can establish (3.27) for any sets Qρ and

QR with center in QR0/2 since no use has been made of the symmetry or comparative

size of Q+
R0/2

and Q−R0/2
. It follows from a Campanato’s result that ∂x1

u is Hölder

continuous in QR0/2. The Hölder continuity of ∂x2u in Q̄±R0/4
may also be established

by a similar procedure; see, e.g., [6].
Finally, concerning the regularity of the second harmonic field vα, i.e., solutions

of the Helmholtz equation, we have the following general regularity result.
Theorem 3.10. Under the assumptions (2.13) and (2.14), for all but possibly

a discrete set of frequencies ω, the problem (2.34), (2.37), (2.38) admits a unique
solution vα ∈W 2,p(Ω) for 1 < p <∞, and the upper bound of its W 2,p norm depends
on ||χαjl||L∞(Ω), ||uα||C1,σ(Ω0), and p.

The proof may be given by combining the regularity results of Theorem 3.3 and
the standard elliptic regularity results [9].
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Abstract. Local and global well-posedness for the Cauchy problem associated with the nonlinear
Dirac equation

i
∂ψ

∂t
+ iα · ∇ψ −mβψ +G(ψ) = 0 in R4

are studied in the Sobolev spaces Hs. For regular enough covariant nonlinearities that homogeneous
of degree p ≥ 3, local well-posedness in Hs is proved for s > 3

2
− 1

p−1
when p is an odd integer

and for 3
2
− 1

p−1
< s < p−1

2
when p is not an odd integer. If p > 3, global well-posedness for small

initial data in Hs(p), s(p) = 3
2
− 1

p−1
, is also proved. Local and global well-posedness of the Cauchy

problem for the nonlinear Klein–Gordon and wave equations are also considered.

Key words. Dirac equation, well-posedness, Sobolev spaces

AMS subject classifications. 35K22, 35P05

PII. S0036141095283017

Introduction. In this paper, we consider the nonlinear Dirac equation

(0.1) i
∂ψ

∂t
+ iα · ∇ψ −mβψ +G(ψ) = 0 in R4

with the following notation:
(i) The unknown ψ is a function from R4 to C4 of the variables (x, t) ∈ R4 with

x = (x1, x2, x3) ∈ R3.
(ii)

α · ∇ψ =

3∑
j=1

αj
∂ψ

∂xj
,

where (αj)
3
j=1 are 4× 4 matrices defined by

αk =

(
0 σk

σk 0

)
, k = 1, 2, 3,

with

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

(iii) m is a positive real number and β is the 4× 4 matrix

β =

(
I 0
0 −I

)
.

Notice that

αiαj + αjαi = 2δijI,

αiβ + βαi = 0, β2 = I.
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(iv) G(·) is a nonlinear function from C4 to C4.

As a simple example of nonlinearity, one can consider G(u) = |u|p−1u, where | · |
denotes the norm in C4, or, more generally, G = (g1, g2, g3, g4), where each of the
gi’s is a polynomial in all the components uj of u. Nevertheless, the more interest-
ing nonlinearities must present some particular structure in order for the equation
to be invariant by the Lorentz transformations. These are the so-called covariant
nonlinearities. The simplest examples are

(0.2) G(ψ) = |〈βψ, ψ〉|
p−1
2 βψ + a|〈βψ, α5ψ〉|

p−1
2 α5βψ for p ≥ 1,

where a ∈ C, α5 = α1α2α3, and 〈 , 〉 denotes the Hermitian product in C4. The
nonlinear Dirac equation has been widely used to build relativistic models of extended
particles and extensively studied in the physics literature, in particular, the cubic case
p = 3 (cf. Finkelstein et al. [8], Rañada [12], Soler [14], and Wakano [16]). Observe
that the quantity 〈βψ, ψ〉 has no definite sign since

〈βψ, ψ〉 = ψ2
1 + ψ2

2 − ψ2
3 − ψ2

4 .

This makes the covariant nonlinearity G(ψ) defined in (0.2) less regular than the
noncovariant nonlinearity with the same homogeneity J(ψ) = |ψ|p−1ψ. For instance,
if p = 4, G(z) has less than 3

2 derivatives in L∞. We are interested in the Cauchy
problem associated with (0.1),

(0.3)

 i
∂ψ

∂t
+ iα · ∇ψ −mβψ +G(ψ) = 0 in R4,

ψ(x, 0) = ψ0 in R3,

in particular, the local and global well-posedness of (0.3) under the weakest possi-
ble regularity assumptions. This problem has previously been considered by several
authors for different types of nonlinearities. As far as we know, the first well-known
result was given by Reed in [13]. He assumed that the nonlinearity G = (g1, g2, g3, g4)
is such that each of the gi’s is a polynomial in all the components ui, each of
whose terms has order p with p ≥ 4. Then he proved that for all initial data ψ0

in Hs(R3,C4) with s > 3 small enough, problem (0.3) has a unique solution in
C(R, H3(R3,C4)) ∩ C1(R, H2(R3,C4)) such that its L∞(R3,C4) norm decays in

time like (1 + t)
3
2 . This result was improved by Dias and Figuera in [5]. They first

showed the same global existence result under similar assumptions on G but for p = 3
and s > 2. Moreover, they proved a global existence result for small initial data in
H2+ε for any ε > 0 and for the cubic covariant nonlinearity (0.2) with a = 0. They
also obtained an estimate for the decay rate of the L∞(R3,C4) norm as t goes to
∞. Later, in [10], Najman showed in particular the existence of a local solution in
the cubic case for any initial data in H2(RN ,C4). All of these results were far from
optimal from the point of view of the local or global existence of solutions. Indeed, as
is the case for the Schrödinger, Klein–Gordon, and heat equations, one would expect
the following situation. Given an homogeneous nonlinearity G of degree p, there is
an exponent s(p) such that, on one hand, the Cauchy problem (0.3) is globally well
posed in Hs(p)(R3) for initial data small enough in the Hs(p) norm. On the other
hand, the Cauchy problem is locally well posed for any initial data in Hs(R3) for
s ≥ s(p). The value of that critical exponent s(p) is given by the homogeneity of the
Cauchy problem and can generally be obtained by scaling arguments.
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For instance, let us consider the problem of the existence of solutions to

(P)

 i
∂ψ

∂t
+ iα · ∇ψ +G(ψ) = 0 in R4,

ψ(x, 0) = ψ0 in R3

with ψ0 ∈ Hs(R3). We scale the unknown function ψ in the form

∀λ > 0, ∀t ∈ R, ∀x ∈ R3, ψλ(t, x) = λγψ(λt, λx)

with γ + s− 3
2 = 0 in such a way that, for all λ > 0,

||λγψ0(λ·)||Hs = λ−s||ψ0||L2 + ||ψ0||Ḣs ,

where Ḣs is the homogeneous Hs space defined at the end of this section. Our initial
problem is then equivalent to the local existence for each of the following problems:

(Pλ)

 i
∂ψλ
∂t

+ iα · ∇ψλ + λ(s− 3
2 )(p−1)+1G(ψλ) = 0 in R4,

ψl(x, 0) = λγψ0(λx) in R3.

Observe that, at least formally, the smaller λ(s− 3
2 )(p−1)+1 is, the closer the equation

in (Pλ) is to the linear Dirac equation, and hence the easier it should be to find a
solution of the Cauchy problem for ψλ in Hs and the larger the existence time of
that solution should be. However, since on the other hand, the existence time of ψλ
is an increasing function of λ, the exponent (s − 3

2 )(p − 1) + 1 must be positive or,
equivalently,

s >
3

2
− 1

p− 1
.

We prove in Theorems I and II below that the value 3
2−

1
p−1 is actually the critical

exponent as far as local and global existence are concerned. If we consider the Dirac
equation with mass, m 6= 0, the same argument can be made if we also scale the
mass from m to λm by using Sobolev spaces defined in a slightly different way with
a suitable dependence on m.

If the nonlinearity G is regular enough, the local existence in Hs(RN ,C4) for
s > 3

2 is easy to prove using the Haussdorf–Young inequalities (see Lemma 1.3 below)
and the Sobolev embedding Hs(R3,C4) ⊂ L∞(R3,C4), which holds when s > 3

2 .
(Of course, this will not give any decay-rate estimate on L∞(RN ,C4) as t→∞.) As
we stated before, this regularity is too high for even covariant nonlinearities. On the
other hand, notice that the critical value for s is 3

2 −
1
p−1 and therefore smaller than

3
2 . This problem was partially solved in the papers of Reed [13], Dias and Figueira
[5], and Moreau [9] by working in spaces involving precise decay rates in time of the
spatial Sobolev norms and using the Hausdorff–Young-type inequalities of the linear
Dirac group.

Here we use a slightly different argument and obtain local and global solutions
under weaker regularity asumptions than in the previous works. As we will see, these
are optimal in the case where p > 3 and, except in the critical case, for p = 3. This
approach is similar to the one used by Cazenave and Weissler [4] for the Schrödinger
equation or by Weissler [17] for parabolic equations. Our local results are equivalent to
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those obtained by Ponce and Sideris in [11] for the nonlinear wave equation. Moreover,
the global results for small initial data are new even in that setting. The key idea is
to obtain new sharp estimates in Lp−1(R, L∞(RN )) for p > 3 (see Theorems 1.5 and
4.2). In order to state our results, let us define, for every p ≥ 1,

(0.4) s(p) = max

{
1,

3

2
− 1

p− 1

}
.

Observe that if s(p) < s, then 1
p−1 >

3−2s
2 .

Theorem I. Suppose that G(u) is given by (0.2) for p ≥ 3. Consider s such that

(0.5)

 s(p) < s <
p− 1

2
if p > 3 and is not an odd integer,

s(p) < s if p ≥ 3 is an odd integer

and let γ > 0 be such that 1
γ ∈ ( 3−2s

2 , 1
p−1 ). Then for every ψ0 ∈ Hs(R3,C4), there

is a T ∗ = T ∗(||ψ0||Hs) > 0 and a solution ψ to (0.3) such that

u ∈ C((−T ∗, T ∗);Hs(R3,C4))∩C1((−T ∗, T ∗);L2(R3,C4))

∩Lγloc((−T ∗, T ∗);L∞(R3)).

Moreover,
(i) this solution is unique in L∞((−T, T );Hs(R3,C4))∩Lγ((−T, T );L∞(R3))

for every T < T ∗;
(ii) if T ∗ <∞, then ||ψ||Lγ((−T∗,T∗);L∞(R3)) + ||ψ||L∞((−T∗,T∗);Hs(R3)) =∞;

(iii) there are a T ≡ T (||ψ0||Hs) < T ∗(||ψ0||Hs) and a neighborhood V of ψ0 in
Hs(R3,C4) such that for all 0 ≤ s′ < s, the map ψ0 −→ ψ(·) is continuous from V
to C((−T, T );Hs′(R3,C4)).

Theorem II. Suppose that G is given by (0.2), p > 3, and s(p) = 3
2 −

1
p−1 . Then

for every ψ0 ∈ Hs(p)(R3,C4), there are a T ∗ = T ∗(ψ0) > 0 and a solution ψ to (0.3)
such that

ψ ∈ C((−T ∗, T ∗);Hs(p)(R3,C4))∩C1((−T ∗, T ∗);L2(R3,C4))

∩Lp−1
loc ((−T ∗, T ∗);L∞(R3)).

Moreover,
(i) this solution is unique in L∞((−T, T );Hs(p)(R3))∩Lp−1((−T, T ;L∞(R3))

for all T < T ∗;
(ii) if ||ψ0||Hs(p)(R3,C4) is suficiently small, then T ∗ =∞ and

ψ ∈ L∞((−∞,∞);Hs(p)(R3)) ∩ Lp−1(R;L∞(R3)).

In this case,

lim
t→±∞

||ψ(t)−W (t)φ±||Hs(p)(R3) = 0,

where {W (t)}t>0 stands for the linear Dirac group, φ± ∈ Hs(p)(R3), and

(0.6)


φ+ = ψ0 − i

∫ ∞
0

W (−τ)G(ψ)(τ)dτ,

φ− = ψ0 − i
∫ 0

−∞
W (−τ)G(ψ)(τ)dτ ;
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(iii) if T ∗ <∞, then ||ψ||Lp−1((−T∗,T∗);L∞(R3))+||ψ||L∞((−T∗,T∗);Hs(p)(R3)) =∞;

(iv) there are a T ≡ T (ψ0) < T ∗(ψ0) and a neighborhood V of ψ0 in Hs(p)(R3,C4)
such that the map ψ0 −→ ψ is continuous from V to C((−T, T );Hs′(R3,C4)) for all
s′ in (0, s(p)). Finally, if ||ψ0||Hs(p) is small enough, this is true for T =∞.

Remark 1. Theorem I is true whenever the nonlinearity G satisfies G(0) = 0 and
is in the Sobolev space W s′,∞(C4,C4) for some s′ > s, i.e.,

(a) dkG ∈ L∞loc(C4,C4) for k = 1, . . . , [s′], where [s′] denotes the integer part of
s′ and dkG denotes the kth order differential of G, and

(b) if we set m = [s′], then for every R > 0,

sup
|ξ|≤1,|ζ|≤1

|dmG(ξ)− dm(ζ)|
|ξ − ζ|s′−m = CR <∞.

On the other hand, Theorem II is true for every nonlinearity G satisfying (a) and (b)
that is homogeneous of degree p. Moreover, the same arguments prove that problem
(0.3) is globally well posed in H1(R3) for small initial datas if the nonlinearity G is
homogeneous of degree p = 2 and belongs to W s′,∞(C4,C4) for some s′ > 1.

Nevertheless, we observe that there exist only two possibilities in order for a

function like |〈βu, u〉| p−1
2 βu to satisfy (a) and (b):

• either p is an odd integer, and then the function |〈βz, z〉| p−1
2 βz is in C∞, or

• p is not an odd integer, and then it must be such that p−1
2 > s.

Remark 2. When p = 3, i.e., in the cubic case, Theorem I shows the local
existence in Hs(R3,C4) for all s > 1. The local or global existence for the cubic
case in H1(R3,C4) remains open. On the other hand, Theorem II needs p > 3, and
therefore we cannot prove global existence, even for small initial data, for the cubic
case.

Remark 3. The fact (stated in Theorems I(iii) and II(iv)) that the map ψ0 −→
ψ is, in general, only continuous with values in C((−T, T );Hs′(R3,C4)) for all s′

in (0, s) and not in C((−T, T );Hs(R3,C4)) is due to the lack of regularity of the
general nonlinearities G(·) that we consider. It is nevertheless easy to check that if
the nonlinearity G is regular enough, the maps ψ0 −→ ψ defined in Theorems I(iii)
and II(iv) are Lipschitz from V into C((−T, T );Hs(R3,C4)) ∩ Lγ((−T, T ), L∞(R3)
and C((−T, T );Hs(p)(R3,C4)) ∩ Lp−1((−T, T ), L∞(R3), respectively (see Remark 9
in section 3 below).

Remark 4. The size condition on the initial data in Theorem II(ii) is necessary.
This follows in particular from the existence results of localized solutions to (0.1) due
to Cazenave and Vazquez [3]. These authors proved the existence of solutions of the
form ψ(t, x) = exp(−iωt)φ(x) for any ω ∈ (0,m), where φ ∈ C1(R3,C4) is such that
φ and ∇φ have an exponential decay as |x| → ∞ (see also Balabane et al. [1]). It is
clear that these localized solutions do not belong to the space Lp−1(R;L∞(R3)).

Remark 5. Equation (0.1) has a natural energy given by

E(ψ) = − i
2

∫
R3

〈α · ∇ψ, βψ〉dx+
m

2

∫
R3

〈ψ, βψ〉dx−
∫
R3

H(u)dx,

where ∇H(ψ) = G(ψ). This energy E is well defined and of class C2 on the space

H
1
2 (R3,C4). It was recently proved by Esteban and Sere in [7] that if H ∈ C2(R,R),

H(0) = 0, and for some θ > 1, H ′(x) ≥ θH(x), then E has infinitely many critical

points in H
1
2 (R3,C4). That gives infinitely many solutions of (0.1) which actually

belong to
⋂

2≤q<∞W 1,q(R3,C4). The space H
1
2 (R3,C4) is then the natural one for
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studying the steady states of (0.1). Nevertheless, it has not yet been possible to use
any conservation law to obtain global solutions of (0.1).

In particular, the proof of these results requires estimates on the linear operator

(0.7) A = −iα · ∇+mβ.

This is a self-adjoint operator in L2(R3,C4) with domain H1(R3,C4). Then iA
generates a strongly continuous unitary group in Hs(R3,C4), which we will denote
(W (t))t∈R. Some of the estimates on W (t) given in section 1 have already been used
in the study of (0.3) (see, for instance, Dias and Figueira [5], Moreau [9], and Reed
[13]).

Remark 6. As we shall see in section 4, similar arguments can be used to study
the nonlinear Klein–Gordon and wave equations to obtain results on local and global
existence. The estimate in Lp−1(R;L∞(R3)) allows us to prove global existence for
small initial data for the critical case established by Ponce and Sideris [11].

Throughout this paper, we will use the following notation:
1. The spaces Lr(R3,C4) and Hs(R3,C4) will always be denoted Lr(R3) and

Hs(R3), respectively. Their norms will be denoted || · ||r and || · ||Hs , respectively.
2. In section 2, we use the Besov spaces Bsp,q(R

3,C4) and the homogeneous

Besov spaces Ḃsp,q(R
3,C4) for s > 0, p ≥ 1, and q ≥ 1 reals. They will be denoted

Bsp,q(R
3) and Ḃsp,q(R

3). We refer the interested reader to the book of Triebel [15]
for the definitions and main properties of these spaces. In particular, we will use the
following quantities, which are proved to be equivalent to the usual norms (see [15,
Theorem, p. 110]), 

||ψ||Bsp,q = ||ψ||p + ||ψ||Ḃsp,q ,

||ψ||Ḃsp,q =

{∫
R3

||4My ψ||qp
|y|N+sq

dy

} 1
q

,

with the following notation: M is any integer such that M > s, 4yv(x) = v(x+ y
2 )−

v(x − y
2 ) for all x ∈ R3 and y ∈ R3, and 4k+1

y v ≡ 4y(4kyv) for all k ≥ 1. (In the
case where p = q = 2, this is a direct consequence of the Plancherel identity.)

3. We also use the functional space Lr1(R;Lr2(R3,C4)) of functions ψ from R4

to C4 such that

||ψ||Lr1 (R;Lr2 (R3)) ≡
{∫

R

(∫
R3

|ψ(t, x)|r2dx
) r1
r2

dt

} 1
r1

<∞,

where r1 ≥ 1 and r2 ≥ 1 and where the quantity ||ψ||Lr1 (R;Lr2 (R3)) defines a norm.
This space will be denoted Lr1(R;Lr2(R3)).

4. For θ > 0 and ψ from R4 to C4, we denote by Dθ
xψ the fractional derivativê(Dθ

xψ)(ξ) = |ξ|θψ̂(ξ). The homogeneous space Ḣs is defined as the set of measurable
functions ψ such that Ds

xψ ∈ L2 and

||ψ||Ḣs ≡ ||D
s
xψ||L2 .

The rest of the paper is organized as follows. Section 1 covers linear estimates,
section 2 covers nonlinear estimates, section 3 contains proof of our main results, and
section 4 presents an extension to the Klein–Gordon and wave equations.



344 M. ESCOBEDO AND L. VEGA

1. Linear estimates. Throughout this section, we denote by {ψj}j∈Z a smooth
partition of unity such that

ψj(|ξ|) = ψ

(
|ξ|
2j

)
with suppψ ⊂ (1, 2),

and we set φj = ψ2
j . For every sufficiently regular function f , we define Sjf and S̃jf ,

respectively, by ̂(
Sjf

)
(ξ) = φj(|ξ|)f̂(|ξ|),̂(

S̃jf
)

(ξ) = ψj(|ξ|)f̂(|ξ|).

Finally, we define the operator eit
√
m2−4 acting on a sufficiently regular function f

by

F
(
eit
√
m2−4f

)
(ξ) = eit

√
m2+|ξ|2 f̂(ξ).

Lemma 1.1. (a) For all m ≥ 0 and t > 0, let

Ij(|x|, t,m) =

∫
R3

eix·ξ+it
√
m2+|ξ|2ψj(|ξ|)dξ ∀x ∈ R3, ∀ξ ∈ R3.

Then there is a positive constant C independent of j, t, m, and x such that for all j,
t, m, and x,

(1.1) |Ij(|x|, t,m)| ≤ C 2j

t
(22j +m2)

1
2 .

(b) For every 2 ≤ p <∞, there is a positive constant Cp independent of j, t, and
m such that

(1.2)


∥∥∥Sjeit√m2−4f

∥∥∥
p
≤ C|t|−α(p)

∥∥∥Dα(p)
x (m2 −4)

α(p)
2 f

∥∥∥
p′
,

α(p) = 2
(

1
2 −

1
p

)
.

Proof. (a) By a change of variables, we trivially have

Ij(|x|, t,m) =
1

m3
Ijlg2m(|x|m, tm, 1),

where lg2m is the logatithm in base 2 of m. Hence we can restrict ourselves to the
case where 1 ≤ m ≤ 2. Using polar coordinates, we have

Ij(|x|, t,m) =

∫ ∞
0

ψj(r)e
it(m2+r2)

1
2 r2

∫
S2

eir|x|cosθsinθ dθ

=

∫ ∞
0

ψj(r)e
it(m2+r2)

1
2 r

sinr|x|
|x| dr.

We shall consider several different cases. First, assume that |x| ≤ 2−j+5. Then by
integration by parts, we have

|I(|x|, t,m)| =
∣∣∣∣∣
∫ ∞

0

ψj(r)
sinr|x|
|x|

(m2 + r2)
1
2

itr

d

dr

(
eit(m

2+r2)
1
2

)
dr

∣∣∣∣∣
≤ C 2j

t
(22j +m2)

1
2 .
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Now consider |x| > 2−j+5 and |tθm− |x|| < 3/4tθm, where θm = sup2j<r<2j+1 r(m2 +
r2)−1/2. Hence |x| > tθm/4, and the estimate immediately follows.

Finally, assume that |x| > 2−j+5 and |tθm − |x|| ≥ 3/4tθm. Then integration by
parts gives us

1

|x|

∣∣∣∣∫ ∞
0

ψj(r)r

(
tr

(m2+r2)1/2
± |x|

)−1
d
dr e

i(t(m2+r2)
1
2±r|x|) dr

∣∣∣∣
≤ c 2j

|x| sup
r

(
tr

(m2 + r2)
1
2

± |x|
)−1

≤ c 2j

|x| (tθm)−1 ≤ c2j

t
(22j +m2)−

1
2 .

(b) By definition,∣∣∣Sjeit√m2−4f
∣∣∣ =

∣∣∣∣∫
R3

eix·ξ+it
√
m2+|ξ|2φj(|ξ|)f̂(ξ)dξ

∣∣∣∣ ,
and then, using (a),∣∣∣Sjeit√m2−4f

∣∣∣ ≤ C||ψj f̂ ||∞ 2j(m2 + 22j)
1
2

|t| ≤ C||S̃jf ||L1

2j(m2 + 22j)
1
2

|t| ,

where ̂(S̃jf) = ψj f̂ . Since by Plancherel’s theorem we have

||Sjeit
√
m2−4f ||2 ≤ C||ψj f̂ ||2,

by Riesz’s interpolation theorem, we have, for every 2 ≤ p <∞,

∥∥∥Sjeit√m2−4f
∥∥∥
p
≤ C

[
2j(m2 + 22j)

1
2

|t|

]α(p)

||S̃jf ||p′

≤ C|t|−α(p)
∥∥∥Dα(p)

x (m2 −4)
α(p)

2 Sjf
∥∥∥
p′

≤ C|t|−α(p)
∥∥∥Dα(p)

x (m2 −4)
α(p)

2 f
∥∥∥
p′
.

Lemma 1.2. Let Km(t)(f, g) be the solution of the initial-value problem (IVP)

(1.3)


utt −4u+m2u = 0, x ∈ R3, t ∈ R, m ≥ 0,

u(x, 0) = f(x), x ∈ R3,

ut(x, 0) = g(x), x ∈ R3.

Then for 2 ≤ p <∞,

(1.4)

||Km(t)(f, g)||Lp ≤ C|t|−α(p)
(∥∥∥Dα(p)

x (m2 −∆)
α(p)

2 f
∥∥∥
Lp′

+
∥∥∥Dα(p)

x (m2 −∆)
α(p)

2 −1g
∥∥∥
Lp′

)
,

where α(p) = 2( 1
2 −

1
p ) and C is a positive constant independent of m and t.
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Proof. By the Littlewood–Paley theorem, we have, for p ≥ 2,

(1.5)

||Km(t)(f, g)||Lp ≤
∥∥∥∥∥
( ∞∑
j=−∞

|SjKm(t)(f, g)|2
) 1

2
∥∥∥∥∥
Lp

≤
( ∞∑
j=−∞

||SjKm(t)(f, g)||2Lp
) 1

2

.

Now using Lemma 1.1(b),

(1.6)

||SjKm(t)(f, g)||Lp ≤ c|t|−α(p)

(∥∥∥Dα(p)
x (m2 −∆)

α(p)
2 S̃jf

∥∥∥
Lp′

+
∥∥∥Dα(p)

x (m2 −∆)
α(p)
2−1 S̃jg

∥∥∥
Lp′

)
.

Then using (1.5), (1.6), and the fact that p′ ≤ 2,

||Km(t)(f, g)||Lp ≤ c|t|−α(p)

(∥∥∥∥∥
(∑

j

∣∣∣S̃j (Dα(p)
x (m2 −∆)

α(p)
2 f

)∣∣∣2) 1
2
∥∥∥∥∥
Lp′

+

∥∥∥∥∥
(∑

j

|S̃j(Dα(p)
x (m2 −∆)α(p)/2−1g)|2

) 1
2
∥∥∥∥∥
Lp′

)
.

Using the Littlewood–Paley theorem again, we obtain the desired result.
Lemma 1.3. Let W (t)ψ0 be the solution of

(1.7)

 i
∂ψ

∂t
+ iα · ∇ψ −mβψ = 0 in R4,

ψ(x, 0) = ψ0 in R3.

Then for 1 < p ≤ 2, there is a positive constant C such that

||W (t)ψ0||Lp ≤ C|t|−α(p)||(Dα(p)
x (m2 −∆)

α(p)
2 ψ0||Lp′ ,

with α(p) = 2( 1
2 −

1
p ).

Proof. It is well known that W (t)ψ0 solves the IVP (1.3) with f = ψ0 and
g = −α · ∇ψ0 − imβψ0. Therefore, the desired result follows from Lemma 1.2.

Lemma 1.4. Let a > 1, b > 1, α ∈ (0, N), and β ∈ (0, N) such that(
β

N
− 1

b

)(
1

a
− α

N

)
> 0.

Then there is a positive constant C such that for every u ∈ C∞ tending to zero as |x|
goes to ∞, we have

(1.8) ||u||L∞(RN ) ≤ C||Dαu||θLa(RN )||Dβu||1−θ
Lb(RN )

,

with

θ =

β

N
− 1

b(
β

N
− 1

b

)
+

(
1

a
− α

N

) .
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Proof. We first suppose that u ∈ S(RN ). Assume first that 1
a −

α
N < 0 and set

f = Dα
xu. Then for any ε > 0, we have

u = Iαf =

∫
f(x− y)ϕ1

(
|y|
ε

)
dy

|y|N−α + εα−N
∫
f(x− y)ϕ2

(
|y|
ε

)α−N
dy

= I + II,

where ϕ1 ∈ C∞0 (R), ϕ1(r) = 1 if |r| ≤ 1
2 , ϕ1(r) = 0 if r > 1, and ϕ1 + ϕ2 = 1.

Hence Hölder’s inequality gives

(1.9) |I| ≤ Cεα−N(1− 1
a′ )||f ||La = cεα−

N
a ||f ||La .

Set ωα(y) = ϕ2(|y|)|y|α−N . Hence ω̂α(ξ) = |ξ|−αψ(ξ) with ψ ∈ S(RN). Therefore, if
ωεα(y) = ωα(y/ε), then

(Dα−βωεα)̂ (ξ) = εN+β−α(ε|ξ|)−βψ(εξ).

Hence

(1.10) |Dα−βωεα| ≤ Cεβ−α
(

1 +
|x|
ε

)β−N
.

Now

(1.11)
|II| = εα−N

∫
Dβ−αfDα−βωεα

≤ εα−N ||Dβ−αf ||Lb ||Dα−βωεα||Lb′ ≤ Cεβ−
N
b ||Dβ−αf ||Lb ,

where the last inequality follows from (1.10). Choosing ε properly, we obtain (1.8)
from (1.9) and (1.11).

If 1
a −

α
N > 0, then by hypothesis, 1

b −
β
N < 0 and we can argue as above, using

g = Dβu instead of f .
The general case for u ∈ C∞ tending to zero as |x| goes to ∞ follows by den-

sity.
Theorem 1.5 (Strichartz-type estimates).
(i) Given 2 ≤ p <∞, 1

q + 1
p = 1

2 , there is a positive constant C such that for all

ψ0 ∈ Hα(p)(R3),

(1.12) ||W (·)ψ0||Lq(R;Lp(R3)) < C||D
α(p)

2
x (m2 −4)

α(p)
4 ψ0||L2(R3),

where

(1.13) α(p) = 2

(
1

2
− 1

p

)
.

(ii) Let s and p satisfy (0.5). Then for all γ > p − 1 such that 1
γ ∈ ( 3−2s

2 , 1
p−1 )

and all r′ > γ such that 1
r′ ∈ ( 3−2s

2 , 1
γ ), there is a positive constant C such that for

every T > 0 and all ψ0 ∈ Hs(R3),

(1.14a) ||W (.)ψ0||Lγ((−T,T );L∞(R3)) ≤ C(1 +m)
1
r′ T

1
γ−

1
r′ ||ψ0||Hs .
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(iii) Let p > 3. Then there is a positive constant C such that
(1.14b)

∀ψ0 ∈ Hs(p)(R3), ||W (·)ψ0||Lp−1((−∞,∞);L∞(R3)) ≤ C(1 +m)
1
p−1 ||ψ0||Hs(p) .

Proof. Part (i) follows from standard arguments and is already known; see Brenner
[2] and Moreau [9]. Therefore, we only sketch its proof. By looking at the adjoint of
the operator ψ0 7→W (·)ψ0, it is equivalent for us to prove

(1.15)

∥∥∥∥∫ ∞
−∞

D−α(p)/2(m2 −∆)−α(p)/4W (−t)F (·, t) dt
∥∥∥∥
L2

≤ C||F ||Lq′ (R;Lp′ (R3)).

However,∥∥∥∥∫ ∞
−∞

D−α(p)/2(m2 −∆)−α(p)/4W (−t)F (x, t) dt

∥∥∥∥2

L2

=

∫ ∞
−∞

∫
R3

F (x, t)

∫ ∞
−∞

D−α(p)(m2 −∆)−α(p)/2W (t− τ)F (·, τ) dτ) dxdt,

and therefore it suffices to prove that

(1.16)

∥∥∥∥∥
∫ ∞
−∞

D−α(p)(m2 −∆)−α(p)/2W (t− τ)F (·, τ) dτ

∥∥∥∥∥
Lq(R;Lp(R3))

≤ C||F ||Lq′ (R;Lp′ (R3)).

Now by Minkowski’s integral inequality and Lemma (1.3), the left-hand side of
(1.16) is bounded by

C

∥∥∥∥∫ ∞
−∞

dτ

|t− τ |α(p)
||F (·, τ)||

Lp
′
x (R3)

∥∥∥∥
Lqt

.

Then part (i) follows from the Hardy–Littlewood–Sobolev theorem with exponents
1
q = 1

q′ − (1− α(p)).

We now prove (ii). Choose q > 1 such that

2− s < 1

q
<

1

2
+

1

p− 1

and r > 1 such that

1

2
=

1

q
− 1

r′
.

Observe that

1

r′
=

1

q
− 1

2
<

1

γ

and therefore r′ > γ. We now define

ε = s+
1

q
− 2,
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from which we have

2− 1

q
+ ε ≡ 3

2
− 1

r′
+ ε = s,

and we set θ = 3
q′ + ε. We then have(∫ T

−T
||W (t)ψ0||γ∞dt

) 1
p−1

≤ T 1
γ−

1
r′

(∫ T

−T
||W (t)ψ0||r

′

∞dt

) 1
r′

.

Using Sobolev’s embedding since q′θ > 3 and using estimate (i), we get(∫ T

−T
||W (t)ψ0||r

′

∞dt

) 1
r′

≤ C
(∫ T

−T
||Dθ

xW (t)ψ0||r
′

q′dt

) 1
r′

≤ C(1 +m)
α(q′)

2 ||ψ0||Hθ+α(q′) .

By the choice of θ and the definition α(q′) ≡ 2
r′ , we have θ+α(q′) ≡ s, and (ii) follows.

To prove (iii), suppose that p > 3 and s = s(p). In this case we estimate the
L∞-norm using the Gagliardo–Nirenberg-type inequality given by Lemma 1.4 with
exponents

a= 2, α = s(p) =
3

2
− 1

p− 1
,

1

b
=

1

4
− 1

2(p− 1)
,

β= 1− 2

p− 1
, θ =

p− 3

p+ 1
, 1− θ =

4

p+ 1
,

we obtain

||W (t)ψ0|| Lp−1((R);L∞(R3))

≤ C
(∫ ∞
−∞
||Ds(p)

x W (t)ψ0||θ(p−1)
L2 ||Dβ

xW (t)ψ0||(1−θ)(p−1)

Lb
dt

) 1
p−1

≤ C||Ds(p)
x W (t)ψ0||θL∞((R);L2)

(∫ ∞
−∞
||Dβ

xW (t)ψ0||(1−θ)(p−1)

Lb
dt

) 1
p−1

.

We now observe that the pairs (∞, 2) and ((1−θ)(p−1), b) are admissible exponents;
in particular,

1

(1− θ)(p− 1)
+

1

b
=

p+ 1

4(p− 1)
+

1

4
− 1

2(p− 1)
=

1

2
.

Therefore, by (i),

||Ds(p)
x W (t)ψ0||L∞((R);L2(R3)) ≤ C||Ds(p)

x ψ0||L2(R3) ≤ C||ψ0||Hs(p) ,

where we have used α(2) = 0, and(∫ ∞
−∞
||Dβ

xW (t)ψ0||(1−θ)(p−1)

Lb(R3)
dt

) 1
p−1

≤ C(1 +m)
(1−θ)α(b)

2 ||Dβ
xψ0||1−θHα(b)

≤ C(1 +m)
1
p−1 ||ψ0||1−θHs(p)
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since β + α(b) = s(p). The result follows since α(b) = 1
2 + 1

p−1 .

Remark 7. The restriction p > 3 in Theorems 1.5(ii) and II comes then from the
use of Sobolev’s embedding when s > s(p) and the Gagliardo–Nirenberg inequality
when s = s(p).

2. Nonlinear estimates. This section is devoted to the proof of a kind of frac-
tional chain rule on the Besov spaces Bsp,q(R

3,C4). Let us recall here that on these
spaces we use the norm 

||ψ||Bsp,q = ||ψ||p + ||ψ||Ḃsp,q ,

||ψ||Ḃsp,q =

{∫
R4

||4My ψ||qp
|y|N+sq

dy

} 1
q

for any integer M > s and where 4yv(·) = v(· + y
2 ) − v(· − y

2 ). We are mainly
interested in the application of Proposition 2.1 and Corollary 2.2 below to the case
where p = q = 2. In this case, the Plancherel identity shows that || · ||Bsp,q and || · ||Ḃsp,q
are actually equivalent to the usual norms on Bsp,q and Ḃsp,q, respectively.

Proposition 2.1. Let be s > 1 and m = [s]. Suppose that a given function φ

belongs to W s′,∞
loc (C4,C4) for some s′ ∈ (s, [s] + 1) and satisfies φ(0) = 0. Then for

any ψ ∈ Bsp,q(R3,C4) ∩ L∞(R3,C4), φ(ψ) ∈ Bsp,q(R3,C4) and, moreover,

||φ(ψ)||Bsp,q ≤ sup
|z|≤||ψ||∞

|dφ(z)|||ψ||p +

[s]∑
k=1

sup
|z|≤||ψ||∞

|dkφ(z)|||ψ||k−1
∞ ||ψ||Ḃsp,q

+C(||ψ||∞)||ψ||Ḃsp,q ||ψ||
s′−1
∞ ,

where for every R > 0, the constant CR is defined by

(2.1) C(R) = sup
|ξ|≤R,|ζ|≤R

|dmG(ξ)− dmG(ζ)|
|ξ − ζ|s′−m

and dkφ is the differential of order k of φ.
Proof. This proposition is esentially proved in Escobedo [6]. For the sake of

completeness, we will give the details of the proof for the case where s ∈ (1, 2). The
general case can easily be completed by using the results in [6].

First, since φ(0) = 0,

||φ(ψ)||p ≤ sup
|z|≤||ψ||∞

|dφ(z)|||ψ||p.

We now estimate ||φ(ψ)||Ḃsp,q . For this observe that

42
yφ(ψ) = 4y(4yφ(ψ))

and then, for every x ∈ R3,

4yφ(ψ)(x) = φ
(
ψ
(
x+ y

2

))
− φ

(
ψ
(
x− y

2

))
=

∫ 1

0

dφ
(
θψ
(
x+

y

2

)
+ (1− θψ

(
x− y

2

))
4yψ(x)dθ,
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from which we have

42
yφ(ψ)(x) =

∫ 1

0

4y
[
dφ
(
θψ
(
x+

y

2

)
+ (1− θ)ψ

(
x− y

2

))
4yψ(x)

]
dθ

=

∫ 1

0

dφ
(
θψ
(
x+

y

2

)
+ (1− θ)ψ

(
x− y

2

))
42
yψ(x)dθ

+

∫ 1

0

4y
(
dφ
(
θψ
(
x+

y

2

)
+ (1− θ)ψ

(
x− y

2

)))
4yψ(x)dθ

≡ I1 + I2.

First, we estimate I1, which is the easiest. Indeed, since

|I1| ≤ sup
|z|≤||ψ||∞

|dφ(z)||42
yψ|,

we deduce {∫
R4

||I1||qp
|y|N+sq

dy

} 1
q

≤ sup
|z|≤||ψ||∞

|dφ(z)|||ψ||Ḃsp,q .

Now consider I2. Since

4y
(
dφ
(
θψ
(
x+

y

2

)
+ (1− θ)ψ

(
x− y

2

)))
= dφ(θψ(x+ y) + (1− θ)ψ(x))− dφ(θψ(x) + (1− θ)ψ(x− y)),

we have, using the hypothesis on φ,∣∣∣4y (dφ(θψ (x+
y

2

)
+ (1− θ)ψ

(
x− y

2

)))∣∣∣|4yψ|
≤ C(||u||∞)|θψ(x+ y) + (1− θ)ψ(x)− θψ(x)− (1− θ)ψ(x− y)|s′−1|4yψ|

≤ C(||u||∞)C ′s|4yψ|(|ψ(x+ y)− ψ(x)|s′−1 − |ψ(x)− ψ(x− y)|s′−1)

= C(||u||∞)C ′s|4yψ|(|τy4yψ(x)|s′−1 + |τ−y4yψ(x)|s′−1),

where for every x ∈ R3 and y ∈ R3, τyψ(x) = ψ(x + y
2 ). We now take ε > 0 such

that s′ > s+ (1− s
s+ε ) and define ρ = s+ ε. Then

s′ > s+

(
1− s

s+ ε

)
=⇒ s′ − 1 > s

(
1− 1

s+ ε

)
≡ s

(
1− 1

ρ

)
=⇒ ρ′s′ > s.

Using Hölder’s inequality

||I2||p ≤ C(||u||∞)C ′s||4yψ||ρp|||τy4yψ|s
′−1 + |τ−y4yψ|s

′−1||ρ′p

≤ 2C(||u||∞)C ′||4yψ||ρp||4yψ||s
′−1

(s′−1)ρ′p,

where C ′ is a constant depending only on s′, p, and ρ. Again using Hölder’s inequality,{∫
R4

||I2||qp
|y|N+sq dy

} 1
q

≤ 2C(||u||∞)C ′

{∫
R4

||4yψ||ρqρp
|y|N+sq

dy

} 1
ρq


∫
R4

||4yψ||(s
′−1)ρ′q

(s′−1)ρ′p

|y|N+sq
dy


1
ρ′q

.
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Since s < r and s < ρ′(s′ − 1), by the definition of the homogeneous norms that we
are using,

{∫
R4

||I2||qp
|y|N+sq

dy

} 1
q

≤ ||ψ||
Ḃ
s
ρ
ρp,ρq

||ψ||(s
′−1)

Ḃ

s
(s′−1)ρ′
(s′−1)ρ′p,(s′−1)ρ′q

.

Finally, observe that since ρ > 1 and ρ′(s′ − 1) > 1, we have for any M > s that

||4yψ||ρqρp =

{∫
R3

|4My ψ(x)|ρpdx
} q
p

≤ ((M + 1)||ψ||ρ−1
∞ )q

{∫
R3

|4My ψ(x)|pdx
} q
p

.

We easily deduce that for some positive constant C depending only on ρ, p, q, and s,
we have

||ψ||
Ḃ
s
ρ
ρp,ρq

≤ C||ψ||1−
1
ρ

∞ ||ψ||
1
ρ

Ḃsp,q
,

||ψ||(s
′−1)

Ḃ

s
(s′−1)ρ′
(s′−1)ρ′p,(s′−1)ρ′q

≤ C||ψ||
(s′−1)− 1

ρ′
∞ ||ψ||

1
ρ′

Ḃsp,q
,

and Proposition 1.2 follows.

Corollary 2.2. Let be s > 1 and m = [s]. Suppose that φ is a given homo-

geneous function from C4 to C4 of degree p and belongs to W s′,∞
loc (C4,C4) for some

s′ > s. Then there is a positive constant C depending only on s, s′, p, and q such
that for any ψ ∈ Bsp,q(R3,C4) ∩ L∞(R3,C4), φ(ψ) ∈ Bsp,q(R3,C4) and, moreover,

||φ(ψ)||Bsp,q ≤ C
[
C(1) + sup

|z|≤1

|dφ(z)|+
[s]∑
k=1

sup
|z|≤1

|dkφ(z)|
]
||ψ||Bsp,q ||ψ||

p−1
∞ ,

where C(1) is given by (2.1) for R = 1.

Proof. If φ is homogeneous of degree p, its differential of order k < [s′] is home-
geneous of degree p− k. On the other hand, if m = [s],

C(R) = sup
|ξ|≤R,|ζ|≤R

|dmφ(ξ)− dmφ(ζ)|
|ξ − ζ|s′−m

≡ sup
|ξ|≤R,|ζ|≤R

Rp−1|dmφ( ξR )− dmφ( ζR )|
Rs′−1| ξR −

ζ
R |s

′−m

= Rp−s
′

sup
|ξ|≤1,|ζ|≤1

|dmφ(ξ)− dmφ(ζ)|
|ξ − ζ|s′−m .

The result then follows by Proposition 2.1.

Remark 8. If we consider the function G defined in (0.2) with p ≥ 3 and s
satisfying (0.5) or s = s(p) when p > 3, then G is homogeneous of degree p. If p ≥ 3

is an odd integer, G is C∞ and then belongs to W s′,∞
loc (C4,C4) for all s′. If p is not an

odd integer, then G belongs to W s′,∞
loc (C4,C4) for s′ = p−1

2 , which by (0.5) is greater
than s. Corollary 2.2 can then be applied to G(ψ), and this will be used in Lemma
3.1 below.
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3. Proof of the main results. As stated in the introduction, the operator iA
generates a strongly continuous unitary group in Hs, which we denote by W (t). We
can write then the Cauchy problem (0.3) in the following integral form:

(3.1) ψ(t) = W (t)ψ0 − i
∫ t

0

W (t− τ)G(ψ)dτ.

We assume throughout this section that G is given by (0.2) with p ≥ 3 and that s
satisfies (0.5) or s = s(p) and p > 3.

Lemma 3.1.

(i) Suppose that p > 3. Then there is C > 0 such that for every T ∈ (0,∞] and
all ψ ∈ L∞((−T, T );Hs(p)(R3)) ∩ Lp−1((−T, T );L∞(R3)), we have∫ t

0

W (t− τ)G(ψ)dτ ∈ Lp−1((−T, T );L∞(R3))

and ∥∥∥∥∫ t

0

W (t− τ)G(ψ)dτ

∥∥∥∥Lp−1((−T,T );L∞(R3))

≤ C||ψ||L∞((−T,T );Hs(p)(R3))||ψ||p−1
Lp−1((−T,T );L∞(R3)).

(ii) Suppose that p and s satisfy (0.5) and assume that γ > (p − 1) is such that
s > 3

2 −
1
γ . Suppose that ψ ∈ L∞((−T, T );Hs(p)(R3)) ∩ Lγ((−T, T );L∞(R3)). Then∫ t

0

W (t− τ)G(ψ)dτ ∈ Lp−1((−T, T );L∞(R3))

and, moreover,∥∥∥∥∫ t

0

W (t− τ)G(ψ)dτ

∥∥∥∥
Lp−1((−T,T );L∞(R3))

≤ CT 1
p−1−

1
γ ||ψ||L∞((−T,T );Hs(p)(R3))||ψ||p−1

Lp−1((−T,T );L∞(R3))

for every r′ such that 1
r′ ∈ (2− s, 1

γ ).

Proof. First, we prove (i). Using Theorem 1.5, we have∥∥∥∥∫ t

0

W (t− τ)G(ψ)(τ)dτ

∥∥∥∥
Lp−1((−T,T );L∞(R3))

≤
∥∥∥∥∫ T

−T
|W (t− τ)G(ψ)(τ)|dτ

∥∥∥∥
Lp−1((−T,T );L∞(R3))

≤
∫ T

−T
||W (t− τ)G(ψ)(τ)| |Lp−1((−T,T );L∞(R3))dτ ≤ C

∫ T

−T
||G(ψ)(τ)||Hs(p)dτ,

where in the last inequality we used Theorem 1.5(iii). Now by Corollary 2.2,∫ T

−T
||G(ψ)(τ)||Hs(p)dτ ≤ C||ψ||L∞((−T,T );Hs(p)(R3))

∫ T

−T
||ψ(τ)||p−1

∞ dτ.
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The proof of (ii) is similar. Indeed,∥∥∥∥∫ t

0

W (t− τ)G(ψ)dτ

∥∥∥∥
Lp−1((−T,T );L∞(R3))

≤
∥∥∥∥∫ T−T |W (t− τ)G(ψ)|dτ

∥∥∥∥
Lp−1((−T,T );L∞(R3))

≤
∫ T
−T ||W (t− τ)G(ψ)||Lp−1((−T,T );L∞(R3))dτ ≤ CT

1
p−1−

1
γ
∫ T
−T ||G(ψ)||Hsdτ,

where in the last inequality we used Theorem 1.5(ii). Again using Corollary 2.2,∫ T

−T
||G(ψ)||Hsdτ ≤ C||ψ||L∞((−T,T );Hs(R3))

∫ T

−T
||ψ(τ)||p−1

∞ dτ.

Finally, (ii) follows using Hölder’s inequality since γ > p− 1.
Lemma 3.2.

(i) Let γ > p − 1 and T ∈ (0,∞]. If ψ1 and ψ2 are in L∞((0, T );L2(R3))∩
Lγ((0, T );L∞(R3)) for some T ∈ R, then∥∥∥∥∫ t

0

W (t− τ)(G(ψ1)−G(ψ2))dτ

∥∥∥∥
L∞((0,T );L2(R3))

≤ CT 1− (p−1)
γ ||ψ1 − ψ2||L∞((0,T );L2(R3))

(
||ψ1||p−1

Lγ((0,T );L∞(R3)) + ||ψ2||p−1
Lγ((0,T );L∞(R3))

)
.

(ii) For every T ∈ (0,∞], if ψ1 and ψ2 are in L∞((−T, T );L2(R3))∩ Lp−1((−T, T );
L∞(R3)), then∥∥∥∥∫ t

0

W (t− τ)(G(ψ1)−G(ψ2))dτ

∥∥∥∥
L∞((−T,T );L2(R3))

≤ C||ψ1 − ψ2||L∞((−T,T );L2(R3))

(
||ψ1||p−1

Lp−1((−T,T );L∞(R3)) + ||ψ2||p−1
Lp−1((−T,T );L∞(R3))

)
.

Proof. We prove (i); the proof of (ii) is similar. By our linear estimates, for all
t ∈ (0, T ), ∥∥∥∥∫ t

0

W (t− τ)(G(ψ1(τ))−G(ψ2(τ)))dτ

∥∥∥∥
L2(R3)

≤
∫ t

0

||(G(ψ1(τ))−G(ψ2(τ)))||L2(R3)dτ.

Moreover, since p−1
2 > s > 1,

|G(ψ1)−G(ψ2)| ≤ Cp|ψ1 − ψ2|(|ψ1|p−1 + |ψ2|p−1),

from which we have, for all t ∈ (0, T ),∫ t

0

||(G(ψ1(τ))−G(ψ2(τ)))||L2(R3)dτ

≤ Cp||ψ1 − ψ2||L∞((0,T );L2(R3))

∫ t

0

(
||ψ1(τ)||p−1

L∞(R3) + ||ψ2(τ)||p−1
L∞(R3)

)
dτ,
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and the result follows.
Lemma 3.3. Let be ψ0 ∈ Hs(R3) and γ ≥ p− 1. Suppose that ψ ∈ Lγ((−T, T );

L∞(R3))∩L∞((−T, T );Hs(R3)) is a solution of equation (3.1). Then ψ ∈ C([−T, T ];
Hs(R3)). Furthermore, if ψ1 and ψ2 are two such solutions, then ψ1 = ψ2.

Proof. The first statement follows from the facts that W (t) is a strongly continu-
ous group on Hs(R3) and that G(ψ) ∈ L1((−T, T );Hs(R3)). The proof of the second
statement is by now classical. We write it down for the sake of completeness follow-
ing Cazenave and Weissler [4]. Suppose that ψ1(t) 6= ψ2(t) for some t ∈ (−T, T ).
Let t0 = inf{t ∈ (−T, T );ψ1(t) 6= ψ2(t)}. Since ψ1 and ψ2 are continuous, t0 is
well defined and ψ1(t0) = ψ2(t0). Moreover, the functions φ1(t) = ψ1(t + t0) and
φ2(t) = ψ2(t+ t0) are two solutions of equation (3.1) on the interval (0, T − t0). Then
by Lemma 3.2, for all t ∈ (t0, T ),

||ψ1 − ψ2||L∞((t0,t);L2(R3)) =

∥∥∥∥∫ t

0

W (t− τ)(G(ψ1)−G(ψ2))dτ

∥∥∥∥
L∞((t0,t);L2(R3))

≤ C(t− t0)1− (p−1)
γ ||ψ1 − ψ2||L∞((t0,t);L2(R3))

·
(
||ψ1||p−1

Lγ((t0,t);L∞(R3)) + ||ψ2||p−1
Lγ((t0,t);L∞(R3))

)
.

For t > t0 but sufficiently close to t0, it follows that

C(t− t0)1− (p−1)
γ

(
||ψ1||p−1

Lγ((t0,t);L∞(R3)) + ||ψ2||p−1
Lγ((t0,t);L∞(R3))

)
< 1.

(Observe that even if γ = p− 1, since ψ1 and ψ2 belong to Lγ((−T, T );L∞(R3)), we
have that ||ψ1||p−1

Lγ((t0,t);L∞(R3)) and ||ψ2||p−1
Lγ((t0,t);L∞(R3)) tend to 0 as t → t0.) This

implies that ||ψ1 − ψ2||L∞((t0,t);L2(R3)) = 0, which contradicts the choice of t0 and
thus proves ψ1(t) = ψ2(t) for all t ∈ (−T, T ).

Proof of Theorem I. Let γ > p− 1 such that 3
2 −

1
γ < s. For T > 0 and M > 0,

we define

X(T,M) = {ψ ∈ L∞((−T, T );Hs(R3)) ∩ Lγ((−T, T );L∞(R3)); |||ψ||| ≤M},

where

|||ψ||| = sup
t∈(−T,T )

||ψ||Hs(R3) + ||ψ||Lγ((−T,T );L∞(R3)).

The set X(T,M) endowed with the metric

d(ψ1, ψ2) = ||ψ1 − ψ2||L∞((−T,T );L2(R3))

is a complete metric space. We want to find conditions on T and M which imply that
the map F , given by

F(ψ) = W (t)ψ0 − i
∫ t

0

W (t− τ)G(ψ)dτ,

is a strict contraction on X(T,M). By Lemma 3.1, there are positive constants C1

and C2 depending only on s, p, and γ such that for all ψ ∈ X(T,M),

|||F(ψ)||| ≤ C1||ψ0||Hs(R3) + C2T
1+ 2−p

γ −
1
r′Mp.
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Then if

(3.2) C1||ψ0||Hs(R3) + C2T
1+ 2−p

γ −
1
r′Mp ≤M,

F(ψ) ∈ X(T,M). On the other hand, by Lemma 3.2, there is a positive constant C3

depending only on s, p, and γ such that for all ψ1 ∈ X(T,M) and ψ2 ∈ X(T,M),

d(F(ψ1),F(ψ2)) < C3T
1− (p−1)

γ Mp−1.

Then if

(3.3) C3T
1− (p−1)

γ Mp−1 < 1,

F is a strict contraction. Therefore, if T and M satisfy (3.2) and (3.3), F is a strict
contraction on X(T,M). Thus given any ψ0 ∈ Hs(R3) and any M > C1||ψ0||Hs(R3),
there exists T > 0 depending only on ||ψ0||Hs(R3), s, p, γ, and M such that F has a
unique fixed point in X(T,M) which is a solution of (3.1) in L∞((−T, T );Hs(R3))∩
Lγ((−T, T );L∞(R3)).

We now call T ∗ the supremum of all T > 0 for which there exists a solution of
(3.1) in L∞((−T, T );Hs(R3)) ∩ Lγ((−T, T );L∞(R3)). We have proved that T ∗ > 0.
Moreover, by Lemma 3.3, two such solutions coincide on the intersection of their
domains of definition. We can see that if T ∗ <∞ then no solution of (3.1) exists on
L∞((−T ∗, T ∗);Hs(R3))∩Lγ((−T ∗, T ∗);L∞(R3)). By Lemma 3.3, if such a solution
existed, it would be in C([−T ∗, T ∗];Hs(R3)). Then, however, this solution could be
continued beyond T ∗ by solving (3.1), taking ψ(T ∗) as the initial value. We can then
define the maximal solution ψ of (3.1) as the solution in C((−T ∗, T ∗);Hs(R3)) such
that for any T ∈ (0, T ∗), it belongs to L∞((−T, T );Hs(R3))∩Lγ((−T, T );L∞(R3)).

In order to prove the continuous dependence of the solution from the initial value,
fix T ∈ (0, T ∗) and M such that (3.2) and (3.3) hold for all initial values φ with Hs

norm less than 2||ψ0||Hs(R3). Then the fixed-point argument can be done in X(T,M)
for any such φ. This implies that T < T ∗(φ) for all of these φ’s. Moreover, let ψ0,k

be a sequence such that

||ψ0,k||Hs(R3) ≤ 2||ψ0||Hs(R3), ||ψ0,k − ψ0||Hs(R3) −→ 0 as k −→∞.

Therefore, T < T ∗(ψ0,k) and |||ψk||| < M for all k. We now have

||ψk − ψ||L2(R3) ≤ ||W (t)(ψ0,k − ψ0)||L2(R3) +

∫ t

0

||(G(ψk(τ))−G(ψ(τ)))||L2(R3)dτ

≤ ||W (t)(ψ0,k − ψ0)||L2(R3)

+Cp||ψk − ψ||L∞((0,T );L2(R3))

∫ t

0

(
||ψk(τ)||p−1

L∞(R3) + ||ψ(τ)||p−1
L∞(R3)

)
dτ

≤ ||W (t)(ψ0,k − ψ0)||L2(R3) + C3T
1− p−1

γ Mp−1||ψk − ψ||L2(R3).

Now using (3.3), we deduce that

||ψk − ψ||L2(R3) ≤
(

1− C3T
1− p−1

γ Mp−1
)−1

||W (t)(ψ0,k − ψ0)||L2(R3),

from which we get ψk −→ ψ in C((−T, T );L2(R3)). Since by construction the se-
quence ψk is bounded in C((−T, T );Hs(R3)) and, more precisely,

||ψk(t)||Hs ≤M for t ∈ (−T, T ),
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we deduce by interpolation that

||ψk(t)− ψ(t)||Hs′ ≤ C(M)||W (t)(ψ0,k − ψ0)||θL2(R3)

for some θ ∈ (0, 1), from which we get ψk −→ ψ in C((−T, T );Hs′(R3)) for all
s′ ∈ (0, s).

Finally, we prove that this solution ψ belongs to C1((−T, T );L2(R3)). Since ψ ∈
C([−T, T ];Hs(R3)), we know that ∇ψ ∈ C([−T, T ];Hs−1(R3)). On the other hand,
we claim that G continuously maps C([−T, T ];Hs(R3)) into C([−T, T ];L2(R3)). In-
deed, sinceG continuously maps L2p(R3) into L2(R3), it continuously maps C([−T, T ];
L2p(R3)) into C([−T, T ];L2(R3)). Also, it maps C([−T, T ];Hs(R3)) into C([−T, T ];
L2p(R3)) by the Sobolev embedding theorem since 1 ≤ s(p) < s =⇒ 2p < 6

3−2s .
Then differentiating then the integral equation (3.1), we obtain that ψ satisfies equa-
tion (0.1), from which we get that ψt is in C((−T, T );L2(R3)) and so ψ belongs to
C1((−T, T );L2(R3)).

Remark 9. Assume that the nonlinearity G is in W 1+s′′,∞
loc (C4,C4) for some

s′′ > s and is such that, for some positive constant,

||dG||W s′′,∞(Br) ≤ Crp−1,

where Br is the ball in C4 centered at zero and of radius r. Then

||ψk − ψ||Hs(R3) ≤ ||W (t)(ψ0,k − ψ0)||Hs(R3) +

∫ t

0

||(G(ψk(τ))−G(ψ(τ)))||Hs(R3)dτ

≤ ||W (t)(ψ0,k − ψ0)||Hs(R3)

+ Cp||ψk − ψ||L∞(0,T ;Hs(R3))

∫ t

0

||dG||W s′′,∞(Br(k,τ))
dτ,

where r(k, τ) = ||ψk(τ)||L∞(R3) + ||ψ(τ)||L∞(R3). Then by Theorem 1.5,

||ψk −ψ||Hs(R3) ≤ ||W (t)(ψ0,k − ψ0)||Hs(R3)

+ C ′p||ψk − ψ||L∞(0,T ;Hs(R3))

∫ t

0

(
||ψk(τ)||p−1

L∞(R3) + ||ψ(τ)||p−1
L∞(R3)

)
dτ.

Then it is clear that for small enough T , the application ψ0 → ψ is Lipschitz from V
to C((−T, T );Hs(R3)). Using Theorem 1.5, one can prove in a similar way that the
application is Lipschitz from V to Lγ((−T, T );L∞(R3)).

Proof of Theorem II. First, suppose that ψ0 is any given function of Hs(p)(R3).
In a similar way as in the proof of Theorem I, we define

X(T,M,ψ0) = {ψ ∈ L∞((−T, T );Hs(p)(R3))∩Lp−1((−T, T );L∞(R3)); |||ψ||| ≤M},

where

|||ψ||| = sup
t∈(−T,T )

||ψ − ψ0||Hs(p)(R3) + ||ψ||Lp−1((−T,T );L∞(R3)).

By choosing T sufficiently small, we can be sure that the set X(T,M,ψ0) is not
empty for M as small as we need. Indeed, the function W (t)ψ0 is such that

(3.4) lim
t→0
||W (t)ψ0 − ψ0||Hs(p)(R3) = 0,
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and since by Theorem 1.5, W (t)ψ0 ∈ Lp−1(R;L∞(R3)), we also have

(3.5) lim
T→0
||W (t)ψ0||Lp−1((−T,T );L∞(R3)) = 0.

The set X(T,M,ψ0) endowed with the metric

d(ψ1, ψ2) = ||ψ1 − ψ2||L∞((−T,T );L2(R3))

is a complete metric space.
Now there is a positive constant C1 such that for any ψ ∈ X(T,M,ψ0),

(3.6)
|||F(ψ)||| ≤ sup

t∈(−T,T )

||W (t)ψ0 − ψ0||Hs(p)(R3) + ||W (t)ψ0||Lp−1((−T,T );L∞(R3))

+ C1(M + ||ψ0||Hs(p)(R3))M
p−1.

On the other hand, by Lemma (3.2), there is a positive constant C2 such that for
every ψ1 and ψ2 in X(T,M,ψ0), we have

(3.7) d(F(ψ1),F(ψ2)) ≤ C2d(ψ1 − ψ2)Mp−1.

Let us fix conditions on T and M in order for F to be a strict contraction on
X(T,M,ψ0). We first choose M such that

(3.8) C2M
p−1 < 1 and C1(M + ||ψ0||Hs(p)(R3))M

p−2 <
1

2
.

Then using (3.3) and (3.4), we take T small enough in order to have X(T,M,ψ0) not
be empty and

(3.9) ||W (t)ψ0||Lp−1((−T,T );L∞(R3)) + sup
t∈(−T,T )

||W (t)ψ0 − ψ0||Hs(p)(R3) <
M

2
.

Under conditions (3.8) and (3.9), F is a strict contraction from X(T,M,ψ0) into itself.
This shows that for any ψ0 in Hs(p), there is T ≡ T (ψ0) such that F has a unique
fixed point in X(T,M,ψ0) which is a solution of (3.1) in L∞((−T, T );Hs(p)(R3)) ∩
Lp−1((−T, T );L∞(R3)). Using Lemma 3.3 as in the proof of Theorem I, we deduce
the existence of a maximal solution ψ of (3.1) in C((−T ∗, T ∗);Hs(p)(R3)) which is
unique in L∞((−T, T );Hs(p)(R3)) ∩ Lγ((−T, T );L∞(R3)) for all T ∈ (0, T ∗).

In order to prove the continuous dependence in the same way as in Theorem I, we
will show that we can find T > 0, M > 0, and a neighborhood V of ψ0 in Hs(p)(R3)
such that the previous fixed-point argument can be done in X(T,M, φ) for any φ ∈ V .
For this observe that for all u ∈ X(T,M, φ),

(3.10)

|||F(u)||| ≤ sup
t∈(−T,T )

||W (t)φ− φ||Hs(p)(R3) + ||W (t)φ||Lp−1((−T,T );L∞(R3))

+ C(M + ||φ||Hs(p)(R3))M
p−1

≤ 2||(φ− ψ0)||Hs(p)(R3) + sup
t∈(−T,T )

||W (t)ψ0 − ψ0||Hs(p)(R3)

+ ||W (t)(φ− ψ0)||Lp−1((−T,T );L∞(R3))

+ ||W (t)ψ0||Lp−1((−T,T );L∞(R3))

+ C(M + ||(φ− ψ0)||Hs(p)(R3) + ||ψ0||Hs(p)(R3))M
p−1.
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On the other hand, by Lemma 3.2., for any u and v in X(T,M, φ), we have (3.7),
i.e.,

d(F(u),F(v)) ≤ C3d(u, v)Mp−1.

First, we choose M such that

(3.11) C3M
p−1 < 1 and C(M + 2||ψ0||Hs(p)(R3))M

p−2 <
1

2
.

Then we choose T such that

(3.12) sup
t∈(−T,T )

||W (t)ψ0 − ψ0||Hs(p)(R3) + ||W (t)ψ0||Lp−1((−T,T );L∞(R3)) <
M

2
.

Finally, in order to define the neighborhood V of ψ0 in Hs(p), we remark that by
Theorem 1.5 there is a positive constant C such that for every T > 0,

||W (t)(ψ0 − φ)||Lp−1((−T,T );L∞(R3)) ≤ ||W (t)(ψ0 − φ)||Lp−1(R;L∞(R3))

≤ C||ψ0 − φ||Hs(p)(R3).

Therefore, there is δ0 small enough such that if ||φ − ψ0||Hs(p)(R3) < δ0, then for all
T > 0,

(3.13) 2||φ− ψ0||Hs(p)(R3) + ||W (t)(ψ0 − φ)||Lp−1((−T,T );L∞(R3)) <
M

4
.

We then define

(3.14) V = {φ ∈ Hs(p)(R3); ||φ− ψ0||Hs(p)(R3) < δ},

where

(3.15) δ = min(δ0, ||ψ0||Hs(p)(R3)).

Then observe that if φ ∈ V by (3.15) and (3.11), we also have

C(M + ||(φ− ψ0)||Hs(p)(R3) + ||ψ0||Hs(p)(R3))M
p−1 ≤ C(M + 2||ψ0||Hs(p)(R3))M

p−1

<
M

4
.

It is now straightforward to check that for every φ ∈ V , the application F is a strict
contraction on X(T,M, φ). Therefore, for all φ ∈ V , it has a unique fixed point in
X(T,M, φ) which is a solution to (3.1) in L∞((−T, T );Hs(p)(R3)) ∩ Lp−1((−T, T );
L∞(R3)). If we now consider a sequence {φk} ⊂ V such that φk −→ ψ0 in Hs(p),
then as we have just seen, T < T ∗(φk) and ||uk||Lp−1((−T,T );L∞(R3)) < M for all k.
The proof now ends as in Theorem I.

In order to prove global existence for small initial data, consider again the esti-
mates (3.6) and (3.7). Since we take ||ψ0||Hs(p)(R3) < M , we deduce from (3.6) the
existence of a positive constant C ′ independent of T such that

(3.16) |||F(ψ)||| ≤ C ′||ψ0||Hs(p)(R3) + 2C1M
p.
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Then from (3.7) and (3.16), we see that if M > (1 + C ′)||ψ0||Hs(p)(R3) and M is so

small that C ′||ψ0||Hs(p)(R3) + 2C1M
p < M and C2M

p−1 < 1, we may carry out our
fixed-point argument in the space

X(∞,M, ψ0) = {ψ ∈ L∞(R;Hs(p)(R3)) ∩ Lp−1(R;L∞(R3)); |||ψ||| ≤M}.

We now show the scattering result. Let ψ be the global solution with small ini-
tial data ψ0 obtained above. Since, as we have seen, ψ ∈ L∞(R;Hs(p)(R3)) ∩
Lp−1(R;L∞(R3)), we deduce that φ± defined by (0.6) belong to Hs(p)(R3) and that

||φ±||Hs(p)(R3) ≤ ||ψ0||Hs(p)(R3) + C|||ψ|||p.

On the other hand, for all t ∈ R3,

W (−t)ψ(t)− φ+ =

∫ ∞
t

W (−τ)G(ψ(τ))dτ

from which, taking norms in Hs(p)(R3), we get

||W (−t)ψ(t)− φ+||Hs(p)(R3) ≤
∫ ∞
t

||W (−τ)G(ψ(τ))||Hs(p)(R3)dτ

≤ C
∫ ∞
t

||ψ(τ)||Hs(p)(R3)||ψ(τ)||p−1
∞ dτ

≤ C sup
t∈R
||u||Hs(p)(R3)

∫ ∞
t

||ψ(τ)||p−1
∞ dτ.

Since ψ ∈ Lp−1(R;L∞(R3)), we have ||ψ(τ)||p−1
∞ ∈ L1(R) and therefore

lim
t→∞

∫ ∞
t

||ψ(τ)||p−1
∞ dτ = 0.

We then deduce

lim
t→∞

||ψ(t)−W (t)φ+||Hs(p)(R3) ≡ lim
t→∞

||W (−t)ψ(t)− φ+||Hs(p)(R3) = 0.

The same proof holds for φ−.

4. Extension to the Klein–Gordon and wave equations. The arguments of
the previous sections can be used to study local and global existence for the Cauchy
problem associated with the nonlinear Klein–Gordon and wave equations. For the
sake of simplicity, we consider equations of the form

(4.1)


utt −4u+m2u = (Du)γ , x ∈ R3, t ∈ R, m ≥ 0,

u(x, 0) = f(x), x ∈ R3,

ut(x, 0) = g(x), x ∈ R3,

where Du = (∂tu,∇u) and γ is a multiindex of length 4 with |γ| = l ∈ Z+. In order to
relate our results to previous ones, for the sake of brevity, let us only mention the work
of Ponce and Sideris [11]. These authors considered the more general nonlinearity
G(u,∇u) = uk(∇u)γ , where k ∈ Z+. They showed that if l = 2 or l = 3 and
2 < s ≤ 5

2 , then for every (f, g) ∈ Hs(R3)×Hs−1(R3), there exists a T > 0 depending
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on s and ||f ||Hs + ||g||Hs−1 such that (4.1) has a unique solution u satisfying, in
particular,

(4.2)


u ∈

2⋂
j

Cj([0, T );Hs−j(R3)),∫ T

0

||∇u(t, ·)||2L∞dt <∞.

Moreover, if no restriction is imposed on the order of the nonlinearity in ∇u, |γ| =
l ∈ Z+, l ≥ 3, then the previous result holds for s > s(l) = 5

2 −
1
l−1 .

Using arguments similar to those used in section 3, this can be improved to obtain
a global existence result for small data. In particular, we prove the following theorem.

Theorem 4.1. Let |γ| = l ∈ Z+, l > 3, and s(l) = 5
2 −

1
l−1 . Then for every

(f, g) ∈ Hs(l)(R3)×Hs(l)−1(R3), there exists a T ∗ > 0 depending on s and of (f, g)
and a solution u to (4.1) such that{

u∈ C((−T ∗, T ∗);Hs(l)(R3)) ∩C1((−T ∗, T ∗);L2(R3)),

∇u∈ Ll−1
loc ((−T ∗, T ∗);L∞(R3)).

Moreover,
(i) this solution is the unique solution satisfying

∀T < T ∗, u ∈ L∞((−T, T );Hs(R3)) and ∇u ∈ Ll−1((−T, T );L∞(R3));

(ii) if T ∗ <∞, then ||∇u||Ll−1((−T∗,T∗);L∞(R3)) + ||u||L∞((−T∗,T∗);Hs(l)(R3)) =∞;

(iii) there is T < T ∗ and a neighborhood V of (f, g) in Hs(l)(R3) ×Hs(l)−1(R3)
such that for all 0 ≤ s′ < s(l), the map (f, g) −→ u is continuous from V to
C((−T, T );Hs′(R3)); and

(iv) if ||f ||Hs + ||g||Hs−1 is sufficiently small, then T ∗ =∞,

u ∈ L∞(R;Hs(l)(R3)), and ∇u ∈ Ll−1(R;L∞(R3)).

The proof of Theorem 4.1 is based on the following linear estimates in the same
way as the proofs of Theorems I and II are based on Theorem 1.5. The new inequality
which allows us to obtain global results is (4.4) below.

Theorem 4.2. Let Km(t)(f, g) be the solution of (1.3). Then the following hold:
(i) Given 2 ≤ p <∞, 1

p + 1
q = 1

2 , and α(p) = 2( 1
2 −

1
p ), there is a positive constant

C such that
(4.3)
||Km (·)(f, g)||Lq(R;Lp(R3))

≤ C
(∥∥∥Dx

α(p)
2 (m2 −4)

α(p)
4 f

∥∥∥
L2(R3)

+

∥∥∥∥D α(p)
2

x (m2 −4)
α(p)

4 −
1
2 g

∥∥∥∥
L2(R3)

)
.

(ii) If p = 3 and s(p) = 3
2 −

1
p−1 , then there is a positive constant C such that

(4.4)

||Km(·)(f, g)||Lp−1(R;L∞(R3)) ≤ C(1+m)
1
l−1 (||f ||Hs(p)(R3) + ||(m2−4)−

1
2 g||Hs(p)(R3)).

(iii) Given s > s(p) and p ≥ 3 for all γ > p − 1 such that 1
γ ∈ ( 3−2s

2 , 1
p−1 ) and

all r′ > γ such that 1
r′ ∈ ( 3−2s

2 , 1
γ ), there is a positive constant C such that for all
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T > 0,

(4.5)

||Km (·)(f, g)||Lγ(−T,T ;L∞(R3))

≤ C(1 +m)
1
r′ T

1
γ−

1
r′ (||f ||Hs(R3) + ||(m2 −4)−

1
2 g||Hs(R3)).

Proof. The proof follows from the corresponding estimates for the operators

(4.6) K±m(·)(f, g) =
(
e±it
√
−4+m2

f, e±it
√
−4+m2

(−4+m2)−
1
2 g
)
.

These are obtained in a similar way as in Theorem 1.5 using Lemmas 1.2 and
1.4.
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Abstract. We establish global existence of weak solutions for the viscoelastic system utt =
Div( ∂Φ

∂F
(Du) +Dut) with nonconvex stored-energy function Φ. Unlike previous methods [P. Rybka,

Proc. Roy. Soc. Edinburgh Sect. A, 121 (1992), pp. 101–138], our result does not require that ∂Φ
∂F

be
globally Lipschitz continuous. Our approach is based on implicit time discretization and a compact-
ness property of the discrete dynamical scheme not shared by energy-minimizing sequences and not
known to be shared by approximation schemes of Galerkin type.

Key words. nonconvex functionals, evolution equations, implicit time discretization, viscoelas-
ticity, solid–solid phase transitions
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Introduction. This article is devoted to the system of partial differential equa-
tions (PDEs)

(0.1) utt = Div (σ(Du) +Dut),

where u is a mapping from an open bounded domain Ω ⊂ Rn to RN satisfying
appropriate initial and boundary conditions, and σ(F ) = ∂Φ(F )/∂F for some “stored-
energy function” Φ : MN×n → R.

To establish global existence results has required considerable effort even in the
case where n = N = 1 [GMM, Da, A, Y, AB, P]. Previous results in higher dimen-
sions were obtained notably by Gajewski, Gröger, and Zacharias [GGZ], Clement [C],
Friedman and Nec̆as [FN], Engler [E1], and Rybka [R]. For work on related models
involving, e.g., higher gradients, thermal effects, or memory terms, see [AHNS, BBN1,
BBN2, BFS, BHJPS, BN, CH, E2, FM, HZ, KH, MNS, NR, NS, SS]. The techniques
employed for (0.1) in higher dimensions (Galerkin methods [GGZ, C]; Galerkin meth-
ods combined with regularity theorems on Du [FN]; semigroup methods [E1, R]; and
semigroup methods combined with regularity theorems on Du [Pec]) make the stan-
dard assumption that Φ(F ) ∼ |F |p (p ≥ 2) for large |F | and, in addition, crucially
rely on at least one of the following two hypotheses:

(i) the underlying energy function Φ is convex [GGZ, C, FN, E1, Pec], or

(ii) the nonlinearity σ is globally Lipschitz continuous [GGZ, R].

Here we present a new approach to the system (0.1) which allows one to establish
global existence without hypotheses (i) or (ii), provided, e.g., the following natural
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monotonicity condition at infinity is imposed:

(0.2) (σ(F̄ )− σ(F )) · (F̄ − F ) ≥ 0 for all |F |, |F̄ | ≥ R and some R > 0.

In fact, this condition has already been proposed in the case where n = N = 1 by
Andrews and Ball [AB], who employed it to prove global existence.

Our approach was partially inspired by recent work of Kinderlehrer and Pedregal
[KP] and Demoulini [De] on measure-valued solutions to evolution equations with non-
convex energy functionals and involves two main steps: (i) implicit time discretization
and minimization of an associated static problem at each time step ((2.1) and (2.2)
in section 2) and (ii) passing to the limit in the nonlinear term σ(Du). The feasibility
of (i) relies on a simple but powerful observation, namely that the discretized coun-
terpart of the damping term Dut provides convexity of the static problem despite the
stored-energy function Φ not being convex (Lemma 2.1). Achieving (ii) is based on a
“propagation of regularity” property of the discrete scheme which may be interesting
in its own right (Proposition 3.1 in section 3): it says, roughly, that the amount of
oscillations in Du at any finite time t can be controlled by the amount of oscillations
present in the initial data. In particular, we show that if a sequence of initial data
uh|t=0 converges strongly in the Sobolev space W 1,2(Ω,RN ), then the sequence of
corresponding approximate solutions uh converges strongly in L2(0, T ;W 1,2(Ω,RN ))
as the time stepsize h tends to zero.

This controllability of oscillations created in Du until time t is a subtle feature of
the dynamics. First, it becomes false if the assumption of strong convergence of the
uh|t=0 is dropped (see Example 2.1), reflecting the fact that the system (0.1) and its
discretization do not regularize Du in time. Second, it is not shared by minimizing
sequences (uj , vj) of the underlying Lyapunov function

(0.3) E[u, v] =

∫
Ω

(
Φ(Du) +

1

2
|v|2
)
dx

(which decreases with time along solutions (u(t), ut(t)) of (0.1); see (2.7) and Theo-
rem 4.1). The lack of convexity (or polyconvexity, quasiconvexity, . . .) properties of
the energy Φ often enforces the creation of finer and finer oscillations in Du (see [BJ1,
BJ2, CK] and after them many others) and leads to weak and not strong convergence
of minimizing sequences (uj , vj) whose limits (u, 0) in particular fail to satisfy the
corresponding equilibrium equations Div σ(Du) = 0.

Example 0.1 (see [S, SH, F]). Let n = 2, N = 1, Ω = (0, 1) × (0, 1), Φ =
(u2
x − 1)2 + (uy)4, and choose the boundary condition u(x, y)|∂Ω = x2/2. One easily

sees that the infimum of I[u] =
∫

Ω
Φ(Du) dx on the Sobolev space W 1,4(Ω) is zero but

not attained; minimizing sequences strive to simultaneously achieve ux(x, y) ∈ {±1}
and uy ≡ 0, which is impossible as the latter together with Poincaré’s inequality
implies u(x, y) ≡ x2/2. In fact, every minimizing sequence converges weakly and not
strongly in W 1,4(Ω) to x2/2, which is neither a minimizer nor an equilibrium state of
(0.1).

Theorem 4.1 below applies in particular to this example and shows that the
initial-value problem is by contrast well posed.

The interesting but more difficult issue of controllability of oscillations created as
time t→∞ will not be addressed here, but see [FM] for recent progress on a related
model problem in one space dimension.

The system in question is of some physical interest as a model for the dynamics
of coherent solid–solid phase transitions, a connection which has in fact motivated
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much of the analytical [AB, P, R] and numerical [KL1, KL2, S, SH] work on (0.1). In
this context, u could either be

(i) a scalar function of one spatial variable (i.e., n = N = 1) so that (0.1) be-
comes the equation of one-dimensional nonlinear viscoelasticity utt = σ(ux)x + uxxt
[AB, P];

(ii) a scalar function of two spatial variables (i.e., n = 2 and N = 1), with u
representing the out-of-plane displacement field of an antiplane shear deformation
[S, SH]; or

(iii) a mapping from Ω ⊂ R3 to R3 representing the deformation of a body that
occupies in a reference configuration the domain Ω [KL1, KL2, R].

In suitable units, (0.1) then corresponds to the equation of balance of linear
momentum utt = Div T , where the (Piola–Kirchhoff) stress tensor T is modeled by
the constitutive assumption

(0.4) T = σ(Du) +Dut.

As pointed out in [AB, P, R, KL1, KL2, S, SH], lack of convexity of Φ (as admitted
here) is the crucial mathematical feature allowing one to model phase transitions.
Our hypotheses in particular include stored-energy functions Φ whose set of minima
is a finite union of rotationally invariant “potential wells” as described in [BJ1, BJ2].
We emphasize, however, that from the point of view of the continuum theory of solid–
solid phase transitions more sophisticated dissipation mechanisms should be studied
which should in particular meet the fundamental requirements of balance of angular
momentum and dynamic frame indifference which are violated by the linear damping
term in the constitutive assumption (0.4).

1. The initial-boundary-value problem. Let Ω ⊂ Rn be an open bounded
domain not required to satisfy any regularity conditions, and consider for vector-
valued functions u : Ω× [0,∞)→ RN the initial-boundary-value problem

(1.1a) utt = Div(σ(Du) +Dut) in Ω× (0,∞),

(1.1b) u = g on ∂Ω× [0,∞),

(1.1c) u = u0 in Ω× {0},

(1.1d) ut = v0 in Ω× {0},

where g, u0, and v0 are given functions, σ(A) = ∂Φ(F )/∂F , and the stored-energy
function Φ satisfies the following hypotheses:

(H1) Φ ∈ C2(MN×n).
(H2) There exist c > 0, C > 0, and p ≥ 2 such that

c|F |p − C ≤ Φ(F ) ≤ C(|F |p + 1), |σ(F )| ≤ C(|F |p−1 + 1).

(H3) There exists K > 0 such that (σ(F̄ )− σ(F )) · (F̄ − F ) ≥ −K|F̄ − F |2.
Lemma 1.1. If Φ satisfies (H1), then (H3) is satisfied provided one of the follow-

ing holds:
(i) σ is monotone, i.e., (σ(F̄ )− σ(F )) · (F̄ − F )) ≥ 0 ∀F and F̄ .
(ii) σ is globally Lipschitz continuous.
(iii) σ is the sum of a monotone and a globally Lipschitz continuous function.
(iv) σ satisfies the Andrews–Ball condition (0.2).
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Proof. The first three assertions are obvious. To prove that (0.2) implies (H3),
note first that the desired inequality is clear either if both |F |, |F̄ | ≤ 2R (since
σ|B(2R,0) is globally Lipschitz continuous) or if both |F |, |F̄ | ≥ R. Thus we may
assume |F | < R and |F̄ | > 2R. Let F (λ) := F̄−λ(F̄−F )/|F̄−F |, then |F (λ)| is equal
to |F̄ | > 2R at λ = 0 and to |F | < R at λ = |F̄−F |. Thus there exists λ0 ∈ (0, |F̄−F |)
such that |F (λ0)| = 2R. Writing F (λ0) = F0 and using F̄ −F0 = λ0(F̄ −F )/|F̄ −F |,
we calculate

(σ(F̄ )− σ(F )) · (F̄ − F ) =
|F̄ − F |
λ0

(σ(F̄ )− σ(F0)) · (F̄ − F0)

+ (σ(F0)− σ(F )) · (F̄ − F )

≥ 0−K0|F0 − F ||F̄ − F | (since |F0|, |F̄ | ≥ R)

≥ −K0|F̄ − F |2,

where K0 is the Lipschitz norm of σ|B(2R,0).

2. The discrete scheme. Let p ≥ 2 be the growth exponent from (H2), fix
boundary data g ∈ W 1,p(Ω,RN ), and let A := {u ∈ W 1,p(Ω,RN ) : u − g ∈
W 1,p

0 (Ω,RN )}. We define approximate solutions to (1.1) by means of the follow-
ing implicit time-discretization scheme (compare in particular [De]). For a fixed time
stepsize h > 0 and initial data uh0 ∈ A, vh0 ∈ L2(Ω,RN ), define inductively

(2.1) uh,−1 := uh0 − hvh0 ,
uh,0 := uh0 ,

uh,j := a minimizer on A of the functional Jh,j [u] (j ∈ N),

where N = {1, 2, 3, . . .} and

(2.2)

Jh,j [u] :=

∫
Ω

(
Φ(Du) +

1

2h
|Du−Duh,j−1|2 +

1

2h2
|u− 2uh,j−1 + uh,j−2|2

)
dx.

Note that for j ≥ 1, the minimizers uh,j satisfy the Euler–Lagrange equations

(2.3)

∫
Ω

[(
σ(Duh,j) +

1

h
(Duh,j −Duh,j−1)

)
· Dζ +

1

h2
(uh,j − 2uh,j−1 + uh,j−2) · ζ

]
dx = 0

∀ζ ∈ C∞0 (Ω,RN ),

which represent a weak, time-discretized version of (1.1a). Now construct a time-
dependent function uh : Ω × [0,∞) → RN by interpreting the uh,j as values at time
jh and by interpolating linearly

(2.4) uh(x, t) := (j − t/h)uh,j−1(x) + (t/h− (j − 1))uh,j(x) (t ∈ ((j − 1)h, jh]).

We will eventually show that if the initial data uh0 → u0 and vh0 → v0 in, respectively,
W 1,p and L2, then a subsequence of the uh converges to a weak solution of the initial-
boundary-value problem (1.1). As a first step, consider the issue of well definedness of
the above scheme. There is indeed something to prove, namely the following lemma.
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Lemma 2.1. If h > 0, uh,j−1 ∈ A, and uh,j−2 ∈ L2(Ω,RN ), then Jh,j attains its
infimum on A.

Proof. (The important thing to note here is that the term in Jh,j involving the
discretized counterpart of Dut provides convexity of the integrand with respect to
Du, despite Φ not being convex.)

By hypothesis (H2) and the fact that A is a weakly closed subset of W 1,p(Ω,RN ),
the assertion follows from the direct method of the calculus of variations provided Jj,h

is weakly sequentially lower semicontinuous (wslsc) on W 1,p(Ω,RN ). Introducing the
notation

Φ̃(F ) := Φ(F ) +
1

2h
|F |2

and rewriting

Jh,j [u] =

∫
Ω

(
Φ̃(Du)− 1

h
Du ·Duh,j−1 +

1

2h
|Duh,j−1|2 +

1

2h2
|u− 2uh,j−1 + uh,j−2|2

)
,

it is clear that u 7→ Jh,j [u]−
∫

Ω
Φ̃(Du) dx is wslsc. Also, by (H3)

(DΦ̃(F̄ )−DΦ̃(F )) · (F̄ − F ) ≥
(
−K +

1

h

)
|F̄ − F |2;

that is to say, Φ̃ is convex for h ≤ h0 := 1/K. Standard theorems in the calculus of
variations [D, Theorem 2.6] then yield u 7→

∫
Ω

Φ̃(Du) dx wslsc on W 1,p(Ω,RN ).

In fact the above arguments only require quasi convexity of u 7→
∫

Ω
Φ̃(Du) dx and

hence remain valid if the damping term ∆ut in (1.1a) is replaced by a weaker (rank-
one-elliptic) term whose associated quadratic form is only rank-one convex rather
than convex. See section 5.3.

To proceed, we introduce the energy functional

(2.5) E[u, v] :=

∫
Ω

(
Φ(Du) +

1

2
|v|2
)
dx (u ∈W 1,p(Ω,RN ), v ∈ L2(Ω,RN ))

and the notation

(2.6) vh,j :=
1

h
(uh,j − uh,j−1) (h > 0, j ∈ N ∪ {0}).

The next lemma is a discrete analog of the dissipation identity

(2.7) E[u(t), ut(t)] +

∫ t

0

∫
Ω

|Dut|2 = E[u0, v0]

for smooth solutions of (1.1).
Lemma 2.2 (discrete energy inequality). Let uh,j , vh,j be as defined in (2.1) and

(2.6). Given ε ∈ (0, 1) there exists h0(ε) > 0 such that for all h ≤ h0

(2.8)

sup
j∈N∪{0}

E[uh,j , vh,j ] +
∞∑
j=1

h

∫
Ω

(
(1− ε)|Dvh,j |2 +

1

2

∣∣∣∣vh,j − vh,j−1

h1/2

∣∣∣∣2
)
≤ E[uh0 , v

h
0 ].
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Proof. To simplify the notation, we drop all superscript h’s. By (H3), for h ≤
h0 := 2ε/K, the mapping F 7→ Φ(F ) + (ε/h)|F − Duj(x)|2 is convex for all x ∈ Ω.
Thus

Φ(F̄ ) +
ε

h
|F̄ −Duj(x)|2 −

(
Φ(F ) +

ε

h
|F −Duj(x)|2

)
≤
(
σ(F̄ ) +

2ε

h
(F̄ −Duj(x))

)
· (F̄ − F )

for all x, F , and F̄ ; hence for all j ∈ N ∪ {0},

E[uj+1, vj+1] − E[uj , vj ]

=

∫
Ω

[
Φ(Duj+1) +

ε

h
|Duj+1 −Duj |2 −

(
Φ(Duj) +

ε

h
|Duj −Duj |2

)
− ε

h
|Duj+1 −Duj |2 +

1

2
(|vj+1|2 − |vj |2)

]
dx

≤
∫

Ω

[(
σ(Duj+1) +

2ε

h
(Duj+1 −Duj)

)
· (Duj+1 −Duj)

− ε

h
|Duj+1 −Duj |2 +

1

2
(|vj+1|2 − |vj |2)

]
dx

=

∫
Ω

[(
σ(Duj+1) +

1

h
(Duj+1 −Duj)

)
· (Duj+1 −Duj)

− 1− ε
h
|Duj+1 −Duj |2 +

1

2
(|vj+1|2 − |vj |2)

]
dx.

Now by (H2) and the fact that Duj ∈ Lp(Ω,Mn×N ) and σ(Du) ∈ Lp
′
(Ω,Mn×N ),

where 1/p′ + 1/p = 1, ζ = uj+1 − uj is admissible as a test function in the Euler–
Lagrange system (2.3) for uj . So the last expression above equals

∫
Ω

(
−(vj+1 − vj) · vj+1 − 1− ε

h
|Duj+1 −Duj |2 +

1

2
(|vj+1|2 − |vj |2)

)
dx

=

∫
Ω

(
−1− ε

h
|Duj+1 −Duj |2 − 1

2
|vj+1 − vj |2

)
dx.

Applying the above estimate successively for all j ∈ N ∪ {0} yields the assertion.

When passing to the limit h→ 0, it will be important to simultaneously use two
different interpolations of the uh,j (resp., vh,j): the piecewise linear interpolation uh

introduced in (2.4) and a piecewise constant one taking only the values uh,j (and
called ũh below). While the former has the advantage of being differentiable with
respect to time, it is only the latter for which the exact Euler–Lagrange system (2.3)
is available for every t.

For h > 0 and j ∈ N ∪ {0}, we let Ih,j := ((j − 1)h, jh] and define the following
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functions on Ω× [0,∞):

(2.9)

ũh(x, t) := uh,j(x) (t ∈ Ih,j),

uh(x, t) := (j − t
h )uh,j−1 + ( th − (j − 1))uh,j (t ∈ Ih,j),

ṽh(x, t) := vh,j (= 1
h (uh,j − uh,j−1)) (t ∈ Ih,j),

vh(x, t) := (j − t
h )vh,j−1 + ( th − (j − 1))vh,j (t ∈ Ih,j),

w̃h(x, t) := wh,j(:= 1
h (vh,j − vh,j−1)) (t ∈ Ih,j).

Note that

(2.10) ∂tu
h = ṽh, ∂tv

h = w̃h

and that the Euler–Lagrange system (2.3) can be rewritten as

(2.11)

∫
Ω

[(σ(Dũh) +Dṽh) ·Dζ + w̃h · ζ] dx = 0 ∀ζ ∈ C∞0 (Ω,RN ), ∀t > 0

or (integrating over time)

(2.12)

∫ T

0

∫
Ω

[(σ(Dũh) +Dṽh) ·Dζ − vh · ζt] dx dt+

∫
Ω

vh · ζ dx|t=T

−
∫

Ω

vh · ζ dx|t=0 = 0 ∀T > 0,

∀ζ ∈ L1(0, T ;W 1,p
0 (Ω,RN ))

∩ L2(0, T ;W 1,2(Ω,RN )) ∩W 1,1(0, T ;L2(Ω,RN )).

Notation. In the next lemma and frequently below, we will abbreviate the function
spaces X(Ω,RN ) and X(Ω,MN×n) by X and the spaces Y (0, T ;X) by Y (X).

Lemma 2.3 (weak convergences from the discrete energy inequality). Assume

sup
h>0

E[uh0 , v
h
0 ] <∞.

Then after extracting suitable subsequences, we have the following convergences as
h→ 0:

(2.13)
uh|t=0 = uh0 ⇀ u0 inW 1,p,

vh|t=0 = vh0 ⇀ v0 inL2,

and for every T > 0,

(2.14)

ũh
∗
⇀ ũ in L∞(W 1,p),

uh
∗
⇀ u in L∞(W 1,p),W 1,∞(L2),W 1,2(W 1,2),

ṽh
∗
⇀ ṽ in L∞(L2), L2(W 1,2),

vh
∗
⇀ v in L∞(L2), L2(W 1,2),W 1,2(W−1,p′),

w̃h
∗
⇀ w̃ in L2(W−1,p′),

σ(Dũh)
∗
⇀ σ̃ in L∞(Lp

′
).
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Here W−1,p′(Ω,RN ) denotes the usual negative Sobolev space, i.e., the completion
of Lp

′
(Ω,RN ) under the norm

‖u‖W−1,p′ = sup
ζ∈W 1,p

0 \{0}

|
∫

Ω
u · ζ dx|
‖ζ‖W 1,p

,

and we say that uh
∗
⇀ u in L∞(0, T ;X) if∫ T

0

〈uh, ζ〉 dt→
∫ T

0

〈u, ζ〉 dt ∀ζ ∈ L1(0, T ;X),

where X ′ denotes the dual space of X. (If X is a Banach space with separable dual
X ′, then the dual of L1(0, T ;X) is the space L∞(0, T ;X ′) of essentially bounded,
strongly measurable functions from (0, T ) into X ′.)

Proof. The first four assertions are immediate consequences of Lemma 2.2 and
(2.10). The last statement follows from the boundedness of Dũh(t) in Lp and (H2).
Finally, to prove the fifth convergence in (2.14), note that by (2.11),

‖w̃h(t)‖W−1,p′ ≤ ‖σ(Dũh(t))‖Lp′ + ‖Dṽh(t)‖Lp′ ∀t > 0.

Now the first term is bounded in L∞(Lp
′
) and the last term in L2(L2), so both terms

are bounded in L2(Lp
′
).

The following elementary lemma shows that the weak limits of piecewise constant
and piecewise linear interpolations of a function given at discrete time steps actually
coincide. (For an almost identical statement, see [KP].)

Lemma 2.4. Let Ω ⊂ Rn be open and let {wh,j}j∈N,h>0 be a collection of functions
in L1

loc(Ω,RN ). Define the piecewise constant and piecewise linear interpolations w̃h

and wh (as elements of L1
loc(Ω× [0,∞),RN ) by, respectively,

w̃h(x, t) :=
∞∑
j=1

χh,j(t)wh,j(x),

wh(x, t) :=
∞∑
j=1

χh,j(t)

[(
j − t

h

)
wh,j−1(x) +

(
t

h
− (j − 1)

)
wh,j(x)

]
,

where χh,j := χ((j−1)h,jh) denotes the characteristic function of the interval Ih,j :=
((j − 1)h, jh]. Suppose that {

w̃h ⇀ w̃,

wh ⇀ w

weakly in L1
loc(Ω× [0,∞),RN ) as h→ 0. Then w̃ = w.

Proof. Clearly it is enough to check that∫ ∞
0

∫
Ω

w · ζ dx dt =

∫ ∞
0

∫
Ω

w̃ · ζ dx dt ∀ζ ∈ C∞0 (Ω× (0,∞),RN ).
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A simple calculation shows that for h small enough,∫ ∞
0

∫
Ω

wh(x, t) · ζ(x, t) dx dt

=

∫ ∞
0

∫
Ω

∞∑
j=1

χh,j(t)

[(
j − t

h

)
wh,j−1(x) +

(
t

h
− (j − 1)

)
wh,j(x)

]
· ζ(x, t) dx dt

=

∫ ∞
0

∫
Ω

w̃h(x, t) ·
( ∞∑
k=1

χh,k(t)

[(
j − t

h

)
ζ(x, t) +

(
t

h
− (j − 1)

)
ζ(x, t+ h)

])
dx dt.

Since ζ has compact support, it follows that

∞∑
k=1

χh,k(t)

[(
j − t

h

)
ζ(x, t) +

(
t

h
− (j − 1)

)
ζ(x, t+ h)

]
→ ζ

uniformly on Ω× [0,∞), and the result is a consequence of the weak convergence of
wh and w̃h.

Corollary 2.1. The limits obtained in Lemma 2.3 satisfy ũ = u and ṽ = v = ut.
In particular, u ∈ L∞(W 1,p

0 ) ∩W 1,∞(L2) ∩W 1,2(W 1,2) ∩W 2,2(W−1,p′) (so that the

traces u|t=0 and ut|t=0 are well defined in, respectively, W 1,2 and W−1,p′) and∫ T

0

∫
Ω

[(σ̃ +Dut) ·Dζ − ut · ζt] dx dt+

∫
Ω

ut · ζ dx
∣∣∣
t=T
−
∫

Ω

ut · ζ dx
∣∣∣
t=0

= 0

∀T > 0, ∀ζ ∈ L1(W 1,p
0 ) ∩ L2(W 1,2) ∩W 1,1(L2),

(2.15)

u|t=0 = u0,

ut|t=0 = v0.

In order to show that u is a weak solution to (1.1), it only remains to “pass to the limit
in the nonlinear term,” i.e., to demonstrate that under the assumptions of Lemma
2.3, σ̃ = σ(Du). This is in general false.

Example 2.1. Let n = N = 1, Φ(ux) = (u2
x − 1)2, Ω = (0, 1), g(x) = x/2,

uh0 (x) =
∫ x

0
η(x′/h) dx′, and vh0 = 0, where η(z) = −1 if z ∈ (n, n + 1] and n ≡ 0

mod 4, η(z) = 1 otherwise. Let h ∈ {1/4, 1/8, 1/12, . . .}. Then uh,j ≡ uh0 is a
solution to the discrete scheme (2.1) (and its interpolations uh, ũh are solutions to
the continuous problem (1.1)). However, ũhx = uhx ≡ η(·/h) does not converge strongly
in L1

loc(Ω× (0, T )) as h→ 0 and 0 = σ̃ 6= σ(ux) = σ(1/2).

3. Propagation of regularity for the discrete scheme. The fact illustrated
in Example 2.1 that the limiting PDE (1.1) does not regularize Du in time was
already observed in [AB, P] and is a fundamental feature of evolution equations whose
underlying stored-energy functions are not convex. It implies that passage to the limit
in the nonlinearity σ cannot be achieved via estimating higher spatial derivatives and
appealing to compact embedding theorems—neither for the scheme (2.1) analyzed
here nor for approximate solutions obtained by any other method.

Note, however, that the oscillations of uhx in Example 2.1 were not created by the
(continuous or discretized) dynamics but were already present in the initial data.

Proposition 3.1 (propagation of regularity for the deformation gradient). Let
uh0 and vh0 be as in Lemma 2.3, and let h be the index of the subsequence delivered
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by Lemma 2.3 for which the convergences (2.13) and (2.14) hold. If in addition Duh0
converges strongly in L2 as h → 0, then both Duh and Dũh converge strongly in
L2(0, T ;L2) as h→ 0 ∀T > 0. More precisely,

(3.1) lim sup
h→0

∫ T

0

∫
Ω

|Duh −Du|2 dx dt ≤ lim sup
h→0

∫
Ω

|Duh0 −Du0|2 dx
1

2K
e4KT ,

(3.2) lim sup
h→0

∫ T

0

∫
Ω

|Dũh −Du|2 dx dt ≤ lim sup
h→0

∫
Ω

|Duh0 −Du0|2 dx
1

2K
e4KT

∀T > 0, with K as in (H3).
Example 2.1 shows that the assumption that the initial data converge strongly

cannot be omitted.
For the large class of stored-energy functions admitted here (see (H1)–(H3)) it

seems to be unknown whether an analogue of Proposition 3.1 holds for Galerkin
approximations (as used for similar systems in [BBN1]) or for approximations obtained
by regularization (“viscosity method” employed for a similar system in [E2]).

Estimate (3.1) also holds for a sequence of solutions to the limit system (1.1).
The proof is similar but technically simpler and is left to the interested reader.

One ingredient in the proof of Proposition 3.1 will be the following result, inter-
esting in its own right.

Proposition 3.2 (regularization for the velocity). Let uh0 and vh0 be as in Lemma
2.3, and let h be the index of the subsequence delivered by Lemma 2.3 for which
the convergences (2.13) and (2.14) hold. Then (without assuming strong convergence
for the initial data) vh and ṽh = ∂tu

h converge strongly in L2(0, T ;L2) as h → 0,
∀T > 0.

This reflects the remarkable smoothing effects of the limit system (1.1) on ut
discovered by Pego [P] in one space dimension and generalized later by Rybka [R] to
several dimensions in the case of globally Lipschitz-continuous nonlinearities σ.

Before embarking upon the proof of the above results, we prepare three lemmas.
The first is a well-known Aubin-type result which can, for example, be found in [L,
Chapter 1, Theorem 5.1].

Lemma 3.1. Let Xs, X, and Xw be reflexive Banach spaces such that the fol-
lowing inclusions hold: Xs ↪→ (compact) X ↪→ (continuous) Xw. Let p0, p1 ∈ (1,∞)
and T > 0. Then the embedding of Lp0(0, T ;Xs) ∩W 1,p1(0, T ;Xw) equipped with the
norm ‖ · ‖Lp0 (Xs) + ‖∂t · ‖Lp1 (Xw) into Lp0(0, T ;X) is compact.

The next lemma investigates more closely the connection between the piecewise-
constant and the piecewise linear interpolation of a function given at discrete time
steps.

Lemma 3.2. Let X be a Banach space and {wh,j}j∈N,h>0 a collection of elements
in X. Define the piecewise constant and piecewise linear interpolations w̃h and wh

(as elements of L1
loc([0,∞);X)) by

w̃h := wh,j on Ih,j ,

wh(t) :=

(
j − t

h

)
wh,j−1 +

(
t

h
− (j − 1)

)
wh,j on Ih,j

(j ∈ N, Ih,j as in Lemma 2.4). Assume that

(3.3) sup
j≥1
‖wh,j‖2 ≤ C1
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and for some α > 0,

(3.4)

∞∑
j=1

h

∥∥∥∥wh,j − wh,j−1

hα

∥∥∥∥2

≤ C2.

Then ∀T > 0 and ∀w ∈ L2(0, T ;X) with supt ‖w(t)‖2 ≤ C1, the following estimate
holds: ∫ T

0

‖w̃h − w‖2 dt ≤ 2

∫ T

0

‖wh − w‖2 dt+ 4hC1 +
2

3
h2αC2.

Proof. For t ∈ Ih,j , we have by construction

wh(t)− w(t) = (wh,j − w(t))−
(
j − t

h

)
(wh,j − wh,j−1)

and thus

‖wh,j − w(t)‖2 = ‖(wh(t)− w(t)) +

(
j − t

h

)
(wh,j − wh,j−1)‖2

≤ 2‖wh(t)− w(t)‖2 + 2

∣∣∣∣j − t

h

∣∣∣∣2 ‖wh,j − wh,j−1‖2.

Integrating this inequality over Ih,j yields∫
Ih,j

‖wh,j − w(t)‖2 dt ≤ 2

∫
Ih,j

‖wh(t)− w(t)‖2 dt+
2

3
h‖wh,j − wh,j−1||2.

Denoting by J := int(Th ) the largest integer less than or equal to T/h, we have
|T − Jh| ≤ h and thus∫ T

0

‖w̃h(t)− w(t)‖2 dt =
J∑
j=1

∫
Ih,j

‖wh,j − w(t)‖2 dt+

∫ T

Jh

‖w̃h(t)− w(t)‖2 dt

≤
J∑
j=1

{
2

∫
Ih,j

‖wh(t)− w(t)‖2 dt+
2

3
h‖wh,j − wh,j−1‖2

}
+ 4hC1

≤ 2

∫ T

0

‖wh(t)− w(t)‖2 dt+
2

3
h2α

∞∑
j=1

h

∥∥∥∥wh,j − wh,j−1

hα

∥∥∥∥2

+ 4hC1.

This immediately implies the result.
The third (elementary and well-known) lemma will be used to estimate various

“harmless” terms in the proof of Proposition 3.1.
Lemma 3.3. Let Ω̃ ⊆ Rm be open, q ∈ (1,∞), φh → 0 weakly in Lq

′
(Ω̃) as h→ 0,

and Ψ be a compact subset of Lq(Ω̃). Then

sup
ψ∈Ψ

∣∣∣∣∫
Ω

φhψ dx

∣∣∣∣→ 0 (h→ 0).

Proof of Proposition 3.2. Since vh ⇀ v = ut weakly in L2(W 1,2) and in
W 1,2(W−1,p′), by Lemma 3.1, vh → ut strongly in L2(L2). From this, by Lemma
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3.2 with X = L2, wh,j = vh,j , w = ut, and α = 1/2, we obtain ṽh = ∂tu
h → ut

strongly in L2(L2). Note that hypothesis (3.4) of Lemma 3.2 is satisfied thanks to
the remarkable estimate

sup
h>0

∞∑
j=1

h

∥∥∥∥vj − vj−1

h1/2

∥∥∥∥2

L2

<∞

derived in Lemma 2.2, which had not been used up until now.
Proof of Proposition 3.1. Besides (2.12), we will also need another time-integrated

version of the Euler–Lagrange system (2.11) which does not require the test function
ζ to be differentiable in time:
(3.5)∫ T

0

∫
Ω

[
(σ(Dũh) +Dṽh) ·Dζ − ṽh · ζ(·+ h)− ζ

h

]
dx dt+

∫ T

T−h
−

∫
Ω

ṽh · ζ(·+ h) dx dt

−
∫ 0

−h
−

∫
Ω

vh0 · ζ(·+ h) dx dt = 0 ∀T > 0, ∀ζ ∈ L1(0, T ;W 1,p
0 ).

Testing (3.5) with ũh − u and (2.15) with uh − u and subtracting, we have∫ t

0

∫
Ω

[σ(Dũh) · (Dũh −Du)− σ̃ · (Duh −Du)] dx dτ

+

∫ t

0

∫
Ω

[Dṽh · (Dũh −Du)−Dut · (Duh −Du)] dx dτ

−
∫ t

0

∫
Ω

[
ṽh ·

(
ṽh(·+ h)− u(·+ h)− u

h

)
− ut · ((uh)t − ut)

]
dx dτ

+

∫
Ω

[∫ 1

t−h
− ṽh · (ũh(·+ h)− u(·+ h)) dτ − ut(t) · (uh(t)− u(t))

]
dx

−
∫

Ω

vh0 ·
[∫ 0

−h
− (ũh(·+ h)− u(·+ h)) dt− (uh0 − u0)

]
dx = 0.

Fix T > 0, let t ∈ (0, T ), denote the five terms above by T1, . . . , T5, and write η(h)
for quantities tending to zero as h→ 0 uniformly with respect to t ∈ (0, T ).

T1 =

∫ t

0

∫
Ω

[(σ(Dũh)− σ(Du)) · (Dũh −Du) + σ(Du) · (Dũh −Du)

− σ̃ · (Duh −Du)] dx dτ

≥ −K
∫ t

0

∫
Ω

|Dũh −Du|2 − sup
t∈(0,T )

∣∣∣∣∫
ΩT

(χΩtσ(Du)) · (Dũh −Du) dx dτ

∣∣∣∣
− sup
t∈(0,T )

∣∣∣∣∫
ΩT

(χΩt σ̃) · (Duh −Du) dx dτ

∣∣∣∣
≥ −K

∫ t

0

∫
Ω

|Dũh −Du|2 − η(h)

≥ −2K

∫ t

0

∫
Ω

|Duh −Du|2 − η(h).
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Here the first inequality follows from Lemma 1.1, the second from Lemma 3.3 (with
Ω̃ = Ω×(0, T ) =: ΩT , p = q′, and, e.g., Ψ = {χΩtσ(Du) : t ∈ [0, T ]}, φh = Dũh−Du),
and the third from Lemma 3.2 (with X = L2, wh,j = Duh,j , and α = 1, noting that
assumption (3.4) holds by Lemma 2.2).

T2 =

∫ t

0

∫
Ω

[((Duh)t −Dut) · (Duh −Du) +Dṽh · (Dũh −Duh)] dx dτ

=
1

2

∫
Ω

|Duh(t)−Du(t)|2 dx− 1

2

∫
Ω

|Duh(0)−Du(0)|2 dx

+
∞∑
j=1

∫
Ih,j∩(0,t)

∫
Ω

h(j − t/h)|Dvh,j |2

≤ 1

2

∫
Ω

|Duh(t)−Du(t)|2 dx− 1

2

∫
Ω

|Duh(0)−Du(0)|2 dx+
1

2
h2
∞∑
j=1

∫
Ω

|Dvh,j |2

=
1

2

∫
Ω

|Duh(t)−Du(t)|2 dx− 1

2

∫
Ω

|Duh(0)−Du(0)|2 dx+ η(h),

the last equality being a consequence of Lemma 2.2.

|T3| ≤ ‖ṽh‖L2(L2)

(
‖ṽh − ut‖L2(0,T+h;L2) +

∥∥∥∥ut − u− u(· − h)

h

∥∥∥∥
L2(h,T+h;L2)

)
+ ‖ut‖L2(L2)‖ṽh − vt‖L2(L2)

= η(h)

by Proposition 3.2 and the fact that u ∈W 1,∞(0, 2T ;L2). To estimate T4 and T5, we
will need

(3.6) ‖ũh − uh‖2L∞(0,∞;L2) = sup
j∈N
‖uh,j − uh,j−1‖2L2 = h2 sup

j∈N
‖vh,j‖2L2 = η(h).

As for T4,

|T4| ≤ ‖ṽh‖L∞(−h,T ;L2)‖ũh − u‖L∞(0,T+h;L2) + ‖ut‖L∞(L2)‖uh − u‖L∞(L2)

≤ ‖ṽh‖L∞(−h,T ;L2)‖ũh − uh‖L∞(0,T+h;L2)

+ (‖ṽh‖L∞(−h,T ;L2) + ‖ut‖L∞(L2))‖uh − u‖L∞(0,T+h;L2)

= η(h)

by (3.6), Proposition 3.2, and the continuous embedding W 1,2(L2) ↪→ L∞(L2). Sim-
ilarly,

|T5| ≤ ‖vh0 ‖L2(‖ũh − u‖L∞(0,h;L2) + ‖uh0 − u0‖L2) = η(h)

by the weak convergence of uh0 to u0 in W 1,p and the compact embedding W 1,p ↪→ L2.
Collecting terms and multiplying by two,

∂t

∫ t

0

∫
Ω

|Duh−Du|2 dx dt ≤
∫

Ω

|Duh(0)−Du(0)|2 dx+η(h)+4K

∫ t

0

∫
Ω

|Duh−Du|2 dx dτ
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and thus by Gronwall’s inequality,∫ T

0

∫
Ω

|Duh −Du|2 dx dt ≤
(∫

Ω

|Duh(0)−Du(0)|2 dx+ η(h)

)
1

4K
e4KT .

Letting h → 0 gives (3.1), and (3.2) follows by appealing again to Lemma 3.2 (with
X = L2, wh,j = Duh,j , and α = 1). The proof of Proposition 3.1 is complete.

4. Global existence of weak solutions and the energy inequality. We are
now ready to present the main result of this article.

Theorem 4.1 (global existence of weak solutions). Let Ω ⊂ Rn be open and
bounded, assume Φ satisfies (H1), (H2), and (H3); let g ∈ W 1,p(Ω,RN ), and let the
initial data u0 ∈ A = {u ∈W 1,p(Ω,RN ) : u− g ∈W 1,p

0 (Ω,RN )} and v0 ∈ L2(Ω,RN ).
Then there exists

(4.1)

u ∈ L∞(0,∞;A)

∩W 1,∞(0,∞;L2(Ω,RN ))

∩W 1,2
loc ([0,∞);W 1,2(Ω,RN ))

∩W 2,2
loc ([0,∞);W−1,p′(Ω,RN )),

which is a weak solution of (1.1), i.e.,

(4.2)

∫ ∞
0

∫
Ω

[(σ(Du) +Dut) ·Dζ − ut · ζt] dx dt = 0 ∀ζ ∈ C∞0 (Ω× (0,∞),RN )

u|t=0 = u0,

ut|t=0 = v0,

and satisfies the dissipation inequality

(4.3) E[u(t), ut(t)]− E[u0, v0] ≤ −
∫ t

0

∫
Ω

|Dut|2 dx dτ

for almost every t > 0.
Proof. Set uh0 ≡ v0, vh0 ≡ v0 ∀h. Define uh,j (j ∈ N, h > 0) by (2.1). Then the

hypotheses of Lemma 2.4 and Proposition 3.1 are trivially satisfied, and all assertions
except the energy inequality follow immediately from Lemma 2.3, Corollary 2.1, and
Proposition 3.1.

The energy inequality is less immediate as the mapping

u 7→
∫

Ω

Φ(Du) dx

is not assumed to be weakly lower semicontinuous on W 1,p. The remedy here is to
split Φ into (Φ(·) + K

2 | · |2) and (−K2 | · |2) (K as in (H3)) and to use the strong
convergence of Dũh in L2.

By Lemma 2.2, ∀ε ∈ (0, 1) there exists h0(ε) > 0 such that for 0 < h ≤ h0(ε) and
every t > 0, the following inequality holds:∫

Ω

Φ(Dũh) dx+
1

2

∫
Ω

|ṽh(t)|2 dx+ (1− ε)
∫ t

0

∫
Ω

|Dṽh|2 dx dτ

≤
∫

Ω

Φ(Du0) dx+
1

2

∫
Ω

|v0|2 dx.
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Since ṽh(t) → ut strongly in L2(Ω) for a.e. t > 0 and Dṽh ⇀ Dut weakly in L2(Ωt),
it follows from the weak lower semicontinuity of the norm in L2(Ωt) that

(4.4) lim sup
h→0

∫
Ω

Φ(Dũh) dx+
1

2

∫
Ω

|ut|2 dx+ (1− ε)
∫ t

0

∫
Ω

|Dut|2 dx dτ

≤
∫

Ω

Φ(Du0) dx+
1

2

∫
Ω

|v0|2 dx (a.e. t > 0).

However, since for a.e. t > 0{
Dũh(t)⇀ Du(t) weakly in Lp,

Dũh(t)→ Du(t) strongly in L2,

we obtain∫
Ω

Φ(Du) dx =

∫
Ω

(
Φ(Du) +

K

2
|Du|2

)
dx−

∫
Ω

K

2
|Du|2 dx

≤ lim sup
h→0

∫
Ω

(
Φ(Dũh) +

K

2
|Dũh|2

)
dx−

∫
Ω

K

2
|Du|2 dx

≤ lim sup
h→0

∫
Ω

Φ(Dũh) dx+ lim sup
h→0

∫
Ω

K

2
|Duh|2 dx−

∫
Ω

K

2
|Du|2 dx

= lim sup
h→0

∫
Ω

Φ(Dũh) dx.

Substituting this inequality into (4.4) yields the result since ε > 0 was arbitrary.

5. Concluding remarks.

5.1. Uniqueness in the Lipschitz continuous case. If in addition σ is glob-
ally Lipschitz continuous, weak solutions of (1.1) are unique in the function class in
which we have established existence. Indeed, a simple calculation shows that if u and
ū are two solutions of (4.2) and lie in the space (4.1), then

∂t
1

2

(∫ t

0

∫
Ω

|Dū−Du|2 dx dτ +

∫
Ω

|ū(t)− u(t)|2 dx
)

= −
∫ t

0

∫
Ω

(σ(Dū)− σ(Du)) · (Dū−Du) dx dτ +

∫ t

0

∫
Ω

|ūt − ut|2 dx dτ

≤ (Lip σ)

∫ t

0

∫
Ω

(|Dū−Du|2 + |ūt − ut|2) dx dτ

and

∂t
1

2

∫ t

0

∫
Ω

|ūt − ut|2 dx dτ

= −
∫ t

0

∫
Ω

[(Dūt −Dut) · (σ(Dū)− σ(Du)) + |Dūt −Dut|2] dx dτ

≤ 1

4
(Lip σ)

∫ t

0

∫
Ω

|Dū−Du|2 dx dτ.
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Adding these two inequalities and appealing to Gronwall’s inequality gives ū−u ≡ 0.
This calculation is a modest generalization of the uniqueness theorem of Rybka [R]
(which applies to the same assumptions on σ and to a slightly more “regular” function
space).

It would be interesting to investigate whether uniqueness remains true in the more
general setting of hypotheses (H1)–(H3).

5.2. Anisotropic growth at infinity. It is easily seen that Theorem 4.1 re-
mains true if hypothesis (H2) on Φ is replaced by the anisotropic growth condition

(H2)′ Φ(F ) =
N∑
i=1

Φi(Fi), where Fi denotes the ith column of F, and

∃C > 0, c > 0, pi ≥ 2 such that for all i,

c|f |pi − C ≤ Φi(f) ≤ C(|f |pi + 1)

and p = max{pi, . . . , pN}. While of minor conceptual interest, this modification
entails to the best of our knowledge the first existence proof for (1.1) in the paradigm
case n = 2, N = 1, Φ(ux, uy) = (u2

x − 1)2 + u2
y, g = 0 studied numerically in [S, SH].

5.3. Infinitesimal frame indifference. The following modification is mathe-
matically a little less trivial and physically more interesting. Theorem 4.1 also remains
true if the system (1.1a) is replaced by the system with weaker damping

utt = Div σ(Du) + Lut,

where L is any symmetric (rank-one-) elliptic operator in divergence form, i.e., Lv =
Div A(Dv) with A a linear mapping from MN×n to MN×n, A(F ) ·G = F ·A(G) ∀F,
G ∈MN×n,

(5.1) A(ξ ⊗ η) · ξ ⊗ η ≥ λ|ξ|2|η|2 ∀ξ ∈ RN and η ∈ Rn and some λ > 0

and with the dissipation integrand |Dut|2 in (4.3) replaced by A(Dut)·Dut. (To obtain
approximate solutions, instead of (2.2), one would now minimize the functional

Jh,j [u] =

∫
Ω

(
Φ(Du) +

1

2h
A(Du−Duh,j−1) · (Du−Duh,j−1)

+
1

2h2
|u− 2uh,j−1 + uh,j−2|2

)
dx,

whose integrand need no longer be convex but is readily shown to be quasi convex for
h ≤ λ/K thanks to Plancherel’s formula, (H3), and (5.1).)

In particular, in the case n = N = 3 relevant for elasticity, one may take A(F ) =
1
2 (F + FT ), i.e., Lut = Div( 1

2 (Dut + (Dut)
T )). This weaker damping term no longer

causes energy dissipation along infinitesimal rigid rotations u(x, t) = u0(x)+tBx (B+
BT = 0) and (unlike ∆ut) fulfills the fundamental requirement of frame indifference
at least infinitesimally.
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Abstract. In this paper, we show that the qualitative property of a Morse–Smale gradient-like
flow is preserved by its discretization mapping obtained via numerical methods. This means that for
all sufficiently small h, there is a homeomorphism Hh conjugating the time-h map Φh of the flow
to the discretization mapping φh. Garay [Numer. Math., 72 (1996), pp. 449–479] showed this result
by relying on techniques of Robbin [Ann. Math., 94 (1971), pp. 447–493]. Our result sharpens and
unifies that in [Numer. Math., 72 (1996), pp. 449–479] by using Robinson’s method in [J. Differential
Equations, 22 (1976), pp. 28–73] of the structural stability theorem for diffeomorphisms.

We also study the problem on a manifold with boundary. Under the assumption that the manifold
M is positively invariant for the flow, we show that the qualitative properties are weakly stable, which
means we allow the homeomorphism Hh from M into a larger manifold M ′ which contains M and
is of the same dimension as M .

Key words. structural stability, Morse–Smale flow, gradient-like flow, numerical method
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1. Introduction. First, we introduce some notations and definitions. Let M
be a smooth manifold with distance d(·, ·) arising from the Riemannian metric. For
p ≥ 0, let Diffp(M) denote the set of Cp diffeomorphisms on M with the uniformly
Cp topology.

Definition 1.1. We say that Φt is a Cp+1 Morse–Smale gradient-like flow on
M if Φt is a Cp+1 flow on M and satisfies the following: (i) The nonwandering set
Ω(Φt) consists of a finite number of hyperbolic singularities; in particular, there are
no closed orbits. (ii) The stable and unstable manifolds of singularities are transversal
(see [5]).

Definition 1.2. A Cp+1 function φ : R ×M → M is called a discretization
mapping of order p for Φt if there are constants K1 > 0 and h0 > 0 such that
d(Φ(h, x), φ(h, x)) ≤ K1h

p+1 for all h ∈ [0, h0] and x ∈M .
Discretizations arise in numerical analysis. Obviously, all of the conditions above

are satisfied if φ comes from an explicit Runge–Kutta method of order p (see [1]).
We note that for every h, Φh is a Morse–Smale diffeomorphism and hence it is

structurally stable (see [5] or [11]). Therefore, there exists a neighborhood Uh of
Φh in Diff1(M) such that for any ψ ∈ Uh there is a homeomorphism Hh such that
Hh ◦ ψ = Φh ◦ Hh. However, the neighborhood Uh depends on h, so we cannot
guarantee φh ∈ Uh for all h ∈ [0, h0], although we will know dC1(Φh, φh) ≤ K2h

p in
Lemma 2.1.

Theorem A. Let M be a smooth compact manifold without boundary, p ≥ 2, Φt

be a Cp+1 Morse–Smale gradient-like flow on M , and φ be a discretization mapping
of order p for Φt. Then there is a constant K > 0 and for all sufficiently small h,
there exists a homeomorphism Hh on M such that Hh ◦ Φh(x) = φh ◦ Hh(x) and
d(Hh(x), x) ≤ Khp for all x ∈M .
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Here we only need a Cp+1 discretization mapping with p ≥ 2 rather than Cp+k+1,
where p+ k ≥ 3, which Garay worked with in [2].

The following corollary is an immediate result of Theorem A which gives an
observation about the qualitative embedding.

Corollary. For all sufficiently small h, the discretization mapping φh embeds
in a local flow on M . In fact, if we define Ψh(t, x) = Hh ◦Φt ◦H−1

h (x) for t ∈ R and
x ∈ M , then for all h small enough, Ψh(t, ·) is a local flow with the properties that
Ψh is a continuous function on R×M and Ψh(h, x) = φh(x).

Theorem B. Let M ′ be a smooth manifold and M be a compact subset of M ′

with closure(interior(M)) = M . For p ≥ 2, let Φt be a Cp+1 Morse–Smale gradient-
like flow on M ′ such that M is positively invariant for Φt and the nonwandering
set of Φt restricted to M , Ω(Φt|M ), is contained in the interior of M . Let φ be a
discretization mapping of order p for Φt. Then there is a constant K > 0 and, for all
sufficiently small h, there exists a homeomorphism Hh from M to Hh(M) ⊂M ′ such
that Hh ◦ Φh(x) = φh ◦Hh(x) and d(Hh(x), x) ≤ Khp for all x ∈ M . For example,
take M ′ = Rn and M = Dn, a closed disk in Rn.

2. Proof of Theorem A. Throughout this section, we assume the conditions of
Theorem A. Before proving the theorem, we first investigate the dC1 distance between
Φh and φh.

Lemma 2.1. There is a constant K2 > 0 such that dC1(Φh, φh) ≤ K2h
p for all

h ∈ [0, h0].

Proof. Because d(Φ(h, x), φ(h, x)) ≤ K1h
p+1, ∂jΦ

∂hj (0, x) = ∂jφ
∂hj (0, x) for j =

0, 1, . . . , p − 1. By Taylor’s expansion formula with one remainder in integral form,
we have

Φ(h, x)− φ(h, x) = hp
∫ 1

0

(1− s)p−1

(p− 1)!

(
∂pΦ

∂hp
(sh, x)− ∂pφ

∂hp
(sh, x)

)
ds.

Differentiating both sides with respect to x, the integrand stays uniformly bounded
since Φ, φ ∈ Cp+1 and M is compact. Therefore, there is a constant K2 > 0 such that
|∂Φ
∂x (h, x)− ∂φ

∂x (h, x)| ≤ K2h
p for all h ∈ [0, h0] and x ∈M .

Since Diff1(M) is an open subset of C1(M,M) (see [3]), Lemma 2.1 implies that
φh ∈ Diff1(M) for all h small enough.

For the proof of Theorem A, we need more definitions. For x, y ∈ M , define
dΦ(x, y) = sup{d(Φs(x),Φs(y)) : s ∈ R}. Then dΦ(x, y) is a metric on the manifold
M . Let X0(M) be the set of continuous vector fields on M .

Definition 2.2. We say that a vector field v ∈ X0(M) is dΦ-Lipschitz if there is
a least positive constant Λ(v) such that |v(x)−v(y)| ≤ Λ(v)dΦ(x, y) for all x, y ∈M .

Let XΦ(M) be the set of all dΦ-Lipschitz vector fields on M . For v ∈ XΦ(M), we
define ‖v‖Φ = max{‖v‖0,Λ(v)}. Then (XΦ(M),‖v‖Φ) is a Banach space.

Definition 2.3. A subbundle E ⊂ TM is dΦ-Lipschitz if there is a least positive
constant Λ(E) such that |E(x)−E(y)| ≤ Λ(E)dΦ(x, y) for all x, y ∈M , where |E(x)−
E(y)| is an appropriate distance function between Euclidean spaces.

We briefly sketch the proof as follows. Let

Qh(vx) = TΦ−h ◦ v ◦ Φh(x)− exp−1
x ◦φ−h ◦ expΦh(x) ◦v ◦ Φh(x),

Gh(v) = TΦ−h ◦ v ◦ Φh − v.

We will construct a right inverse Jh of Gh. Let

Θh(v) = JhQh(v).
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Then we prove that Θh preserves vector fields of small dΦ-Lipschitz size, is a contrac-
tion, and has a fixed point ṽh. Thus Qh(ṽh) = GhJhQh(ṽh) = GhΘh(ṽh) = Gh(ṽh)
and exp−1

x ◦φ−h ◦ expΦh(x) ◦ṽh ◦ Φh(x) = ṽh(x). For all x ∈M , define

Hh(x) = exp(ṽh(x)).

Then we have Hh ◦ Φh = φh ◦Hh.
We denote the nonwandering set Ω(Φt) = {p1, p2, . . . , pm} with the order i ≤ j if

Wu(pi) ∩W s(pj) 6= ø.
Proposition 2.4 (existence of compatible stable and unstable subbundles).

There are neighborhoods Ui of pi, i = 1, . . . ,m, and compatible families of stable and
unstable subbundles {Eσi (x) ⊂ TxM : x ∈ O(Ui)}, σ = s, u. That is, the following
hold:

1. (disjointness) Ui ∩ Uj = ø for i 6= j.
2. (splitting) Eui (x) + Esi (x) = TxM for x ∈ O(Ui).
3. (extension) Eui (pi) = Eu(pi) and Esi (pi) = Es(pi), where Eu(pi) ⊕ Es(pi) =

TpiM is the splitting for the hyperbolic singularity pi.
4. (invariance) Eui and Esi are TΦt-invariant.
5. (compatibility) Eui (x) ⊃ Euj (x) and Esi (x) ⊂ Esj (x) if 1 ≤ i < j and x ∈

O+(Ui) ∩O−(Uj).
6. (hyperbolicity estimate) There is a Riemannian metric and a constant µ > 0

such that ‖TΦ−t ◦ vu ◦ Φt‖0 ≤ e−µt‖vu‖0 and ‖TΦt ◦ vs ◦ Φ−t‖0 ≤ e−µt‖vs‖0 for
vu ∈ Eui |Ui , vs ∈ Esi |Ui , and 0 ≤ t ≤ 1.

7. (dΦ-Lipschitz) Eui and Esi are dΦ-Lipschitz.
Proof. Here we give only the outline of the proof. (For details, see [7] and [8]

and also compare with the treatment for diffeomorphisms in [6] and [9].) We proceed
by induction. Assume that there exist compatible families of unstable subbundles
{Eui (x) : x ∈ O(Ui)} for i = 1, . . . , k − 1. First, we use backward induction j = k −
1, . . . , 1 to construct an unstable subbundle Euk (x) for x ∈ (∪k−1

l=j W
u(pl))∩UDsk , which

is compatible with Eul (x) for j ≤ l ≤ k−1, where UDsk is a fundamental neighborhood
of W s(pk). Then by the Φt-invariance, we extend the unstable subbundle Euk over a
neighborhood Uk of pk and O(Uk).

Choose a partition of unity θ1, . . . , θm subordinate to the cover O(U1), . . . , O(Um)
ofM , i.e., for every i, θi : M → [0,∞) is a smooth function such that supp(θi) ⊂ O(Ui)
and

∑m
i=1 θi(x) = 1 for all x ∈ M . For v ∈ X0(M), we write θiv = vui + vsi with

vσi (x) ∈ Eσi (x) for x ∈ O(Ui) and σ = s, u. Hence supp(vσi ) ⊆ supp(θi) ⊂ O(Ui) for
σ = s, u. Define Jh : X0(M)→ X0(M) by

Jh(v) =
m∑
i=1

( ∞∑
n=1

TΦnh ◦ vsi ◦ Φ−nh −
∞∑
n=0

TΦ−nh ◦ vui ◦ Φnh

)
.

First, we have to show that Jh is well defined.
Proposition 2.5. There exist C > 1 and µ > 0 such that ‖TΦr ◦ vsi ◦ v−r‖0 ≤

Ce−µr‖vsi ‖0 and ‖TΦ−r ◦ vui ◦Φr‖0 ≤ Ce−µr‖vui ‖0 for all r ≥ 0 and all i. Then Jh is
well defined, a continuous linear map, and a right inverse of Gh, i.e., GhJh(v) = v.

Proof. There exists t1 > 0 such that for all x ∈ M , the orbit of x lies in ∪mj=0Uj
except at most t1 amount of the time. There exists t2 > 0 such that for all i,
supp(θi) ⊂ ∪t2t=−t2Φt(Ui). Let t0 = t1 + t2. Then for all i and x ∈ supp(θi), the
forward orbit of x lies in ∪mj=iUj except at most t0 amount of the time and the

backward orbit of x lies in ∪ij=1Uj except at most t0 amount of the time. It follows
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that there exist C > 1 and µ > 0 such that ‖TΦr ◦ vsi ◦ Φ−r‖0 ≤ Ce−µr‖vsi ‖0
and ‖TΦ−r ◦ vui ◦ Φr‖0 ≤ Ce−µr‖vui ‖0 for all r ≥ 0 and all i. Therefore, the two
infinite series defining Jh converge uniformly. Since v 7→ vσi is continuous linear,
Jh : X0(M)→ X0(M) is continuous linear.

In order to prove the contraction of Θh, we first estimate Jh and Qh in the
following two lemmas.

Lemma 2.6. There are constants K5,K6 > 0 such that ‖Jh‖0 ≤ K5h
−1 and

Λ(Jh(v)) ≤ K6h
−1(Λ(v) + ‖v‖0) for all v ∈ XΦ(M).

Proof. From Proposition 2.5, we have that ‖TΦr ◦ vsi ◦Φ−r‖0 ≤ Ce−µr‖vsi ‖0 and
‖TΦ−r ◦ vui ◦ Φr‖0 ≤ Ce−µr‖vui ‖0 for all r ≥ 0 and all i. In particular, ‖TΦnh ◦
vsi ◦ Φ−nh‖0 ≤ Ce−µnh‖vsi ‖0 and ‖TΦ−nh ◦ vui ◦ Φnh‖0 ≤ Ce−µnh‖vui ‖0 for all n ≥ 0.
Therefore,

‖Jh‖0 ≤
m∑
i=1

2
∞∑
n=0

Ce−µnh =
m∑
i=1

2C

1− e−µh

=
m∑
i=1

2C

1− (1− µh+O(h2))
=

m∑
i=1

2C

µh−O(h2)

≤
m∑
i=1

4C

µ
h−1 ≤ K5h

−1 for some K5 > 0.

As Robinson pointed out in [7] (see also [9]), Λ(TΦ−r ◦ vui ◦Φr) ≤ Ce−µrΛ(vui ) +
bCre−µ(r−1)‖vui ‖0; here b is a bound on the second derivatives in local coordinates.
Thus

∞∑
n=0

Λ(TΦ−nh ◦ vui ◦ Φnh) ≤
∞∑
n=0

(
Ce−µnhΛ(vui ) + bCnhe−µ(nh−1)‖vui ‖0

)
≤ C

1− e−µhΛ(vui ) +
bCheµ

(1− e−µh)2eµh
‖vui ‖0

≤ C

1− e−µhΛ(vui ) +
bCheµ

(e
µh
2 − e−µh2 )2

‖vui ‖0

≤ C

µh−O(h2)
Λ(vui ) +

bCheµ

(µh+O(h3))2
‖vui ‖0.

Similarly,

∞∑
n=1

Λ(TΦnh ◦ vsi ◦ Φ−nh) ≤ C

µh−O(h2)
Λ(vsi ) +

bCheµ

(µh+O(h3))2
‖vsi ‖0.

Therefore,

Λ(Jh(v)) ≤
m∑
i=0

( ∞∑
n=1

Λ(TΦnh ◦ vsi ◦ Φ−nh) +
∞∑
n=0

Λ(TΦ−nh ◦ vui ◦ Φnh)

)
≤ K6h

−1(Λ(v) + ‖v‖0) for some K6 > 0.

Lemma 2.7. There exist K7 > 0 and δ > 0 such that for all ‖v‖0, ‖w‖0 < δ,

‖Qh(0)‖0 ≤ dC0(φh,Φh) and

‖Qh(v)−Qh(w)‖0 ≤
(
K7 max{‖v‖0, ‖w‖0}+ dC1(φh,Φh)

)
‖v − w‖0.
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In particular, ‖Qh(v)‖0 ≤ K7‖v‖0‖v‖0 + dC1(φh,Φh)‖v‖0 + dC0(φh,Φh).
Proof. First, ‖Qh(0)‖0 = ‖ exp−1

x ◦φ−h◦Φh(x)‖0 = dC0(φh,Φh). Let Lh(vΦh(x)) =

TΦ−h(vΦh(x)) − exp−1
x (φ−h(expΦh(x)(vΦh(x)))). Since Φh and φh are Cp+1, Lh is

Cp ⊂ C2 and so there exist K7 > 0 and δ > 0 such that ‖D2Lh(v)‖0 ≤ K7 for all
‖v‖0 < δ. By the mean-value theorem, we have for all ‖v‖0, ‖w‖0 < δ,

‖Qh(v)−Qh(w)‖0 = sup
x∈M
|Lh(vΦh(x))− Lh(wΦh(x))|

= sup
y∈M
|Lh(vy)− Lh(wy)|

= sup
y∈M

∣∣∣∣∫ 1

0

DLh(wy + s(vy − wy))(vy − wy)ds

∣∣∣∣
≤ sup

y∈M
|v∗y |≤‖v‖0,‖w‖0

|DLh(v∗y)| · |vy − wy|

= sup
y∈M

|v∗y |≤‖v‖0,‖w‖0

{∣∣∣∣∫ 1

0

D2Lh(sv∗y)v∗yds

∣∣∣∣+ ‖DLh(0)‖0
}
‖v − w‖0

≤
(
K7 max{‖v‖0, ‖w‖0}+ dC1(φh,Φh)

)
‖v − w‖0.

Now we show that Θh is a contraction and has a fixed point ṽh.
Proposition 2.8. There is a positive constant K such that for all h sufficiently

small, Θh preserves X0
Khp(M) and is a contraction on X0

Khp(M), where X0
Khp(M) ≡

{v ∈ X0(M) : ‖v‖0 ≤ Khp}. Therefore, for all h sufficiently small, Θh has a unique
fixed point ṽh in X0

Khp(M).
Proof. From the previous lemma, we have for all ‖v‖0, ‖w‖0 < δ,

‖Θh(v)−Θh(w)‖0 ≤ ‖Jh‖0‖Qh(v)−Qh(w)‖0
≤ K5h

−1
(
K7 max{‖v‖0, ‖w‖0}+ dC1(φh,Φh)

)
‖v − w‖0.

Choose a suitable K > 0 such that for all sufficiently small h and all v, w ∈ X0
Khp(M),

Khp < δ,

‖Θh(v)‖0 ≤ ‖Jh‖0 (‖Qh(v)‖0 + ‖Qh(0)‖0)

≤ K5h
−1
(
K7‖v‖0‖v‖0 + dC1(φh,Φh)‖v‖0 + dC0(φh,Φh)

)
≤ K5h

−1
(
K7Kh

pKhp +K2h
pKhp +K1h

p+1
)
≤ Khp

and

‖Θh(v)−Θh(w)‖0 ≤ K5h
−1 (K7Kh

p +K2h
p) ‖v − w‖0 < ‖v − w‖0.

Thus far, we have been able to construct a topological semiconjugacy. Since
ṽh is continuous, Hh ≡ exp(ṽh) is continuous. Because Hh is homotopic to the
identity, Hh is of degree one and hence onto (see [4]). Moreover, dC0(Hh, idM ) =
dC0(exp(ṽh), idM ) = ‖ṽh‖0 ≤ Khp. Finally, we have to prove that Hh is one to one.

To this end, we estimate the dΦ-Lipschitz sizes of Qh(v) and Θh(v).
Lemma 2.9. For v ∈ XΦ(M),

Λ(Qh(v)) ≤
(
K7‖v‖0 + dC1(φh,Φh)

)
(1 + Λ(v)),

Λ(Θh(v)) ≤ K6h
−1{
(
K7‖v‖0 + dC1(φh,Φh)

)
(1 + Λ(v))

+K7‖v‖0‖v‖0 + dC1(φh,Φh)‖v‖0 + dC0(φh,Φh)}.
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Thus there is a constant K8 > 0 such that Θh preserves v ∈ X0
Khp(M) ∩XΦ(M) with

Λ(v) ≤ K8h
p−1.

Proof.

|Qh(vx)−Qh(vy)| ≤ ‖DLh(v∗)‖0d(v ◦ Φ−h(x), v ◦ Φ−h(y))

≤
(
K7‖v‖0 + dC1(φh,Φh)

)
·
(
d(Φ−h(x),Φ−h(y)) + |v ◦ Φ−h(x)− v ◦ Φ−h(y)|

)
≤
(
K7‖v‖0 + dC1(φh,Φh)

)
(dΦ(x, y) + Λ(v)dΦ(x, y))

=
(
K7‖v‖0 + dC1(φh,Φh)

)
(1 + Λ(v))dΦ(x, y).

Then Λ(Qh(v)) ≤
(
K7‖v‖0 + dC1(φh,Φh)

)
(1 + Λ(v)). Moreover,

Λ(Θh(v)) ≤ Λ(JhQh(v))

≤ K6h
−1(Λ(Qh(v)) + ‖Qh(v)‖0)

≤ K6h
−1{
(
K7‖v‖0 + dC1(φh,Φh)

)
(1 + Λ(v))

+K7‖v‖0‖v‖0 + dC1(φh,Φh)‖v‖0 + dC0(φh,Φh)}.

Choose a suitable constant K8 > 0 such that, for all sufficiently small h and all
v ∈ X0

Khp(M) ∩ XΦ(M) with Λ(v) ≤ K8h
p−1,

Λ(Θh(v)) ≤ K6h
−1{(K7Kh

p +K2h
p)(1 +K8h

p−1)

+K7Kh
pKhp +K2h

pKhp +K1h
p+1}

≤ K8h
p−1.

Furthermore, the dΦ-Lipschitz size of the fixed point ṽh is dominated by K8h
p−1.

Lemma 2.10. For the fixed point ṽh, we have ṽh ∈ XΦ(M) and Λ(ṽh) ≤ K8h
p−1.

Proof. Let v1
h = 0 and vn+1

h = Θh(vnh) for n ∈ N. Since Θh preserves the space
X0
Khp and is a contraction, ‖vnh‖0 ≤ Khp for all n ∈ N and ‖vnh − ṽh‖0 → 0 as n→∞,

where ṽh is the fixed point of Θh in X0
Khp(M). Because Λ(vnh) ≤ K8h

p−1 for all n ∈ N,
we have ṽh ∈ XΦ(M) and Λ(ṽh) ≤ K8h

p−1.

We also need the following two lemmas. The first one is an easy consequence of
Gronwall’s theorem (see [11]). The second one was proved by Robbin in [6, Lemma
2.3].

Lemma 2.11. There is a constant L > 0 such that d(Φs(p),Φs(q)) ≤ Ld(p, q)
whenever p, q ∈M, s ∈ [0, h0].

Lemma 2.12. There is a constant α > 0 such that for p, q ∈M and v ∈ X0
Khp(M),

αd(p, q)− d(exp(v(p)), exp(v(q))) ≤ |v(p)− v(q)|.
Now let us prove that Hh is one to one and complete the proof of Theorem A.

Proposition 2.13. For all h sufficiently small, Hh ≡ exp(ṽh) is one to one.

Proof. Suppose Hh(x) = Hh(y). By the conjugacy, we have Hh(Φkh(x)) =
φkh(Hh(x)) = φkh(Hh(y)) = Hh(Φkh(y)) for all k ∈ Z. There exists s0 ∈ R such
that dΦ(x, y) ≤ 2d(Φs0(x),Φs0(y)). Take k0 ∈ Z with k0h ≤ s0 < (k0 + 1)h; then
s0 − k0h ∈ [0, h) ⊂ [0, h0]. Let p = Φk0h(x) and q = Φk0h(y). By Lemma 2.11, there
is a constant L such that d(Φs0(x),Φs0(y)) = d(Φs0−k0h(p),Φs0−k0h(q)) ≤ Ld(p, q).
Hence dΦ(p, q) = dΦ(x, y) ≤ 2d(Φs0(x),Φs0(y)) ≤ 2Ld(p, q). By the previous lemma,
there exists α > 0 such that αd(p, q) − d(exp(ṽh(p)), exp(ṽh(q))) ≤ |ṽh(p) − ṽh(q)|.
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Because Λ(ṽh) ≤ K8h
p−1,

αd(p, q)− d(exp(ṽh(p)), exp(ṽh(q))) ≤ |ṽh(p)− ṽh(q)|
≤ K8h

p−1dΦ(p, q) ≤ K8h
p−12Ld(p, q).

Therefore, (α −K8h
p−12L)d(p, q) ≤ d(Hh(p), Hh(q)) = 0. If h is small enough such

that α−K8h
p−12L > 0, then d(p, q) = 0 and p = q. Thus x = Φ−k0h(p) = Φ−k0h(q) =

y, and hence Hh is one to one.

3. Proof of Theorem B. Because Ω(Φt|M ) ⊂ interior(M), the singularities
{pi : i = 1, . . . ,m} are not on the boundary of M . For our convenience, we denote the
boundary of M by p0. We use induction to construct compatible families of stable
and unstable subbundles. Assume that for 0 ≤ i ≤ k − 1 there exist a neighborhood
Ui of pi in M and continuous subbundles {Eσi (x) ⊂ TxM : x ∈ O(Ui)}, σ = u, s, such
that the following hold:

1. (disjointness) Ui ∩ Uj = ø for i 6= j.
2. (splitting) Eui (x) + Esi (x) = TxM for x ∈ O(Ui) ∩M .
3. (boundary) Eu0 (x) = TxM and Es0(x) = {0x} for x ∈ O(U0) ∩M .
4. (extension) For i 6= 0, Eui (pi) = Eu(pi) and Esi (pi) = Es(pi), where Eu(pi)⊕

Es(pi) = TpiM is the splitting for the hyperbolic singularity pi.
5. (invariance) Eui and Esi are TΦt-invariant.
6. (compatibility) Eui (x) ⊃ Euj (x) and Esi (x) ⊂ Esj (x) if 0 ≤ i < j and x ∈

O+(Ui) ∩O−(Uj) ∩M .
7. (hyperbolicity estimate) There is a Riemannian metric and a constant µ > 0

such that ‖TΦ−t ◦ vu ◦ Φt‖0 ≤ e−µt‖vu‖0 and ‖TΦt ◦ vs ◦ Φ−t‖0 ≤ e−µt‖vs‖0 for
vu ∈ Eui |Ui , vs ∈ Esi |Ui , and 0 ≤ t ≤ 1.

8. (dΦ-Lipschitz) Eui and Esi are dΦ-Lipschitz.
First, we use backward induction j = k − 1, . . . , 0 to construct a unstable sub-

bundle Euk (x) for x ∈ (∪k−1
l=j W

u(pl)) ∩ UDsk , which is compatible with Eul (x) for
j ≤ l ≤ k − 1, where UDsk is a fundamental neighborhood of W s(pk). When
j = 0, the only requirements for the compatibility are Euk (x) ⊂ Eu0 (x) = TxM and
{0x} = Es0(x) ⊂ Esk(x), which are easily satisfied. Then by the Φt-invariance, we ex-
tend the unstable subbundle Euk over a neighborhood Uk of pk and O(Uk) (for details,
see [10]).

By shrinking Ui if necessary, we can choose a partition of unity θ0, . . . , θm subor-
dinate to the cover O(U0), . . . , O(Um) of M such that supp(θ0) ⊂M and supp(θi) ⊂
interior(M) for i 6= 0. For v ∈ X0(M), we write θiv = vui + vsi with vσi (x) ∈ Eσi (x)
and σ = u, s. Define Jh : X0(M) → X0(M) by Jh(vx) =

∑m
i=0(

∑∞
n=1 TΦnh ◦

vsi ◦ Φ−nh(x) −
∑∞
n=0 TΦ−nh ◦ vui ◦ Φnh(x)). Since M is positively invariant for Φh,

Es0(x) = {0x} for x ∈ O(U0) ∩M , supp(θ0) ⊂ M , and supp(θi) ⊂ int(M) for i 6= 0,
it follows that Jh(v) = −

∑∞
n=0 TΦ−nh ◦ vu0 ◦ Φnh +

∑m
i=1(

∑∞
n=1 TΦnh ◦ vsi ◦ Φ−nh −∑∞

n=0 TΦ−nh ◦ vui ◦ Φnh). By the same argument as above, we can prove that Jh is
a continuous linear map and Jh is a right inverse of Gh on X0(M). Moreover, we
can prove that Θh ≡ JhQh preserves X0

Khp(M) and is a contraction on X0
Khp(M),

where X0
Khp(M) = {v ∈ X0(M) : ‖v‖0 ≤ Khp}. Then there is a unique fixed

point ṽh ∈ X0
Khp(M). Therefore, Hh ≡ exp(ṽh) is a homeomorphism from M to

Hh(M) ⊂M ′.
Remark. The referee observed that Theorem B follows from Theorem A through

the following argument. Find a slightly larger M and modify the vector field so that it
points into M . Then form the double N and extend the vector field by the symmetry
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of the double. Make the vector field on the double Morse–Smale by applying the
Kupka–Smale theorem on N\M . Finally, extend the discretization to the double.
However, we have presented our original proof in order to avoid discussing the double
of a manifold.

Acknowledgment. The author would like to thank Professor Clark Robinson of
Northwestern University for his inspiration and general introduction to this subject.
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Abstract. Recently, we initiated in [Systems Control Lett., 26 (1995), pp. 245–251] the study
of exponential stability of neutral stochastic functional differential equations, and in this paper, we
shall further our study in this area. We should emphasize that the main technique employed in this
paper is the well-known Razumikhin argument and is completely different from those used in our
previous paper [Systems Control Lett., 26 (1995), pp. 245–251]. The results obtained in [Systems
Control Lett., 26 (1995), pp. 245–251] can only be applied to a certain class of neutral stochastic
functional differential equations excluding neutral stochastic differential delay equations, but the
results obtained in this paper are more general, and they especially can be used to deal with neutral
stochastic differential delay equations. Moreover, in [Systems Control Lett., 26 (1995), pp. 245–251],
we only studied the exponential stability in mean square, but in this paper, we shall also study the
almost sure exponential stability. It should be pointed out that although the results established in
this paper are applicable to more general neutral-type equation, for a particular type of equation
discussed in [Systems Control Lett., 26 (1995), pp. 245–251], the results there are sharper.
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1. Introduction. Deterministic neutral functional differential equations and
their stability have been studied by many authors, e.g., Haddock et al. [3], Hale
and Lunel [4], and the references therein. Motivated by the chemical-engineering sys-
tems as well as the theory of aeroelasticity, Kolmanovskii and Nosov [8] introduced
the neutral stochastic functional differential equations of the form

(1.1) d[x(t)−G(xt)] = f(t, xt)dt+ g(t, xt)dw(t)

on t ≥ 0 with initial data x0 = ξ ∈ L2
F0

([−τ, 0];Rn). (For notation, please see section
2 below.) Kolmanovskii and Nosov [8] not only established the theory of existence and
uniqueness of the solution to (1.1) but also investigated the stability and asymptotic
stability of the equations (see also Kolmanovskii and Myshkis [7]). However, the
exponential stability of such equations has not been studied until recently by the
author in [11]. To be more precise, let us give the definition of exponential stability.

Definition 1.1. Denote by x(t; ξ) the solution of equation (1.1). The trivial
solution of equation (1.1) is said to be exponentially stable in mean square if there
exists a pair of positive constants γ and M such that

E|x(t; ξ)|2 ≤Me−γt sup
−τ≤θ≤0

E|ξ(θ)|2, t ≥ 0,

∗ Received by the editors August 25, 1995; accepted for publication (in revised form) December
28, 1995. This research was partially supported by the Royal Society and the London Mathematical
Society.

http://www.siam.org/journals/sima/28-2/29083.html
† Department of Statistics and Modelling Science, University of Strathclyde, Glasgow G1 1XH,

Scotland, UK (xuerong@stams.strath.ac.uk).

389



390 XUERONG MAO

or, equivalently,

lim sup
t→∞

1

t
logE|x(t; ξ)|2 ≤ −γ

for all ξ ∈ L2
F0

([−τ, 0];Rn). The trivial solution of equation (1.1) is said to be almost
surely exponentially stable if there is a positive constant γ̄ such that

lim sup
t→∞

1

t
log |x(t; ξ)| ≤ −γ̄ a.s.

for all ξ ∈ L2
F0

([−τ, 0];Rn).
In this paper, we shall further our study in this area. We should emphasize that

the main technique employed in this paper is the well-known Razumikhin argument
(see Razumikhin [13], [14]). To explain this technique, applying Itô’s formula to
eλt|x(t) −G(xt)|2, one may see that to have exponential stability in mean square, it
would require that

(1.2) E
(

2(φ(0)−G(φ))T f(t, φ) + trace[gT (t, φ)g(t, φ)]
)
≤ −λE|φ(0)−G(φ)|2

for all t ≥ 0 and all φ ∈ L2
Ft([−τ, 0];Rn). As a result, one would be forced to

impose very severe restrictions on the functions f(t, φ) and g(t, φ). However, by
the Razumikhin argument, one needs to require that (1.2) hold only for those φ ∈
L2
Ft([−τ, 0];Rn) satisfying

E|φ(θ)|2 < qE|φ(0)−G(φ)|2, −τ ≤ θ ≤ 0,

but not necessarily for all φ, where q > 1 is a constant. Hence the restrictions on
the functions f(t, φ) and g(t, φ) can be weakened considerably. This is the basic idea
exploited in this paper.

This main technique of this paper is completely different from those used in our
previous paper [11]. The results obtained in [11] can be applied only to a certain
class of neutral stochastic functional differential equations excluding neutral stochastic
differential delay equations, but the results obtained in this paper are much more
general, and they especially can be used to deal with neutral stochastic differential
delay equations. Moreover, in [11], we only studied the exponential stability in mean
square, but in this paper, we shall also study the almost sure exponential stability. It
should be pointed out that although the results established in this paper are applicable
to more general neutral-type equations, for a particular class of equations discussed in
[11], the results there are sharper. (Please see section 5 below for details.) Of course,
this is not surprising because the results obtained by applying a particular technique
to a particular equation are generally sharper than those obtained by using a general
technique which is applicable to more general equations.

In this paper, the theory of existence and uniqueness of the solutions will first be
introduced very briefly in section 2. The main results of this paper will be shown in
sections 3 and 4, where several useful criteria will be established on the exponential
stability in mean square as well as the almost sure exponential stability for the trivial
solution of equation (1.1). In section 5, we shall compare our new results with the
previous ones obtained in [11]. To show the power of the Razumikhin argument,
the general results established in sections 3 and 4 will be applied to deal with the
exponential stability of neutral stochastic differential delay equations in section 6 and
of linear neutral stochastic functional differential equations in section 7.
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2. Neutral stochastic functional differential equations. Throughout the
paper, unless otherwise specified, we let τ > 0 and C([−τ, 0];Rn) denote the family
of continuous functions ϕ from [−τ, 0] to Rn with the norm ||ϕ|| = sup−τ≤θ≤0 |ϕ(θ)|,
where | · | is the Euclidean norm in Rn. If A is a vector or matrix, its transpose is
denoted by AT . If A is a matrix, its norm ||A|| is defined by ||A|| = sup{|Ax| : |x| = 1}
(without any confusion with ||ϕ||). Moreover, let w(t) = (w1(t), . . . , wm(t))T be an
m-dimensional Brownian motion defined on a complete probability space (Ω,F , P )
with a natural filtration {Ft}t≥0 (i.e., Ft = σ{w(s) : 0 ≤ s ≤ t}). For each t ≥
0, denote by L2

Ft([−τ, 0];Rn) the family of all Ft-measurable C([−τ, 0];Rn)-valued
random variables φ = {φ(θ) : −τ ≤ θ ≤ 0} such that sup−τ≤θ≤0E|φ(θ)|2 < ∞.
Also, define L2

F∞([−τ, 0];Rn) =
⋃
t≥0 L

2
Ft([−τ, 0];Rn). Obviously, C([−τ, 0];Rn) ⊂

L2
F∞([−τ, 0];Rn).

Consider the n-dimensional neutral stochastic functional differential equation

(2.1) d[x(t)−G(xt)] = f(t, xt)dt+ g(t, xt)dw(t)

on t ≥ 0 with initial data x0 = ξ. Here

G : C([−τ, 0];Rn)→ Rn, f : R+ × C([−τ, 0];Rn)→ Rn,

g : R+ × C([−τ, 0];Rn)→ Rn×m

are all continuous functionals. Moreover, xt = {x(t + θ) : −τ ≤ θ ≤ 0}, which is
regarded as a C([−τ, 0];Rn)-valued stochastic process, and ξ = {ξ(θ) : −τ ≤ θ ≤
0} ∈ L2

F0
([−τ, 0];Rn). An Ft-adapted process x(t),−τ ≤ t < ∞ (let Ft = F0

for −τ ≤ t ≤ 0), is said to be a solution of equation (2.1) if it satisfies the initial
condition and, moreover, for every t ≥ 0,

(2.1)′ x(t)−G(xt) = ξ(0)−G(ξ) +

∫ t

0

f(s, xs)ds+

∫ t

0

g(s, xs)dw(s).

To ensure the existence and uniqueness of the solution, one of the key hypotheses is
the following:

(H) There is a constant κ ∈ (0, 1) such that

E|G(φ1)−G(φ2)|2 ≤ κ sup
−τ≤θ≤0

E|φ1(θ)− φ2(θ)|2

for all φ1, φ2 ∈ L2
F∞([−τ, 0];Rn).

In addition, we need further hypotheses on f and g. For example, f and g are
uniformly Lipschitz continuous, or they are locally Lipschitz continuous and satisfy
the linear-growth condition. Under these hypotheses, Kolmanovskii and Nosov [8]
showed that there is a unique continuous solution to equation (2.1), and any mo-
ment, especially the second moment, of the solution is finite. Since the existence and
uniqueness of the solution are not the main topic of this paper, we shall not discuss
them in detail. All we need to do in this paper is assume that a unique solution exists
and is continuous and that its second moment is finite. The solution will be denoted
by x(t; ξ).

3. Exponential stability in mean square. In this section, we will investigate
the exponential stability in mean square for the solution of equation (2.1). For the
general theory on stochastic stability, we refer the reader to Arnold [1], Friedman [2],
Has’minskii [5], Mao [9, 10], or Mohammed [12]. For the stability purpose of this
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paper, we always assume that G(0) = 0, f(t, 0) ≡ 0, and g(t, 0) ≡ 0. Therefore,
equation (2.1) admits a trivial solution x(t; 0) ≡ 0. The following Razumikhin-type
theorem gives a sufficient condition for the exponential stability in mean square of
this trivial solution.

Theorem 3.1. Assume that there is a constant κ ∈ (0, 1) such that

(3.1) E|G(φ)|2 ≤ κ sup
−τ≤θ≤0

E|φ(θ)|2, φ ∈ L2
F∞([−τ, 0];Rn).

Let q > (1−
√
κ)−2. Assume furthermore that there is a λ > 0 such that

(3.2) E
(

2(φ(0)−G(φ))T f(t, φ) + trace[gT (t, φ)g(t, φ)]
)
≤ −λE|φ(0)−G(φ)|2

for all t ≥ 0 and those φ ∈ L2
Ft([−τ, 0];Rn) satisfying

E|φ(θ)|2 < qE|φ(0)−G(φ)|2, −τ ≤ θ ≤ 0.

Then for all ξ ∈ L2
F0

([−τ, 0];Rn),

(3.3) E|x(t; ξ)|2 ≤ q(1 +
√
κ)2e−γ̄t sup

−τ≤θ≤0
E|ξ(θ)|2, t ≥ 0,

where

(3.4) γ̄ = min

{
λ,

1

τ
log

[
q

(1 +
√
qκ)2

]}
> 0.

In other words, the trivial solution of equation (2.1) is exponentially stable in mean
square.

In order to prove this theorem, let us present two useful lemmas.
Lemma 3.2. Let (3.1) hold for some κ ∈ (0, 1). Then

E|φ(0)−G(φ)|2 ≤ (1 +
√
k)2 sup
−τ≤θ≤0

E|φ(θ)|2

for all φ ∈ L2
F∞([−τ, 0];Rn).

Proof. For any ε > 0,

E|φ(0)−G(φ)|2 ≤ E|φ(0)|2 + 2E
(
|φ(0)||G(φ)|

)
+ E|G(φ)|2

≤ (1 + ε)E|φ(0)|2 + (1 + ε−1)E|G(φ)|2

≤
[
1 + ε+ κ(1 + ε−1)

]
sup

−τ≤θ≤0
E|φ(θ)|2.

Therefore, the desired result follows by taking ε =
√
κ. The proof is complete.

Lemma 3.3. Let (3.1) hold for some κ ∈ (0, 1). Let ρ ≥ 0 and 0 < γ <
τ−1 log(1/κ). Let x(t) be a solution of equation (2.1). If

(3.5) eγtE|x(t)−G(xt)|2 ≤ (1 +
√
κ)2 sup
−τ≤θ≤0

E|x(θ)|2

for all 0 ≤ t ≤ ρ, then

(3.6) eγtE|x(t)|2 ≤ (1 +
√
κ)2

(1−
√
κeγτ )2

sup
−τ≤θ≤0

E|x(θ)|2.
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Proof. Let κeγτ < ε < 1. For 0 ≤ t ≤ ρ, note that

E|x(t)−G(xt)|2 ≥ E|x(t)|2 − 2E
(
|x(t)||G(xt)|

)
+ E|G(xt)|2

≥ (1− ε)E|x(t)|2 − (ε−1 − 1)E|G(xt)|2.

Hence

E|x(t)|2 ≤ 1

1− εE|x(t)−G(xt)|2 +
κ

ε
sup

−τ≤θ≤0
E|x(t+ θ)|2.

By condition (3.5), we then derive that for all 0 ≤ t ≤ ρ,

eγtE|x(t)|2 ≤ 1

1− ε sup
0≤t≤ρ

[
eγtE|x(t)−G(xt)|2

]
+
κ

ε
sup

0≤t≤ρ

[
eγt sup
−τ≤θ≤0

E|x(t+ θ)|2
]

≤ (1 +
√
κ)2

1− ε sup
−τ≤θ≤0

E|x(θ)|2 +
κeγτ

ε
sup
−τ≤t≤ρ

[
eγtE|x(t)|2

]
.

However, this holds for all −τ ≤ t ≤ 0 as well. Therefore,

sup
−τ≤t≤ρ

[
eγtE|x(t)|2

]
≤ (1 +

√
κ)2

1− ε sup
−τ≤θ≤0

E|x(θ)|2 +
κeγτ

ε
sup
−τ≤t≤ρ

[
eγtE|x(t)|2

]
.

Since 1 > κeγτ/ε, we see that

sup
−τ≤t≤ρ

[
eγtE|x(t)|2

]
≤ ε(1 +

√
κ)2

(1− ε)(ε− κeγτ )
sup

−τ≤θ≤0
E|x(θ)|2.

The required assertion (3.6) follows by taking ε =
√
κeγτ . The proof is com-

plete.
We can now begin to prove Theorem 3.1.
Proof of Theorem 3.1. First, note that q/(1 +

√
qκ)2 > 1 since q > (1 −

√
k)−2

and hence γ̄ > 0. Now fix any ξ ∈ L2
F0

([−τ, 0];Rn) and simply write x(t; ξ) = x(t).
Without any loss of generality, we may assume that sup−τ≤θ≤0E|ξ(θ)|2 > 0. Let
γ ∈ (0, γ̄) arbitrarily. It is easy to show that

(3.7) 0 < γ < min

{
λ,

1

τ
log
( 1

κ

)}
and q >

eγτ

(1−
√
κeγτ )2

.

We now claim that

(3.8) eγtE|x(t)−G(xt)|2 ≤ (1 +
√
κ)2 sup
−τ≤θ≤0

E|ξ(θ)|2 for all t ≥ 0.

If so, an application of Lemma 3.3 to (3.8) yields that

eγtE|x(t)|2 ≤ (1 +
√
κ)2

(1−
√
κeγτ )2

sup
−τ≤θ≤0

E|ξ(θ)|2 ≤ q(1 +
√
κ)2 sup
−τ≤θ≤0

E|x(θ)|2

for all t ≥ 0, where we have used (3.7), and the desired result (3.3) follows by letting
γ → γ̄. The remainder of the proof is to show (3.8) by contradiction. Suppose (3.8)
is not true. Then in view of Lemma 3.2, there is a ρ ≥ 0 such that

(3.9) eγtE|x(t)−G(xt)|2 ≤ eγρE|x(ρ)−G(xρ)|2 = (1 +
√
κ)2 sup
−τ≤θ≤0

E|ξ(θ)|2
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for all 0 ≤ t ≤ ρ and, moreover, there is a sequence of {tk}k≥1 such that tk ↓ ρ and

(3.10) eγtkE|x(tk)−G(xtk)|2 > eγρE|x(ρ)−G(xρ)|2.

Applying Lemma 3.3, we derive from (3.9) that

eγtE|x(t)|2 ≤ (1 +
√
κ)2

(1−
√
κeγτ )2

sup
−τ≤θ≤0

E|x(θ)|2

=
eγρ

(1−
√
κeγτ )2

E|x(ρ)−G(xρ)|2

for all −τ ≤ t ≤ ρ. Particularly,

(3.11) E|x(ρ+ θ)|2 ≤ eγτ

(1−
√
κeγτ )2

E|x(ρ)−G(xρ)|2 < qE|x(ρ)−G(xρ)|2

for all −τ ≤ θ ≤ 0, where (3.7) has been used once again. By assumption (3.2), we
then have

E
(

2(x(ρ)−G(xρ))
T f(ρ, xρ) + trace[gT (ρ, xρ)g(ρ, xρ)]

)
≤ −λE|x(ρ)−G(xρ)|2.

Recalling γ < λ, we see by the continuity of the solution and the functionals G, f , and
g (this is the standing hypothesis in this paper) that for all sufficiently small h > 0,

E
(

2(x(t)−G(xt))
T f(t, xt) + trace[gT (t, xt)g(t, xt)]

)
≤ −γE|x(t)−G(xt)|2

if ρ ≤ t ≤ ρ+ h. Now by Itô’s formula, for all sufficiently small h > 0,

(3.12)

eγ(ρ+h) E|x(ρ+ h)−G(xρ+h)|2 − eγρE|x(ρ)−G(xρ)|2

=

∫ ρ+h

ρ

eγt
[
γE|x(t)−G(xt)|2

+E
(

2(x(t)−G(xt))
T f(t, xt) + trace[gT (t, xt)g(t, xt)]

)]
dt

≤ 0;

however, this contradicts (3.10), so (3.8) must hold. The proof is now com-
plete.

4. Almost sure exponential stability. In this section, we discuss the almost
sure exponential stability for the neutral stochastic functional differential equations.
It will be shown that under the linear-growth condition, the exponential stability in
mean square implies the almost sure exponential stability.

Theorem 4.1. Let (3.1) hold for some κ ∈ (0, 1). Assume that there exists a
positive constant K > 0 such that

(4.1) E
(
|f(t, φ)|2 + trace

[
gT (t, φ)g(t, φ)

])
≤ K sup

−τ≤θ≤0
E|φ(θ)|2

for all t ≥ 0 and φ ∈ L2
F∞([−τ, 0];Rn). Assume also that the trivial solution of

equation (2.1) is exponentially stable in mean square, that is, there exists a pair of
positive constants γ and M such that

(4.2) E|x(t; ξ)|2 ≤Me−γt sup
−τ≤θ≤0

E|ξ(θ)|2, t ≥ 0,
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for all ξ ∈ L2
F0

([−τ, 0];Rn). Then

(4.3) lim sup
t→∞

1

t
log |x(t; ξ)| ≤ − γ̄

2
a.s.,

where γ̄ = min{γ, τ−1 log(1/κ)}, that is, the trivial solution of equation (2.1) is also
almost surely exponentially stable. In particular, if (3.1), (3.2), and (4.1) hold, then
the trivial solution of equation (2.1) is almost surely exponentially stable.

To prove the theorem, we need to present another lemma which is very useful
in the study of the almost sure exponential stability of neutral stochastic functional
differential equations.

Lemma 4.2. Assume that there exists a constant κ ∈ (0, 1) such that

(4.4) |G(ϕ)|2 ≤ κ sup
−τ≤θ≤0

|ϕ(θ)|2, ϕ ∈ C([−τ, 0];Rn).

Let z : [−τ,∞)→ Rn be a continuous function. Let 0 < γ < τ−1 log(1/κ) and H > 0.
If

(4.5) |z(t)−G(zt)|2 ≤ He−γt for all t ≥ 0,

then

(4.6) lim sup
t→∞

1

t
log |z(t)| ≤ −γ

2
.

Proof. Choose any ε ∈ (κeγτ , 1). In the same way as in the proof of Lemma 3.3,
we can show that for any T > 0,

sup
0≤t≤T

[
eγt|z(t)|2

]
≤ H

1− ε +
κeγτ

ε
sup

−τ≤t≤T

[
eγt|z(t)|2

]
.

It then follows that(
1− κeγτ

ε

)
sup

0≤t≤T

[
eγt|z(t)|2

]
≤ H

1− ε +
κeγτ

ε
sup
−τ≤t≤0

|z(t)|2.

Consequently,

lim sup
t→∞

1

t
log |z(t)| ≤ −γ

2
,

as required. The proof is complete.
Proof of Theorem 4.1. First, note that condition (4.1) implies condition (4.4) since

C[−τ ; 0];Rn) ⊂ L2
F∞([−τ, 0];Rn). Now fix any initial data ξ and write the solution

x(t; ξ) = x(t) simply. By the well-known Doob martingale inequality (cf. Karatzas
and Shreve [6]), the Hölder inequality, and condition (4.2), we can easily derive that
for any integer k ≥ 1,
(4.7)

E

(
sup

0≤θ≤τ
|x(kτ + θ)−G(xkτ+θ)|2

)
≤ 3E|x(kτ)−G(xkτ )|2 + 3K(τ + 4)

∫ (k+1)τ

kτ

(
sup

−τ≤θ≤0
E|x(s+ θ)|2

)
ds

≤
(

6M(1 + κ)e−γ̄(kτ−τ) + 3K(τ + 4)M

∫ (k+1)τ

kτ

e−γ̄(s−τ)ds

)[
sup

−τ≤θ≤0
E|ξ(θ)|2

]
≤ Ce−γ̄kτ ,
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where C = 3Meγ̄τ
[
2(1+κ)+K(τ+4)

]
sup−τ≤θ≤0E|ξ(θ)|2. Let ε ∈ (0, γ̄) be arbitrary.

It then follows from (4.7) that

P

(
ω : sup

0≤θ≤τ
|x(kτ + θ)−G(xkτ+θ)|2 > e−(γ̄−ε)kτ

)
≤ Ce−εkτ .

In view of the well-known Borel–Cantelli lemma, we see that for almost all ω ∈ Ω,

(4.8) sup
0≤θ≤τ

|x(kτ + θ)−G(xkτ+θ)|2 ≤ e−(γ̄−ε)kτ

holds for all but finitely many k. Hence for all ω ∈ Ω excluding a P -null set, there
exists a ko(ω) for which (4.8) holds whenever k ≥ ko. In other words, for almost all
ω ∈ Ω,

|x(t)−G(xt)|2 ≤ e−(γ̄−ε)(t−τ) if t ≥ koτ.

However, |x(t) − G(xt)|2 is finite on [0, koτ ]. Therefore, for almost all ω ∈ Ω, there
exists a finite number H = H(ω) such that

|x(t)−G(xt)|2 ≤ He−(γ̄−ε)t for all t ≥ 0.

An application of Lemma 4.2 now yields

lim sup
t→∞

1

t
log |x(t)| ≤ − γ̄ − ε

2
a.s.,

and the desired result (4.3) follows by letting ε→ 0. The proof is complete.

5. Comparison with existing results. Recently, in [11], we studied the expo-
nential stability in mean square for a class of neutral stochastic functional differential
equations using a completely different technique from the one in this paper. The aim
of this section is to compare our previous results in [11] with our new results in this
paper. The equation studied in [11] is of the form

(5.1) d[x(t)−G(xt)] = [f1(t, x(t)) + f2(t, xt)]dt+ g(t, xt)dw(t)

on t ≥ 0 with initial data x0 = ξ, where f1 : R+ × Rn → Rn, f2 : R+ × C([−τ, 0];Rn)
→ Rn, and G and g are the same as before. Let us first state a useful result.

Theorem 5.1. Let (3.1) hold. Assume that there are two positive constants λ1

and λ2 such that

(5.2)

E
(

2(φ(0)−G(φ ))T [f1(t, φ(0)) + f2(t, φ)] + trace[gT (t, φ)g(t, φ)]
)

≤ −λ1E|φ(0)|2 + λ2 sup
−τ≤θ≤0

E|φ(θ)|2

for all t ≥ 0 and φ ∈ L2
F∞([−τ, 0];Rn). If

(5.3) 0 < κ <
1

4
and λ1 >

λ2

(1− 2
√
κ)2

,

then the trivial solution of equation (5.1) is exponentially stable in mean square.
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Proof. By condition (5.3), we can choose q such that

(5.4)
1

κ
> q >

1

(1−
√
κ)2

and λ1 >
λ2q

(1−√κq)2
.

By defining f(t, ϕ) = f1(t, ϕ(0)) + f2(t, ϕ) for t ≥ 0 and ϕ ∈ C([−τ, 0];Rn), equation
(5.1) can be written as equation (2.1), so all that we need to do is verify condition
(3.2). To do so, let t ≥ 0 and φ ∈ L2

Ft([−τ, 0];Rn), satisfying

E|φ(θ)|2 < qE|φ(0)−G(φ)|2, −τ ≤ θ ≤ 0.

Note that for any ε > 0,

(5.5) −E|φ(0)|2 ≤ − 1

1 + ε
E|φ(0)−G(φ)|2 +

1

ε
E|G(φ)|2.

It then follows from (5.2) and (5.5) that

(5.6)

E
(

2(φ(0)−G(φ))T [f1(t, φ(0)) + f2(t, φ)] + trace[gT (t, φ)g(t, φ)]
)

≤ −λ1E|φ(0)|2 + λ2 sup
−τ≤θ≤0

E|φ(θ)|2

≤ −
[
λ1

( 1

1 + ε
− κq

ε

)
− λ2q

]
E|φ(0)−G(φ)|2.

In particular, choose ε =
√
κq/(1−√κq) and hence[

λ1

( 1

1 + ε
− κq

ε

)
− λ2q

]
= λ1(1−√κq)2 − λ2q > 0,

where we have used (5.4). In other words, condition (3.2) is satisfied and hence the
conclusion follows from Theorem 3.1. The proof is complete.

To compare this result with one in our previous paper [11], let us introduce
another new notation W([−τ, 0];R+), which is the family of all Borel-measurable

bounded nonnegative functions η(θ) defined on −τ ≤ θ ≤ 0 such that
∫ 0

−τ η(θ)dθ = 1.
In [11], conditions (3.1) and (5.2) were strengthened as follows: There is a constant
κ ∈ (0, 1) and a function η1 ∈ W([−τ, 0];R+) such that

(5.7) |G(ϕ)|2 ≤ κ
∫ 0

−τ
η1(θ)|ϕ(θ)|2dθ for all ϕ ∈ C([−τ, 0];Rn);

moreover, there exists a function η2(.) ∈ W([−τ, 0];R+) and two positive constants
λ1 and λ2 such that

(5.8)

2(ϕ(0)−G(ϕ ))T [f1(t, ϕ(0)) + f2(t, ϕ)] + trace[gT (t, ϕ)g(t, ϕ)]

≤ −λ1|ϕ(0)|2 + λ2

∫ 0

−τ
η2(θ)|ϕ(θ)|2dθ

for all t ≥ 0 and ϕ ∈ C([−τ, 0];Rn). These two conditions are indeed stronger
than (3.1) and (5.2), respectively. For example, if (5.7) holds, then for any φ ∈



398 XUERONG MAO

L2
F∞([−τ, 0];Rn),

E|G(φ)|2≤ κ
∫ 0

−τ
η1(θ)E|φ(θ)|2dθ

≤ κ sup
−τ≤θ≤0

E|φ(θ)|2
∫ 0

−τ
η1(θ)dθ = κ sup

−τ≤θ≤0
E|φ(θ)|2,

that is, (3.1) holds. However, what we gained in [11] with this price paid is the
following sharper result.

Theorem 5.2 (Mao [11]). Let (5.7) and (5.8) hold. If λ1 > λ2 and κ ∈ (0, 1),
then the trivial solution of equation (5.1) is exponentially stable in mean square.

Obviously, λ1 > λ2 and κ ∈ (0, 1) are much sharper than (5.3). The disadvantage
of Theorem 5.2 is that (5.7) and (5.8) are somehow too restricted. For instance, Theo-
rem 5.2 is not applicable to the case of neutral stochastic differential delay equations.
However, Theorem 5.1 can be applied to deal with the delay case easily. Let us now
turn to this topic.

6. Neutral stochastic differential delay equations. As an application, let
us apply the theory established in the previous sections to deal with the exponential
stability of neutral stochastic differential delay equations of the form

(6.1) d[x(t)− Ḡ(x(t− τ))] = f̄(t, x(t), x(t− τ))dt+ ḡ(t, x(t), x(t− τ))dw(t)

on t ≥ 0 with initial data x0 = ξ, where Ḡ : Rn → Rn, f̄ : R+ ×Rn ×Rn → Rn, and
ḡ : R+×Rn×Rn → Rn×m. As before, assume that equation (6.1) has a unique global
solution denoted by x(t; ξ) and, moreover, Ḡ(0) = 0, f̄(t, 0, 0) = 0, and ḡ(t, 0, 0) = 0.
We now employ Theorem 5.1 to establish one useful corollary.

Corollary 6.1. Assume that there is a constant κ ∈ (0, 1) such that

(6.2) |Ḡ(x)|2 ≤ κ|x|2, x ∈ Rn.

Assume also that there are two positive constants λ1 and λ2 such that

(6.3) 2(x− Ḡ(y))T f̄(t, x, y) + trace[ḡT (t, x, y)ḡ(t, x, y)] ≤ −λ1|x|2 + λ2|y|2

for all t ≥ 0 and x, y ∈ Rn. If

(6.4) 0 < κ <
1

4
and λ1 >

λ2

(1− 2
√
κ)2

,

then the trivial solution of equation (6.1) is exponentially stable in mean square.
This corollary follows directly from Theorem 5.1 since equation (6.1) can be writ-

ten as equation (5.1) by defining

G(ϕ) = Ḡ(ϕ(−τ)), f1(t, x) = f̄(t, x, 0),

f2(t, ϕ) = −f̄(t, ϕ(0), 0) + f̄(t, ϕ(0), ϕ(−τ)), g(t, ϕ) = ḡ(t, ϕ(0), ϕ(−τ))

for t ≥ 0, x ∈ Rn and ϕ ∈ C([−τ, 0];Rn). Of course, we can directly apply
Theorems 3.1 and 4.1 to obtain a more general result. For this purpose, let us intro-
duce another new notation L2

F (Ω;Rn), which is the family of Rn-valued F -measurable
random variables X such that E|X|2 <∞.
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Theorem 6.2. Let (6.2) hold with κ ∈ (0, 1). Let q > (1−
√
κ)−2. Assume that

there is a constant λ > 0 such that

(6.5)

E
(

2(X − Ḡ(Y ))T f̄(t,X, Y ) + trace[ḡT (t,X, Y )ḡ(t,X, Y )]
)

≤ −λE|X − Ḡ(Y )|2

for all t ≥ 0 and those X,Y ∈ L2
F (Ω;Rn) satisfying E|Y |2 < qE|X−Ḡ(Y )|2. Then the

trivial solution of equation (6.1) is exponentially stable in mean square. Furthermore,
if there is a positive constant K such that

(6.6) |f̄(t, x, y)|2 + trace[ḡT (t, x, y)ḡ(t, x, y)] ≤ K(|x|2 + |y|2), x, y ∈ Rn,

then the trivial solution of equation (6.1) is also almost surely exponentially stable.
This theorem follows directly from Theorems 3.1 and 4.1 since equation (6.1) can

be written as equation (2.1) by defining

G(ϕ) = Ḡ(ϕ(−τ)), f(t, ϕ) = f̄(t, ϕ(0), ϕ(−τ)), g(t, ϕ) = ḡ(t, ϕ(0), ϕ(−τ))

for t ≥ 0 and ϕ ∈ C([−τ, 0];Rn).

7. Linear neutral stochastic functional differential equations. As another
application, let us consider a linear neutral stochastic functional differential equation

(7.1) d[x(t)−G(xt)] = [−Ax(t) +B0(xt)]dt+

m∑
i=1

Bi(xt)dwi(t)

on t ≥ 0 with initial data x0 = ξ. Here A is an n× n constant matrix and

G(ϕ) =

∫ 0

−τ
dγ(θ)ϕ(θ), Bi(ϕ) =

∫ 0

−τ
dβi(θ)ϕ(θ)

for ϕ ∈ C([−τ, 0];Rn), 0 ≤ i ≤ m, where γ(θ) = (γkl(θ))n×n, βi(θ) = (βkli (θ))n×n and
all γkl(θ) and βkli (θ) are functions of bounded variation on −τ ≤ θ ≤ 0. Let Vγkl(θ)
denote the total variations of γkl on the interval [−τ, θ] and let Vγ(θ) = ||Vγkl(θ)||.
We can define Vβi(θ) similarly. In particular, let

γ̂ = Vγ(0) and β̂i = Vβi(0), 0 ≤ i ≤ m.

Let us now impose the first assumption:

(7.2) 0 < γ̂ <
1

2
.

Then for any φ ∈ L2
F∞([−τ, 0];Rn),

(7.3) E|G(ϕ)|2 ≤ γ̂E
∫ 0

−τ
dVγ(θ)|ϕ(θ)|2 ≤ γ̂2 sup

−τ≤θ≤0
E|ϕ(θ)|2.

In other words, (3.1) is satisfied with κ = γ̂2. Moreover,

(7.4)

2E
[
|φ(0)||G(φ)|

]
≤ γ̂

1− 2γ̂
E|φ(0)|2 +

1− 2γ̂

γ̂
E|G(φ)|2

≤ γ̂

1− 2γ̂
E|φ(0)|2 + γ̂(1− 2γ̂) sup

−τ≤θ≤0
E|ϕ(θ)|2.
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Similarly, one can show that

(7.5) 2E
[
|φ(0)||B0(φ)|

]
≤ β̂0

1− 2γ̂
E|φ(0)|2 + β̂0(1− 2γ̂) sup

−τ≤θ≤0
E|ϕ(θ)|2,

(7.6) 2E
[
|G(φ)||B0(φ)|

]
≤ 2γ̂β̂0 sup

−τ≤θ≤0
E|ϕ(θ)|2,

and

(7.7)
m∑
i=1

E|Bi(φ)|2 ≤
[ m∑
i=1

β̂2
i

]
sup

−τ≤θ≤0
E|ϕ(θ)|2.

Let λmin(A + AT ) denote the smallest eigenvalue of A + AT . Using (7.4)–(7.7), we
then see that

(7.8)

E

(
2(φ(0)−G(φ))T [−Aφ(0) +B0(φ)] +

m∑
i=1

E|Bi(φ)|2
)

≤ −
[
λmin(A+AT )− γ̂||A||+ β̂0

1− 2γ̂

]
E|φ(0)|2

+

[
(γ̂||A||+ β̂0)(1− 2γ̂) + 2γ̂β̂0 +

m∑
i=1

β̂2
i

]
sup

−τ≤θ≤0
E|φ(θ)|2.

To close this paper, we apply Theorems 5.1 and 4.1 and conclude the following corol-
lary.

Corollary 7.1. Let (7.2) hold. If

λmin(A+AT ) >
2(γ̂||A||+ β̂0)

1− 2γ̂
+

1

(1− 2γ̂)2

[
2γ̂β̂0 +

m∑
i=1

β̂2
i

]
,

then the trivial solution of equation (7.1) is exponentially stable in mean square and
is also almost surely exponentially stable.
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AN EXTENSION OF THE STABILITY INDEX FOR
TRAVELING-WAVE SOLUTIONS AND ITS APPLICATION TO

BIFURCATIONS∗
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Abstract. We treat the stability index for traveling-wave solutions of one-dimensional reaction-
diffusion equations due to Alexander, Gardner, and Jones [J. Reine Angew. Math., 410 (1990), pp.
167–212]. An extension of the stability index which makes the index robust to perturbation is given
and, using the extension, an additive formula for a gluing bifurcation of traveling waves is proven.
We also consider certain heteroclinic bifurcations as an application, some specific examples of which
are discussed.

Key words. traveling wave, stability index, heteroclinic bifurcation
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1. Introduction. We often encounter the following type of equations as model
equations in chemistry, mathematical biology, and other areas concerning formation
of spatial patterns; these kinds of equations are called reaction-diffusion equations:

∂u1

∂t = d1∆u1 + f1(u1, . . . , un),
...

∂un
∂t = dn∆un + fn(u1, . . . , un),

(1.1)

where di ≥ 0 represents—as a model equation of a chemical reaction, for instance—the
spatial diffusion rate of chemicals and fi models their production.

Stable steady-state constant solutions of such systems correspond to homogeneous
equilibrium states. On the other hand, pattern formations which appear in transition
processes are attracting interest, and much research has been devoted to them. For
systems with a one-dimensional space variable, traveling-wave solutions are especially
important from this point of view. In this paper, we deal with their stability and
bifurcations.

Consider a one-dimensional reaction-diffusion system

ut = Buxx + F (u),(1.2)

where x, t ∈ R, u(x, t) ∈ Rn, B is an n×n positive diagonal matrix, and F : Rn → Rn.
Set ξ = x− θt and rewrite this equation on a moving frame (ξ, t); then we have

ut = Buξξ + θuξ + F (u).(1.3)

In the x-coordinate, a steady-state solution of equation (1.3) is a solution which trans-
lates with constant velocity θ, preserving the solution’s profile. This is a traveling-wave
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9, 1995. This work was supported by the JSPS Research Fellowships for Young Scientists and Science
Foundation of the Ministry of Education of Japan grant 3078.
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†Department of Mathematics, Faculty of Science, Saitama University, 255 Shimo-Ohkubo, Urawa-

shi 338, Japan (snii@rimath.saitama-u.ac.jp).
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solution of system (1.2). In this paper, we restrict our attention to the traveling waves
satisfying the boundary condition

lim
x→±∞

u(x, t) = u±,(1.4)

where we assume that u ≡ u± are stable steady-state constant solutions of (1.2), i.e.,
u(x, t) = u(ξ) is a solution of the ordinary differential equation.

Buξξ + θuξ + F (u) = 0(1.5)

with limξ→±∞ u(ξ) = u±. This means that (u(ξ), u′(ξ)) is a heteroclinic solution
connecting (u−, 0) and (u+, 0) of the first-order system{

u′ = v,
v′ = −B−1F (u)− θB−1v

( ′ = d
dξ ).(1.6)

This kind of wave corresponds to the movement of a transition layer between two equi-
librium states when u− is different from u+, whereas it corresponds to the propagation
of a pulse when u− equals to u+.

The existence problem of such traveling waves or, equivalently, heteroclinic (ho-
moclinic) orbits of (1.6) already commands a large body of literature, and it is also
one of the main sources of motivation for the development of bifurcation theory for
homoclinic or heteroclinic orbits of vector fields.

However, not all traveling waves correspond to observed phenomena which are
described by the equations. Physical systems always suffer from noise which comes
from outside the system. Therefore, waves represented by unstable solutions, which
are destroyed by small perturbations of their initial conditions, cannot sustain them-
selves in the systems in the real world. That is why we need stability analysis; in other
words, we have to know stable solutions which, even if they are perturbed slightly,
recover to the original solutions as time goes on.

We usually use the technique of linear stability; that is, we linearize the equa-
tion about the wave under study and investigate whether this linearized operator on
the appropriate space has no eigenvalue with a positive real part. This is because,
in the context of semilinear parabolic equations, it is well known that stability for
the linear problem implies the same for the nonlinear problem under an appropriate
setting. Therefore, the eigenvalue problem is the main issue for the stability analysis
of traveling waves. See Alexander, Gardner, and Jones [1], and for more details, see
Bates and Jones [4] and Henry [9].

One way to approach the eigenvalue problem is to investigate the Evans function,
which is an analytic function on the complex plane derived from the eigenvalue prob-
lem and vanishes at the eigenvalues (see Evans [6], [7], Jones [12], and Yanagida [20]).
This function is the basis of the stability index due to Alexander, Gardner, and Jones
[1], which is the main subject of this paper. In fact, it is an algebraically dressed
refinement of the Evans function.

The aim of this paper is to determine the stability of traveling waves that are
generated by certain bifurcations.

First, we present an extension of the stability index.
Consider a system depending on a parameter µ ∈ R,

ut = Buxx + F (u;µ).(1.7)
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Assume that at µ = 0 this system has a traveling-wave solution u0(ξ) with velocity
θ, i.e., u0(ξ) satisfies

Buξξ + θuξ + F (u;µ) = 0(1.8)

for ξ = x− θt. The stability index is defined for u0. For µ 6= 0, (1.7) generically does
not have a traveling wave, so the stability index is not defined. However, equation
(1.8) or the following system corresponding to it should retain some information for
µ ≈ 0, and it is important to obtain this information when (1.8) (or (1.9)) undergoes
various bifurcations: {

u′ = v,
v′ = −B−1F (u;µ)− θB−1v

( ′ = d
dξ ).(1.9)

In fact, for each µ, (1.9) has a solution (u(ξ;µ), u′(ξ;µ)) that is “near” (u0(ξ), u′0(ξ)),
and we can make use of this. The stability index is originally defined as the first Chern
number of a certain vector bundle over the two-dimensional sphere, but we regard it
as an element of the two-dimensional homotopy group of the complex projective space
(Theorem 2.2). We prove that this definition has a kind of robustness; namely, we
can define the index for u(ξ;µ) as an element of the relative homotopy group, and it
inherits the information of the index defined for u0(ξ) (Theorem 3.1).

Next, an additive formula (Theorem 3.2) of the index of the gluing bifurcation
[8] of heteroclinic orbits of (1.9) is proven as an application of the extension of the
stability index.

Sometimes we see gluing bifurcations of traveling waves—two traveling waves
are glued with each other at the ends of ξ → ±∞ and a new traveling wave is
produced. At first, Yanagida and Maginu [21] treated this kind of problem for pulses
with oscillating tails and where the equilibrium of (1.9) with which the pulses are
associated has a one-dimensional unstable manifold. In this case, the definition and
calculation of the Evans function was relatively easy. Later, Alexander and Jones [2],
[3] dealt with the same problem when the unstable manifold is two dimensional. In
[2], an additive formula for the bifurcation is proven using cobordism. Our result
provides another way of proving it.

The additive formula tells us that for a wave generated by a gluing bifurcation of
two waves, the linearized operator possesses two eigenvalues near the origin; one is at
the origin corresponding to the translation of the wave, so the sign of the other one
determines the stability. Alexander and Jones [2] showed that the direction of the
intersection of stable and unstable manifolds of equilibria of (1.9) determines the sign
(Proposition 4.1). This is also a generalization of the works of Evans [7], Jones [12],
Yanagida [20], and Yanagida and Maginu [21]. In those works, the geometrical mean-
ing of direction was clear. In the general situation, however, we must define the
direction properly.

Besides the additive formula, other applications of the extension based on its
robustness are expected. For example, a similar index is defined in [19] to detect the
existence of N -homoclinic bifurcations, and there may be some relation between these
two indices.

The remainder of this paper is devoted to an application to a heteroclinic bifur-
cation. A generic two-parameter family of vector fields with two heteroclinic orbits
in a row undergoes a gluing bifurcation that produces a heteroclinic orbit that stays
in some neighborhood of the concatenation of original two heteroclinic orbits (see
Kokubu [17]). This type of bifurcation is also observed in some reaction-diffusion
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equations. We apply the preceding argument to this kind of bifurcation. In this case,
we must determine the direction of the intersections to apply to actual examples (The-
orem 4.3). This is not an easy task in general situations, but we can determine the
stability for the case of a heteroclinic loop. More precisely, assume that system (1.9)
has two equilibria (u1, 0) and (u2, 0), and assume that for a certain parameter value,
there exist two heteroclinic orbits from (u1, 0) to (u2, 0) and from (u2, 0) to (u1, 0)
forming a loop called a heteroclinic loop. Then the system undergoes a gluing bi-
furcation, producing a homoclinic orbit with respect to (u1, 0). In this situation, we
show that the stability of the traveling wave corresponding to the homoclinic orbit is
determined by the bifurcation diagram (Theorem 4.4); we show the relation between
bifurcation diagrams and stability in Figure 5.7. This is another main theorem of this
paper.

This paper is divided into five parts. In section 2, we briefly summarize the
definition of the stability index and translate it in order to treat it via our methods.
In section 3, we prove that the index can be extended and give a proof of the additive
formula. Sections 4 and 5 are devoted to an application to a heteroclinic bifurcation
and its examples.

2. The stability index. First, we briefly summarize the construction of stabil-
ity indices for traveling-wave solutions of one-dimensional reaction-diffusion equations
due to Alexander, Gardner, and Jones. For details and proofs, see [1] and the refer-
ences therein.

2.1. Traveling waves and their stability. Consider one-dimensional reaction-
diffusion equations of the following form:

ut = Buxx + F (u).(2.1)

Here u(x, t) ∈ Rn, x, t ∈ R, B : positive diagonal n × n matrix, and F : C2 with
derivatives through order 2 bounded on Rn.

We get on the moving frame (ξ, t), where ξ = x − θt and the velocity θ is a
constant. In this coordinate, (2.1) is written as follows:

ut = Buξξ + θuξ + F (u).(2.2)

A traveling-wave solution of (2.1) is a stationary solution u0(ξ) = u0(x − θt) of
(2.2) for some θ; in other words, it is a solution of (2.1) which translates at some
constant velocity θ preserving its shape.

In what follows, we assume the existence of a traveling-wave solution satisfying
the following assumptions.

(T.W.) There exist C > 0, a > 0, and u± ∈ Rn with F (u±) = 0 such that
1. |u0(ξ)− u+| ≤ Ce−aξ (ξ > 0),
2. |u0(ξ)− u−| ≤ Ceaξ (ξ < 0), and
3. |u′0(ξ)| ≤ Ce−a|ξ| (ξ ∈ R, where ′ = d

dξ ).
Next, we define stability of traveling waves.
Definition 2.1. A traveling wave u0(ξ) is asymptotically stable relative to (2.2)

if there exists a neighborhood N of u0 in BU(R,Rn) such that each solution u(ξ, t) of
(2.2) that starts in N at t = 0 satisfies

‖u(ξ, t)− u0(ξ + k)‖∞ → 0 (t→ +∞)(2.3)

for some k ∈ R depending on u(ξ, t), where BU(R,Rn) = {v : R → Rn| bounded
uniformly continuous}.
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Remark 2.1. If u0(ξ) is a traveling wave, then so is u0(ξ + k).
To find the stability of u0(ξ), we linearize (2.2) about u0(ξ),

Pt = LP := BPξξ + θPξ +DF (u0(ξ))P,(2.4)

and consider the eigenvalue problem for L:

LP = λP.(2.5)

In order to determine the stability of u0, it suffices to study the eigenvalue problem
(2.5) because of the following well-known fact.

Fact (see [1], [4], and [9]). u0(ξ) is asymptotically stable if the spectrum σ(L)
of L satisfies the following:

1. there exists β < 0 such that σ(L) \ {0} ⊂ {λ|Reλ < β};
2. 0 is a simple eigenvalue (0 is an eigenvalue corresponding to translation).

Here we have the following for σ(L).
Proposition 2.1. If u± are stable for (2.1), then there exists a simple closed

curve K and a constant β < 0 such that

σ(L) ∩ {λ|Reλ > β} ⊂ K◦,(2.6)

where K◦ is the interior enclosed by K. Moreover, σ(L) ∩ K◦ consists of isolated
eigenvalues with finite multiplicity.

With this proposition, we conclude that u0(ξ) is stable if L has no eigenvalue in
K◦ other than the simple one at 0.

Henceforth, we construct an index to detect eigenvalues of L inside K◦.

2.2. Construction of the stability index. The eigenvalue problem

(L− λ)P := BPξξ + θPξ +DF (u0(ξ))P − λP = 0, P (ξ) ∈ Cn,(2.7)

can be taken as a second-order linear ordinary differential equation, which we write
in a first-order system as follows:

Y ′ = A(λ, ξ)Y,(2.8)

where

Y (ξ) =

(
P (ξ)
Q(ξ)

)
∈ C2n, Q = P ′,

and

A(λ, ξ) =

(
0 I

B−1 (λI −DF (u0(ξ))) −θB−1

)
.

For each λ, (2.8) has at least one nontrivial bounded solution up to multiplication of
constants if and only if it is an eigenvalue of L, in which case the P component of
such a solution is an eigenfunction of L.

We introduce a new variable τ via the relation

ξ =
1

κ
log

(
1 + τ

1− τ

)
.(2.9)
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This turns (2.8) into an autonomous system on C2n × (−1,+1):{
Y ′= A(λ, τ)Y := A(λ, ξ(τ))Y,
τ ′ = κ(1− τ2)

( ′ = d
dξ ).(2.10)

Letting

A(λ,±1) =

(
0 I

B−1 (λI −DF (u±)) −θB−1

)
,(2.11)

we augment (2.10) into a system on C2n× [−1,+1], which is of class C1 for sufficiently
small κ > 0. This system is also denoted by{

Y ′= A(λ, τ)Y,
τ ′ = κ(1− τ2).

(2.12)

(O,−1) and (O,+1) are equilibria of (2.12). The next lemma shows that λ is an
eigenvalue of L if and only if the unstable manifold Wu

− of (O,−1) and the stable
manifold Ws

+ of (O,+1) has a nontrivial intersection, namely, Wu
− ∩Ws

+ 6= {O} ×
(−1, 1).

Lemma 2.1. Let (Y (ξ), τ(ξ)) be a nontrivial solution of (2.12).
1. Y (ξ) is bounded as ξ → −∞ if and only if (Y (ξ), τ(ξ)) ∈Wu

−.
2. Y (ξ) is bounded as ξ → +∞ if and only if (Y (ξ), τ(ξ)) ∈Ws

+.
Now we are at the final stage of constructing the stability index.
Proposition 2.2. If u± are stable, then there is a constant β < 0 such that for

all λ with Reλ > β, A(λ,−1) (resp. A(λ,+1)) have n eigenvalues with positive real
parts and n with negative.

This means that Wu
−
∣∣
C2n×{τ} and Ws

+

∣∣
C2n×{τ} are n-dimensional subspaces of

C2n × {τ}. We regard them as n-dimensional vector bundles over intervals.
For each fixed λ, define a continuous map

Φλ: [−1, 1)→ Gn(C2n) : τ 7→
[
Wu|C2n×{τ}

]
,(2.13)

where Gn(C2n) is the Grassmannian manifold of n-dimensional subspaces in C2n.
Let Uλ± (Sλ±) be the unstable (stable) subspace of A(λ,±1).
Lemma 2.2. If λ is not an eigenvalue of L, then

Φλ(τ)→ [Uλ+] (τ → +1)(2.14)

locally uniformly in Gn(C2n) for λ 6∈ σ(L).
Set

K := (K◦ × {−1}) ∪ (K × [−1,+1]) ∪ (K◦ × {+1}) ∼= S2(2.15)

and

G : K→ Gn(C2n) : G(λ, τ) =


[
Uλ−
]
, λ ∈ K◦, τ = −1,

Φλ(τ), λ ∈ K, τ ∈ (−1, 1),[
Uλ+
]
, λ ∈ K◦, τ = +1.

(2.16)

By Lemma 2.2, G is continuous and induces an n-dimensional vector bundle E(K)
over K.
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Definition 2.2.

E(K) := G
∗(Γn(C2n)

)
,(2.17)

where Γn(C2n) is the canonical bundle over Gn(C2n).
Alexander et al. showed that this bundle determines the stability of the traveling

wave u0(ξ).
Theorem 2.1 (Alexander, Gardner, and Jones [1]). The first Chern number

c1(E(K)) of the bundle E(K) coincides with the number of eigenvalues of L in K◦

including their multiplicity.
We modify this theorem slightly for later use.

Consider a system that (2.12) induces on
n
∧C2n × [−1,+1],{

Y (n)′= A(n)(λ, τ)Y (n),
τ ′= κ(1− τ2).

(2.18)

Here Y (n)(ξ) ∈
n
∧C2n and A(n) = A⊗ I ⊗ · · · ⊗ I + · · ·+ I ⊗ I ⊗ · · · ⊗ I ⊗A|n∧C2n

,

where
n
∧C2n denotes the nth exterior power of C2n. Let m = ( 2n

n )− 1; then CPm ∼=
P(

n
∧C2n) and (2.18) defines a system of the following form on CPm × [−1,+1] since

it is linear in the Y (n) component:{
z′ = Z(z, τ ;λ),
τ ′= κ(1− τ2)

(z ∈ CPm).(2.19)

Let Ũλ± (S̃λ±) be points on CPm corresponding to
n
∧Uλ± (

n
∧Sλ±), i.e., Ũλ± := Π(

n
∧Uλ±)

(resp. S̃λ± := Π(
n
∧Sλ±)) for the projection Π: Cm+1 \ {O} → CPm; then (Ũλ−,−1) and

(Ũλ+,+1) (resp. (S̃λ−,−1) and (S̃λ+,+1)) are equilibria of (2.19). These equilibria
are attractive in the invariant subspaces CPm × {τ = −1} and CPm × {τ = +1},
which means that (Ũλ−,−1) have a one-dimensional unstable direction in the whole

space CPm × [−1,+1]—namely, the τ direction—and (Ũλ+,+1) is an attracting equi-

librium. By Lemma 2.2, system (2.19) has a heteroclinic orbit from (Ũλ−,−1) to

(Ũλ+,+1) for λ 6∈ σ(L). This heteroclinic orbit is given by {(Φ̃λ(τ), τ)}, where

Φ̃λ(τ) := Π(
n
∧Φλ(τ)). Define a map G by

G : K→ CPm : G(λ, τ) =


Ũλ−, λ ∈ K◦, τ = −1,

Φ̃λ(τ), λ ∈ K, τ ∈ (−1, 1),

Ũλ+, λ ∈ K◦, τ = +1;

(2.20)

then Theorem 2.1 can be restated as follows. (See Figure 2.1.)
Theorem 2.2. [G] ∈ π2(CPm)) ∼= Z counts the number of eigenvalues of L in

K◦.
Proof. First, let us recall some parts of the proof of Theorem 2.1 in [1].
Let H− := (K◦ × {−1}) ∪ (K × I) and H+ := K◦ × {+1}; then H− ∩H+ = S1.

In [1], nonvanishing sections Γ−(λ, τ) and Γ+(λ) of
n
∧E(K) over H− and H+ are

constructed, i.e.,

(2.21)

Γ− : H− →
n
∧C2n : Γ−(λ, τ) ∈

{
Π−1(Ũλ−) =

n
∧Uλ−, λ ∈ K◦, τ = −1,

Π−1(Φ̃λ(τ)) =
n
∧Φλ(τ), λ ∈ K, τ ∈ [−1, 1],
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Fig. 2.1. A schematic picture of Theorem 2.2.

and

Γ+ : H+ →
n
∧C2n : Γ+(λ) ∈ Π−1(Ũλ+) =

n
∧Uλ+, λ ∈ K◦,(2.22)

where
n
∧E(K) is the exterior power of E(K) and coincides with G∗(Γ1(Cm)). Trivial-

izations of
n
∧E(K) over H± are defined with Γ± as

h− : H− × C→
n
∧E(K) : ((λ, τ), z) 7→ ((λ, τ), zΓ−(λ, τ)),(2.23)

h+ : H+ × C→
n
∧E(K) : ((λ, 1), z) 7→ ((λ, 1), zΓ+(λ)).(2.24)

Then the map gE(λ) over H− ∩H+ defined by

h−1
+ ◦ h−((λ, 1), z) = ((λ, 1), gE(λ)z)(2.25)

can be seen as a map from S1 into C \ {0}. In [1], it is shown that the homotopy class
[gE ] ∈ π1(C \ {0}) ∼= Z coincides with the number of eigenvalues of L in K◦.

With h±, we construct a map h :
n
∧E(K)→ Cm+1 as follows. Let N− and N+ be

open neighborhoods of H− and H+ and extend h± over N± × C. Urysone’s lemma
assures that there exist continuous functions α± : N± → [0, 1] satisfying α±(λ, τ) = 1
if (λ, τ) ∈ H± and α±(λ, τ) = 0 if (λ, τ) is in some neighborhood of ∂N±. Using this

α±, define hi :
n
∧E(K)→ C (i = 0, 1) as

h0((λ, τ), v) =

{
α−(λ, τ) · πh− ◦ h−1

− ((λ, τ), v), (λ, τ) ∈ N−,
0, (λ, τ) 6∈ N−,

h1((λ, τ), v) =

{
α+(λ, τ) · πh+

◦ h−1
+ ((λ, τ), v), (λ, τ) ∈ N+,

0, (λ, τ) 6∈ N+,

(2.26)

where πh± : H± × C→ C are projections. Then the map h is defined as

h :
n
∧E(K)→ Cm+1 : h((λ, τ), v) = (h0((λ, τ), v), h1((λ, τ), v), 0, . . . , 0).(2.27)
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This h induces a map h̃ : K→ CPm.
In what follows, we show that this h̃ is homotopic to G. First, let us assume

that for any ((λ, τ), v) ∈
n
∧E(K) ⊂ K × Cm+1, v 6= 0, no negative real s satisfies

v = sh ((λ, τ), v). Under this condition,

hs :
n
∧E(K)→ Cm+1 : hs((λ, τ), v) := (1− s)h((λ, τ), v) + sv(2.28)

induces a homotopy h̃s : K → CPm with h̃0 = h̃ and h̃1 = G. When the assump-
tion above is not satisfied, let Cm+1 be identified with the subspace of C2m+2 as

Cm+1×{0} ⊂ Cm+1×Cm+1 = C2m+2 and regard h as h′ :
n
∧E(K)→ C2m+2, and let

hodd, G′, G′even :
n
∧E(K)→ C2m+2 be

hodd((λ, τ), v) = (h0((λ, τ), v), 0, h1((λ, τ), v), 0, . . . , 0),
G′((λ, τ), v) = (v, 0),

G′even((λ, τ), v) = (0, v0, 0, v1, 0, . . . , 0, vm),
(2.29)

where v = (v0, v1, . . . , vm) ∈ Cm+1. Then h′ and these maps induce the maps

h̃′, h̃odd, G̃′, G̃′even :
n
∧E(K)→ CP2m+1, and by the same argument as above,

h̃′ ' h̃odd, h̃odd ' G̃′even, G̃′even ' G̃′(2.30)

in CP2m+1. Thus h̃′ and G̃′ are homotopic in CP2m+1. Here CPm can be regarded
as a subspace of CP2m+1 corresponding to the inclusion Cm+1 ↪→ C2m+2, and h̃ = h̃′

and G = G̃′ by this identification. Thus h̃ is homotopic to G in CP2m+1.
Recall that CP2m+1 can be regarded as a cell complex as CP2m+1 = e0 ∪ e2 ∪

· · · ∪ e4m+2, where ei (i = 0, . . . , 4m + 2) is an i-dimensional cell, and in this cell
decomposition, CP2m+1 \ CPm ⊂ em+1 ∪ · · · ∪ e4m+2 consists of cells the dimension
of which are equal or greater than 4. This means that the homotopy h̃ ' G can be
realized in CPm as h̃, G : K → CPm and K is two dimensional. Thus [h̃] = [G] ∈
π2(CPm) with a natural identification corresponding to a change of base point.

The next step is to show that [gE ] = [h̃] by a suitable isomorphism from π1(C\{0})
to π2(CPm). The map h̃ can be regarded as h̃ : K → CP1 ⊂ CPm. Here again,
the inclusion CP1 ↪→ CPm induces an isomorphism π2(CP1) ∼= π2(CPm), and by
this homomorphism, [h̃] ∈ π2(CPm) is considered to be [h̃] ∈ π2(CP1). Recall that
h−1

+ ◦ h−((λ, 1), z) = ((λ, 1), gE(λ)z), so if Γ−(λ, 1) = w(λ)Γ+(λ) for λ ∈ K, τ = 1,
then gE(λ) = w(λ), i.e.,

gE(λ) =
h1((λ, 1), v)

h0((λ, 1), v)
.(2.31)

This means that gE can be seen as

gE : S1 ∼= K × {+1} → CP1 ∼= S2 : gE(λ) = [h0((λ, 1), v) : h1((λ, 1), v)].(2.32)

Clearly, gE is homotopic to some map ḡ : S1 → S1 =
{

[1 : z]
∣∣ |z| = 1

}
⊂ CP1, and

by suspension homomorphism, [ḡ] ∈ π1(S1) corresponds to [h̃] ∈ π2(CP1). Here this
homomorphism is an isomorphism since π1(S1) ∼= π2(S2) ∼= Z. Thus we get the desired
result.

Remark 2.2. We omit references to base points in the following argument because
the isomorphism corresponding to a change of base points is uniquely determined by
those points as π1 (CPm) = 0.

The whole arguments hold also for homology, but we employ homotopy for the
sake of easier intuitive understanding.
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3. An extension of the stability index. In this section, we consider an ex-
tension of the stability index for perturbed systems and give a proof of one of our
main theorems.

3.1. Perturbed systems. Consider a system of the form (2.2) with a parameter
µ ∈ R:

ut = Buξξ + θ(µ)uξ + F (u;µ).(3.1)

Suppose that this system has a traveling wave u0(ξ) at µ = µ0 that satisfies condition
(T.W.). We assume without loss of generality that F (u±;µ) = 0 for all µ ∈ R. We
also assume that u± are both stable for (2.1) or, in this case, for

ut = Buxx + F (u;µ).(3.2)

We consider the equation of the stationary solutions for (3.1),

Buξξ + θ(µ)uξ + F (u;µ) = 0,(3.3)

and we again write this as a first-order system,{
u′= v,
v′ = −B−1F (u;µ)− θ(µ)B−1v

(′= d
dξ ).(3.4)

Let (u0(ξ), u′0(ξ)) be the heteroclinic solution from (u−, 0) to (u+, 0) of (3.4) with

µ = µ0. Choose some point (u†0, v
†
0) near (u+, 0) on the orbit of (u0(ξ), u′0(ξ)), and

take an n-dimensional plane Σ that intersects with the unstable manifold Wu
− of

(u−, 0) transversely at (u†0, v
†
0).

Lemma 3.1. When µ is near µ0, Wu
− ∩ Σ =

{
(u†µ, v

†
µ)
}

(one point). Moreover,

the point (u†µ, v
†
µ) depends on µ continuously. (See Figure 3.1.)

Proof. Consider (3.4) with a trivial equation µ′ = 0: u′= v,
v′ = −B−1F (u;µ)− θ(µ)B−1v,
µ′= 0.

(3.5)

S := {(u−, 0, µ)|µ ∈ R} is a normally hyperbolic invariant set for (3.5), and let V u be
its unstable manifold. From the definition of Σ, V u and Σ× R intersect transversely
at (u0, v0, µ0) and, moreover, both V u and Σ × R are (n + 1)-dimensional, so the
intersection V u∩{Σ×R} is a one-dimensional curve. The image under projection for
(u, v) components is the curve {(u†µ, v†µ)} parameterized by µ, and thus it is continu-
ous.

By translation on ξ, we can assume that (u0(0), u′0(0)) = (u†0, v
†
0). We de-

note a solution that starts at (u†µ, v
†
µ) when ξ = 0 by (u(ξ;µ), u′(ξ;µ)), namely,

(u(ξ;µ0), u′(ξ;µ0)) = (u0(ξ), u′0(ξ)) and u(ξ, µ) → u− as ξ → −∞ since (u†µ, v
†
µ) ∈

Wu
−.

For this solution u(ξ;µ) and

K
′ = (K◦ × {−1}) ∪ (K × [−1, 0]) ∼= D2,

we construct a map Gµ− : K′ → CPm as follows.
Consider a system corresponding to (2.8),

Y ′ = A(λ, ξ;µ)Y,(3.6)
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Fig. 3.1. The intersection point of Wu
− and Σ for µ near µ0.

where

Y (ξ) =

(
P (ξ)
Q(ξ)

)
∈ C2n, Q = P ′,

and

A(λ, ξ;µ) =

(
0 I

B−1(λI −DF (u(ξ;µ))) −θB−1

)
.

A similar argument as before leads to a system on C2n × [−1,+1),{
Y ′= A(λ, τ ;µ)Y,
τ ′ = κ(1− τ2)

( ′ = d
dξ ),(3.7)

where

A(λ,−1;µ) =

(
0 I

B−1(λI −DF (u−)) −θB−1

)
.
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Again, this equation induces a system on CPm × [−1, 1),{
z′ = Z(z, τ : λ;µ),
τ ′= κ(1− τ2)

(z ∈ CPm).(3.8)

We define a map Gµ− as

Gµ− : K
′ → CPm : Gµ−(λ, τ) =

{
Ũλ−, λ ∈ K◦, τ = −1,

Φ̃µλ(τ), λ ∈ K, τ ∈ (−1, 0],
(3.9)

where (Φ̃µλ(τ), τ) is the unstable manifold of an equilibrium (Ũλ−,−1) of (3.8). Obvi-
ously, this map is continuous and Gµ0

− = G|K′ for G in (2.16).
Take a neighborhood N of G((K × [0,+1]) ∪ (K◦ × {+1})) in CPm satisfying

π1(N) = 0 and π2(N) = 0. Such an N exists, for example, for K small and (u†0, v
†
0)

near (u+, 0).
Clearly, Gµ−(λ, τ) is also continuous in µ, so if µ is near µ0, then

Gµ− (K × {0}) ⊂ N.(3.10)

This means that Gµ− defines an element of the relative homotopy group π2 (CPm, N).
Theorem 3.1.

π2(CPm, N) ∼= π2(CPm) ∼= Z,

and [Gµ−] ∈ π2(CPm, N) corresponds to [G] ∈ π2(CPm) through the above isomor-
phism. Consequently, [Gµ−] determines the stability of the travelling wave u0(ξ) at
µ = µ0.

Proof. Consider the following exact sequence:

0 = π2(N)→ π2(CPm)
p−→ π2(CPm, N)→ π1(N) = 0.(3.11)

By the definition of N , [G](∈ π2(CPm) corresponds to [Gµ0

− ] (∈ π2(CPm, N)) through
the homomorphism p. Moreover, (3.10) implies [Gµ−] = [Gµ0

− ] in π2 (CPm, N). Here
from the assumption on N , both ends of the above sequence are trivial, which implies
that

π2(CPm, N) ∼= π2(CPm) ∼= Z,

and we get the desired result.
Corollary 3.1. The same argument holds for the perturbation of orbits. That

is, at µ = µ0, we can make a similar extension of the stability index for a solution
of (3.4) on the unstable manifold Wu

− of (u−, 0) if it is near (u0(ξ), u′0(ξ)). (See
Figure 3.2.)

3.2. Additive formula for gluing bifurcation. In this section, we give a proof
of an additive formula for the stability index under the gluing bifurcation of traveling
waves. This theorem has been proven by Alexander and Jones [2] using cobordism
invariance of the Chern number. Here we give another proof of additivity based on
the above extension of the index.

Suppose system (3.1) has two traveling waves u1(ξ) and u2(ξ) when µ = µ0 that
satisfy

u1(ξ)→ u− (ξ → −∞), u1(ξ)→ u∗ (ξ → +∞),
u2(ξ)→ u∗ (ξ → −∞), u2(ξ)→ u+ (ξ → +∞),
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Fig. 3.2. The case of the perturbation of an orbit.

and (T.W.), where the stationary solutions u± and u∗ are stable. Let Γi = {(ui(ξ),
u′i(ξ))} (i = 1, 2) be the heteroclinic orbits of (3.4) corresponding to the traveling
waves ui(ξ). Assume that system (3.4) undergoes a gluing bifurcation, that is, that
the system has a heteroclinic orbit Γ = {(u(ξ), u′(ξ))} from (u−, 0) to (u+, 0) for
µ ≈ µ0 that stays in a tubular neighborhood of Γ1 ∪ Γ2. (See Figure 3.3.)

Fig. 3.3. A gluing bifurcation.

Fix a simple closed curve K on the complex plane C, and let

G,Gi : K→ CPm, i = 1, 2,(3.12)

be the maps defined for u(ξ) and ui(ξ).
In the situation above, we have the following additive formula.
Theorem 3.2.

[G] = [G1] + [G2] ∈ π2 (CPm).(3.13)

Proof. By definition, it holds that

G1|(K∪K◦)×{τ=+1} = G2|(K∪K◦)×{τ=−1} :K ∪K◦ → CPm.(3.14)

Write this map as

H : K ∪K◦ → CPm.(3.15)
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First, let us assume that

π1(H(K ∪K◦)) = 0 and π2(H(K ∪K◦)) = 0.(3.16)

Take a neighborhood N of H(K ∪K◦) in CPm that satisfies

π1(N) = 0 and π2(N) = 0.(3.17)

If µ is close enough to µ0 and as a result Γ is included in some small neighborhood
of Γ1 ∪ Γ2, we can assume that{

u(ξ) ≈u1(ξ) (ξ ≤ 0),
u(ξ) ≈u2(ξ) (ξ ≥ 0)

(3.18)

through some translations in the ξ variable. (See Figure 3.4.)

Fig. 3.4. Γ and Γ1 ∪ Γ2.

This implies u(0) ≈ u∗ and

G1|K×{τ=+1} ≈ G1|K×{τ=0} ≈ G|K×{τ=0} : K → CPm,(3.19)

which means that

G(K × {0}) ⊂ N.(3.20)

Set

G− := G|(K◦×{τ=−1})∪(K×[−1,0]),(3.21)

G+ := G|(K×[0,+1])∪(K◦×{τ=+1}),(3.22)

G1− := G1|(K◦×{τ=−1})∪(K×[−1,+1]),(3.23)

G2+ := G2|(K×[−1,+1])∪(K◦×{τ=+1});(3.24)

then we have

G− ' G1− : (D2, ∂D2)→ (CPm, N),(3.25)

G+ ' G2+ : (D2, ∂D2)→ (CPm, N),(3.26)
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Fig. 3.5. G, G1, and G2 as elements in π2(CPm, N).

where ' indicates homotopy.
Consider the following exact sequence again, where both ends are trivial:

0 = π2(N)→ π2(CPm)
i−→ π2(CPm, N)→ π1(N) = 0.(3.27)

From these definitions, we have (see Figure 3.5)

i([G]) = [G−] + [G+],(3.28)

i([G1]) = [G1−] + [H],(3.29)

i([G2]) = −[H] + [G2+].(3.30)

Here (3.25) and (3.26) imply that

[G−] = [G1−], [G+] = [G2+] in π2(CPm, N),(3.31)

and by the definition of N , [H] = 0. This leads to

i ([G]) = [G−] + [G+]
= [G1−] + [G2+]
= i([G1]) + i([G2]) in π2(CPm, N).

(3.32)

From this, we get the desired result, namely,

[G] = i−1 ◦ i([G])
= i−1 ◦ i([G1]) + i−1 ◦ i ([G2])
= [G1] + [G2] in π2(CPm).

(3.33)

For general K, divide K◦ into small parts; then each part satisfies condition (3.16) if
the partition is fine enough, and therefore the above argument is applicable to each
part. Collecting all of the parts, we get the result for K.

4. Application.

4.1. Direct consequences of the additive formula. In this section, we con-
sider some applications of Theorem 3.2. First, the next theorem is its direct conse-
quence.

Theorem 4.1. Under the assumption of Theorem 3.2, u(ξ) is unstable if either
u1(ξ) or u2(ξ) is unstable.

Proof. Suppose u1(ξ) is unstable, that is, the eigenvalue problem

(L1 − λ)P := BPξξ + θPξ +DF (u1(ξ))P − λP(4.1)

has an eigenvalue λ1 with a positive real part. Take a simple closed curve K1 ⊂ C
satisfying

λ1 ∈ K◦1 and K1 ∪K◦1 ⊂ {λ ∈ C|Reλ > 0}.(4.2)
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By applying Theorem 3.2 to this K1, we have an eigenvalue λ0 inside K◦1 of the
eigenvalue problem

(L− λ)P := BPξξ + θPξ +DF (u(ξ))P − λP,(4.3)

which means that Reλ0 > 0, and hence u(ξ) is unstable. (See Figure 4.1.)
The case where u2(ξ) is unstable can be treated similarly.

Fig. 4.1. The eigenvalue with Reλ0 > 0.

This theorem means that u(ξ) can be stable only if both u1(ξ) and u2(ξ) are
stable.

In what follows, let us suppose that both u1(ξ) and u2(ξ) are stable. In this case,
Theorem 3.2 only tells us that L has two eigenvalues near the origin, and consequently
we cannot decide the stability of u(ξ) from this theorem alone. Actually, we have
examples of both cases. (See section 5.)

4.2. Orientation index. Consider the eigenvalue problem for λ ∈ R:

(L− λ)P := BPξξ + θPξ +DF (u0(ξ))P − λP = 0, P (ξ) ∈ Rn.(4.4)

Again, we rewrite this as {
Y ′= A(λ, τ)Y,
τ ′ = κ(1− τ2),

(4.5)

which defines a system on RPm × [−1,+1] as follows:{
z′ = Z(z, τ : λ),
τ ′= κ(1− τ2)

(z ∈ RPm).(4.6)

Take λ1, λ2 ∈ R with β < λ1 < λ2, where β is as in Proposition 2.1, and assume that
λ1, λ2 6∈ σ(L). Of course, Lemma 2.2 holds for λ = λi, i = 1, 2.
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Set

k := ([λ1, λ2]× {−1}) ∪ ({λ1, λ2} × [−1,+1]) ∪ ([λ1, λ2]× {+1}) ∼= S1(4.7)

and let

g : k→ RPm(4.8)

be defined in a similar manner as before, that is,

g(λ, τ) =


Ũλ−, λ ∈ [λ1, λ2], τ = −1,

Φ̃λ(τ), λ = λi, i = 1, 2, τ ∈ (−1, 1),

Ũλ+, λ ∈ [λ1, λ2], τ = +1,

(4.9)

where Ũλ± are the equilibria of (4.6) that correspond to the unstable subspaces Uλ± of

A(λ,±1) and (Φ̃λ(τ), τ) is a heteroclinic orbit connecting (Ũλ−,−1) and (Ũλ+,+1).
Next, for this g, we have as a part of Theorem 2.2.
Theorem 4.2. [g] ∈ π1(RPm) ∼= Z2 counts the parity of the number of eigen-

values of L on the interval [λ1, λ2]. That is, if the interval includes an odd number
of eigenvalues, then [g] = 1, and if it includes an even number of eigenvalues, then
[g] = 0.

Proof. Theorem 2.1 was proven in [1] using the Evans function. First, we briefly
summarize its construction.

Consider equations (2.18) and (2.19). An orbit {(Y (λ, τ), τ)}−1<τ<1 of (2.18) can

be chosen so that Π(Y (λ, τ)) = Φ̃λ(τ) for the projection Π : Cm+1 \ {O} → CPm and
for each τ , Y (λ, τ) is analytic in λ [1]. Similarly, an orbit {(Y ∗(λ, τ), τ)}−1<τ<1 of

(2.18) can be chosen so that Π(Y ∗(λ, τ)) = Φ̃∗λ(τ) and for each τ , Y ∗(λ, τ) is analytic

in λ, where {(Φ̃∗λ(τ), τ)}−1<τ<1 is the unique orbit of (2.19) satisfying

lim
τ→+1

(Φ̃∗λ(τ), τ) = (S̃λ+,+1).(4.10)

Note that Y (λ, τ) ∈
n
∧(Wu

−|C2n×{τ}) and Y ∗(λ, τ) ∈
n
∧(Ws

+|C2n×{τ}).
We define the Evans function D(λ) as

D(λ) := Y (λ, 0) ∧ Y ∗(λ, 0) ∈
2n
∧ C2n ∼= C.(4.11)

This function is analytic in λ, and the number of zeroes of D in K◦ coincides with
the number of eigenvalues of L in K◦ including its multiplicity. For λ real, Y (λ, τ)
and Y ∗(λ, τ) can be taken so that they are both real analytic in λ and thus D(λ) is
real analytic.

Let Πs : Rm+1 \ O → Sm and Πp : Sm → RPm be projections and set

Φ̂λ(τ) = Πs(Y (λ, τ)) and Φ̂∗λ(τ) = Πs(Y
∗(λ, τ)); then Φ̃λ(τ) = Πp(Φ̂λ(τ)) and

Φ̃∗λ(τ) = Πp(Φ̂
∗
λ(τ)). We define Ûλ±,i and Ŝλ±,i (i = 1, 2) as Π−1

p (Ũλ±) = {Ûλ±,1, Ûλ±,2}
and Π−1

p (S̃λ±) = {Ŝλ±,1, Ŝλ±,2} so that

lim
τ→±1

Φ̂λ1(τ) = Ûλ1
±,1 and lim

τ→±1
Φ̂∗λ1

(τ) = Ŝλ1
±,1(4.12)

hold. Moreover, Ûλ±,i and Ŝλ±,i depend continuously on λ. Note that limτ→+1 Φ̂∗λ2
(τ)

= Ŝλ2
+,1 holds by (4.10). If we consider Ûλ±,i, Ŝ

λ
±,i ∈ Rm+1 by the inclusion
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Sm ↪→ Rm+1 =
n
∧R2n, the sign of D(λ1) coincides with that of Ûλ1

+,1 ∧ Ŝλ1
+,1 and

thus with that of Ûλ2
+,1 ∧ Ŝλ2

+,1 by continuity. This means that D(λ1)D(λ2) > 0 if and
only if

lim
τ→+1

Φ̂λ2(τ) = Ûλ2
+,1(4.13)

and D(λ1)D(λ2) < 0 if and only if

lim
τ→+1

Φ̂λ2
(τ) = Ûλ2

+,2.(4.14)

In the former case, a lift ĝ : k→ Sm of g : k→ RPm is expressed as

ĝ(λ, τ) =


Ûλ−,1, λ ∈ [λ1, λ2], τ = −1,

Φ̂λ(τ), λ = λi, i = 1, 2, τ ∈ (−1, 1),

Ûλ+,1, λ ∈ [λ1, λ2], τ = +1,

(4.15)

and thus g is zero homotopic in RPm, whereas in the latter case, g cannot be lifted
because limτ→+1 Φ̂λ2

(τ) = Ûλ2
+,2 6= Ûλ2

+,1, and thus g is not zero homotopic in RPm.
This proves that D(λ1)D(λ2) > 0 if and only if [g] = 0 and that D(λ1)D(λ2) < 0 if
and only if [g] = 1.

Here, since D(λ) is a real analytic function on [λ1, λ2], there are even zeros in
[λ1, λ2] if D(λ1)D(λ2) > 0 and odd zeros if D(λ1)D(λ2) < 0 including multiplicity.
Thus the theorem holds.

For 0 > λ1 close to 0 and λ2 large, Alexander and Jones [2] showed that the
direction of intersection of the unstable manifold of (u−, 0) and the stable manifold
of (u+, 0) with respect to the traveling-wave speed θ determines the index [g]. More
precisely, the sign of the derivative dD

dλ |λ=0 of the Evans function D(λ) at λ = 0 is
determined as follows.

Assume that u ≡ u± are stationary solutions of the system and that for θ = θ0 the
system has a traveling wave. Let Xθ0(ξ) be the corresponding heteroclinic solution
from (u−, 0) to (u+, 0) at θ = θ0 of{

u′= v,
v′ = −B−1F (u)− θB−1v

( ′ = d
dξ ).(4.16)

Let Wu
θ be the unstable manifold of (u−, 0) and Ws

θ be the stable manifold of (u+, 0),
both n-dimensional. Also, we assume that Wu

θ ∩Ws
θ = ∅, except for θ = θ0. Extend

Xθ0(ξ) smoothly in θ to the solutions Xθ
u(ξ) ∈Wu

θ and Xθ
s (ξ) ∈Ws

θ for θ near θ0.
For the traveling wave at θ = θ0, define the solutions (Y (λ, τ), τ) and (Y ∗(λ, τ), τ)

of (2.18) so that D(λ) > 0 holds for large λ, and choose the vectors V 1
u , . . . , V

n−1
u in

Wu
−
∣∣
C2n×{0} and V 1

s , . . . , V
n−1
s in Ws

+

∣∣
C2n×{0} so that

Y (0, 0) = Xθ0 ′(0) ∧ V 1
u ∧ · · · ∧ V n−1

u ,

Y ∗(0, 0) = Xθ0 ′(0) ∧ V 1
s ∧ · · · ∧ V n−1

s ,

which implies thatXθ0 ′(0), V 1
u , . . . , V

n−1
u (Xθ0 ′(0), V 1

s , . . . , V
n−1
s ) is a basis of TXθ0 (0)W

u
θ0

(resp. TXθ0 (0)W
s
θ0

). Then we have

D(0) = Y (0, 0) ∧ Y ∗(0, 0)

= det
(
Xθ0
u
′
(0)V 1

u · · ·V n−1
u Xθ0

s
′
(0)V 1

s · · ·V n−1
s

)
.
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Proposition 4.1 (Alexander and Jones [2]).

dD(λ)

dλ

∣∣∣∣
λ=0

= det

((
dXθ

s (0)

dθ

∣∣∣∣
θ=θ0

− dXθ
u(0)

dθ

∣∣∣∣
θ=θ0

)
V 1
u · · ·V n−1

u Xθ0 ′(0)V 1
s · · ·V n−1

s

)
.

This proposition implies that the sign of (
dXθs (0)
dθ |θ=θ0−

dXθu(0)
dθ |θ=θ0) determines [g]

because if dD
dλ (0) > 0, then D(λ1) < 0 for λ1 < 0 close to 0, which means that [g] = 1

as D(λ2) > 0 for λ2 large, and if dD
dλ (0) < 0, then D(λ1) > 0 for λ1 < 0, so [g] = 0.

4.3. Gluing bifurcations and stability. In this section, we discuss the stabil-
ity of a traveling-wave bifurcating from two traveling waves by a gluing bifurcation.

Consider an ordinary differential equation on R2n depending on a parameter µ ∈
Rk (k ≥ 2),

ẋ = f(x) + g(x;µ) (˙ = d
dt ),(4.17)

where f and g are smooth and g(x; 0) = 0. Assume that (4.17) has three equilibria
O1(µ), O2(µ), and O3(µ) and that the eigenvalues

−ηin−1(µ), . . . ,−ηi1(µ),−ρi(µ), νi(µ), κi1(µ), . . . , κin−1(µ)

of linearizations of F at each equilibrium satisfy

−Reηin−1(0) ≤ · · · ≤ −Reηi1(0) < −ρi(0) < 0 < νi(0) < Reκi1(0) ≤ · · · ≤ Reκin−1(0).

Also, assume that for µ = 0, the system

ẋ = f(x)(4.18)

has heteroclinic orbits Γi of (4.18) from Oi(0) to Oi+1(0) (i = 1, 2) simultaneously.
In what follows, we consider bifurcations of these heteroclinic orbits under the

following nondegeneracy conditions.
1. For each i, the heteroclinic orbit Γi = {hi(t)} is tangent to the eigenspace

associated with the eigenvalue νi(0) of linearization of f at Oi(0) as t→ −∞ and the
eigenspace associated with −ρi+1(0) of Oi+1(0) as t→ +∞.

2. For µ = 0, the unstable manifold Wu(Oi) and the stable manifold Ws(Oi+1)
(i = 1, 2) have a one-dimensional intersection, i.e., for all p ∈ Γi,

dim(TpW
u(Oi) ∩ TpWs(Oi+1)) = 1.

3. Wu(Oi(0)) is transverse to the (n + 1)-dimensional ν-stable manifold
Wν,s(Oi+1(0)) (i = 1, 2) that is invariant and is tangent to the sum of the eigenspaces
corresponding to νi+1(0), −ρi+1(0), and −ηi+1

j (1 ≤ j ≤ n − 1). Also, Ws(Oi+1(0))
is transverse to the (n+ 1)-dimensional (−ρ)-unstable manifold corresponding to the
eigenvalues −ρi(0), νi(0), and κik(0) (1 ≤ k ≤ n− 1).

4. For a nontrivial bounded solution q̂i(t) (i = 1, 2) of the linear ordinary dif-
ferential equation

˙̂z = −tDf(hi(t))ẑ (i = 1, 2),(4.19)

the vectors given by the integrals∫ +∞

−∞
q̂i(s) · ∂

∂µ
g(hi(s); 0)ds(4.20)

are linearly independent and hence nonzero.
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Remark 4.1. The bounded solution q̂i(t) is unique up to multiplication by con-
stants.

Under these conditions, we have the following result.
Proposition 4.2 (Kokubu [17]). Under conditions 1–4 above, there exist two

hypersurfaces Mi (i = 1, 2) of codimension 1 in a sufficiently small neighborhood of
µ = 0 in Rk so that each of Mi consists of parameter values µ for which the system
has a heteroclinic orbit Γi. Moreover, M1 and M2 intersect transversely at µ = 0.

In order to investigate the existence of a heteroclinic orbit from O1 to O3, we
divide our analysis into two cases:

(i) ν2(0) 6= ρ2(0) (the case of noncritical eigenvalues);
(ii) ν2(0) = ρ2(0) (the case of critical eigenvalues).
Proposition 4.3 (Kokubu [17]). Under conditions 1–4 and for the case of non-

critical eigenvalues, there exists a hypersurface M of codimension 1 with the boundary

∂M = M1 ∩M2

in a sufficiently small neighborhood of µ = 0 in Rk so that M consists of parameter
values µ for which the system has a heteroclinic orbit Γ = {h(t)} from O1 to O3.
Moreover,

(a) if ν2(0) < ρ2(0), then M is tangent to M2 at µ = 0, and
(b) if ν2(0) > ρ2(0), then M is tangent to M1 at µ = 0.
For the case of critical eigenvalues, we impose a further condition as follows:
5. The set {µ|ν2(µ) = ρ2(µ)} forms a surface Π in the parameter space Rk and

is transverse to both M1 and M2 at µ = 0.
Proposition 4.4 (Kokubu [17]). Under conditions 1–5 and for the case of

critical eigenvalues, there exists a hypersurface M of codimension 1 with the boundary

∂M = M1 ∩M2

in a sufficiently small neighborhood of µ = 0 in Rk so that M consists of parameter
values µ for which the system has a heteroclinic orbit Γ = {h(t)} from O1 to O3.
Moreover, M is tangent to neither M1 nor M2 at µ = 0 in Π.

The proofs of Propositions 4.3 and 4.4 are as follows.
We may assume that ν2 < ρ2, for otherwise we can apply the same argument by

replacing t with −t. Take the heteroclinic solution hi(t) so that hi(0) is near O2, and
let Σi be a properly chosen (2n− 1)-dimensional plane that passes through hi(0) and
is transverse to ḣi(0). Let qi(t) be a solution of the variational equation

ż = Df(hi(t))z(4.21)

along hi(t), for which the next limits exist and are nonzero, and let q1(t) point to O3

along the heteroclinic orbit Γ2 in the limit of t → +∞ and q2(t) point to O1 along
the heteroclinic orbit Γ1 in the limit of t→ −∞:

lim
t→−∞

|qi(t)|eρi(0)t, lim
t→+∞

|qi(t)|e−νi+1(0)t.(4.22)

We remark that the adjoint q̂i(t) of qi(t) is a nontrivial bounded solution of equation
(4.19) for each i. In this situation, there are two points xu1 (µ) ∈ Wu(O1) ∩ Σ1 and
xs2(µ) ∈Ws(O2)∩Σ1 depending on µ smoothly, and their difference can be expressed
as

xu1 − xs2 = α(µ)q1(0);(4.23)
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similarly, there are two points xu2 (µ) ∈Wu(O2) ∩ Σ2 and xs3(µ) ∈Ws(O3) ∩ Σ2 such
that

xs3 − xu2 = β(µ)q2(0).(4.24)

The function α(µ) (β(µ)) measures the separation of Wu(O1) and Ws(O2) in Σ1

(Wu(O2) and Ws(O3) in Σ2). For α(µ) > 0 and β(µ) > 0, Wu(O1) intersects with
Σ2, and we can also find a point x̃u1 (µ) ∈Wu(O1) ∩ Σ2 such that

xs3 − x̃u1 = χ(µ)q2(0),(4.25)

where χ(µ) measures the separation of Wu(O1) and Ws(O3) in Σ2. χ(µ) can be
extended to the parameter values for which α(µ) = 0 or β(µ) = 0. Proposition 4.2
was proven by showing that

d

dµ
α(0) = |q1(0)|

∫ +∞

−∞
q̂1(s)

∂

∂µ
g(h1(s); 0)ds(4.26)

and

d

dµ
β(0) = |q2(0)|

∫ +∞

−∞
q̂2(s)

∂

∂µ
g(h2(s); 0)ds,(4.27)

where the right-hand sides of the equations are nonzero and linearly independent.
Proposition 4.3 is proved by showing that χ(µ) > 0 if α(µ) = 0 and β(µ) > 0,
χ(µ) < 0 if α(µ) > 0 and β(µ) = 0, and d

dµχ(0) = d
dµβ(0).

For the proof of the existence part of Proposition 4.4, take a = α(µ), b = β(µ),
and λ = ρ2(µ)/ν2(µ)− 1 as parameters and consider in the parameter space (a, b, λ),
where λ ≥ 0. Then the separation χ = χ(a, b, λ) is defined in this parameter space,
smooth in b and λ, and Lipschitz continuous in a. For the derivative of χ with respect
to b, we have ∂χ

∂b (0) = 1. By a modification of the implicit-function theorem, we get
a unique solution b = b(a, λ) of χ(a, b, λ) = 0 that is smooth in λ and Lipschitz in a.
A similar argument for λ ≤ 0 gives a unique solution a = a(b, λ) of χ(a, b, λ) = 0, and
these coincide for λ = 0.

For some reaction-diffusion equations, this kind of bifurcation takes place. (See
the examples below.) In such cases, from the stability of the traveling waves cor-
responding to the heteroclinic orbits Γ1 and Γ2, with some information about the
twisting of these orbits, we can determine the stability of the traveling wave corre-
sponding to the heteroclinic orbit Γ. We explain this in what follows.

First, we determine (
dXθs (0)
dθ |θ=θ0 −

dXθu(0)
dθ |θ=θ0) in Proposition 4.1 from the above

conditions. For the case where ν2 < ρ2, take Xµ
u (ξ) ∈Wu

µ(O1) of Proposition 4.1 as
Xµ
u (0) = x̃u1 (µ) and Xµ

s (ξ) ∈Wµ
s (O3) as Xµ

s (0) = xs3(µ) so that

Xµ
s (0)−Xµ

u (0) = χ(µ)q2(0).(4.28)

Then

∂Xµ
s (0)

∂µ

∣∣∣∣
µ=0

− ∂Xµ
u (0)

∂µ

∣∣∣∣
µ=0

=
∂χ

∂µ
(0)q2(0) =

∂β

∂µ
(0)q2(0).(4.29)

This means that if µ includes the traveling-wave speed θ or its translation θ−θ0 as one

of the parameters, then (
dXθs (0)
dθ |θ=θ0 −

dXθu(0)
dθ |θ=θ0) is near ∂β

∂θ (0)q2(0). In particular,
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the sign of

det

((
dXθ

s (0)

dθ

∣∣∣∣
θ=θ0

− dXθ
u(0)

dθ

∣∣∣∣
θ=θ0

)
V 1
u · · ·V n−1

u Xθ0 ′(0)V 1
s · · ·V n−1

s

)

coincides with that of

det

(
∂β

∂θ
(0)q2(0)V 1

u · · ·V n−1
u Xθ0 ′(0)V 1

s · · ·V n−1
s

)
for µ ≈ 0 if ∂β

∂θ (0) 6= 0.
For the case where ν2 = ρ2, for α > 0 and β > 0, χ is also smooth in α, although

it is not necessarily smooth in α at µ = 0. Because ∂χ
∂β = 1, dχ(µ) 6= 0 for µ ∈ M if

µ ≈ 0, α > 0, and β > 0, which means that ∂χ
∂θ 6= 0 if the θ direction is transverse to

M . From this we can easily conclude that if the sign of ∂χ
∂θ coincides with that of ∂χ

∂β
at some µ ∈M , then the sign of

det

((
dXθ

s (0)

dθ

∣∣∣∣
θ=θ0

− dXθ
u(0)

dθ

∣∣∣∣
θ=θ0

)
V 1
u · · ·V n−1

u Xθ0 ′(0)V 1
s · · ·V n−1

s

)

coincides with the sign of

det

(
∂β

∂θ
(0)q2(0)V 1

u · · ·V n−1
u Xθ0 ′(0)V 1

s · · ·V n−1
s

)
for the same µ, and vice versa. We remark that χ(µ) < 0 for µ near the α-axis
and χ(µ) > 0 for µ near the β-axis, so we know the sign of ∂χ

∂θ from the bifurcation
diagram. We state the above argument as a theorem.

Theorem 4.3. Assume that system (3.4) associated with the existence problem
of traveling waves for system (2.1) undergoes the bifurcation as described in Proposi-
tions 4.3 and 4.4. Then if ν2 < ρ2, we have the following equality for the derivative
of the Evans function that is defined for the traveling wave corresponding to the het-
eroclinic orbit Γ:

sign

(
dD(λ)

dλ

∣∣∣∣
λ=0

)
= sign

(
det

(
∂β

∂θ
(0)q2(0)V 1

u · · ·V n−1
u Xθ0 ′(0)V 1

s · · ·V n−1
s

))
.

The same equality holds for ν2 = ρ2 if the sign of ∂χ
∂θ coincides with that of ∂χ

∂β , and
if it differs, then

sign

(
dD(λ)

dλ

∣∣∣∣
λ=0

)
= −sign

(
det

(
∂β

∂θ
(0)q2(0)V 1

u · · ·V n−1
u Xθ0 ′(0)V 1

s · · ·V n−1
s

))
.

We also obtain a similar result for ν2 ≥ ρ2 by replacing ξ(= x − θt) with −ξ in
system (3.4).

Of course, Theorem 4.3 is not enough to determine the stability. We must know
the orientation of (V 1

u , . . . , V
n−1
u ) or, equivalently, that of (V 1

s , . . . , V
n−1
s ) to determine

the sign of dD
dλ (0). To do this, we have to use other properties of the system.

In what follows, let us assume that system (3.4) undergoes the bifurcation as in
Propositions 4.3 and 4.4 with O1 = O3. In such a case, the two heteroclinic orbits Γ1

and Γ2 for µ = 0 form a loop called a heteroclinic loop and the orbit Γ = {h(ξ)|ξ ∈ R}
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bifurcating from the loop is a homoclinic orbit. In this situation, the orientation of
(V 1
u , . . . , V

n−1
u ) with respect to the homoclinic orbit is easily determined as follows.

Let (V̂ 0
u,1, . . . , V̂

n−1
u,1 ) (resp. (V̂ 0

s,1, . . . , V̂
n−1
s,1 )) be a basis of the unstable (resp.

stable) eigenspace of O1 satisfying

V̂ 0
u,1 = lim

ξ→−∞

h1(ξ)

|h1(ξ)| , V̂ 0
s,1 = lim

ξ→+∞

h2(ξ)

|h2(ξ)| ,

and

det
(
V̂ 0
u,1 · · · V̂ n−1

u,1 V̂ 0
s,1 · · · V̂ n−1

s,1

)
> 0.

Then (V̂ 0
u,1, . . . , V̂

n−1
u,1 ) determines the orientation of the local unstable manifold of

O1 and propagates with the orientation of the global unstable manifold Wu(O1) of
O1. Let (V̂ 0

u,2, . . . , V̂
n−1
u,2 ) be a basis of the unstable eigenspace of O2 with

V̂ 0
u,2 = lim

ξ→−∞

h2(ξ)

|h2(ξ)| ,

and let

V̂ 0
s,2 = lim

ξ→+∞

h1(ξ)

|h1(ξ)| .

From assumption 2 for the heteroclinic orbit Γ1, the tangent space Th1(ξ)W
u(O1) is

tangent to the space spanned by V̂ 0
s,2, V̂

1
u,2, . . . , V̂

n−1
u,2 in the limit of ξ → +∞. We de-

termine the orientation of (V̂ 1
u,2, . . . , V̂

n−1
u,2 ) so that the orientation of (V̂ 0

s,2, V̂
1
u,2, . . . ,

V̂ n−1
u,2 ) is compatible with that of Wu(O1), and then the orientation of Wu(O2) is

naturally determined by that of (V̂ 0
u,2, V̂

1
u,2, . . . , V̂

n−1
u,2 ). Similarly, the orientation of

Wu(O2) again determines the orientation of the unstable eigenspace of O1, but this
orientation is not necessarily compatible with that of (V̂ 0

u,1, . . . , V̂
n−1
u,1 ), which we de-

fined earlier.
Definition 4.1. The heteroclinic loop that consists of Γ1 and Γ2 is said to be

nontwisted with respect to the strong unstable direction if the above orientation is
compatible with that of (V̂ 0

u,1, . . . , V̂
n−1
u,1 ) defined at the beginning. Otherwise, it is said

to be twisted with respect to the strong unstable direction.
Twisting with respect to the strong stable direction is similarly defined.
We have another definition of twisting, which is directly related to the structure

of bifurcation. (See, for example, Deng [5] and the references therein.)
Consider q2(ξ), which is the solution of the variational equation (4.21) along h2(ξ)

given in the proof of Propositions 4.3 and 4.4. From the requirement for q2(ξ) (see
(4.22)), we may assume that

lim
ξ→−∞

q2(ξ)eρ
2ξ = −V̂ 0

s,2

and

lim
ξ→+∞

q2(ξ)e−ν
1ξ = cV̂ 0

u,1

for some nonzero constant c.
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Definition 4.2. The heteroclinic orbit Γ2 is nontwisted if c is positive and
twisted if c is negative.

With these two kinds of twistings, we define the sign σ of Γ = {h(ξ)} as follows.
Definition 4.3. σ = +1 if either of the following holds.
(1) The heteroclinic loop is nontwisted with respect to the strong unstable direction

and Γ2 is nontwisted.
(2) The heteroclinic loop is twisted with respect to the strong unstable direction

and Γ2 is twisted.
Otherwise, σ = −1.
Lemma 4.1. If either of the following is satisfied for the heteroclinic loop that

consists of two heteroclinic orbits Γ1 and Γ2, then σ = +1; otherwise, σ = −1.
(1) The heteroclinic loop is nontwisted with respect to the strong stable direction

and Γ1 is nontwisted.
(2) The heteroclinic loop is twisted with respect to the strong stable direction and

Γ1 is twisted.
Proof. By the definitions of the two kinds of twistings above, the heteroclinic

loop consisting of two heteroclinic orbits Γ1 and Γ2 that is nontwisted (twisted) with
respect to the strong unstable direction is nontwisted (twisted) with respect to the
strong stable direction if both heteroclinic orbits Γ1 and Γ2 are nontwisted or both are
twisted. Otherwise, the loop that is nontwisted with respect to the strong unstable
direction is twisted with respect to the strong stable direction, and vice versa. The
lemma clearly holds.

Then we can determine the sign of dD
dλ (0).

Theorem 4.4.

sign

(
dD(λ)

dλ

∣∣∣∣
λ=0

)
= σ · sign

(
∂β

∂θ

)
if ν2 < ρ2. The same equality holds for ν2 = ρ2 if the sign of ∂χ

∂θ coincides with that

of ∂χ
∂β , and if it differs, then

sign

(
dD(λ)

dλ

∣∣∣∣
λ=0

)
= −σ · sign

(
∂β

∂θ

)
.

For the case where ν2 > ρ2, the following holds:

sign

(
dD(λ)

dλ

∣∣∣∣
λ=0

)
= −σ · sign

(
∂α

∂θ

)
.

The same equality holds for ν2 = ρ2 if the sign of ∂χ
∂θ coincides with that of ∂χ

∂α for χ
of the time-reversed system, and if it differs, then

sign

(
dD(λ)

dλ

∣∣∣∣
λ=0

)
= σ · sign

(
∂α

∂θ

)
.

Proof. Define the orientation of the unstable manifold Wu(Oi) (i = 1, 2) and the
stable manifold Ws(Oi) of Oi continuously depending on µ by

V̂ 0
u,1 = lim

ξ→−∞

h(ξ)

|h(ξ)|
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and

V̂ 0
s,1 = lim

ξ→+∞

h(ξ)

|h(ξ)| .

Let V 1
u (ξ), . . . , V n−1

u (ξ) (V 1
u (ξ), . . . , V n−1

u (ξ)) be solutions of the variational equa-
tion along h(ξ) such that h′(ξ), V 1

u (ξ), . . . , V n−1
u (ξ) is a properly ordered basis of

Th(ξ)W
u(O1) and h′(ξ), V 1

s (ξ), . . . , V n−1
s (ξ) is a basis of Th(ξ)W

s(O1). Then the ori-
entation of Wu(O1) propagates along h(ξ), which approaches to O2 once and comes
back to O1. By definition, the orientation of Wu(O1) coincides with that of Wu(O2)
when h(ξ) is near O2. This implies that the orientation of (V̂ 0

u,1, V
1
u (ξ), . . . , V n−1

u (ξ))

is compatible with that of (V̂ 0
u,1, V̂

1
u,1, . . . , V̂

n−1
u,1 ) for large ξ if and only if the hetero-

clinic loop is nontwisted. Therefore, the sign of

det
(
V̂ 0
u,1V

1
u (ξ) · · ·V n−1

u (ξ)h′(ξ)V 1
s (ξ) · · ·V n−1

s (ξ)
)

is positive for large ξ if the heteroclinic loop is nontwisted and negative if the het-
eroclinic loop is twisted. Therefore, by the definition of twisting of Γ2, it follows
that

sign
(
det
(
q2(ξ) V 1

u (ξ) · · ·V n−1
u (ξ)h′(ξ)V 1

s (ξ) · · ·V n−1
s (ξ)

))
is positive if condition (1) or (2) of Definition 4.3 holds and negative otherwise. This
proves the theorem.

By replacing ξ with −ξ and taking into account Lemma 4.1 and the definition of
χ (see (4.25)) in the proof of Propositions 4.3 and 4.4, we get the result for the case
where ν2 > ρ2.

Remark 4.2.

(1) The heteroclinic loop is nontwisted with respect to the strong direction if
system (3.4) has a certain symmetry for µ = 0. For example, h2(ξ) = −h1(ξ) or
h2(ξ) = (hu2 (ξ), hv2(ξ)) = (hu1 (−ξ),−hv1(−ξ)), where hui denotes the u-component of hi
and hvi denotes the v-component of hi. Note that a standing wave (a traveling wave
with velocity θ = 0) possesses the latter type of symmetry.

(2) When the dimension of system (3.4) is equal to or less than 3, the twisting of
the loop is determined only by the twistings of Γ1 and Γ2.

Theorem 4.4 means that if σ is given, then we can determine the stability of the
traveling wave corresponding to the homoclinic orbit h(ξ) only from the bifurcation
diagram. We summarize this in Figure 5.7.

5. Examples. In this section, we consider two examples of reaction-diffusion
equations that possesses traveling waves forming a heteroclinic loop, and we study
the stability of bifurcating waves by applying the theorems of this paper.

Example 1. We treat the following activator–inhibitor system:{
ετut = ε2uxx + f(u, v; γ, ν),
vt = vxx + g(u, v; γ, ν),

(5.1)

where ε and τ are real positive parameters, ε is sufficiently small, and{
f(u, v; γ, ν) = −u3 + u− v,
g(u, v; γ, ν) = u− γv + ν.

(5.2)
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Fig. 5.1. Nullclines of f and g in Example 1.

The nullcline of f intersects with that of g at three points P , Q, and R, where P and
Q are stable and R is an unstable constant solution of (5.1) (see Figure 5.1).

In what follows, we introduce the traveling coordinate ξ = x− θt, and we regard
γ, ν, and the wave speed θ as bifurcation parameters. Consider

u′ = 1
εu1,

v′ = v1,
u′1 = − θτε u1 − 1

εf(u, v; γ, ν),
v′1 = −θv1 − g(u, v; γ, ν)

(′= d
dξ )(5.3)

corresponding to the existence of a traveling wave for (5.1). This system possesses
heteroclinic orbits Γ1 = {h1(ξ; γ, ν)} from (P,O) to (Q,O) and Γ2 = {h2(ξ; γ, ν)}
from (Q,O) to (P,O). The traveling (standing if θ = 0) wave corresponding to Γ1

is called a traveling (standing) front and Γ2 is called a traveling (standing) back.
Figure 5.2 depicts the situation in the parameter space, where M1 corresponds to Γ1

and M2 corresponds to Γ2. Notice that the thick curve shows the coexistence of both
heteroclinic orbits or, in other words, the existence of what is called a heteroclinic
loop.
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Fig. 5.2. Bifurcation diagram of the traveling front and traveling back in Example 1.

In Figure 5.3, bifurcation diagrams for ν and θ for fixed γ are shown.

Fig. 5.3. Bifurcation diagram of the traveling front and traveling back in Example 1 for fixed γ.
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Kokubu, Nishiura, and Oka [18] showed the existence of homoclinic orbits ΓP =
{hP (ξ)} associated with (P,O) and ΓQ = {hQ(ξ)} associated with (Q,O) bifurcating
from the heteroclinic loops; these homoclinic orbits correspond to traveling (standing)
pulses. We show bifurcation diagrams in Figures 5.4 and 5.5, where MP and MQ

correspond to these waves.
The stability and instability of fronts and backs are known. Ikeda [11] proved

the stability and instability of pulses in [18] using the singular-perturbation method.
In this example, we prove the stability and instability, applying the theorems in this
paper without using the information in the singular limit.

First, note that the standing front and back that correspond to the heteroclinic
loop for (γ, ν, θ) = (γ, 0, 0) and γ < γc are unstable. From Theorem 4.1, both standing
pulses associated with P and Q bifurcating from the heteroclinic loop are unstable.
Fronts and backs corresponding to the heteroclinic loops for other parameter values
are known to be stable, and thus the pulses other than the above can be stable, and
this is indeed the case. In such cases, the eigenvalue problem (2.7) for pulses has one
eigenvalue near the origin other than the one at the origin, and it is real. We show
that the derivative of the Evans function at the origin dD

dλ (0) is positive, which means
that [g] in Theorem 4.2 is equal to 1 for λ1 < 0 near 0 and λ2 large, i.e., 0 is the only
eigenvalue whose real part is equal or grater than 0. Thus the pulse is stable.

The heteroclinic orbits Γ1 and Γ2 are known to be nontwisted for ν = 0. Notice
that system (5.3) has the symmetry

h2(ξ; γ, 0) = −h1(ξ; γ, 0)(5.4)

for the heteroclinic loop, and so it is nontwisted with respect to the strong direction
(Remark 4.2). From Theorem 4.4 and the bifurcation diagram (Figure 5.5), we have

sign

(
dD

dλ
(0)

)
> 0,

and therefore the pulses are stable.
Example 2. Our next example is a Lotka–Volterra competition system: ut = uξξ + f(u, v),

vt = dvξξ + g(u, v),
u(0, ξ) ≥ 0, v(0, ξ) ≥ 0,

ξ ∈ R, t > 0,(5.5)

where {
f(u, v) = (1− u− cv)u,
g(u, v) = (a− bu− v)v,

(5.6)

and a, b, c, and d are positive constants.
This system has two stable constant solutions (u, v) ≡ (0, a) and (u, v) ≡ (1, 0)

for 1/c < a < b. Again consider the following system in search of traveling waves:
u′ = u1,
v′ = v1,
u′1 = −θu1 − (1− u− cv)u,
v′1 = − θdv1 −

1
d (a− bu− v)v

(′= d
dξ ).(5.7)



430 SHUNSAKU NII

Fig. 5.4. Bifurcation diagram of the traveling pulses in Example 1.

Fig. 5.5. Bifurcation diagram of the traveling pulses in Example 1 for fixed γ.
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For each fixed d, there exist C1 families h1(ξ; a, b, c) and θ(a, b, c) defined on
P = {(a, b, c)|0 < 1/c < a < b} such that h1 is a solution of (5.7) with θ = θ(a, b, c)
satisfying

lim
ξ→−∞

h1(ξ; a, b, c) = (0, a, 0, 0), lim
ξ→+∞

h1(ξ : a, b, c) = (1, 0, 0, 0),(5.8)

and θa(a, b, c) > 0, θb(a, b, c) < 0, and θc(a, b, c) > 0. Moreover, there exists a C1

family a = a(b, c) ∈ (1/c, b) on {(b, c)|0 < 1/c < b} such that θ(a(b, c), b, c) = 0 holds
(see Kan-on [13]). θ = 0 means that this system also has symmetry, by which we can

Fig. 5.6. Bifurcation diagram in Example 2.

get a heteroclinic solution h2(ξ; a, b, c) satisfying

lim
ξ→−∞

h2(ξ; a, b, c) = (1, 0, 0, 0), lim
ξ→+∞

h2(ξ : a, b, c) = (0, a, 0, 0)(5.9)

by setting

(5.10)

h2(ξ; a, b, c) = (h1
1(−ξ; a, b, c), h2

1(−ξ; a, b, c),−h3
1(−ξ; a, b, c),−h4

1(−ξ; a, b, c)),

where

h1(ξ; a, b, c) = (h1
1(ξ; a, b, c), h2

1(ξ; a, b, c), h3
1(ξ; a, b, c), h4

1(ξ; a, b, c)).(5.11)

This means that for (θ, a, b, c) = (0, a(b, c), b, c), the system possesses a nontwisted
heteroclinic loop consisting of h1 and h2, and it is known that both h1 and h2 are
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Fig. 5.7. Stability of bifurcating pulses.

nontwisted. Of course, system (5.7) has homoclinic orbits bifurcating from the hete-
roclinic loop (see Kan-on [14]). More precisely, there exists a C1 family of solutions of
(5.7) h(ξ; a, b, c) (h̄(ξ; a, b, c)) with θ = 0 defined on Q = {(a, b, c)|0 < 1/c < b, 1/c <
a < a(b, c)} (Q̄ = {(a, b, c)|0 < 1/c < b, a(b, c) < a < b}) that satisfies

lim
ξ→±∞

h(ξ; a, b, c) = (0, a, 0, 0)

(
lim

ξ→±∞
h̄(ξ; a, b, c) = (1, 0, 0, 0)

)
.(5.12)

Again, traveling waves corresponding to the heteroclinic orbits are stable [16]. Kan-
on [15] proved the instability of pulses by constructing an eigenfunction that corre-
sponds to a positive eigenvalue.
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However, by applying Theorem 4.4, we readily see from the bifurcation diagram
(Figure 5.6) that the pulses are unstable.
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This paper is dedicated to the memory of our friend Hans-Jürgen Böttger, who worked at the
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Abstract. The following problem is considered. The convolution f of a function g supported in
the interval [−1, 1] with the function H0(k|·|) is known on [−1, 1]. An expression for g is searched for.
It is shown that the problem of continuing the convolution f from the interval [−1, 1] to the whole
real axis in a consistent way is equivalent to solving a certain Hilbert boundary-value problem for two
unknown functions. This Hilbert boundary-value problem differs essentially from the corresponding
one from the modern theory of finite convolution equations in Sobolev spaces (cf. [B. V. Pal’cev,
Math. USSR Sb., 41 (1982), pp. 289–328]), which has not yet been factored, in that it is set up
in the original space, not in the range of the Fourier transform operator, and it does not contain
the full convolution kernel but only its asymptotics at infinity. It is shown that a factorization for
this problem can be given in terms of solutions of a certain singular algebraic ordinary differential
equation. This factorization leads to an integral representation of the unknown function g. Finally,
the singular differential equation, which remains to be solved, is discussed. At this point, work should
be continued.

Key words. convolution equations on a finite interval, factorization of matrix functions, singular
differential equations
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1. Introduction. In this paper, a factorization method for solving the finite
convolution equation of the first kind,

(1.1)

∫ 1

−1

g(y)H0(k|x− y|) dy = f(x), |x| ≤ 1,

is presented, where H0 denotes the first-kind Hankel function of order zero.
In spite of a highly developed Sobolev space theory of finite convolution equations,

which has been worked out during the last 15 years and is based on the equivalence
of such a convolution equation with a corresponding matrix Hilbert boundary-value
problem (cf. [1] and, especially, the profound paper of Pal’cev [15]), the problem of fac-
torization of the Hilbert boundary-value problem which is assigned to equation (1.1)
according to this theory remains an open question (regarding the hitherto unsatisfac-
tory results in the attempts of solving equation (1.1) by Wiener–Hopf methods, cf. the
survey of Meister [9, p. 226]). Thus the only closed-form solution of (1.1) which was
known up to the present is a “classical” solution. It consists of a series representation
of g in terms of the eigenfunctions of the integral operator Q,

QF (α) =

∫ π

0

F (β)H0(k| cosα− cosβ|) dβ, α ∈ [0, π],
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which is connected to (1.1) by the substitutions x = cosα, y = cosβ. The eigenfunc-
tions of Q are the even Mathieu functions cen(·, k2/4), n ∈ N0; here we have used the
notation in [11]. For the approach of representing the solution g of (1.1) as a series
of Mathieu functions, see, e.g., [4] and [2].

In the present paper an integral representation of the solution of (1.1) in terms of
the right-hand side f and solutions of a certain singular algebraic ordinary differential
equation will be derived. This differential equation is of higher complexity than the
standard ordinary differential equations of mathematical physics, including Mathieu’s
equation and the differential equation for spheroidal functions, and remains to be
studied.

The solutions of the differential equation used in our approach are obtained by the
factorization of a matrix Hilbert boundary-value problem for two unknown functions
whose solution can be used to extend the right-hand side f of (1.1) from the interval
[−1, 1] to the whole real axis in a consistent way, which means that (1.1) holds for all
x ∈ R (so that (1.1) can be solved by Fourier transformation).

This Hilbert problem differs essentially from the Hilbert problems occurring in
the above-mentioned newer theory of finite convolution equations and, respectively,
boundary-value problems for partial differential equations (cf. [1], [9], [10], [15], [16],
and the references therein). Whereas the latter Hilbert problems are set up in the
range of the Fourier transform operator, the Hilbert problem used in this paper is
set up in the original space. Also, the coefficient matrix of the Hilbert problems
considered in [1], etc., contains the symbol of the underlying convolution kernel, while
the coefficient matrix of ours does not contain the full kernel H0(k| · |) but is based
only on its asymptotics at infinity, which causes a considerable simplification of the
Hilbert problem.

We have divided the process of the solution of (1.1) in section 2 into three steps.
In step 1, we establish the Hilbert problem; in step 2, we show how it can be factored
by the use of solutions of an ordinary differential equation; and finally, in step 3, we
give the solution of (1.1). In section 3, the ordinary differential equation on which
our solution of (1.1) is founded is specified and discussed.

Our solution of (1.1) holds for arbitrary k 6= 0 with Re k ≥ 0 and Im k ≥ 0. On
this general condition for every p > 1 and f ∈ Lp([−1, 1]) equation (1.1) has at most
one solution: g ∈ Lp([−1, 1]). Although this special injectivity result follows from the
general theory of finite convolution equations discussed above, we present a proof of
it in the appendix because we need some of the formulas therein for our final solution
of (1.1).

We still want to note that the factorization of the Hilbert boundary-value problem
presented in this paper by solutions of an ordinary differential equation is closely
related to the generalized Riemann problem examined in [3].

We also want to cite [5], where (by function-theoretic methods) finite convolution
equations with simpler kernels are solved explicitly.

2. Solution of the integral equation. To begin with, we recall that, regarding
the parameter k in (1.1), we assume

k 6= 0, Re k ≥ 0, and Im k ≥ 0.

Throughout this paper, we assume that the function g in (1.1) lies in Lp([−1, 1])
for some p > 1.

Step 1. We reformulate problem (1.1) as the problem of solving a certain Hilbert
boundary-value problem for two unknown functions. With the solution of this Hilbert
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problem, we shall be able to express the right-hand side f in (1.1) for arguments
x ∈ R\[−1, 1] as well.

Theorem 2.1. If g is a solution of (1.1), we have

(2.1)

µ−(x) +A(x)µ+(x) = χ(−1,1)(x)


e−ikx

∫ 1

−1

g(y)H
(1)
0 (k|x− y|) dy

eikx
∫ 1

−1

g(y)H
(1)
0 (k|x− y|) dy



= χ(−1,1)(x)f(x)

(
e−ikx

eikx

)
, x ∈ R\{−1, 1},

with

χ(−1,1)(x) = 1 for |x| < 1, χ(−1,1)(x) = 0 for |x| > 1,

A(x) =

(
1 −2e−2ikx

0 −1

)
for x < −1,

A(x) =

(
1 0

0 1

)
for |x| < 1,

A(x) =

(
−1 0

−2e2ikx 1

)
for x > 1,

(2.2) µ−(x) =
1

2


e−ikx

∫ 1

−1

g(y)H
(1)
0 (k(x− y)) dy

−eikx
∫ 1

−1

g(y)H
(2)
0 (k(x− y)) dy

 for Imx ≤ 0,

and

(2.3) µ+(x) =
1

2


−e−ikx

∫ 1

−1

g(y)H
(2)
0 (−k(x− y)) dy

eikx
∫ 1

−1

g(y)H
(1)
0 (−k(x− y)) dy

 for Imx ≥ 0.

µ− is holomorphic in the lower complex half-plane Imx < 0, µ+ is holomorphic in
the upper complex half-plane Imx > 0, and both functions are continuous up to the
boundary line R. Furthermore, we have

(2.4) µ−(x) = O
(
|x|− 1

2

)
and µ+(x) = O

(
|x|− 1

2

)
, |x| → ∞.

Proof. The Hankel functions H
(1)
ν and H

(2)
ν of first and second kind, respectively,

and order ν satisfy the following monodromic relations in C\(−∞, 0]:

H
(1)
ν (emπiz) =

sin(1−m)νπ

sin νπ
H(1)
ν (z)− e−νπi sinmνπ

sin νπ
H(2)
ν (z),

H
(2)
ν (emπiz) =

sin(1 +m)νπ

sin νπ
H(2)
ν (z) + eνπi

sinmνπ

sin νπ
H(1)
ν (z),
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m ∈ Z (see [6, 8.476]).

From these equations for ν = 0 and m = −1, respectively, m = 1, we conclude that
for |y| < 1,

H
(1)
0 (k(x− y))− −H(2)

0 (−k(x− y))+ − 2H
(1)
0 (−k(x− y))+ = 0 for x < −1,

−H(2)
0 (k(x− y))− −H(1)

0 (−k(x− y))+ = 0 for x < −1,

H
(1)
0 (k(x− y))− −H(2)

0 (−k(x− y))+ = 2H
(1)
0 (k|x− y|) for |x| < 1,

−H(2)
0 (k(x− y))− +H

(1)
0 (−k(x− y))+ = 2H

(1)
0 (k|x− y|) for |x| < 1,

H
(1)
0 (k(x− y))− +H

(2)
0 (−k(x− y))+ = 0 for x > 1,

−H(2)
0 (k(x− y))− + 2H

(2)
0 (−k(x− y))+ +H

(1)
0 (−k(x− y))+ = 0 for x > 1.

Here the subscript “−” or “+” means that x approaches the real axis from the lower
or, respectively, upper complex half-plane. Multiplication by g(y), integration over
(−1, 1), and balancing with the exponential factors e−ikx and eikx now yields (2.1).

From the asymptotic behavior of the Hankel functions [6, 8.451], we obtain
(2.4).

If problem (2.1) is solved, we can compute the right-hand side f in (1.1) for the
values x ∈ R\[−1, 1] as follows:

(2.5) f(x) =

∫ 1

−1

g(y)H0(k|x− y|) dy = 2

{
e−ikxµ+

2 (x), x < −1,

eikxµ−1 (x), x > 1.

Thus f is known on the whole real axis and (1.1) can be solved by Fourier transfor-
mation.

Step 2. We derive a fundamental system for the homogeneous problem

(2.6) µ−(x) +A(x)µ+(x) = 0, x ∈ R\{−1, 1}.

To this end, the theory of Vekua for the Hilbert boundary-value problems with
piecewise-continuous coefficients for several unknown functions [19, Chapter 2] is used.
The piecewise-continuous coefficients are the components of the matrix A.

Throughout the following, it is assumed that Imk > 0 because then the matrix
A has definite limits for x → ±∞. Later in this paper, we shall show that all of the
results that we shall derive for the case Im k > 0 also hold in the case Im k = 0, i.e.,
k > 0.

The transformation of (2.6) to a Hilbert problem on a closed contour with the
transformation

z = − ix

x− i

leads to

(2.7) Φ+(z) = G(z)Φ−(z), z ∈ L.

Here L is the boundary of the circle with radius 1/2 and center −i/2,

Φ+(z) = µ−(x), Φ−(z) = µ+(x),
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where Φ+ is defined inside and Φ− is defined outside L and

G(z) =



(
1 0

2e−
2kz
z+i −1

)
, z ∈ a3_a1,

(
−1 0

0 −1

)
, z ∈ a1_a2,

(
−1 2e

2kz
z+i

0 1

)
, z ∈ a2_a3

with

a1 =
1− i

2
, a2 =

−1− i
2

, and a3 = −i.

ap_aq is the segment of L joining the points ap and aq in the mathematical pos-
itive direction. The discontinuities z = a1, z = a2, and z = a3, respectively, of G
correspond to the discontinuities x = 1, x = −1, and x =∞, respectively, of A.

Problem (2.7) fulfills all the conditions in [19, Chapter 2]. With the notation
therein, obviously a1, a2, and a3 are all nonspecial points of (2.7) and the correspond-
ing numbers ρσj are all equal to 0, respectively, ±1/2.

We consider the solutions Φ of (2.7) of class h(a1, a2). This means that

(2.8)

lim
z∈C,z→a1

|z − a1|εΦ(z) = 0, lim
z∈C,z→a2

|z − a2|εΦ(z) = 0 for all ε > 0

and

|Φ(z)| ≤ c|z − a3|−α, z ∈ C near a3, for some c > 0 and α ∈ [0, 1).

In the last estimate, |Φ(z)| denotes any norm of the vector Φ(z).
Lemma 2.1. The partial indices of the Hilbert problem (2.7), (2.8) are both zero.
Proof. From [19, formula (13.49)], we obtain that the total index of (2.7) and

(2.8) is zero. Thus it remains to show that both partial indices are nonnegative.
Because of (2.1), for any function f defined by a function g ∈ Lp([−1, 1]) for some

p > 1 via (1.1) with

ϕ+(z) = (x(z)− i)µ−(x(z)), ϕ−(z) = (x(z)− i)µ+(x(z))

and

(2.9) b(z) = χ(−1,1)(x(z))(x(z)− i)f(x(z))(e−ikx(z), eikx(z))T , z ∈ L,

we have

ϕ+(z) = G(z)ϕ−(z) + b(z), z ∈ L,

and because of (2.2), (2.3), and (2.4) the function ϕ belongs to the class h(a1, a2).
Furthermore, ϕ(z) is vanishing for |z| → ∞.

It is not hard to show that for g ∈ Lp([−1, 1]), p > 1, the function f defined
by (1.1) is Hölder continuous on [−1, 1]. (Because of the logarithmic singularity of
the function H0, there is an analogy to the logarithmic potential in two-dimensional



SOLUTION OF A FINITE CONVOLUTION EQUATION 439

potential theory, whose Hölder continuity is a well-known fact.) Thus it follows (see
[19, formula (14.6)]) that

(2.10)

∫
L

b(z)T [X+(z)T ]−1q(z) dz = 0

for all vectors

q = (q−χ1−1, q−χ2−1)T ,

where X is a fundamental matrix for (2.7) and (2.8), χ1 and χ2 are the partial indices
of (2.7) and (2.8), and qα is an arbitrary polynomial of degree not greater than α,
qα ≡ 0 for α < 0.

It remains to show that if (2.10) holds for every function b of the form (2.9), the
polynomials q−χ1−1 and q−χ2−1 both must vanish because this implies χ1, χ2 ≥ 0. For
this aim we derive a contradiction from the hypothesis q−χ1−1 6≡ 0. (The hypothesis
q−χ2−1 6≡ 0 is contradicted analogously.) Hence assume q−χ1−1 6≡ 0. Because the
total index χ1 + χ2 is zero, it follows that q−χ2−1 ≡ 0. Thus with

e1 := (1, 0)T and ϕ(z) := (e−ikx(z), eikx(z))[X+(z)T ]−1e1,

(2.10) yields ∫
a1_a2

f

(
iz

z + i

)
q−χ1−1(z)

z + i
ϕ(z) dz = 0

for all functions f of the form (1.1) with g ∈ Lp([−1, 1]) for arbitrary p > 1. Because
for p > 1 the integral operator (1.1) is injective on Lp([−1, 1]) (as proved in the
appendix) and has the same kernel as its adjoint on Lq([−1, 1]), 1/p + 1/q = 1, the
adjoint operator is also injective and therefore the functions f defined by (1.1) for
g ∈ Lp([−1, 1]) are dense in Lp([−1, 1]) [17, corollary to Theorem 4.12]. Because of
q−χ1−1 6≡ 0, it follows that ϕ must vanish identically on a1 _ a2. (For the growth of
[X(z)T ]−1 near z = a1, a2, see [19, p. 97].)

With

det (X(z))[X(z)T ]−1e1 = (−α2(z), α1(z))T ,

by definition of a fundamental matrix, the function α := (α1, α2)T is a nonzero solu-
tion of (2.7) and (2.8) (namely, the negative of the second column ofX). Furthermore,
it holds that

eikx(z)α+
1 (z)− e−ikx(z)α+

2 (z) = det(X+(z))ϕ(z) = 0, z ∈ a1 _ a2,

or

(2.11) α+(z) = α+
1 (z)(1, e2ikx(z))T , z ∈ a1 _ a2.

Because the sectionally holomorphic function α is a solution of (2.7), by virtue of
(2.7), it can be continued analytically from the interior of L into the region outside
of L across the segment a1 _ a2. Note that the matrix G obviously possesses a
corresponding analytic continuation; that the thus-defined function α is holomorphic
in a neighborhood of a1 _ a2 is an immediate consequence from Morera’s theorem
[12, p. 367]. By the analyticity of α+ in a neighborhood of a1 _ a2, we see by analytic
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continuation that (2.11) also holds inside L and therefore also on the segments a3 _ a1

and a2 _ a3. It follows that

α−(z) = G(z)−1α+(z) = α+
1 (z)G(z)−1(1, e2ikx(z))T , z ∈ L\{a1, a2, a3}.

The vector (1, e2ikx(z))T is an eigenvector of the matrix G(z)−1 = G(z) to the
eigenvalue 1 on a3 _ a1∪a2 _ a3 and to the eigenvalue −1 on a1 _ a2. We conclude
that α1 is a nonzero solution of class h(a1, a2) of the simple one-dimensional Hilbert
problem

(2.12)

α+
1 (z) = α−1 (z) on a3 _ a1 and a2 _ a3

and

α+
1 (z) = −α−1 (z) on a1 _ a2.

Because (2.11) holds for z ∈ L\{a1, a2, a3}, we have

α+
1 (z) = e

2kz
z+iα+

2 (z), z ∈ L\{a1, a2, a3}.

Because Im k > 0, it follows that α+
1 (z) decays exponentially if z approaches a3 = −i

along the segment a2 _ a3. However, this is impossible for the nonzero solution α1 of
(2.12) of class h(a1, a2) (cf. [13, formula (78, 16)]). Hence our assumption q−χ1−1 6≡ 0
leads to a contradiction.

Next, it will be shown that the fundamental solutions of (2.7) and (2.8) fulfill a
certain 2 × 2 system of singular algebraic differential equations. To this end, we need
the following estimations for the derivatives of solutions of (2.7) and (2.8).

Lemma 2.2. If Φ is a solution of (2.7) and (2.8) we have
(2.13)

lim
z∈C,z→a1

|z − a1|1+εΦ′(z) = 0, lim
z∈C,z→a2

|z − a2|1+εΦ′(z) = 0 for all ε > 0,

and

|Φ′(z)| ≤ c|z − a3|−(2+α), z ∈ C near a3,

for α from (2.8) and some c > 0.
Proof. It is useful to consider the original problem (2.6). Therefore, let µ(x) =

Φ(z). To prove the estimate for a1, because

(2.14) Φ′(z) = − 1

(z + i)2
µ′(x),

it must be shown that

(2.15) lim
x0∈C,x0→1

|x0 − 1|1+εµ′(x0) = 0 for all ε > 0.

For x0 near 1, x0 6= 1, 0 < r < |x0 − 1|, and small δ > 0, we consider the
function µ on the circle Br,δ := {x ∈ C| |x − x0| < r + δ}. If Br,δ intersects the
real line, we continue the sectionally holomorphic function µ analytically into the
lower, respectively, upper complex half-plane (“lower” if x0 lies in the upper half-
plane; “upper” if x0 lies in the lower half-plane) by virtue of equation (2.6). From the
Cauchy integral formula we now obtain

µ′(x0) =
1

2πi

∫
|x−x0|=r

µ(x)

(x− x0)2
dx;



SOLUTION OF A FINITE CONVOLUTION EQUATION 441

hence

(2.16) |µ′(x0)| ≤
max
|x−x0|=r

|µ(x)|

r
.

However, by (2.8),

max
|x−x0|=r

|µ(x)| ≤ c max
|x−x0|=r

|x− 1|−ε = c(|x0 − 1| − r)−ε for all ε > 0.

Now (2.15) follows from these two inequalities if we set, e.g., r = |x0 − 1|/2. The
estimate for Φ′(z) near z = a2 is obtained analogously.

Because the singularity z = a3 = −i corresponds to x = ∞, by virtue of (2.14),
it remains to show that

(2.17) |µ′(x0)| ≤ c|x0|α

if x0 tends to infinity in the lower, respectively, upper half-plane. Without loss of
generality, let Imx0 ≤ 0. For fixed r > 0 and δ > 0, continue the function µ
analytically from the lower half-plane into the region 0 < Imx < r + δ, |Re x| > 1,
across the two half-lines (−∞,−1) and (1,∞) by virtue of relation (2.6). In the
same way as above, we obtain (2.16) and hence, by (2.8), also (2.17). Note that in
the latter case the exponential factors e±2ikx, which occur by the process of analytic
continuation, behave well for Rex → ±∞ and that the radius r is the same for all
values of x0.

After this preparation, we can prove the following theorem. Concerning the in-
volved theory of differential equations having singular points we refer, for example, to
[8, §23] (cases x = −1 and x = 1 in what follows) and [7, Chapter XIX] (case x =∞).

Theorem 2.2. Let X be a fundamental matrix of (2.7) and (2.8), let V , V (x) =
X(z), be the corresponding fundamental matrix of (2.6), and define the diagonal ma-
trix D by

D = ik

(
1 0

0 −1

)
.

Then the matrix-valued function Y ,

Y (x) := V (x)T exD, exD =

(
eikx 0

0 e−ikx

)
,

fulfills the first-order system of differential equations

(2.18) (x2 − 1)Y ′(x) = P (x)Y (x),

where P is a matrix-valued function whose component functions are polynomials of
degree 2 or less.

The points x = −1 and x = 1 are regular singular points of (2.18) and

(2.19) for x ∈ {−1, 1}, the indices at x are 0 and
1

2
.

Furthermore,

(2.20) (2.18) possesses a nonzero entire solution ,
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and there are solutions ϕ and Ψ of (2.18) with the asymptotics

(2.21) ϕ(x) ∼ x 1
2 e−ikxc(1) and Ψ(x) ∼ x 1

2 eikxc(2), |x| → ∞,

such that

(2.22)
ϕ and Ψ are the solutions to the index

1

2

at the points x = −1 and x = 1, respectively .

Here c(1) and c(2) are nonzero constant complex vectors and each of the asymptotic
relations (2.21) holds in a certain sector of the complex plane.

Proof. By differentiating (2.6) with V instead of µ we arrive at the central rela-
tionship

(V −)′(x) +DV −(x) +A(x)[(V +)′(x) +DV +(x)] = 0, x ∈ R\{−1, 1},

that is, V ′ + DV is also a solution of (2.6). Hence −(· − a3)2X ′ + DX is a solution
of (2.7) and so is X∗,

X∗(z) := (z − a1)(z − a2)(z − a3)2X ′(z)− (z − a1)(z − a2)DX(z).

Because of (2.13), X∗ also fulfills condition (2.8) and hence lies in the class h(a1, a2).
Because both partial indices of problem (2.7), (2.8) are zero (Lemma 2.1), the

fundamental matrix X is holomorphic in z = ∞ and so X ′ in z = ∞ has a zero of
order at least 2. Therefore, X∗ has degree 2 or less at z = ∞. Hence (because the
partial indices of (2.7) and (2.8) are zero andX and X∗ are of the same class h(a1, a2))
there exists a matrix function Q whose coefficients are polynomials of degree 2 or less
in z, with

X∗(z) = X(z)Q(z)

(see [19, formula (13.47)]).
Because of

X∗(z) =
x2 − 1

2(x− i)2 [V ′(x) +DV (x)],

with

R(x) := 2(x− i)2Q(z) = 2(x− i)2Q
(
− ix

x− i

)
it follows that

(x2 − 1)[V ′(x) +DV (x)] = V (x)R(x).

The coefficients of the matrix function R are polynomials of degree 2 or less in x.
With

W (x) := exDV (x), exD =

(
eikx 0

0 e−ikx

)
,
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we arrive at

(x2 − 1)W ′(x) = W (x)R(x).

By transposing, we now obtain (2.18), where Y = WT and P = RT .

Obviously, the points x = −1 and x = 1 are regular singular points of (2.18).

With the matrix A from (2.6), we define

B(x) := exDA(x)e−xD, x ∈ R\{−1, 1}.

B is constant on each of the segments (−∞,−1), (−1, 1), and (1,∞).

The matrix W = e·DV fulfills

W−(x) +B(x)W+(x) = 0, x ∈ R\{−1, 1},

and therefore W−, which we think is continued analytically into the upper complex
half-plane through the segment (−1, 1) via the relation W−(x) = −W+(x), xε(−1, 1),
satisfies the following monodromic relation if the point x = −1 is encircled in the
mathematical positive direction:

W−(x)new =

(
1 −2

0 −1

)
W−(x)old.

From this it follows that the first column of the matrix solution Y ∗ of (2.18),

Y ∗(x) :=

[(
1 −1

0 1

)
W−(x)

]T
,

returns to its original value and that the second column of Y ∗ changes sign if x = −1
is encircled. Therefore, the indices of (2.18) at x = −1 are of the form n and m+ 1/2
for some n, m ∈ Z. That n = m = 0 follows from the fact that the fundamental
matrix V of (2.6) satisfies the estimates

lim
x∈C,x→−1

|x+ 1|εV (x) = 0 for all ε > 0

and

|V (x)−1| ≤ c|x+ 1|−α, x ∈ C near − 1, for some c > 0 and α ∈ [0, 1).

Here |V (x)−1| denotes any norm of the matrix V (x)−1; the first estimate is a conse-
quence of (2.8) and the second estimate holds by definition of a fundamental matrix
of class h(a1, a2) [19, p. 97].

In the same way, it can be proved that the indices of (2.18) at x = 1 are 0 and
1/2. The solution to the index 0 at x = 1 turns out to be proportional to the solution
to the index 0 at x = −1; this shows (2.20).

Because of Im k > 0, the matrix A of (2.6) satisfies

(2.23) lim
x→+∞

A(x)−1 lim
x→−∞

A(x) =

(
−1 0

0 −1

)
.
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From this, by the construction of the fundamental matrix of class h(a1, a2) performed
in [19], it can be deduced that for the fundamental matrix X of (2.7) and (2.8),

lim
z→−i

(z + i)
1
2X(z) = X0 with detX0 6= 0

if z approaches −i within the given sectors of the complex plane. (Note that there is
no logarithmic singularity near z = −i because the matrix (2.23) possesses a complete
set of eigenvectors to the double eigenvalue −1; the matrix X0 is constant on each
sector.) It follows that for the solution Y of (2.18),

Y (x) = V (x)T exD = X(z)T exD,

the asymptotic relation

Y (x) ∼ x 1
2XT

0 e
xD, |x| → ∞,

holds within the corresponding sectors. Hence (2.21) is also valid. Because the second
(respectively, first) column of Y changes sign if x = −1 (respectively, x = 1) is
encircled (the second column of Y is just the second column of the previously examined
matrix solution Y ∗ of (2.18)), (2.22) is also proved.

In section 3, an explicit expression for the polynomial matrix P is given which
contains only two complex parameters whose values are still unknown.

Until now, the assumption Im k > 0 was necessary, but now we prove the following
fact.

Theorem 2.3. All of the results obtained so far also hold in the case Im k = 0
(i.e., k > 0).

Proof. Let k > 0 and 0 < α < π/2, and let γ be any smooth curve in the
complex plane so that γ contains the segment [−1, 1] as well as the set {λeiα|λ ∈
R, |Re (λeiα)| ≥ 2} and that Im γ is a monotonic function of Re γ. We now consider
the Hilbert boundary-value problem (2.6) on the curve γ instead of R. Again using
the transformation

z = − ix

x− i ,

we obtain problem (2.7) on a closed arc L∗ instead of L. Because for k > 0 the matrix
A has definite limits for |x| → ∞, x ∈ γ, the so-modified problem (2.7) again fulfills
all the conditions in [19, Chapter 2]. Now it is not hard to see that all of the results
that we have obtained so far for problem (2.6) (respectively, (2.7)) hold in exactly the
same way for the modified problem (2.6) (respectively, (2.7)). We want to note that
by analytic continuation from relation (2.1), it follows that

µ−(x) +A(x)µ+(x) = 0 for x ∈ γ\[−1, 1].

Step 3. We express the solution g of the original problem (1.1) in terms of the
fundamental system Y of (2.18)–(2.22). Regarding the parameter k, we impose no
restriction; that is, we assume k 6= 0, Re k ≥ 0, and Im k ≥ 0.

Theorem 2.4. Let X be a fundamental matrix of (2.7) and (2.8), set V (x) =
X(z), and define the matrix D as in Theorem 2.2. Consider the fundamental system
Y of (2.18)–(2.22) specified by Y (x) = V (x)T exD for Imx ≤ 0 and the requirement
that for Imx ≥ 0 the values Y (x) are obtained by analytic continuation from the lower
complex half-plane across the segment (−1, 1).
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If f is given by (1.1), we have

(2.24) f(s) =

∫ 1

−1

f(τ)T (s, τ) dτ for all s ∈ R\{−1, 1},

where the “transfer function” T is defined by

T (s, τ) =


− 1

iπ(s− τ)
[Y +(s)T [Y (τ)T ]−1(1, 1)T ]2, s ∈ (−∞,−1),

δ(s− τ), s ∈ (−1, 1),

1

iπ(s− τ)
[Y −(s)T [Y (τ)T ]−1(1, 1)T ]1, s ∈ (1,∞).

Here [ ]1 and [ ]2 denote the first and second components, respectively, of the vector
within the brackets, δ is the Dirac delta distribution, and Y ±(s) denotes the limit of
Y (s∗) if s∗ approaches s from the upper or lower half-plane, respectively.

Furthermore, with

f (̂ρ) =

∫
R
f(x)e−iρxdx,

the solution g of (1.1) is given by

(2.25) g(x) =
1

4π

∫
R

√
k2 − ρ2f (̂ρ)eiρxdρ.

Here the sign of the square root is specified by (A1) in the appendix. In general, these
Fourier integrals must be interpreted in the sense of tempered distributions.

Proof. With ϕ+ and ϕ− defined in the formulas preceding equation (2.9) and b
defined as in (2.9), it follows from (2.1) that

ϕ+(z) = G(z)ϕ−(z) + b(z)

for z ∈ L (if Im k > 0), respectively, z ∈ L∗ (if k > 0). Because both partial indices
of (2.7) and (2.8) are zero, we have

ϕ(z) =
1

2πi
X(z)

∫
a1_a2

1

t− zX
+(t)−1b(t) dt, z ∈ C

(see [19, formula (14.3)]). It follows that the solution µ of (2.1) is given by

µ(x) =
1

2πi
V (x)

∫ 1

−1

f(τ)

x− τ V
−(τ)−1(e−ikτ , eikτ )T dτ, x ∈ C.

This can be written as

µ∓(x) = ± 1

2πi
e−xDY (x)T

∫ 1

−1

f(τ)

x− τ [Y (τ)T ]−1(1, 1)T dτ, x ∈ C.

(Note that for x ∈ (−1, 1), it holds that V +(x) = −V −(x) but Y +(x) = Y −(x)
because Y has been defined by analytic continuation across (−1, 1).)

Together with relation (2.5), we can now express the values f(x) of the right-hand
side f of (1.1) for all x ∈ R as asserted in (2.24).
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Formula (2.25) follows immediately from the results obtained in the
appendix.

Remark 2.1. Using (2.24), equation (2.25) can be formally written as

g(x) =

∫ 1

−1

f(τ)K(x, τ) dτ,

where the formal distribution kernel K is given by

K(x, τ) =
1

4π

∫
R

∫
R

√
k2 − ρ2ei(x−s)ρ dρ T (s, τ) ds.

3. The singular differential equation. In the following theorem, we give an
explicit representation of the coefficient matrix P of problem (2.18)–(2.22).

Theorem 3.1. There is a fundamental matrix V of (2.6) and (2.8) for which the
corresponding polynomial matrix P in (2.18) is of the form
(3.1)

P (x) =

(
0 r − ik

s− ik 0

)
+


1

2
−
√

1

4
− rs 0

0
1

2
+

√
1

4
− rs

x+

(
0 ik

ik 0

)
x2

for some r, s ∈ C.
Proof. We have the identity

ZA(−x)Z = A(x) = A(x)−1, x ∈ R, with Z :=

(
0 1

1 0

)
.

Therefore, if V is any fundamental matrix of (2.6) and (2.8), the matrix function V ∗,

(V ∗)∓(x) := ZV ±(−x),

is also a fundamental matrix of (2.6) and (2.8). Because both partial indices of (2.6)
and (2.8) are zero, there must be a constant matrix C with

ZV (−x) = V ∗(x) = V (x)C.

From this, for the fundamental system Y of (2.18), which satisfies

Y (x) = V (x)T exD for Imx ≤ 0,

we derive

Y (x) = −CTY (−x)Z, x ∈ (−1, 1).

(Note that V +(x) = −V −(x) for x ∈ (−1, 1)) and C = C−1 (by replacing x by −x in
the above equality and solving the resulting equation for Y (x).) From (2.18), it now
follows that

(3.2) P (−x) = −CTP (x)CT .

We define the constant matrices P0, P1, and P2 by

P (x) = P0 + P1x+ P2x
2.
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Because of (2.19), we have the following:

(3.3)

P0 − P1 + P2 has the eigenvalues 0 and − 1

and

P0 + P1 + P2 has the eigenvalues 0 and 1.

Furthermore, because of (2.21),

(3.4) P2 has the eigenvalues − ik and ik.

(From a more detailed analysis along the lines of the proof of the asymptotic relation
(2.21) and the proof of the last estimate in (2.13), one can obtain an asymptotic
relation not only for Y but also for Y ′, and so, using (2.18), one can directly deduce
that P2 = XT

0 D(XT
0 )−1 with X0 from the proof of (2.21). Note that the diagonal

matrix D just has the entries ±ik.)
If the fundamental matrix V is changed into the fundamental matrix V S, where

S is any constant invertible matrix, the matrix CT changes into STCT (ST )−1. For
that reason, because of C = C−1, we can assume that CT is equal to(

1 0

0 1

)
,

(
−1 0

0 −1

)
, or

(
−1 0

0 1

)
.

If CT were the first or second of these matrices, then it would follow from (3.2) that
P2 = −P2 and hence that P2 = 0, which would contradict (3.4). Therefore, we can
assume that CT is equal to the third of these matrices. With this form of CT , we
obtain from (3.2) that there exist r, s, a, b, p, q ∈ C with

(3.5) P0 =

(
0 r − ik

s− ik 0

)
, P1 =

(
a 0

0 b

)
, and P2 =

(
0 p

q 0

)
.

Because of (3.4), we have pq = −k2 so that for

U :=

 1 0

0
p

ik

 ,

it holds that

UP2U
−1 =

(
0 ik

ik 0

)
.

Therefore, if we change the fundamental matrix V of (2.6) and (2.8), which led us to
(3.5), into the fundamental matrix V UT , the matrix P given by (3.5) changes into a
matrix that also has the form (3.5) but, in addition, with p = q = ik.

With p = q = ik in (3.5), it now follows from (3.3) that

a =
1

2
−
√

1

4
− rs and b =

1

2
+

√
1

4
− rs,

and we have reached the form (3.1).
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The last condition from (2.19) and (2.21) which must be fulfilled by the matrix P
given by (3.1) is that the exponent in the power of x occurring in (2.21) before e∓ikx

is equal to 1/2. However, this condition turns out to be fulfilled automatically if P is
of the form (3.1), where r and s are arbitrary complex numbers.

Remark 3.1. A change of the sign of the square root (1/4− rs)1/2 together with
an exchange of r and s in the matrix P0 simply corresponds to the change from the
fundamental matrix V to the fundamental matrix

V

(
0 1

1 0

)

so that also a definite sign can be attached to the square root.
Remark 3.2. To construct the fundamental system Y = V T e·D of (2.18), the

parameters r and s in (3.1) have to be determined so that the conditions (2.20) and
(2.22) are fulfilled. Note that (2.22) leads to only one condition because if Ψ =
(Ψ1,Ψ2)T is a solution of (2.18) to the index 1/2 at x = 1, which fulfills (2.21), the
function ϕ,

ϕ(x) = (Ψ1(−x),−Ψ2(−x))T ,

is the solution to the index 1/2 at x = −1 and also fulfills (2.21). Because the columns
of the fundamental system Y = V T e·D are proportional to Ψ, respectively, ϕ (as was
shown in the proof of Theorem 2.2), for the solution of (1.1) it suffices to know the
function Ψ. If for every value of k the parameters r(k) and s(k) are determined in
the above manner, the function Ψ is a function of the parameters k and x:

(3.6) Ψ = Ψ(k;x).

Finally, we want to derive a scalar differential equation of the second order which
is equivalent to the first-order system (2.18).

Corollary 3.1. If the vector y is a solution of (2.18) with the matrix P given by
(3.1), the first component y1 of y satisfies the scalar second-order differential equation

(3.7) (x2 − a2)(x2 − 1)y′′1 (x) + p(x)y′1(x) + q(x)y1(x) = 0,

where

a =

√
ir

k
+ 1,

p(x) = −x3 + (2− a2)x,

and

q(x) = k2x4 +

[
ik(2ik − s)a2 +

1

2
−
√

1

4
+ ik(a2 − 1)s

]
x2

+ ik(s− ik)a4 + a2

(
1

2
−
√

1

4
+ ik(a2 − 1)s

)
.
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Proof. With P given by (3.1) we solve the first of the two equations in (2.18) for
the second component y2 of y and differentiate the resulting expression to obtain an
expression for y′2. Then we compare the latter expression with the second equation
in (2.18), in which y2 has been replaced by the expression obtained earlier from the
first equation in (2.18). This yields (3.7) with the asserted forms of a, p, and q.

Remark 3.3. For a2 6= 1, of course, −a and a are only apparent singular points
of (3.7).

Remark 3.4. In the special case a2 = 1 (i.e., r = 0) and√
1

4
+ ik(a2 − 1)s = +

1

2
,

(3.7) reduces to

(x2 − 1)y′′1 (x)− xy′1(x) + (k2x2 − k2 − iks)y1(x) = 0.

This is the spheroidal differential equation with the indices 0 and 3/2 at x = ±1
[11], [12]. (The indices are not 0 and 1/2, which does not contradict (3.3) because
the differential equation is only a differential equation for the first component y1 of
y.) Therefore, (3.7) is a generalization of this spheroidal differential equation. The
parameters a and s, of course, have yet to be determined properly.

Remark 3.5. With respect to the importance of the functions Ψ(k; ·), referred
to in (3.6), for the solution of the original problem (1.1) by (2.24) and (2.25), we
propose to thoroughly investigate the differential equation (2.18), (3.1), respectively,
the differential equation (3.7).

4. Remarks. Our mathematical interest and examination of equation (1.1) found
its origin in the employment of the second author with a doping problem in solid-state
physics (diffusion through a slit).

For the connection between (1.1) and a certain mixed boundary-value problem
for the Helmholtz equation, see, e.g., [2]. Because the diffusion equation can be
transformed into a family of Helmholtz equations by performing a Laplace transform
with respect to the time variable, the solution of (1.1) also leads to the solution of
the corresponding mixed boundary-value problem for the diffusion equation.

Another application of equation (1.1), for example, arises in the problem of com-
puting the distortion of a two-dimensional plane wave diffracted by a slit [18, p. 284].

In the future, we plan to demonstrate that the theory presented in this paper
also applies to some other physical problems involving the Helmholtz equation and to
derive the corresponding ordinary differential equations.

Appendix. We show that for p > 1 the integral operator

M : Lp([−1, 1])→ Lp([−1, 1]), Mg(x) =

∫ 1

−1

g(y)H0(k|x− y|) dy,

is injective.
In the following, we define the Fourier transform hˆof a function h by

h (̂ρ) =

∫
R
h(x)e−iρxdx, ρ ∈ R.

From the Sommerfeld–Weyl integral

H0(k
√
x2 + y2) =

1

π

∫
R

ei(
√
k2−ρ2x+ρy)√
k2 − ρ2

dρ, x > 0,
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with

(A1) Im
√
k2 − ρ2 > 0 if Im k > 0,

respectively,√
k2 − ρ2 > 0 for |ρ| < k and Im

√
k2 − ρ2 > 0 for |ρ| > k, if Im k = 0

(see, e.g., [12, p. 823]), by letting x ↓ 0, we see that (in the sense of tempered
distributions)

(A2) H0(k| · |)ˆ(ρ) =
2√

k2 − ρ2
, ρ ∈ R.

Now we assume that g ∈ Lp([−1, 1]) for some p > 1 and Mg ≡ 0. We have to
prove that g ≡ 0. To this end, we assume that the functions g and f := Mg are
defined on the whole real line by setting g(x) = 0 for |x| > 1 and defining f by (1.1)
also for |x| > 1. Furthermore, because

Lr([−1, 1]) ⊂ Ls([−1, 1]) for s < r,

we can assume that p < 2. (In the following, we shall make use of the theory of the
Fourier transform on Lp(R), p < 2, as it is given, e.g., in [14].)

Because of (A2), the Parseval formula [14, Theorem (6.4.2)] yields

f(x) =

∫
R
g(y)H0(k|x− y|) dy =

∫
R

g (̂ρ)

π
√
k2 − ρ2

eiρxdρ, x ∈ R.

Because gˆis continuous and bounded on R, the function g /̂(k2− ·2)1/2 lies in Lp(R).
Hence repeated use of the Parseval formula leads to∫

R

|g (̂ρ)|2√
k2 − ρ2

dρ =

∫
R

g (̂ρ)√
k2 − ρ2

g (̂ρ) dρ = π

∫
R
f(x)g(x) dx = 0.

The last equality holds because f(x) = 0 for |x| ≤ 1 and g(x) = 0 for |x| > 1. Together
with (A1), it now follows that gˆ≡ 0 and hence g ≡ 0.
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Abstract. A four-parameter family of multivariable big q-Jacobi polynomials and a three-
parameter family of multivariable little q-Jacobi polynomials are introduced. For both families, full
orthogonality is proved with the help of a second-order q-difference operator which is diagonalized by
the multivariable polynomials. A link is made between the orthogonality measures and R. Askey’s
q-extensions of Selberg’s multidimensional beta-integrals.

Key words. big q-Jacobi polynomials, little q-Jacobi polynomials, BCn-type Askey–Wilson
polynomials, multivariable orthogonal polynomials, q-extensions of Selberg’s multidimensional beta-
integrals
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1. Introduction. In the one-variable case, big (resp. little) q-Jacobi polynomials
depend apart from q on (essentially) three (resp. two) parameters. The big and little
q-Jacobi polynomials are orthogonal with respect to inner products which are both
given by a Jackson (q-) integral over a positive weight function. The associated
orthogonality measures therefore have positive weights on infinitely many discrete
mass points.

The one-variable big and little q-Jacobi polynomials are q-analogues of the classi-
cal Jacobi polynomials in the sense that when q tends to 1, the big and little q-Jacobi
polynomials tend (up to a possible translation and dilation of the variable) to the
classical Jacobi polynomials.

The families of one-variable big and little q-Jacobi polynomials are members of the
Askey–Wilson hierarchy. The Askey–Wilson hierarchy consists of families of orthogo-
nal polynomials which are joint eigenfunctions of a second-order q-difference operator.
Some families can be obtained from others by limit transitions or by specializations
of parameters. This induces the hierarchy structure between the families. In this
point of view, the four-parameter family of Askey–Wilson polynomials is on top of
the hierarchy and the families of big (resp. little) q-Jacobi polynomials are directly
below the Askey–Wilson polynomials. Suitable limit transitions are known from the
Askey–Wilson polynomials to the big (resp. little) q-Jacobi polynomials (cf. [12]).
Furthermore, the little q-Jacobi polynomials can be obtained from the big q-Jacobi
polynomials by a suitable limit transition.

Recently, Koornwinder introduced in [11] a multivariable (BCn-type) generaliza-
tion of the family of Askey–Wilson polynomials by extending the three-parameter
family of Macdonald polynomials of type (BCn, Bn) to a five-parameter family of
orthogonal polynomials. Four of these parameters play the same role as in the one-
variable case, while the fifth parameter is an extra deformation parameter. The BCn-
type Askey–Wilson polynomials are again joint eigenfunctions of a second q-difference
operator. Koornwinder remarked in [11] that the whole Askey–Wilson hierarchy could
probably be generalized to the BCn case as well as the limit transitions between the
families.
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In this paper, a four-parameter family of multivariable BCn-type big q-Jacobi
polynomials and a three-parameter family of multivariable BCn-type little q-Jacobi
polynomials are introduced which have the following properties:

(1) compared with the one-variable case, there is an extra deformation parameter
involved;

(2) the multivariable big (resp. little) q-Jacobi polynomials are joint eigenfunctions
of a second-order q-difference operator;

(3) the multivariable big (resp. little) q-Jacobi polynomials are mutually orthogo-
nal with respect to an inner product, which is essentially given by a multidimensional
Jackson integral over a positive weight function;

(4) in a paper by the author and Koornwinder (cf. [18]), limit transitions from
multivariable Askey–Wilson polynomials to multivariable big (resp. little) q-Jacobi
polynomials and from multivariable big q-Jacobi polynomials to multivariable little
q-Jacobi polynomials are proved which generalize the limit transitions in the one-
variable case, and it is proved that the multivariable big (resp. little) q-Jacobi polyno-
mials are q-analogues of generalized Jacobi polynomials (see [19]) (which are related
with BCn-type Heckman–Opdam polynomials by a suitable change of variables).

This paper is organized as follows. In section 2, the definitions of big and little
q-Jacobi polynomials in one variable are given. In section 3, we will consider two
formal limits of the BCn-type Askey–Wilson polynomials, which generalize the limits
from Askey–Wilson polynomials to big (resp. little) q-Jacobi polynomials in the one-
variable case. We will obtain two second-order q-difference operators DB (resp. DL),
and in section 4, it will be proved that DB and DL are triangular with respect to
the basis of monomial symmetric functions. In section 5, the multivariable big and
little q-Jacobi polynomials will be introduced. We will use techniques introduced by
Macdonald in [15] to prove full orthogonality of the polynomials. First, it will be
proved that the big (resp. little) q-Jacobi polynomials are joint eigenfunctions of DB

(resp. DL) by proving the self-adjointness of DB (resp. DL). Full orthogonality of the
big (resp. little) q-Jacobi polynomials will then be a consequence of the fact that the
eigenvalues are sufficiently different.

Furthermore, it will be shown in section 5 that for special values of the extra defor-
mation parameter, the multidimensional Jackson integrals over the weight functions
are essentially the q-extensions of Selberg’s multidimensional beta-integrals which
were introduced by Askey [3]. Askey’s conjectured evaluations of these multidimen-
sional Jackson integrals have recently been proved [6], [8], [10]. Section 6 contains
some proofs which were omitted in section 5.

Notation and conventions. Throughout this paper, we work with a fixed q ∈ (0, 1).
N = {1, 2, . . .} denotes the natural numbers and N0 denotes the natural numbers

together with 0. The convention will be used that
∏k
i=l ai = 1 if k < l for k, l ∈ N0.

If there is no confusion possible, the dependence on the parameters will be omitted
in the formulas.

2. One variable big and little q-Jacobi polynomials. Let a, b ∈ R, a < b,
and f be a function defined on the points {aqk, bqk | k ∈ N0}. Define the Jackson (q-)
integral of f over [a, b] by∫ b

a

f(x) dqx :=

∫ b

0

f(x) dqx−
∫ a

0

f(x) dqx,∫ b

0

f(x) dqx := (1− q)
∞∑
k=0

f(bqk)bqk,
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provided that the infinite sums in the definition of the q-integral from 0 to a and in
the definition of the q-integral from 0 to b are absolutely convergent. In the special
case that a = bqk+1 for some k ∈ N0, we have∫ b

bqk+1

f(x) dqx = (1− q)
k∑

m=0

f(bqm)bqm,(2.1)

so we can then use (2.1) as definition of the q-integral from bqk+1 to b without worrying
about convergence.

Define the q-shifted factorial by

(a; q)b :=
(a; q)∞

(qba; q)∞
, (a; q)∞ :=

∞∏
k=0

(1− aqk),

for a ∈ C and b ∈ C\N0 such that qba 6= q−k for all k ∈ N0. For l ∈ N0, we set

(a; q)l :=
∏l−1
k=0

(
1− aqk

)
. Denote

(a1, . . . , ar; q)b :=
r∏
j=1

(aj ; q)b .

Let c, d > 0, a ∈ (−c/dq, 1/q), and b ∈ (−d/cq, 1/q) or a = cz and b = −dz̄ with z ∈
C \ R. Denote V qB for the set of parameters (a, b, c, d) which satisfy these conditions.
Define

wB(x; a, b, c, d; q) :=
(qx/c,−qx/d; q)∞

(qax/c,−qbx/d; q)∞
;(2.2)

then wB(x; a, b, c, d; q) is positive for x ∈ [−d, c], and

〈f, g〉a,b,c,dB,1,q :=

∫ c

−d
f(x)g(x)wB(x; a, b, c, d; q) dqx, f, g ∈ R[x],(2.3)

is a well-defined inner product on R[x].
Definition 2.1. The big q-Jacobi polynomials {Pm(x; a, b, c, d; q) |m ∈ N0} are

defined by the following two conditions:
(1) Pm(x) is a monic polynomial of degree m in x;
(2) 〈Pm(x), xl〉B,1 = 0 if l < m.
Consequently, the big q-Jacobi polynomials are mutually orthogonal with respect

to 〈 . , . 〉B,1. Explicit expressions for the big q-Jacobi polynomials are given by

Pm(x; a, b, c, d; q) =
(qa; q)m (−qad/c; q)m
(qm+1ab; q)m (qa/c)m

3φ2

[
q−m, qm+1ab, qxa/c

qa,−qad/c ; q, q

]
,

with the q-hypergeometric series defined by

r+1φr

[
a1, . . . , ar+1

b1, . . . , br
; q, z

]
:=

∞∑
k=0

(a1, . . . , ar+1; q)k z
k

(b1, . . . , br, q; q)k

(cf. [2]).
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Note that Pm(x; a, b, c/d, 1; q) = d−mPm(dx; a, b, c, d; q), so the big q-Jacobi poly-
nomials depend (apart from q) essentially on a, b, and the ratio c/d. The second-order
q-difference operator(

Da,b,c,d
1,q f

)
(x) := q

(
a− c

qx

)(
b+

d

qx

)
(f(qx)− f(x))(2.4)

+

(
1− c

x

)(
1 +

d

x

)(
f(q−1x)− f(x)

)
(f ∈ R[x])

is diagonalized by the big q-Jacobi polynomials(
Da,b,c,d

1,q Pm( . ; a, b, c, d; q)
)

(x) = aa,b,qm Pm(x; a, b, c, d; q) ∀m ∈ N0(2.5)

with eigenvalues

aa,b,qm := qab(qm − 1) + (q−m − 1).(2.6)

Note that D1 is self-adjoint with respect to 〈 . , . 〉B,1 because {Pm(x) |m ∈ N0} is an
orthogonal basis of R[x] with respect to 〈 . , . 〉B,1 which consists of eigenfunctions of
D1.

The little q-Jacobi polynomials can be introduced in a similar way. Let 0 < a <
1/q and b < 1/q, and denote by V qL the set of parameters (a, b) which satisfy these
conditions. Define

vL(x; a, b; q) :=
(qx; q)∞
(qbx; q)∞

xα (a = qα);(2.7)

then vL(x; a, b; q) is positive for x ∈ [0, 1] and

〈f, g〉a,bL,1,q :=

∫ 1

0

f(x)g(x)vL(x; a, b; q) dqx, f, g ∈ R[x],(2.8)

is an inner product on R[x].
Definition 2.2. The little q-Jacobi polynomials {pm(x; a, b; q) |m ∈ N0} are

defined by the following two conditions:
(1) pm(x) ∈ R[x] is a monic polynomial of degree m in x;
(2) 〈pm(x), xl〉L,1 = 0 if l < m.
Consequently, the little q-Jacobi polynomials are mutually orthogonal with re-

spect to 〈 . , . 〉L,1. Explicit expressions for the little q-Jacobi polynomials are given
by

pm(x; a, b; q) :=
(−1)mq(

m
2 ) (qa; q)m

(qm+1ab; q)m
2φ1

[
q−m, qm+1ab

qa
; q, qx

]
(cf. [1]). The little q-Jacobi polynomials are eigenfunctions of the q-difference operator

Db,a,1,0
1,q with the same eigenvalues as in the big q-Jacobi case ((2.5) and (2.6)):(

Db,a,1,0
1,q pm( . ; a, b; q)

)
(x) = aa,b,qm pm(x; a, b; q) ∀m ∈ N0,(2.9)

so Db,a,1,0
1,q is self-adjoint with respect to 〈 . , . 〉a,bL,1,q.
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Remark 2.3. In this section, we defined the one-variable big and little q-Jacobi
polynomials as monic polynomials because the multivariable generalizations will be
monic. However, it is more common to normalize the big and little q-Jacobi polyno-
mials differently. The big q-Jacobi polynomials are usually defined by

P̃m(x; a, b, c, d; q) = 3φ2

[
q−m, qm+1ab, qxa/c

qa,−qad/c ; q, q

]
and the little q-Jacobi polynomials are usually defined by

p̃m(x; a, b; q) = 2φ1

[
q−m, qm+1ab

qa
; q, qx

]
.

For more details about the one-variable big and little q-Jacobi polynomials, see [1],
[2], [7], and [13].

3. Formal limits of multivariable Askey–Wilson polynomials. Let A be
the algebra of Laurent polynomials in the independent indeterminates x1, . . . , xn. The
Weyl group W corresponding to the root system of type BCn acts in a natural way
on A. Let AW be the subalgebra of A consisting of W -invariant Laurent polynomials.
Let P+ be the partitions of length ≤ n, so

P+ := {λ = (λ1, . . . , λn) |λ1 ≥ · · · ≥ λn ≥ 0}.(3.1)

W acts on Zn by sign changes and permutations of the coordinates. The monomials
{m̃λ |λ ∈ P+}, with m̃λ :=

∑
µ∈Wλ x

µ, form a basis of AW . Let a, b, c, d, t ∈ C and
define the weight function δ(x; a, b, c, d; q, t) by

δ(x1, . . . , xn) := δ+(x1, . . . , xn)δ+(x−1
1 , . . . , x−1

n ),

δ+(x) :=
n∏
i=1

(
x2
i ; q
)
∞

(axi, bxi, cxi, dxi; q)∞

∏
1≤k<l≤n

(
xkx

−1
l , xkxl; q

)
∞(

txkx
−1
l , txkxl; q

)
∞
.

Assume that |a|, |b|, |c|, |d| ≤ 1 and that if a, b, c, and d are complex, then they appear
in conjugate pairs. Assume furthermore that the pairwise products of a, b, c, and d
are not equal to 1. Denote du := du1 · · · dun and eiu := (eiu1 , . . . , eiun). Suppose that
t ∈ (0, 1); then

〈f, g〉AW,t :=

∫
..

∫
[−π,π]n

f(eiu)g(eiu)δ(eiu; t)du, f, g ∈ AW ,

is an Hermitian inner product on AW . Define a partial order on P+ in the following
way: µ, λ ∈ P+. Then

µ ≤ λ ⇔
i∑

j=1

µj ≤
i∑

j=1

λj , i = 1, . . . , n.(3.2)

Remark 3.1. For the root system R = R+ ∪ (−R+) of type BCn, choose the
positive roots R+ by

R+ = {ei}ni=1 ∪ {ei ± ej}1≤i<j≤n ∪ {2ei}ni=1,(3.3)
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where {ei}ni=1 is the standard orthonormal basis for Rn, then P+ coincides with the
set of dominant weights, and λ > µ for λ, µ ∈ P+ iff λ− µ is a sum of positive roots
(cf. [11]).

Definition 3.2. Let t ∈ (0, 1). The Askey–Wilson polynomials

{Qλ(x; a, b, c, d; q, t) |λ ∈ P+}

are defined by the following two conditions:
(1) Qλ(t) = m̃λ +

∑
µ<λ;µ∈P+ cλ,µ(t)m̃µ, for certain cλ,µ(t) ∈ C;

(2) if µ < λ and µ ∈ P+, then 〈Qλ(t), m̃µ〉AW,t = 0.

Define a second-order q-difference operator Da,b,c,d
AW,q,t by

(DAW f)(x) :=
n∑
i=1

(
ψi(x)(Tq,if − f)(x) + φi(x)

(
Tq−1,if − f

)
(x)
)

for f ∈ AW , with

(Tq,if)(x) := f(x1, . . . , xi−1, qxi, xi+1, . . . , xn),(3.4)

the q-shift in the ith component, and with ψi(x; a, b, c, d; q, t) and φi(x; a, b, c, d; q, t)
given by

ψi(x) :=
(1− axi)(1− bxi)(1− cxi)(1− dxi)

(1− x2
i )(1− qx2

i )

∏
l 6=i

(1− txixl)(1− txix−1
l )

(1− xixl)(1− xix−1
l )

φi(x) := ψi(x
−1
1 , . . . , x−1

n ).

Koornwinder proved the following theorem in [11].
Theorem 3.3. Let t ∈ (0, 1). Define bλ(a, b, c, d; q, t) for λ ∈ P+ by

bλ :=
n∑
j=1

(
q−1abcdt2n−j−1(qλj − 1) + tj−1(q−λj − 1)

)
;

then DAW,tQλ(t) = bλ(t)Qλ(t) for all λ ∈ P+ and 〈Qλ(t), Qµ(t)〉AW,t = 0 if λ 6= µ.
For the one-variable case (n = 1), explicit expressions of the Askey–Wilson poly-

nomials {Qm(x; a, b, c, d; q) |m ∈ N0} are given by

Qm(x; a, b, c, d; q) =
(ab, ac, ad; q)m

am (qm−1abcd; q)m
4φ3

[
q−m, qm−1abcd, ax, ax−1

ab, ac, ad
; q, q

]
(cf. [4],[13]) and the following limit transitions hold:

lim
ε→0

(
ε(cd)

1
2

q
1
2

)m
Qm

(
q

1
2x

ε(cd)
1
2

; εa(qd/c)
1
2 , ε−1(qc/d)

1
2 ,−ε−1(qd/c)

1
2 ,−εb(qc/d)

1
2 ; q

)
= Pm(x; a, b, c, d; q),

lim
ε→0

(
ε

q
1
2

)m
Qm

(
q

1
2x

ε
; εq

1
2 b, ε−1q

1
2 ,−q 1

2 ,−q 1
2 a; q

)
= pm(x; a, b; q).
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(See [12, Propositions 6.1 and 6.2] and take into account that the Askey–Wilson
polynomials used in those limit transitions are written as function of (x+x−1)/2 and
that the polynomials used in [12] are not monic.)

The most obvious generalizations of these two limits to the n-variable case give
two new second-order q-difference operators and a new set of eigenvalues.

Let x = (x1, . . . , xn) and denote cx := (cx1, . . . , cxn) for c ∈ C; then we have the
following limits for the big q-Jacobi case:

lim
ε→0

ψi

(
q

1
2x

ε(cd)
1
2

; εa(qd/c)
1
2 , ε−1(qc/d)

1
2 ,−ε−1(qd/c)

1
2 ,−εb(qc/d)

1
2 ; q, t

)
= hi(x; a, b, c, d; q, t),

with hi(x; a, b, c, d; q, t) given by

hi(x; a, b, c, d; q, t) := qtn−1
(
a− c

qxi

)(
b+

d

qxi

)∏
l 6=i

xl − txi
xl − xi

,(3.5)

lim
ε→0

φi

(
q

1
2x

ε(cd)
1
2

; εa(qd/c)
1
2 , ε−1(qc/d)

1
2 ,−ε−1(qd/c)

1
2 ,−εb(qc/d)

1
2 ; q, t

)
= gi(x; c, d; q, t)

with gi(x; c, d; q, t) given by

gi(x; c, d; q, t) :=
(

1− c

xi

)(
1 +

d

xi

)∏
l 6=i

xi − txl
xi − xl

,(3.6)

and

lim
ε→0

bλ

(
εa(qd/c)

1
2 , ε−1(qc/d)

1
2 ,−ε−1(qd/c)

1
2 ,−εb(qc/d)

1
2 ; q, t

)
= aλ(a, b; q, t),

with

aλ(a, b; q, t) :=
n∑
j=1

(
qabt2n−j−1(qλj − 1) + tj−1(q−λj − 1)

)
.(3.7)

For the little q-Jacobi case, we have the following limits:

lim
ε→0

ψi

(
q

1
2x

ε
; εq

1
2 b, ε−1q

1
2 ,−q 1

2 ,−q 1
2 a; q, t

)
= hi(x; b, a, 1, 0; q, t),

lim
ε→0

φi

(
q

1
2x

ε
; εq

1
2 b, ε−1q

1
2 ,−q 1

2 ,−q 1
2 a; q, t

)
= gi(x; 1, 0; q, t),

and

lim
ε→0

bλ

(
εq

1
2 b, ε−1q

1
2 ,−q 1

2 ,−q 1
2 a; q, t

)
= aλ(a, b; q, t).
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Therefore, define the q-difference operator Da,b,c,d
n,q,t by

(Dnf)(x) :=
n∑
j=1

(
hj(x)(Tq,jf − f) (x) + gj(x)

(
Tq−1,jf − f

)
(x)
)
;(3.8)

then DAW tends to Da,b,c,d
n,q,t (resp. to Db,a,1,0

n,q,t ) in the two limits we have just considered,
and the eigenvalues {bλ(a, b, c, d; q, t) |λ ∈ P+} tend to {aλ(a, b; q, t) |λ ∈ P+}. For

n = 1, Da,b,c,d
1,q,t and Db,a,1,0

1,q,t correspond with the second-order q-difference operators for
which the one-variable big (resp. little) q-Jacobi polynomials are joint eigenfunctions
((2.4) and (2.5) (resp. (2.9))), and {am(a, b; q, t) |m ∈ N0} is exactly the corresponding
set of eigenvalues (formula (2.6)). Therefore, we denote

Da,b,c,d
B,q,t := Da,b,c,d

n,q,t(3.9)

and

Da,b
L,q,t := Db,a,1,0

n,q,t .(3.10)

In section 5, we will see that the multivariable big (resp. little) q-Jacobi polynomials
are joint eigenfunctions of DB (resp. DL) with eigenvalues {aλ |λ ∈ P+}. In [18],
it is shown that the formal limit transitions of the second-order q-difference oper-
ator DAW that we discussed in this section can be used to prove limit transitions
from multivariable Askey–Wilson polynomials to multivariable big and little q-Jacobi
polynomials.

Remark 3.4. Van Diejen mentioned similar limit transitions in [5] but did not look
for eigenfunctions of the newly obtained q-difference operators. In his terminology, the
limit transitions correspond to sending the center of mass in an n-particle-difference
Calogero–Moser system with trigonometric potentials (Hamiltonian given by DAW )
to infinity.

4. Triangularity of the second-order q-difference operator Da,b,c,d
n,q,t . Note

that

∆(x)−1(Tt,i∆)(x) =
∏
l 6=i

xl − txi
xl − xi

,(4.1)

where ∆(x) is the Vandermonde determinant ∆(x) :=
∏

1≤i<j≤n(xi − xj). There-
fore, we can rewrite the second-order q-difference operator Dn (given by (3.8)) in the
following form:

(Dnf)(x) = ∆(x)−1(D̃nf)(x),(4.2)

with

(D̃nf)(x) :=
n∑
i=1

(
h̃i(x)(Tq,if − f)(x) + g̃i(x)

(
Tq−1,if − f

)
(x)
)
,(4.3)

h̃i(x) = q

(
a− c

qxi

)(
b+

d

qxi

)
tn−1(Tt,i∆)(x),(4.4)

g̃i(x) =

(
1− c

xi

)(
1 +

d

xi

)
tn−1

(
Tt−1,i∆

)
(x).(4.5)
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Denote C[x1, . . . , xn] for the C-algebra of polynomials in the variables x1, . . . , xn. We
have the following result.

Lemma 4.1.

D̃n (C[x1, . . . , xn]) ⊆ C[x1, . . . , xn].

Proof. For f ∈ C[x1, . . . , xn], define the backward partial q-derivative in the ith
coordinate by

(
Di,−
q f

)
(x) :=

(f − Tq,if)(x)

(1− q)xi
.

Note that Di,−
q maps C[x1, . . . , xn] into itself. Now it can easily be checked that

(D̃nf)(x) =
n∑
j=1

(
Aj(x)

(
Tq−1,j

((
Dj,−
q

)2
f
))

(x) +Bj(x)
(
Tq−1,j

(
Dj,−
q f

))
(x)
)
,

with

Aj(x) = (1− q)2q−2(qaxj − c)(qbxj + d)tn−1(Tt,j∆)(x),

Bj(x) =
(1− q)
q

tn−1

((
xj + (d− c)− cd

xj

)
(Tt−1,j∆)(x)

−
(
q2abxj + (qad− qbc)− cd

xj

)
(Tt,j∆)(x)

)
.

The lemma follows because
(
(Tt,j − Tt−1,j)∆

)
(x) ∈ C[x1, . . . , xn] is divisible by xj in

C[x1, . . . , xn].
Let Sn be the permutation group of {1, . . . , n}. Sn acts on C[x1, . . . , xn] by

permutation of the variables x1, . . . , xn. Denote C[x1, . . . , xn]Sn for the subalgebra
(over C) of symmetric polynomials.

For λ ∈ P+, define the symmetric monomial functionmλ bymλ(x) :=
∑
µ∈Snλ x

µ,

with xµ := xµ1

1 . . . xµnn and wλ := (λw−1(1), . . . , λw−1(n)). Then {mλ |λ ∈ P+} is a

C-basis for C[x1, . . . , xn]Sn .
A second basis is given by the Schur functions {sλ |λ ∈ P+}, where

sλ(x) := ∆(x)−1
∑
w∈Sn

det(w)xw(λ+δ),

where det(w) is the determinant of the linear map w : Rn → Rn given by w(ei) := ew(i)

(i = 1, . . . , n) for an arbitrary basis {e1, . . . , en} of Rn, and where

δ := (n− 1, n− 2, . . . , 1, 0) ∈ P+.(4.6)

Let λ ∈ P+; then

sλ = mλ +
∑

µ<λ;µ∈P+

cλ,µmµ(4.7)

for certain cλ,µ ∈ R. See [17] for more details about Schur functions.
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Proposition 4.2. Let a, b, c, d, t ∈ C and λ ∈ P+. Then

Dnmλ = aλmλ +
∑

µ<λ;µ∈P+

dλ,µmµ

for certain dλ,µ ∈ C, with aλ = aλ(a, b; q, t) given by (3.7). dλ,µ and aλ depend
polynomially on a, b, c, d, and t.

Proof. Let e1, . . . , en be the standard basis of Rn and 〈 . , . 〉 be the standard inner
product on Rn. Let Sn act on Rn by permutation of the basis {e1, · · · , en}. Define

P̃ := {λ = (λ1, . . . , λn) ∈ Zn |λ1 ≥ · · · ≥ λn},

and give P̃ the same partial order as P+ (see (3.2)). For µ ∈ Zn, define

Jµ :=
∑
w∈Sn

det(w)xwµ.

Then Jµ = 0 unless µ = w(ν + δ) for certain w ∈ Sn and ν ∈ P̃ , and in that case, we

have Jµ = det(w)Jν+δ. Write D̃n = ψ+ + ψ− with

(ψ+f)(x) :=
n∑
j=1

h̃j(x)(Tq,jf − f)(x), (ψ−f)(x) :=
n∑
j=1

g̃j(x)(Tq−1,jf − f)(x).

Let Sλn ⊆ Sn be the stabilizer of λ ∈ P+, so Sλn := {w ∈ Sn |wλ = λ}. Denote
Tq,ei := Tq,i and σ := e1 = (1, 0, . . . , 0) ∈ Rn. Using the fact that

∆(x) =
∑
w∈Sn

det(w)xwδ

and

mλ(x) = |Sλn |−1
∑
v∈Sn

xvλ (λ ∈ P+),

we obtain, for λ ∈ P+,

(ψ+mλ)(x) =
1

(n− 1)!

∑
u∈Sn

qtn−1

(
a− c

q
x−uσ

)(
b+

d

q
x−uσ

)
(Tt,uσ∆)(x)

× (Tq,uσmλ −mλ)(x)

=
1

(n− 1)!|Sλn |
∑

u,v,w∈Sn

qtn−1

(
a− c

q
x−uσ

)(
b+

d

q
x−uσ

)
det(w)

× t〈uσ,wδ〉(q〈uσ,vλ〉 − 1)xwδ+vλ

=
1

(n− 1)!|Sλn |
∑

u′,v′∈Sn

t〈σ,v
′δ+δ〉(q〈σ,v

′u′λ〉 − 1)

(
qab

∑
w∈Sn

det(w)xw(δ+u′λ)

+ (ad−bc)
∑
w∈Sn

det(w)xw(δ+u′λ−v′−1σ) − cd

q

∑
w∈Sn

det(w)xw(δ+u′λ−2v′−1σ)

)
.
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The third equality is obtained by the substitution of u′ = w−1v and v′ = u−1w.
Similarly, we have

(ψ−mλ)(x) =
1

(n− 1)!|Sλn |
∑

u′,v′∈Sn

t〈σ,δ−v
′δ〉(q−〈σ,v

′u′λ〉 − 1)

( ∑
w∈Sn

det(w)xw(δ+u′λ)

+ (d− c)
∑
w∈Sn

det(w)xw(δ+u′λ−v′−1σ) − cd
∑
w∈Sn

det(w)xw(δ+u′λ−2v′−1σ)

)
.

Let w, u′, v′ ∈ Sn and λ ∈ P+; then w(δ + u′λ) ≤ δ + wu′λ ≤ δ + λ, and

w(δ + u′λ) = δ + λ⇔ w = (1) and u′ ∈ Sλn .

Furthermore, we have w(δ + u′λ− v′−1
σ) ≤ δ + wu′λ− wv′−1

σ < δ + wu′λ ≤ δ + λ

and w(δ + u′λ− 2v′
−1
σ) < δ + λ. Thus

ψεmλ = αελJλ+δ +
∑

µ<λ;µ∈P̃

βελ,µJµ+δ, ε = ±,

with βεµ,λ ∈ C, α+
λ =

∑n
i=1 qabt

2n−i−1(qλi−1), and α−λ =
∑n
i=1 t

i−1(q−λi−1). Lemma
4.1 implies

D̃nmλ = ψ+mλ + ψ−mλ = aλJλ+δ +
∑

µ<λ;µ∈P+

cλ,µJµ+δ (λ ∈ P+)

for certain cλ,µ ∈ C. Formula (4.7) gives now the triangularity property.

Finally, note that the coefficients of Jν (ν ∈ P+) in the expressions for ψ+mλ and
ψ−mλ depend polynomially on a, b, c, d, and t. Therefore, the coefficients of Dnmλ

with respect to the basis of monomial symmetric functions depend polynomially on
a, b, c, d, and t.

5. Multivariable big and little q-Jacobi polynomials. The R-algebra of
symmetric polynomials in x1, . . . , xn will be denoted by AS , so AS := R[x1, . . . , xn]Sn .

We first define inner products 〈 . , . 〉a,b,c,dB,n,q,t and 〈 . , . 〉a,bL,n,q,t on AS , which generalize
the inner products 〈 . , . 〉B,1 and 〈 . , . 〉L,1 ((2.3) and (2.8)) to the multivariable case.

For the big q-Jacobi case, we fix some (a, b, c, d) ∈ V qB unless otherwise stated (V qB
is defined in section 2). Define a symmetric bilinear form 〈 . , . 〉a,b,c,dB,n,q,t for t ∈ (0, 1) on

AS by

〈f, g〉B,t :=
n∑
j=0

〈f, g〉j,B,t, f, g ∈ AS ,(5.1)

with 〈f, g〉j,B,t given by the following multidimensional Jackson integral:

∫ c

x1=0

∫ tx1

x2=0

· · ·
∫ txj−1

xj=0

∫ 0

xj+1=−dtn−j−1

∫ qt−1xj+1

xj+2=−dtn−j−2

(5.2)

· · ·
∫ qt−1xn−1

xn=−d
f(x)g(x)wj(x; t)dqx,
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with dqx := dqxn · · · dqx1 and the weight function wj(x; a, b, c, d; q, t) given by

wj(x; t) := dτj

(
n∏
i=1

(qxi/c,−qxi/d; q)∞
(qaxi/c,−qbxi/d; q)∞

)
∆j
τ (x),(5.3)

with t = qτ and

∆j
τ (x) := ∆(x)

 ∏
1≤k<m≤n

k≤j

|xk|2τ−1

(
q1−τ xm

xk
; q

)
2τ−1

(5.4)

×
∏

j<k<m≤n
|xm|2τ−1

(
q1−τ xk

xm
; q

)
2τ−1

and with dτj = dτj (c, d) a positive constant given by

dτj :=
∏

1≤k<m≤n
k≤j

|ymk|2τ−1

(
q1−τy−1

mk; q
)

2τ−1

(q1−τymk; q)2τ−1

, ymk :=
−d
c
q(n−m−k+1)τ .(5.5)

In view of (2.1), we have that the measure associated with 〈 . , . 〉j,B has infinitely
many discrete mass points given by the set

W j
B := {(x1, . . . , xn) |xi = cq(i−1)τ+ki if i ≤ j and 0 ≤ k1 ≤ · · · ≤ kj ,

xi = −dq(n−i)τ+ki if i > j and 0 ≤ kn ≤ · · · ≤ kj+1}.(5.6)

We have that wj(x; t) > 0 for all x ∈ W j
B(t) and all t ∈ (0, 1). Indeed, we only need

to check that ∆j
τ is positive because (a, b, c, d) ∈ V qB . For ∆j

τ , it is easily checked that
the terms of the form (

q1−τxp/xr; q
)

2τ−1
=

(
q1−τxp/xr; q

)
∞

(qτxp/xr; q)∞

are positive on the mass points since both the numerator and the denominator are
positive on the mass points. Furthermore, note that for x ∈W j

B we have the inequal-

ities x1 > · · · > xn, so the Vandermonde determinant ∆(x) is positive for x ∈ W j
B .

Finally, it can be shown that wj is bounded on W j
B (in fact, we will see in the

proof of Proposition 5.5 (section 6) that wj(x; qτ ) is uniformly bounded on the set

{(x, τ) | τ ∈ K,x ∈ W j
B(qτ )}, with K an arbitrary compact subset of (0,∞)), so

〈 . , . 〉B,t is a well-defined positive definite inner product for all t ∈ (0, 1).
For the little q-Jacobi case, we fix (a, b) ∈ V qL unless otherwise stated (V qL is

defined in section 2). Define a symmetric bilinear form 〈 . , . 〉a,bL,n,q,t on AS by

〈f, g〉L,t :=

∫ 1

x1=0

∫ tx1

x2=0

· · ·
∫ txn−1

xn=0

f(x)g(x)v(x; t)dqx, f, g ∈ AS ,(5.7)

with the weight function v(x; a, b; q, t) given by

v(x; t) :=

(
n∏
i=1

(qxi; q)∞
(qbxi; q)∞

xαi

)
∆τ (x) (a = qα, t = qτ ),(5.8)

∆τ (x) := ∆(x)
∏

1≤i<j≤n
|xi|2τ−1

(
q1−τ xj

xi
; q

)
2τ−1

.(5.9)
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The measure associated with the inner product 〈 . , . 〉L has infinitely many discrete
mass points given by the set

WL := {(x1, . . . , xn) |xi = q(i−1)τ+ki with 0 ≤ k1 ≤ · · · ≤ kn}.(5.10)

By a similar argument as in the big q-Jacobi case, we have that v(x; t) > 0 for all x ∈
WL(t) and all t ∈ (0, 1) because (a, b) ∈ V qL . Furthermore, v(x)(

∏n
i=1 x

−α
i ) is bounded

on WL (we will see in the proof of Proposition 5.5 (section 6) that v(x; qτ )(
∏n
i=1 x

−α
i )

is uniformly bounded on {(x, τ) | τ ∈ K,x ∈ WL(qτ )}, with K an arbitrary compact
subset of (0,∞)), so 〈 . , . 〉L,t is well defined because α > −1 and positive definite for
all t ∈ (0, 1).

Definition 5.1. Let t ∈ (0, 1). The big q-Jacobi polynomials

{PBλ ( . ; a, b, c, d; q, t) |λ ∈ P+}

are defined by the following two conditions: let λ ∈ P+; then
(1) PBλ (t) = mλ +

∑
µ<λ;µ∈P+ cλ,µ(t)mµ for some cλ,µ(t) ∈ R;

(2) 〈PBλ (t) , mµ〉B,t = 0 if µ < λ, µ ∈ P+.
Definition 5.2. Let t ∈ (0, 1). The little q-Jacobi polynomials

{PLλ ( . ; a, b; q, t) |λ ∈ P+}

are defined by the following two conditions: let λ ∈ P+; then
(1) PLλ (t) = mλ +

∑
µ<λ;µ∈P+ dλ,µ(t)mµ for some dλ,µ(t) ∈ R;

(2) 〈PLλ (t),mµ 〉L,t = 0 if µ < λ, µ ∈ P+.
For n = 1, the inner products 〈 . , . 〉B and 〈 . , . 〉L are the same as the inner

products given by (2.3) and (2.8), respectively. Thus for n = 1, the big (resp. little)
q-Jacobi polynomials given by Definition 5.1 (resp. Definition 5.2) are exactly the
one-variable big (resp. little) q-Jacobi polynomials as defined in section 2 (Definition
2.1 (resp. Definition 2.2)).

Observe that the multivariable big q-Jacobi polynomials depend (apart from q)
only on a, b, t, and the ratio c/d. Indeed, let f ∈ AS and define fd ∈ AS by fd(x) :=
f(dx); then

〈f, g〉a,b,c,dB,n,q,t = d2τ(n2)+n〈fd, gd〉
a,b, cd ,1

B,n,q,t, f, g ∈ AS ,

because ∫ α

0

h(u)dqu = α

∫ 1

0

h(αu)dqu (α 6= 0),(5.11)

and dτj (c, d) = dτj (c/d, 1), so wj(dx; a, b, c, d; q, t) = d2τ(n2)wj(x; a, b, c/d, 1; q, t).
Therefore, we have that

d−|λ|PBλ (dx; a, b, c, d; q, t) = PBλ

(
x; a, b,

c

d
, 1; q, t

)
, λ ∈ P+,

where |λ| :=
∑n
i=1 λi.

Remark 5.3. If we compare the weight functions wj with the function w given by

w(x) :=

(
n∏
i=1

(qxi/c,−qxi/d; q)∞
(qaxi/c,−qbxi/d; q)∞

)
∆̃τ (x),(5.12)
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with

∆̃τ (x) := ∆(x)
∏

1≤i<j≤n
sgn(xi)|xi|2τ−1

(
q1−τ xj

xi
; q

)
2τ−1

,(5.13)

and sgn(xi) = 1 if xi ≥ 0 and = −1 if xi < 0, then we have that

∆j
τ (x) =

(
j∏

k=1

sgn(xk)n−k

) ∏
j<k<m≤n

sgn(xk)ψτ

(
xm
xk

) ∆̃τ (x)(5.14)

with the function ψτ given by

ψτ (z) := |z|2τ−1

(
q1−τz−1; q

)
2τ−1

(q1−τz; q)2τ−1

.(5.15)

ψτ is a quasi-constant function, i.e., ψτ (qz) = ψτ (z), so wj(x) = φj(x)w(x) for some
quasi-constant function φj (Tq,iφj = φj for all i). The essential difference between

w(x) and wj(x) on W j
B is that w(x) can have poles on W j

B , while wj(x) has no poles

on W j
B . Therefore, one can think of 〈 . , . 〉B as q-integration over the set of mass

points ∪nj=0W
j
B with respect to the weight function w, whereby one should resolve

the poles of w on W j
B when q-integrating over W j

B by slightly modifying the weight
function w (i.e., multiplying w with the quasi-constant function djφj). The constants
dj in the definition of wj(x) will turn out to be crucial for the self-adjointness of DB

with respect to 〈 . , . 〉B . Note that

dτj =
∏

1≤k<m≤n
k≤j

ψτ (ymk), with ymk :=
−d
c
q(n−m−k+1)τ ,(5.16)

so dτj can also be expressed in terms of the quasi-constant function ψτ .
The inner products simplify when τ = k ∈ N. In that case, we have that wj(x) =

w(x) on W j
B for j = 0, . . . , n (with w(x) given by (5.12)). This follows from (5.14)

and (5.16) since ψk(z) = −sgn(z). Furthermore, it holds that

∆̃k(x) = (−1)k(
n
2)q−(k2)(

n
2)
k−1∏
l=0

∏
i6=j

(xi − qlxj),(5.17)

so ∆̃k(x) is symmetric, and ∆̃k(x) = 0 if xi = qlxj for certain i 6= j and certain
l ∈ {0, . . . , k − 1}. Thus when τ = k ∈ N, we have, for f, g ∈ AS ,

〈f, g〉B,qk =

∫ c

x1=−d

∫ x1

x2=−d
· · ·
∫ xn−1

xn=−d
f(x)g(x)w(x; qk)dqx,

=
1

n!

∫ c

x1=−d
· · ·
∫ c

xn=−d
f(x)g(x)w(x; qk)dqx,(5.18)

〈f, g〉L,qk =

∫ 1

x1=0

∫ x1

x2=0

· · ·
∫ xn−1

xn=0

f(x)g(x)v(x; qk)dqx

=
1

n!

∫ 1

x1=0

· · ·
∫ 1

xn=0

f(x)g(x)v(x; qk)dqx.(5.19)
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Here we have used that the weight functions w(x; qk) and v(x; qk) are zero for x =
(x1, . . . , xn) with xi = xj for some 1 ≤ i 6= j ≤ n, so if x ∈ Rn contributes to the
support of the orthogonality measure, then the Sn orbit of x ∈ Rn has cardinality n!.

Finally, we may replace w(x; a, b, c, d; q, qk) in (5.18) by w̃(x; a, b, c, d; q, qk),

w̃(x) =
n!

Γqk(n+ 1)

(
n∏
i=1

wB(xi)

) ∏
1≤i<j≤n

x2k
i

(
q1−k xj

xi
; q

)
2k

,

and v(x; a, b; q, qk) in (5.19) by ṽ(x; a, b; q, qk),

ṽ(x) =
n!

Γqk(n+ 1)

(
n∏
i=1

vL(xi)

) ∏
1≤i<j≤n

x2k
i

(
q1−k xj

xi
; q

)
2k

,

with the q-gamma function Γq(a) (a /∈ −N0) defined by

Γq(a) :=
(q; q)a−1

(1− q)a−1
,

because w and v are symmetric functions such that

w̃(x) =
n!

Γqk(n+ 1)
w(x)

∏
i<j

xi − qkxj
xi − xj

, ṽ(x) =
n!

Γqk(n+ 1)
v(x)

∏
i<j

xi − qkxj
xi − xj

,

and ∑
w∈Sn

∏
i<j

xw(i) − qkxw(j)

xw(i) − xw(j)
= Γqk(n+ 1)

(cf. [8, p. 1479]).

Remark 5.4. For t = qk, k ∈ N, 〈1, 1〉L and 〈1, 1〉B are (up to the constant
1/Γqk(n+1)) the q-extensions of Selberg’s multidimensional beta-integrals, introduced
by Askey [3]. Askey’s conjectured evaluations of these multidimensional q-integrals
have recently been proved.

Let t = qk, k ∈ N, a = qα, and b = qβ ; then Habsieger [8] and Kadell [10] have
independently proved that

〈1, 1〉L = qk(α+1)(n2)+2k2(n3)
n∏
j=1

Γq(α+ 1 + (j − 1)k)Γq(β + 1 + (j − 1)k)Γq(jk)

Γq(α+ β + 2 + (n+ j − 2)k)Γq(k)
,

and Evans [6] has proved that

〈1, 1〉B = qk
2(n3)−(k2)(

n
2)

n∏
j=1

(Γq(α+ 1 + (j − 1)k)Γq(β + 1 + (j − 1)k)Γq(jk)

Γq(α+ β + 2 + (n+ j − 2)k)Γq(k)

× (−d/c; q)∞ (−c/d; q)∞ (cd)1+(j−1)k(
(−d/c)qα+1+(j−1)k; q

)
∞
(
(−c/d)qβ+1+(j−1)k; q

)
∞ (c+ d)

)
.

The inner products 〈 . , . 〉B,t and 〈 . , . 〉L,t depend continuously on t ∈ (0, 1), in
the following sense.
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Proposition 5.5. Let f, g ∈ AS .
(1) 〈f, g〉B,t is continuous in t for t ∈ (0, 1).
(2) 〈f, g〉L,t is continuous in t for t ∈ (0, 1).
We will omit the proof of the proposition in this section because it is rather long

and technical. The proof will be given in section 6 (Proposition 6.1).
Let λ ∈ P+. It is clear from the proof of Proposition 4.2, that the coefficients

in the expansion of the symmetric polynomial Da,b,c,d
n,q,t mλ with respect to the basis

of monomials {mµ |µ ∈ P+} are real for (a, b, c, d) ∈ V qB . Therefore, DBmλ ∈ AS .
Similarly, we have that DLmλ ∈ AS .

Theorem 5.6. Let t ∈ (0, 1).
(1) DB,t is self-adjoint with respect to 〈 . , . 〉B,t.
(2) DL,t is self-adjoint with respect to 〈 . , . 〉L,t.
The proof will be given in section 6 (Theorem 6.5). The two essential ingredients

for the proof are a special version of the q-partial integration rule (Lemma 6.4) and
certain functional relations for the weight functions (Proposition 6.3). Self-adjointness
is then a consequence of the fact that stock terms (which come from the q-partial
integration rule) are zero or cancel. In the big q-Jacobi case, the specific positive
constants dj in the weight functions wj are crucial for the cancellation of certain
stock terms.

With the aid of Propositions 4.2 and 5.5 and Theorem 5.6, it is now straightfor-
ward to proof the main theorem. The proof is similar to proofs given by Macdonald
in [15] and [16] (see also the second edition of [17]), and Koornwinder in [11].

Theorem 5.7. Let t ∈ (0, 1).
(1) Let λ ∈ P+; then

DB,tP
B
λ (t) = aλ(t)PBλ (t),

with aλ given by (3.7). For λ, µ ∈ P+, we have

〈PBλ (t), PBµ (t)〉B,t = 0 if λ 6= µ.

(2) Let λ ∈ P+; then

DL,tP
L
λ (t) = aλ(t)PLλ (t).

For λ, µ ∈ P+, we have

〈PLλ (t), PLµ (t)〉L,t = 0 if λ 6= µ.

Proof. (1) Proposition 4.2 and Theorem 5.6 imply that PBλ (t) is an eigenfunction
of DB,t with eigenvalue aλ(t). Fix (a, b, c, d) ∈ V qB , fix µ, λ ∈ P+, µ 6= λ, and fix
t ∈ (0, 1) such that aλ(a, b; q, t) 6= aµ(a, b; q, t). The self-adjointness of DB,t then
gives that 〈PBλ (t), PBµ (t)〉B,t = 0. Note that aλ(a, b; q, t) ∈ R[t] and aλ(a, b; q, t) =
aµ(a, b; q, t) as polynomials in t iff λ = µ because ab /∈ {q−2, q−3, . . .}. Therefore, (1)
will be proved if we prove that 〈PBλ (t), PBµ (t)〉B,t is continuous in t for t ∈ (0, 1). This
follows from Proposition 5.5. The proof of (2) is similar.

For t = 1, define

〈f, g〉B,n,1 := lim
t↑1
〈f, g〉B,n,t,(5.20)

〈f, g〉L,n,1 := lim
t↑1
〈f, g〉L,n,t(5.21)
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for f, g ∈ AS , provided that the limits exist. We then have the following proposition.
Proposition 5.8. 〈 . , . 〉B,n,1 and 〈 . , . 〉L,n,1 (defined by (5.20) and (5.21)) are

well-defined inner products on AS and are explicitly given by

〈f, g〉B,n,1 =
1

n!

∫ c

x1=−d
· · ·
∫ c

xn=−d
f(x)g(x)

(
n∏
i=1

wB(xi)

)
dqx,(5.22)

〈f, g〉L,n,1 =
1

n!

∫ 1

x1=0

· · ·
∫ 1

xn=0

f(x)g(x)

(
n∏
i=1

vL(xi)

)
dqx(5.23)

for f, g ∈ AS . The corresponding multivariable big and little q-Jacobi polynomials
(using Definitions 5.1 and 5.2 for t = 1) can be given explicitly in terms of the one-
variable big and little q-Jacobi polynomials by the formulas (λ ∈ P+)

PBλ (x; a, b, c, d; q, 1) = |Sλn |−1
∑
w∈Sn

(
n∏
i=1

Pλw−1(i)
(xi; a, b, c, d; q)

)
,(5.24)

where Pn (n ∈ N0) are the one-variable big q-Jacobi polynomials (Definition 2.1) and
|Sλn | := #{w ∈ Sn |wλ = λ}, and

PLλ (x; a, b; q, 1) = |Sλn |−1
∑
w∈Sn

(
n∏
i=1

pλw−1(i)
(xi; a, b; q)

)
,(5.25)

where pn (n ∈ N0) are the one-variable little q-Jacobi polynomials (Definition 2.2).
Proof. Fix j ∈ {0, . . . , n}. The set of mass points W j

B(qτ ) (given by (5.6)) is in
one-to-one correspondence with

Vj := {p = (p1, . . . , pn) | 0 ≤ p1 ≤ · · · ≤ pj , 0 ≤ pn ≤ · · · ≤ pj+1}(5.26)

by the formula

x(j)(p; τ) =
(
cqp1 , . . . , cq(j−1)τ+pj ,−dq(n−j−1)τ+pj+1 , . . . ,−dqpn

)
∈W j

B(qτ ).(5.27)

We first calculate limτ↓0 ∆j
τ (x(j)(p; τ)) for fixed p ∈ Vj , where ∆j

τ (x) is given by (5.4).
Rewrite ∆j

τ as ∆j
τ = ρjτD

j
τ with

ρjτ (x) :=
∏

1≤i<k≤n
i≤j

xi − xk
xi − qτxk

∏
j<l<m≤n

xm − xl
xm − qτxl

(5.28)

and

Dj
τ (x) :=

∏
1≤i<k≤n
i≤j

x2τ
i

(
q1−τ xk

xi
; q

)
2τ

∏
j<l<m≤n

|xm|2τ
(
q1−τ xl

xm
; q

)
2τ

.(5.29)

For p ∈ Vj and τ ∈ (0,∞), define

g
(j)
ik (p, τ) :=

(x
(j)
i (p; τ)− x(j)

k (p; τ))

(x
(j)
i (p; τ)− qτx(j)

k (p; τ))
;(5.30)
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then we can write ρjτ , evaluated at the mass point x(j)(p; τ), as

ρjτ (x(j)(p; τ)) =
∏

1≤i<k≤n
i≤j

g
(j)
ik (p, τ)

∏
j<l<m≤n

g
(j)
ml (p, τ).(5.31)

Let p ∈ Vj ; then for 1 ≤ i < k ≤ n with i ≤ j, we have

g
(j)
ik (p, 0) := lim

τ↓0
g

(j)
ik (p, τ) =

 1 if x
(j)
i (p; 0) 6= x

(j)
k (p; 0),

k − i
k − i+ 1

if x
(j)
i (p; 0) = x

(j)
k (p; 0),

(5.32)

and for j < l < m ≤ n, we have

g
(j)
ml (p, 0) := lim

τ↓0
g

(j)
ml (p, τ) =

 1 if x
(j)
l (p; 0) 6= x

(j)
m (p; 0),

m− l
m− l + 1

if x
(j)
l (p; 0) = x

(j)
m (p; 0).

(5.33)

Thus we have limτ↓0 ρ
j
τ (x(j)(p; τ)) = n(x(j)(p; 0)) with n(x) defined by

n(x) :=
∏

{1≤l<m≤n | xl=xm}

m− l
m− l + 1

.

Fix x ∈ Rn with x1 ≥ · · · ≥ xn, and denote m(x) := #{w ∈ Sn |wx = x}. Let
(λ1, . . . , λp) be the sequence of natural numbers such that λ1 + · · ·+λp = n and such
that

x1 = · · · = xλ1 > xλ1+1 = · · · = xλ1+λ2 > · · · > xλ1+···+λp−1+1 = · · · = xn.

Then we have

n(x) =

p∏
i=1

 ∏
1≤l<m≤λi

m− l
m− l + 1

 =

p∏
i=1

(
λi−1∏
r=1

( r

r + 1

)λi−r)

=

p∏
i=1

1

λi!
=

1

m(x)
.

It follows that limτ↓0 ρ
j
τ (x(j)(p; τ)) = 1/m(x(j)(p; 0)) for all p ∈ Vj . Furthermore, it

is easily checked that limτ↓0D
j
τ (x(j)(p; τ)) = 1 for all p ∈ Vj . Hence we have

lim
τ↓0

∆j
τ (x(j)(p; τ)) = 1/m(x(j)(p; 0)), p ∈ Vj .

Furthermore, we have limτ↓0 d
τ
j = 1 (with dτj given by (5.5)), so for every p ∈ Vj ,

lim
τ↓0

wj(x
(j)(p; τ); qτ ) =

1

m(x(j)(p; 0))

n∏
i=1

wB(x
(j)
i (p; 0))

with wj(x) given by (5.3). Write 〈f, g〉j,B,qτ as a sum over p ∈ Vj using formula
(5.27); then we will see in Proposition 6.1 that we are allowed to pull the limit τ ↓ 0
through the infinite sum. Thus we obtain

lim
τ↓0
〈f, g〉B,qτ =

n∑
j=0

∫ c

x1=0

∫ x2

x2=0

· · ·
∫ xj−1

xj=0

∫ 0

xj+1=−d

∫ qxj+1

xj+2=−d
(5.34)

· · ·
∫ qxn−1

xn=−d
f(x)g(x)

1

m(x)

(
n∏
i=1

wB(xi)

)
dqx.
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(5.22) now follows by symmetrizing the right-hand side of this formula. Formula
(5.24) then follows directly from the orthogonality of the one-variable big q-Jacobi
polynomials. The proof of the proposition for the little q-Jacobi case is similar.

Note that Theorems 5.6 and 5.7 are still valid for t = 1. The two theorems are easy
consequences of the corresponding results in the one-variable case. For t = 1, both
theorems also follow by a continuity argument in t from the corresponding theorems
for t ∈ (0, 1).

Similarly, we can express the multivariable big (resp. little) q-Jacobi polynomials
for t = q in terms of one-variable big (resp. little) q-Jacobi polynomials.

Proposition 5.9. For λ ∈ P+, define λ̃ ∈ P+ by λ̃ := λ+ δ (δ given by (4.6)).
(1) Let (a, b, c, d) ∈ V qB and λ ∈ P+; then

PBλ (x; a, b, c, d; q, q) = ∆(x)−1
∑
w∈Sn

det(w)

(
n∏
i=1

Pλ̃w−1(i)
(xi; a, b, c, d; q)

)
.

(2) Let (a, b) ∈ V qL and λ ∈ P+; then

PLλ (x; a, b; q, q) = ∆(x)−1
∑
w∈Sn

det(w)

(
n∏
i=1

pλ̃w−1(i)
(xi; a, b; q)

)
.

Proof. The proposition follows from (4.7), (5.17), (5.18), (5.19), and the orthog-
onality in the one variable case.

The families of multivariable big (resp. little) q-Jacobi polynomials for t = 1 and
t = q are more or less the trivial families since full orthogonality of the multivariable
big (resp. little) q-Jacobi polynomials for t = 1 and t = q can easily be deduced from
the orthogonality in the one-variable case. From this point of view, we can think of
t as an extra (continuous) deformation parameter linking these two trivial families of
multivariable big (resp. little) q-Jacobi polynomials.

6. Some proofs. In this section, we give the proofs that we omitted in section
5. We start with the proof of Proposition 5.5.

Proposition 6.1. Let f, g ∈ AS .
(1) 〈f, g〉B,t is continuous in t for t ∈ (0, 1], where for t = 1, the inner product is

given by (5.22).
(2) 〈f, g〉L,t is continuous in t for t ∈ (0, 1], where for t = 1, the inner product is

given by (5.23).
Proof. It is sufficient to prove continuity in τ for τ ∈ [0,∞) (t = qτ ). If h(z, τ) is

a function such that h(uqk, τ) is continuous in τ ∈ [0,∞) for all k ∈ N0 (u 6= 0), then∫ u

0

h(z, τ)dqz = (1− q)
∞∑
k=0

h(uqk, τ)uqk

will be continuous in τ if for every compact subset K of [0,∞), there exists a εK < 1
such that

sup
(k,τ)∈N0×K

∣∣qkεKh(uqk, τ)
∣∣ <∞.

For τ ∈ [0,∞), define

wj(x; qτ ) := dτj

(
n∏
i=1

wB(xi)

)
∆j
τ (x),(6.1)
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where dτj is given by (5.5) and ∆j
τ (x) := ρjτ (x)Dj

τ (x) for τ ∈ [0,∞), with Dj(x)

defined by (5.29) for τ ∈ [0,∞) and with ρjτ (x) defined by (5.28) for τ ∈ (0,∞) and
ρj0(x) := m(x)−1 for τ = 0 (where m(x) := {w ∈ Sn |wx = x}). The inner product
〈 . , . 〉B,n,qτ for τ ∈ [0,∞) can now be given by formulas (5.1) and (5.2) if we use the
weight function wj(x; qτ ) given by (6.1). (Indeed, wj is exactly the weight function

(5.3) for τ > 0, and for τ = 0 we have Dj
0(x) = 1 and d0

j = 1, so it then follows from
formula (5.34).)

Therefore, in the big q-Jacobi case, it will be sufficient to prove that for every
K ⊂ [0,∞) compact and all j ∈ {0, . . . , n},

sup
(p,τ)∈Vj×K

∣∣∣∆j
τ (x(j)(p; τ))

∣∣∣ <∞, j = 0, . . . , n,

with Vj and x(j)(p; τ) defined by (5.26) and (5.27), respectively. (Clearly, dτj (c, d, q)
is continuous in τ for τ ∈ [0,∞).)

Similarly, in the little q-Jacobi case, we can take (5.7) as the definition of 〈 . , .〉L,n,qτ
for all τ ∈ [0,∞) if we take the function v(x; 1) :=

(∏n
i=1 vL(xi)

)
∆0(x) with ∆0(x) :=

ρn0 (x)Dn
0 (x) = m(x)−1 as the weight function for τ = 0 in (5.7).

Thus in the little q-Jacobi case, it will be sufficient to prove that for arbitrary
K ⊂ [0,∞) compact,

sup
(p,τ)∈Vn×K

|∆τ (x̃(p; τ))| <∞

(where x̃(p; τ) := (qp1 , qτ+p2 , . . . , q(n−1)τ+pn)) because if −1 < α < 0, then the factor
xαi in the weight function can be compensated by taking εK,i = −α (i = 1, . . . , n).

We will prove that for all j ∈ {0, . . . , n} and all K ⊂ [0,∞) compact,

sup
(p,τ)∈Vj×K

|ρjτ (x(j)(p; τ))| <∞(6.2)

and

sup
(p,τ)∈Vj×K

|Dj
τ (x(j)(p; τ))| <∞.(6.3)

Then we are ready because the little q-Jacobi case follows from (6.2) and (6.3) with

j = n and c = 1. We use the expression for ρ
(j)
τ evaluated at a specific mass point

x(j)(p; τ) ∈W j
B(qτ ) as was given in the proof of Proposition 5.8 (formula (5.31)),

ρjτ (x(j)(p; τ)) =
∏

1≤i<k≤n
i≤j

g
(j)
ik (p, τ)

∏
j<l<m≤n

g
(j)
ml (p, τ)(6.4)

with g
(j)
rs (p, τ) defined by (5.30) for τ > 0 and by (5.32) and (5.33) for τ = 0.

Proof of (6.2). We look at the factors of the form g
(j)
rs (l, τ) in the expression for

ρjτ (x(j)(l, τ)) (see (6.4)).

Case (1): k ≤ j < m. We have

g
(j)
km(l, τ) =

1 + (d/c)q(n−m−k+1)τqlm−lk

1 + (d/c)q(n−m−k+2)τqlm−lk
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for l ∈ Vj and τ ∈ K. Thus sup(l,τ)∈Vj×K |g
(j)
km(l, τ)| < ∞ because the map ψ :

[0,∞)×K → R given by

ψ(x, τ) =
1 + (d/c)xq(n−m−k+1)τ

1 + (d/c)xq(n−m−k+2)τ

is continuous, and limx→∞ ψ(x, τ) = q−τ uniformly for τ ∈ K.
Case (2): k < m ≤ j. Let l ∈ Vj and τ ∈ K. We have

g
(j)
km(l, τ) =

1− q(m−k)τqlm−lk

1− q(m−k+1)τqlm−lk
(6.5)

if τ > 0 and lm ≥ lk or if τ = 0 and lm > lk. Furthermore, we have g
(j)
km(l, 0) =

(m− k)/(m− k+ 1) if lk = lm. We have to prove that sup(l,τ)∈Vj×K |g
(j)
km(l, τ)| <∞.

First, consider the supremum over V 0
j ×K, where V 0

j is the subset of Vj defined by

V 0
j := {l ∈ Vj | lk = lm}. Since g

(j)
km(l, τ) = gkm(0, τ) independently of l ∈ V 0

j , and

since g
(j)
km(0, τ) is continuous in τ ∈ [0,∞), we have sup(l,τ)∈V 0

j ×K |g
(j)
km(l, τ)| < ∞.

Furthermore, sup(l,τ)∈V 1
j ×K |g

(j)
km(l, τ)| < ∞ with V 1

j := Vj\V 0
j follows from the fact

that the map ψkm : [0, q]×K → R given by

ψkm(x, τ) :=
1− q(m−k)τx

1− q(m−k+1)τx

is continuous, and [0, q]×K is compact.
Case (3): j < k < m. Similar arguments as in case (2) gives uniform boundness

of g
(j)
mk(l, τ) for l ∈ Vj and τ ∈ K.
Proof of (6.3). We examine the factors of the form |xr|2τ

(
q1−τxs/xr; q

)
2τ

in the

expression for Dτ
j (x) for x ∈W j

B(qτ ) (see (5.29)).

Case (1): k ≤ j < m. For x ∈ W j
B(qτ ), we have xk = cq(k−1)τ+lk and xm =

−dq(n−m)τ+lm for some lm, lk ∈ N0. Using the formula

q2kτ
(
q1−τ−kz; q

)
2τ

=

(
qτz−1; q

)
k

(q−τz−1; q)k

(
q1−τz; q

)
2τ
,

we get

x2τ
k

(
q1−τ xm

xk
; q

)
2τ

=
(
cq(k−1)τ

)2τ
(
qτ−lmw−1

km; q
)
lk(

q−τ−lmw−1
km; q

)
lk

(
q1−τ+lmwkm; q

)
2τ

with wkm := (−d/c)q(n−m−k+1)τ . Then∣∣∣∣∣
(
qτ−lmw−1

km; q
)
lk(

q−τ−lmw−1
km; q

)
lk

∣∣∣∣∣ ≤ 1

for all lk, lm ∈ N0 and τ ∈ K because

1− q−τ−lm+iw−1
km ≥ 1− qτ−lm+iw−1

km > 0 ∀τ ∈ K, lm ∈ N0, i ∈ {0, . . . , lk − 1}.

Choose NK ∈ N0 such that 2τ ≤ NK for all τ ∈ K. Then∣∣(q1−τ+lmwkm; q
)

2τ

∣∣ ≤ ∣∣∣(q1−τ+lmwkm; q
)
NK

∣∣∣ ,
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and arguments similar to those in Case (2) of the proof of (6.2) show that

sup
(lm,τ)∈N0×K

∣∣∣(q1−τ+lmwkm; q
)
NK

∣∣∣ <∞.
Case (2): k < m ≤ j. For x ∈ W j

B(qτ ), we have that xk = cq(k−1)τ+lk and
xm = cq(m−1)τ+lm for some lk, lm ∈ N0 with lk ≤ lm, so∣∣∣∣x2τ

k

(
q1−τ xm

xk
; q

)
2τ

∣∣∣∣ =
(
cq(k−1)τ

)2τ

q2lkτ

∣∣∣∣∣
(
q1−τ (q(m−k)τ+lm−lk

)
; q
)
∞(

q1+τ
(
q(m−k)τ+lm−lk

)
; q
)
∞

∣∣∣∣∣ .
We have ∣∣∣∣∣

(
q1−τ (q(m−k)τ+lm−lk

)
; q
)
∞(

q1+τ
(
q(m−k)τ+lm−lk

)
; q
)
∞

∣∣∣∣∣ ≤ 1

for τ ∈ K and lm, lk ∈ N0 with lk ≤ lm because

1− q1+τ
(
q(m−k)τ+lm−lk

)
qi ≥ 1− q1−τ

(
q(m−k)τ+lm−lk

)
qi > 0

for all τ ∈ K, all lm, lk ∈ N0 with lk ≤ lm, and all i ∈ N0.
Case (3): j < k < m. Similar arguments as in case (2) give a uniform boundedness

of ∣∣∣∣|xm|2τ (q1−τ xk
xm

; q

)
2τ

∣∣∣∣
for τ ∈ K,xk ∈ {−dq(n−k)τ+lk}lk∈N0

, xm ∈ {−dq(n−m)τ+lm}lm∈N0
, lm ≤ lk.

We have the following corollary.
Corollary 6.2. Let f, g ∈ AS .
(1) 〈DB,tf, g〉B,t is continuous in t for t ∈ (0, 1].
(2) 〈DL,tf, g〉L,t is continuous in t for t ∈ (0, 1].
Proof. Let λ ∈ P+. The coefficients in the expansion of the symmetric polynomial

Da,b,c,d
n,q,t mλ with respect to the basis of monomials {mµ |µ ∈ P+} are continuous in

t ∈ (0, 1] for arbitrary fixed a, b, c, d ∈ C because they depend polynomially on t
(Proposition 4.2). Now apply Proposition 6.1.

Define the forward and backward partial q-derivatives in the ith coordinate by

(
Di,+
q f

)
(x) :=

(
Tq−1,if − f

)
(x)

(1− q)xi
and

(
Di,−
q f

)
(x) :=

(f − Tq,if) (x)

(1− q)xi
,(6.6)

respectively. In the one-variable case, we will use the notation D+
q and D−q , respec-

tively. Da,b,c,d
n,q,t can now be written in the following form:

(Dnf)(x) =
n∑
i=1

(
pi(x)

(
Di,−
q f

)
(x) + qi(x)

(
Di,+
q f

)
(x)
)
,

with

pi(x; a, b, c, d; q, t) := ĥ(xi; a, b, c, d; q)tn−1∆(x)−1 (Tt,i∆)(x),
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ĥ(y; a, b, c, d; q) := −q(1− q)y
(
a− c

qy

)(
b+

d

qy

)
and

qi(x; c, d; q, t) := ĝ(xi; c, d; q)tn−1∆(x)−1(Tt−1,i∆)(x),

ĝ(y; c, d; q) := (1− q)y
(

1− c

y

)(
1 +

d

y

)
.

We have the following result.
Proposition 6.3. (1) Let i ∈ {1, . . . , n} and j ∈ {0, . . . , n}; then(

Tq−1,i(pi( . ; a, b, c, d; q, t)wj( . ; a, b, c, d; q, t))
)
(x)(6.7)

= −qi(x; c, d; q, t)wj(x; a, b, c, d; q, t).

(2) Let i ∈ {1, . . . , n}; then(
Tq−1,i(pi( . ; b, a, 1, 0; q, t)v( . ; a, b; q, t))

)
(x)(6.8)

= −qi(x; 1, 0; q, t)v(x; a, b; q, t).

Proof. In Remark 5.3, we saw that wj(x) = φj(x)w(x) with w given by (5.12),

w(x; a, b, c, d; q, t) =

 n∏
j=1

wB(xj ; a, b, c, d; q)

 ∆̃τ (x),

and with φj a quasi-constant function (wB given by (2.2)). Thus for (1), it is sufficient
to prove (6.7) with wj replaced by w. For (2), it will be sufficient to prove (6.8) with
v replaced by  n∏

j=1

vL(xj ; a, b; q)

 ∆̃τ (x)

(with vL given by (2.7)).
For every i ∈ {1, . . . , n}, we have(

Tq−1,i

(
(Tt,i∆)

∆
∆̃τ

))
(x) =

(
Tt−1,i∆

)
(x)

∆(x)
∆̃τ (x),

which follows from a straightforward calculation using (4.1). Thus the proposition
follows from

ĥ(q−1y; a, b, c, d; q)wB(q−1y; a, b, c, d; q) = −ĝ(y; c, d; q)wB(y; a, b, c, d; q)

and

ĥ(q−1y; b, a, 1, 0; q)vL(q−1y; a, b; q) = −ĝ(y; 1, 0; q)vL(y; a, b; q).

The self-adjointness of DB with respect to 〈 . , . 〉B and the self-adjointness of
DL with respect to 〈 . , . 〉L can now be proved with the help of the following special
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version of the q-partial integration rule. The proof is similar to the proof of the usual
q-partial integration rule (cf. [13]).

Lemma 6.4. Let α 6= 0 and let fi be functions in one variable (i = 1, . . . , 4).
Suppose that f1 and f4 are defined on {αqk | k ∈ N0} and that f2 and f3 are defined
on {αqk | k ∈ N0 ∪ {−1}}. Suppose that

lim
k→∞

(
f1(αqk+1)f2(αqk) + f3(αqk)f4(αqk+1)

)
exists and is equal to L. Then∫ α

0

((
D−q f1

)
(x)f2(x) +

(
D+
q f3

)
(x)f4(x)

)
dqx = f1(α)f2(q−1α)

+ f3(q−1α)f4(α)− L−
∫ α

0

(
f1(x)

(
D+
q f2

)
(x) + f3(x)

(
D−q f4

)
(x)
)
dqx.

Theorem 6.5. Let t ∈ (0, 1].
(i) DB,t is self-adjoint with respect to 〈 . , . 〉B,t.
(ii) DL,t is self-adjoint with respect to 〈 . , . 〉L,t.
Proof. (i) Fix j ∈ {0, . . . , n}. Define

Wj(τ) := {x |xk = cq(k−1)τ+lk(k ≤ j), xk = −dq(n−k)τ+lk(k > j) and lk ∈ N0}.

First, let us check that if τ ∈ (0,∞)\ ∪np=1 (1/p)N, then wj(x; qτ ) 6= 0 for x ∈ Wj(τ)

iff x ∈W j
B(qτ ).

Therefore, let x ∈ Wj(τ). Then
(
q1−τxk+1/xk; q

)
∞ = 0 if 1 ≤ k < j and

lk > lk+1, and
(
q1−τxk/xk+1; q

)
∞ = 0 if j < k < n and lk < lk+1. Furthermore, if

we assume that τ ∈ (0,∞)\ ∪np=1 (1/p)N, then (qτxm/xk; q)∞ 6= 0 for 1 ≤ k < m ≤ j
and (qτxk/xm; q)∞ 6= 0 for j < k < m ≤ n. Therefore, if τ ∈ (0,∞)\ ∪np=1 (1/p)N,

then ∆j
τ (x) 6= 0 for x ∈Wj(τ) iff x ∈W j

B(qτ ), and so this also holds for wj(x; qτ ).
As a consequence, we have that

〈f, g〉j,B,t =

∫ c

x1=0

· · ·
∫ ctj−1

xj=0

∫ 0

xj+1=−dtn−j−1

· · ·
∫ 0

xn=−d
f(x)g(x)wj(x; t)dqx(6.9)

for all f, g ∈ AS if τ ∈ (0,∞)\ ∪np=1 (1/p)N. We will prove self-adjointness for
τ /∈ ∪np=1(1/p)N; then Corollary 6.2 asserts self-adjointness for τ ∈ [0,∞). Therefore,
fix τ ∈ (0,∞)\ ∪np=1 (1/p)N. We will apply Lemma 6.4 repeatedly on the right-hand
side of the formula

〈DB,tf, g〉B,t =
n∑
j=0

n∑
l=1

∫ c

x1=0

· · ·
∫ ctj−1

xj=0

∫ 0

xj+1=−dtn−j−1

(6.10)

· · ·
∫ 0

xn=−d

(
pl(x)

(
Dl,+
q f

)
(x) + ql(x)

(
Dl,−
q f

)
(x)
)
g(x)wj(x)dqx.

Formula (6.10) is valid because the proof of Proposition 6.1, together with the fact
that τ /∈ ∪np=1(1/p)N, shows that the multisums in the right-hand side of (6.10)
converge absolutely for each j ∈ {0, . . . , n} and each l ∈ {1, . . . , n}. We are therefore
also allowed to interchange the order of q-integration in the right-hand side of (6.10).
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For x = (x1, . . . , xn), we denote x̂i := (x1, . . . , xi−1, xi+1, . . . , xn), and we denote
x̂i(u) := (x1, . . . , xi−1, u, xi+1, . . . , xn). Define W i

j by

W i
j (τ) := {x̂i |x ∈Wj(τ)}.

Note that W i
i−1 = W i

i for all i ∈ {1, . . . , n}. Let f, g ∈ AS . For i ≤ j, we apply
Lemma 6.4 on∫ cti−1

xi=0

(
pi(x)

(
Di,−
q f

)
(x) + qi(x)

(
Di,+
q f

)
(x)
)
g(x)wj(x)dqxi,(6.11)

and for i > j, we apply Lemma 6.4 to∫ −dtn−i
xi=0

(
pi(x)

(
Di,−
q f

)
(x) + qi(x)

(
Di,+
q f

)
(x)
)
g(x)wj(x)dqxi(6.12)

with fixed x̂i ∈W i
j for the variable x in the integrand of (6.11) and (6.12). Therefore,

define

f i,j,x̂i1 (y) := f(x̂i(y)), f i,j,x̂i2 (y) := pi(x̂i(y))wj(x̂i(y))g(x̂i(y)),

f i,j,x̂i3 (y) := f(x̂i(y)), f i,j,x̂i4 (y) := qi(x̂i(y))wj(x̂i(y))g(x̂i(y)).

Then formula (6.7) gives∫ cti−1

xi=0

(
f i,j,x̂i1 (xi)

(
D+
q f

i,j,x̂i
2

)
(xi) + f i,j,x̂i3 (xi)

(
D−q f

i,j,x̂i
4

)
(xi)

)
dqxi

= −
∫ cti−1

xi=0

f(x)
(
pi(x)

(
Di,−
q g

)
(x) + qi(x)

(
Di,+
q g

)
(x)
)
wj(x)dqxi(6.13)

if i ≤ j and∫ −dtn−i
xi=0

(
f i,j,x̂i1 (xi)

(
D+
q f

i,j,x̂i
2

)
(xi) + f i,j,x̂i3 (xi)

(
D−q f

i,j,x̂i
4

)
(xi)

)
dqxi

= −
∫ −dtn−i
xi=0

f(x)
(
pi(x)

(
Di,−
q g

)
(x) + qi(x)

(
Di,+
q g

)
(x)
)
wj(x)dqxi(6.14)

if i > j, with x̂i ∈W i
j fixed for the variable x in the integrands. Define

hi,j,x̂i(γ) := f i,j,x̂i1 (γ)f i,j,x̂i2 (q−1γ) + f i,j,x̂i3 (q−1γ)f i,j,x̂i4 (γ).

Then we will prove the following:

(1a) hi,j,x̂i(cq(i−1)τ ) = 0 if i ≤ j and x̂i ∈W i
j ;

(1b) hi,j,x̂i(−dq(n−i)τ ) = 0 if i > j and x̂i ∈W i
j ;

(2a) limli→∞ hi,j,x̂i(cq(i−1)τ+li+1) = 0 for i ∈ {1, . . . , n}, j ≥ i+ 1, and x̂i ∈W i
j ;

(2b) limli→∞ hi,j,x̂i(−dq(n−i)τ+li+1) = 0 for i ∈ {1, . . . , n}, j ≤ i−2, and x̂i ∈W i
j ;

(2c) limli→∞ hi,i,x̂i(cq(i−1)τ+li+1) and limli→∞ hi,i−1,x̂i(−dq(n−i)τ+li+1) exist and

have the same limit for all i ∈ {1, . . . , n} and all x̂i ∈W i
i = W i

i−1.
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Observe that if these five statements are valid, then the multisum over x̂i ∈ W i
i

of the function

ĥi(x̂i) :=

∏
j 6=i
|xj |

( lim
li→∞

hi,i,x̂i(cq(i−1)τ+li+1)

)

is absolutely convergent for i = 1, . . . , n. This follows from the formula

ĥi(x̂i) :=

∏
j 6=i
|xj |

(∫ cti−1

xi=0

f(x)
(
pi(x)

(
Di,−
q g

)
(x) + qi(x)

(
Di,+
q g

)
(x)
)
wi(x)dqxi

−
∫ cti−1

xi=0

(
pi(x)

(
Di,−
q f

)
(x) + qi(x)

(
Di,+
q f

)
(x)
)
g(x)wi(x)dqxi

)
,

which is a consequence of Lemma 6.4, (6.13), (1a), and (2c). The self-adjointness of
DB,t with respect to 〈 . , . 〉B,t then follows directly from this observation and these
five statements, in view of Lemma 6.4, (6.10), (6.13), and (6.14).

For the proof of the five statements, we use the fact that

hi,j,x̂i(γ) =
(
f(x̂i(γ))g(x̂i(q

−1γ))− f(x̂i(q
−1γ))g(x̂i(γ))

)
pi(x̂i(q

−1γ))wj(x̂i(q
−1γ))

for γ ∈ {cq(i−1)τ+li}li∈N0 if i ≤ j and for γ ∈ {−dq(n−i)τ+li}li∈N0 if i > j with fixed
x̂i ∈W i

j . This formula is a consequence of (6.7).

(1a) If i = 1, then wj(x̂1(cq−1)) = 0 for j ≥ i because (qx1/c; q)∞ is zero
when x1 = cq−1. If 1 < i ≤ n, then wj(x̂i(cq

(i−1)τ−1)) = 0 if j ≥ i because
xi−1 = cq(i−2)τ+li−1 for certain li−1 ∈ N0, so

(
q1−τ cq(i−1)τ−1/xi−1; q

)
∞ = 0.

(1b) This is similar to the proof of (1a).
(2a) If i ∈ {1, . . . , n} and j ≥ i + 1, then xi+1 = cqiτ+li+1 for certain li+1 ∈ N0,

so
(
q1−τxi+1/cq

(i−1)τ+li ; q
)
∞ = 0 if li > li+1, and therefore wj(x̂i(cq

(i−1)τ+li)) = 0 if
li > li+1.

(2b)This is similar to the proof of (2a).
(2c) f, g are polynomials, so

f(x)(Tq−1,ig)(x)− (Tq−1,if)(x)g(x)

xi
∈ R[x1, . . . , xn]

is continuous as a function of xi in xi = 0 for arbitrary fixed x̂i. It is therefore
sufficient to prove that

lim
li→∞

(
−dq(n−i)τ+lipi(x̂i(−dq(n−i)τ+li))wi−1(x̂i(−dq(n−i)τ+li))

)
and

lim
li→∞

(
cq(i−1)τ+lipi(x̂i(cq

(i−1)τ+li))wi(x̂i(cq
(i−1)τ+li))

)
exist and that they have the same limit for all x̂i ∈ W i

i and all i ∈ {1, . . . , n}. Fix
i ∈ {1, . . . , n} and x̂i ∈W i

i . Since xipi(x) is continuous as a function of xi in xi = 0,
it is sufficient to prove that

lim
li→∞

dτi ∆i
τ (x̂i(cq

(i−1)τ+li)) and lim
li→∞

dτi−1∆i−1
τ (x̂i(−dq(n−i)τ+li))
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exist and that they have the same limit. We have

∆i
τ (x) = φi(x)

∏
1≤k<i

(xk − xi)|xk|2τ−1

(
q1−τ xi

xk
; q

)
2τ−1

×
∏

i<m≤n
(xi − xm)|xi|2τ−1

(
q1−τ xm

xi
; q

)
2τ−1

with

φi(x) :=

 ∏
1≤k<m≤n
k<i;m6=i

(xk − xm)|xk|2τ−1

(
q1−τ xm

xk
; q

)
2τ−1


×

∏
i<k<m≤n

(xk − xm)|xm|2τ−1

(
q1−τ xk

xm
; q

)
2τ−1

independent of xi and

∆i−1
τ (x) = φi(x)

∏
1≤k<i

(xk − xi)|xk|2τ−1

(
q1−τ xi

xk
; q

)
2τ−1

×
∏

i<m≤n
(xi − xm)|xm|2τ−1

(
q1−τ xi

xm
; q

)
2τ−1

.

Therefore, it is sufficient to prove that

lim
li→∞

dτi σi(x̂i(cq
(i−1)τ+li)) and lim

li→∞
dτi−1ρi(x̂i(−dq(n−i)τ+li))

exist and that they have the same limit, with

σi(x) :=
∏

i<m≤n
(xi − xm)|xi|2τ−1

(
q1−τ xm

xi
; q

)
2τ−1

,

ρi(x) :=
∏

i<m≤n
(xi − xm)|xm|2τ−1

(
q1−τ xi

xm
; q

)
2τ−1

.

Clearly,

lim
li→∞

ρi(x̂i(−dq(n−i)τ+li)) =
∏

i<m≤n
|xm|2τ ,

and the formula

qk(2τ−1)
(
q1−τ−kz; q

)
2τ−1

=

(
qτz−1; q

)
k

(q1−τz−1; q)k

(
q1−τz; q

)
2τ−1

gives that

lim
li→∞

σi(x̂i(cq
(i−1)τ+li)) =

∏
i<m≤n

|xm|2τ
(cq(i−1)τ )2τ−1

(
q1−τ (xm/cq(i−1)τ

)
; q
)

2τ−1

|xm|2τ−1
(
q1−τ

(
cq(i−1)τ/xm

)
; q
)

2τ−1

.
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Thus

lim
li→∞

σi(x̂i(cq
(i−1)τ+li)) =

dτi−1

dτi

∏
i<m≤n

|xm|2τ

for x̂i ∈ W i
i because the function ψτ given by formula (5.15) is a quasi-constant

function.
(ii) Fix τ ∈ (0,∞)\∪np=1 (1/p)N and f, g ∈ AS ; then a similar argument as in the

proof of (i) gives that

〈f, g〉L =

∫ 1

x1=0

· · ·
∫ q(n−1)τ

xn=0

f(x)g(x)v(x)dqx,

and the order of q-integration may be changed because of absolute convergence. Fix
i ∈ {1, . . . , n} and fix xk ∈ {q(k−1)τ+lk}lk∈N0

(k 6= i). Define

f i1(xi) := f(x), f i2(xi) := pi(x; b, a, 1, 0; q, t)v(x; a, b; q, t)g(x),

f i3(xi) := f(x), f i4(xi) := qi(x; 1, 0; q, t)v(x; a, b; q, t)g(x)

(x = (x1, . . . , xi−1, xi, xi+1, . . . , xn)). It follows from formula (6.8) and Lemma 6.4
that the proof of (ii) is complete if the following two formulas are valid:

f i1(q(i−1)τ )f i2(q(i−1)τ−1) + f i3(q(i−1)τ−1)f i4(q(i−1)τ ) = 0,(6.15)

lim
k→∞

(
f i1(q(i−1)τ+k+1)f i2(q(i−1)τ+k) + f i3(q(i−1)τ+k)f i4(q(i−1)τ+k+1)

)
= 0.(6.16)

For the proof, we use the formula

f i1(γ)f i2(q−1γ) + f i3(q−1γ)f i4(γ) =
(
f(x̂i(γ))g(x̂i(q

−1γ))− f(x̂i(q
−1γ))g(x̂i(γ))

)
× pi(x̂i(q−1γ); b, a, 1, 0; q, t)v(x̂i(q

−1γ); a, b; q, t)

with γ ∈ {q(i−1)τ+li}li∈N0
. This formula is a consequence of (6.8). The proof of (6.15)

is similar to the proof of (1a), and (6.16) holds because

lim
li→∞

q(i−1)τ+lipi(x̂i(q
(i−1)τ+li); b, a, 1, 0; q, t)v(x̂i(q

(i−1)τ+li); a, b; q, t)

is zero for i = 1, . . . , n− 1 because v(x̂i(q
(i−1)τ+li); a, b; q, t) = 0 for li sufficiently big

and is also zero if i = n since

lim
ln→∞

v(x̂n(q(n−1)τ+ln); a, b; q, t)
(
q(n−1)τ+ln

)−α
exists, and

lim
ln→∞

(
q(n−1)τ+ln

)α+1

pi(x̂n(q(n−1)τ+ln); b, a, 1, 0; q, t) = 0

since α > −1.

Note added in proof. The evaluation formula for 〈1, 1〉L,qk which we presented
in Remark 5.4 for the special parameter values k ∈ N is in fact valid for all k ∈ (0,∞).
This follows from a modified form of Askey, Habsieger, and Kadell’s formula which
has recently been proved by K. Aomoto in his preprint “On elliptic product formulas
for Jackson integrals associated with reduced root systems.”
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APPROXIMATION FROM SHIFT-INVARIANT SPACES BY
INTEGRAL OPERATORS∗
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Abstract. We investigate approximation from shift-invariant spaces by using certain integral
operators and discuss various applications of this approximation scheme. We assume that our integral
operators commute with shift operators and that their kernel functions decay at a polynomial rate.
We prove that the approximation order provided by such an integral operator is m if and only if
the integral operator reproduces polynomials of degree up to m − 1, where m is a positive integer.
Using this result, we characterize the approximation order provided by a finitely generated shift-
invariant space whose generators decay in a polynomial rate and have stable shifts. We also review
some already well-studied approximation schemes such as projection, cardinal interpolation, and
quasi-interpolation by considering them as special cases of integral operators.

Key words. approximation order, shift-invariant spaces, integral operators, quasi-interpolation

AMS subject classifications. 41A35, 41A63, 65D10

PII. S0036141095279869

1. Introduction. There are many ways to construct approximation schemes as-
sociated with shift-invariant spaces. Among them are cardinal interpolation (see, e.g.,
[3, 8]), quasi-interpolation (see, e.g., [4, 7, 18]), projection (see, e.g., [9, 14, 16, 19]),
and convolution (see, e.g., [20]). In this paper, we unify these approximation schemes
in a systematic fashion by viewing them all as special cases of the approximation
scheme induced by an integral operator L of the form

(1.1) (Lf)(x) =

∫
K(x, y)f(y) dy, x ∈ Rn,

where the kernelK is assumed to be a complex-valued measurable function on Rn × Rn
and the convention

∫
=
∫

Rn has been adopted. In particular, we characterize the
approximation order provided by such an integral operator. We also give a charac-
terization of the approximation order provided by a finitely generated shift-invariant
space with stable generators. All of our results are valid for approximation in Lp(Rn),
1 ≤ p ≤ ∞.

A linear subspace S of Lp(Rn) is called shift-invariant if f ∈ S implies f(·−ν) ∈ S
for all ν ∈ Zn. Since our main interest lies in approximation from shift-invariant
spaces, it is natural to assume that the integral operator L commutes with all shift
operators Tν on Lp(Rn):

LTν = TνL, ν ∈ Zn.
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We use Tu to denote the translation of a function f by u ∈ Rn: (Tuf)(x) = f(x− u),
x ∈ Rn. If the translation is given by a multiinteger, we call it a shift (in accordance
with current parlance). It is easily seen that the commutativity described above is
equivalent to the equation

(1.2) K(x− ν, y) = K(x, y + ν) for all ν ∈ Zn and a.e. x, y ∈ Rn.

We also assume that our integral operator decays at a polynomial rate. To be precise,
the kernel function K is assumed to satisfy the following two conditions:

(1.3)

∫
Rn
|K(x, ·)| dx ∈ L∞([0, 1)n)

and, for some nonnegative integer m,

(1.4)

∫
Rn

(1 + ‖y‖)m|K(·, y)| dy ∈ L∞([0, 1)n),

where the norm ‖ · ‖ on Rn is defined by

‖y‖ := max{|y1|, . . . , |yn|} for y = (y1, . . . , yn) ∈ Rn.

Conditions (1.2)–(1.4) assure that the operator L given by (1.1) is a bounded operator
on Lp(Rn) (see Lemma 2.2). Moreover, when conditions (1.2) and (1.4) are fulfilled,
we can extend the domain of the operator L to include Πm = Πm(Rn), the linear space
of polynomials of (total) degree no greater than m on Rn. We adopt the convention
that Π−1 = {0}.

For h > 0, let σh be the scaling operator defined by the equation

σhf := f(·/h).

If L is a linear operator on Lp(Rn), then we denote by Lh the operator σhLσ1/h. Given
a positive integer m, we say that the integral operator L provides approximation order
m if for every sufficiently smooth function f in Lp(Rn),

‖Lhf − f‖p = O(hm) as h ↓ 0.

Let S be a closed shift-invariant subspace of Lp(Rn). Then σh(S) = {σhf : f ∈ S}.
We say that S provides approximation orderm if for every sufficiently smooth function
f in Lp(Rn),

inf
sh∈σh(S)

‖f − sh‖p = O(hm) as h ↓ 0.

In the next two sections, we shall show that under conditions (1.2)–(1.4), the integral
operator L provides approximation order m if and only if it reproduces all polynomials
in Πm−1. We use this result to characterize the approximation order provided by S
in terms of the Strang–Fix conditions, assuming that S is generated by finitely many
functions that have stable shifts and a suitable decay.

We use the standard multiindex notation as in [1]. For instance, if α and β are
multiindices, then |α| denotes the length of α and α ≤ β means that α is less than or
equal to β coordinatewise. For a domain D in Rn, we denote by ‖f‖p(D) the usual
Lp norm of a (complex-valued) function f on D. This is simply written as ‖f‖p when
D = Rn. We use f |E to denote the restriction of the function f to a subset E of
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its original domain. We denote by Wm
p (Rn) the usual Sobolev space as in [1] and by

|f |m,p the seminorm of a function f ∈Wm
p (Rn). We assume that all of our functions

are Lebesgue measurable. We denote by Cc(Rn) the space of compactly supported
continuous functions on Rn and by C0(Rn) the space of continuous functions on Rn
that vanish at infinity (see [10, p. 126]).

2. Approximation power of integral operators. In this section, we estimate
the lower bound of the approximation order provided by an integral operator that
commutes with shifts. In what follows, I denotes the unit cube [0, 1)n in Rn and p is
a real number such that 1 ≤ p ≤ ∞.

Theorem 2.1. Let K be a kernel function satisfying conditions (1.2)–(1.4), and
let L be the integral operator given in (1.1). If Lq = q for all q ∈ Πm−1, then

(2.1) ‖Lhf − f‖p ≤ C|f |m,phm, f ∈Wm
p (Rn),

where C is a constant independent of p, f , and h.

This result may be viewed as a generalization of the well-known Bramble–Hilbert
lemma. The proof of the theorem will be given after the next two lemmas.

Lemma 2.2. Let K be a kernel function satisfying conditions (1.2)–(1.4), and let
L be the integral operator given in (1.1). Let ‖L‖p be the norm of L as an operator
on Lp(Rn). Then there exists a constant M such that ‖L‖p ≤M for all 1 ≤ p ≤ ∞.

Proof. Let k1 :=
∫
|K(x, ·)| dx. Then for y ∈ I and ν ∈ Zn, we deduce from (1.2)

that

k1(y + ν) =

∫
|K(x− ν, y)| dx =

∫
|K(x, y)| dx.

This together with (1.3) implies that k1 ∈ L∞(Rn). Hence for any f ∈ L1(Rn),

‖Lf‖1 ≤
∫ ∫
|K(x, y)| |f(y)| dy dx =

∫
k1(y) |f(y)| dy ≤ ‖k1‖∞‖f‖1.

Similarly, the function k2 :=
∫
|K(·, y)| dy lies in L∞(Rn). Thus for any f ∈ L∞(Rn),

we have ‖Lf‖∞ ≤ ‖k2‖∞‖f‖∞. Let M be the maximum of ‖k1‖∞ and ‖k2‖∞. By
the Riesz–Thorin interpolation theorem (see, e.g., [10, Theorem 6.27]), we conclude
that ‖Lf‖p ≤M‖f‖p for all p, 1 ≤ p ≤ ∞.

In the next lemma, we summarize some properties of a special case of L that will
be used in the proof of Theorem 2.1 and on other occasions later. Select a function χ
in C∞c (Rn) such that

∫
χ = 1. Let

K(x, y) = χ(x− y), x, y ∈ Rn.

For this kernel, the integral operator defined in (1.1) is the usual convolution operator
χ∗. It is easy to verify that this kernel function satisfies conditions (1.2)–(1.4). It
follows from the previous lemma that the operator χ∗ is bounded on Lp(Rn). It is
clear that χ∗f ∈ C∞(Rn) for every locally integrable function f . Furthermore, one
can verify that the operator from Lp(Rn) to `p(Zn) given by f 7→ (χ∗f)|Zn is also
bounded. The dilates of this operator, σh(χ∗)σ1/h for h > 0, are often used as an
approximation tool. The convergence of this scheme as h ↓ 0 stems from the fact that
χ∗1 = 1, i.e., the operator χ∗ reproduces polynomials of degree zero. To enhance
approximation power, we need to choose a kernel function in such a way that the
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corresponding convolution operator reproduces polynomials of a higher degree. To
this end, we recall the following smoothing operator J employed in [12]:

(Jf)(x) =

∫
[f(x)−∇mu f(x)]χ(u) du, x ∈ Rn,

where m is a positive integer and ∇mu is the mth difference operator defined by

∇mu := (1− Tu)m, u ∈ Rn,

where 1 denotes the identity operator. Simple computations show that the smoothing
operator J is identical to the convolution operator χm∗, where

(2.2) χm(x) :=
m∑
j=1

(−1)j−1j−n
(
m

j

)
χ(x/j), x ∈ Rn.

It is clear that χm satisfies all the conditions that χ does, and, moreover, Jq = q for
all q ∈ Πm−1. The preceding discussion is summarized in the following lemma.

Lemma 2.3. The operator J = χm∗ maps locally integrable functions into in-
finitely differentiable functions. Moreover, there is a constant C independent of p and
f ∈ Lp(Rn) such that

(a) ‖Jf‖p ≤ C‖f‖p,
(b) ‖(Jf)|Zn‖`p ≤ C‖f‖p,
(c) ‖Jf − f‖p ≤ C|f |m,p for f ∈Wm

p (Rn), and
(d) Jf = f for all f ∈ Πm−1.
The proof of this lemma can be found in [12].
Proof of Theorem 2.1. Let f ∈ Wm

p (Rn). It suffices to show that ‖Lf − f‖p ≤
C|f |m,p since (2.1) follows from this estimate by a change of variables. Clearly,

(2.3)
‖Lf − f‖p ≤ ‖Lf − LJf‖p + ‖LJf − Jf‖p + ‖Jf − f‖p

≤ {||L||p + 1}||f − Jf ||p + ||LJf − Jf ||p.

By Lemma 2.2, M := sup1≤p≤∞ ‖L‖p <∞. Moreover, part (c) of Lemma 2.3 asserts
that ‖Jf − f‖p ≤ C|f |m,p. Consequently,

{‖L‖p + 1}||Jf − f ||p ≤ (M + 1)C|f |m,p.

It thus remains to prove that

(2.4) ‖LJf − Jf‖p ≤ C|f |m,p.

Let g := LJf − Jf , and define ax(ν) := g(x − ν) for ν ∈ Zn. Suppose 1 ≤ p < ∞.
Since g ∈ Lp(Rn), with I = [0, 1)n we have

‖LJf − Jf‖pp = ‖g‖pp =

∫
|g(x)|p dx =

∑
ν∈Zn

∫
I−ν
|g(x)|p dx

=
∑
ν

∫
I

|g(x− ν)|p dx =

∫
I

∑
ν

|g(x− ν)|p dx =

∫
I

||ax||p`p dx.

If p =∞, then we also have

‖LJf − Jf‖∞ = sup
x∈I
‖ax‖`∞ .
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Now it is clear that (2.4) will be established if we can show that

(2.5) ‖ax‖`p ≤ C|f |m,p, x ∈ I,

for some constant C independent of f , p, and x.
Let qz be the (m− 1)st Taylor polynomial of Jf about z ∈ Rn, and let rz be the

corresponding remainder, Jf−qz. Note that for every z ∈ Rn, we have Jf(z) = qz(z).
Furthermore, by the assumption on L, Lqz = qz. For each x ∈ I and ν ∈ Zn,

Jf(x− ν) = qx−ν(x− ν) = Lqx−ν(x− ν).

We therefore have

(2.6)

ax(ν) = g(x− ν) = (LJf − Jf)(x− ν) = (LJf − qx−ν)(x− ν)

= (LJf − Lqx−ν)(x− ν) = [L(Jf − qx−ν)](x− ν)

= (Lrx−ν)(x− ν) = (TνLrx−ν)(x) = (LTνrx−ν)(x).

The last step used the fact that L commutes with shifts. Next, for x, y ∈ Rn and
ν ∈ Zn, define

ex,y(ν) := rx−ν(y − ν) = (Tνrx−ν)(y).

Using (2.6), we can write, for each x ∈ I and ν ∈ Zn,

(2.7)

ax(ν) = (LTνrx−ν)(x) =

∫
K(x, y)(Tνrx−ν)(y) dy

=

∫
K(x, y)rx−ν(y − ν) dy =

∫
K(x, y)ex,y(ν) dy.

To estimate ex,y(ν), use the integral form of the remainder in Taylor’s theorem:

ex,y(ν) = rx−ν(y − ν) = (Jf − qx−ν)(y − ν)

=

∫ 1

0

∑
|α|=m

m

α!

(
DαJf

)(
x− ν + t(y − x)

)
(1− t)m−1(y − x)αdt

=

∫ 1

0

∑
|α|=m

m

α!
(T−x−t(y−x)D

αJf)(−ν)(1− t)m−1(y − x)α dt.

The operators J , Dα, and Tu commute with each other. It follows that for any
x, y ∈ Rn and ν ∈ Zn,

(2.8) |ex,y(ν)| ≤ m‖y − x‖m
∫ 1

0

∑
|α|=m

|(JT−x−t(y−x)D
αf)(−ν)| dt.

Since Dαf ∈ Lp(Rn), we can use Lemma 2.3(b) to obtain

(2.9)

∑
|α|=m

‖(J(T−x−t(y−x)D
αf))|Zn‖`p ≤ C

∑
|α|=m

‖T−x−t(y−x)D
αf‖Lp(Rn)

= C
∑
|α|=m

‖Dαf‖p = C|f |m,p.
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Now we combine (2.8) with (2.9) and use the generalized Minkowski inequality (see,
e.g., [10, p. 186]) to write

(2.10)

‖ex,y‖`p ≤ m‖y − x‖m
∫ 1

0

∑
|α|=m

‖(JT−x−t(y−x)D
αf‖`p dt

≤ m||y − x||m
∫ 1

0

C|f |m,p dt = mC ‖y − x‖m|f |m,p.

From equation (2.7), we have

|ax(ν)| ≤
∫
|K(x, y)| |ex,y(ν)| dy.

This leads to

‖ax‖`p ≤
∫
|K(x, y)| ‖ex,y‖`p dy

≤
∫
|K(x, y)|mC‖x− y‖m|f |m,p dy.

Note that ‖x− y‖ ≤ 1 + ‖y‖ for x ∈ I and y ∈ Rn. Hence it follows that

‖ax‖`p ≤ mC|f |m,p
∫

(1 + ‖y‖)m|K(x, y)| dy.

Taking (1.4) into account, we obtain the desired estimate (2.5), thereby completing
the proof.

We close this section by noting that when p =∞, the condition that L commutes
with shifts is not required (cf. [6]).

3. Upper bound. In this section, we show that the converse of Theorem 2.1 is
also true. This gives an upper bound for the approximation order and hence gives
a characterization of the approximation order provided by the integral operator dis-
cussed in the preceding section.

Theorem 3.1. Fix m ∈ N and p ∈ [1,∞]. Let K be a kernel function satisfying
conditions (1.2) and (1.4), and let L be the integral operator given in (1.1). If

(3.1) ‖Lhf − f‖p(I) = o(hm−1) for all f ∈ C∞c (Rn), as h ↓ 0,

then Lq = q for all q ∈ Πm−1.
The proof of the theorem is based on the following lemma.
Lemma 3.2. Fix m ∈ N. Let K be a kernel function satisfying conditions (1.2)

and (1.4), and let L be the integral operator given in (1.1). If

(3.2) ‖Lhq − q‖1(I) = o(hm−1) for all q ∈ Πm−1, as h ↓ 0,

then Lq = q for all q ∈ Πm−1.
Proof. Our proof is motivated by the work of Lei and Jia [17]. For−1 ≤ k ≤ m−1,

we shall prove that Lq = q for all monomials q(x) = xα with |α| = k. This will be
done by induction on k. Since Π−1 = {0}, the statement is true for k = −1. Suppose
0 ≤ k ≤ m − 1 and Lq = q for all q ∈ Πk−1. Let q(x) = xα, where α is some
multiindex such that |α| = k. We wish to prove Lq = q.
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Let h > 0 be such that 1/h is an integer. Then I is the disjoint union of the cubes
h(I − ν), where ν runs over the set

Jh := {(ν1, . . . , νn) ∈ Zn : −1/h < νj ≤ 0 for j = 1, . . . , n}.

Thus we have

‖Lhq − q‖1(I) =
∑
ν∈Jh

‖Lhq − q‖1
(
h(I − ν)

)
= hn

∑
ν∈Jh

‖Lσ1/hq − σ1/hq‖1(I − ν).

But σ1/hq = hkq; hence it follows that

(3.3) ‖Lhq − q‖1(I) = hn+k
∑
ν∈Jh

‖Lq − q‖1(I − ν).

By a change of variables, we obtain

‖Lq − q‖1(I − ν) = ‖TνLq − Tνq‖1(I) = ‖L(Tνq)− Tνq‖1(I).

Write Tνq = q + qν , where qν ∈ Πk−1. Since Lqν = qν , it follows that

LTνq − Tνq = L(q + qν)− (q + qν) = Lq − q.

This shows that

(3.4) ‖Lq − q‖1(I − ν) = ‖Lq − q‖1(I) for all ν ∈ Zn.

Note that the number of elements in Jh is (1/h)n. Therefore, (3.3) and (3.4) together
give

‖Lhq − q‖1(I) = hk‖Lq − q‖1(I).

Thus ‖Lhq − q‖1(I) = o(hm−1) implies that

‖Lq − q‖1(I) = o(hm−1−k).

Since k ≤ m− 1, we conclude that Lq − q = 0, i.e., Lq = q.
Proof of Theorem 3.1. By the Hölder inequality, with p′ being the exponent con-

jugate to p, we have

‖Lhf − f‖1(I) ≤ ‖Lhf − f‖p(I)‖1‖p′(I) = ‖Lhf − f‖p(I).

Hence (3.1) implies

(3.5) ‖Lhf − f‖1(I) = o(hm−1) for all f ∈ C∞c (Rn).

By Lemma 3.2, the theorem will be established if we can verify (3.2). For this purpose,
it suffices to consider a specific function q(x) = xα for |α| ≤ m−1. By the C∞-Urysohn
lemma (see [10, p. 237]), there exists a function χ ∈ C∞c (Rn) such that 0 ≤ χ ≤ 1,
χ = 1 on [−2, 2]n, and χ is supported on [−3, 3]n. Let f := χq. Then f ∈ C∞c (Rn),
f = q on [−2, 2]n, and |f(x)| ≤ |q(x)| for all x ∈ Rn. Hence we have

‖Lhq − q‖1(I) = ‖Lhq − f‖1(I) ≤ ‖Lh(q − f)‖1(I) + ‖Lhf − f‖1(I).
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In view of (3.5), we only have to show that

(3.6) ‖Lh(q − f)‖1(I) = o(hm−1).

A point x′ ∈ I can be written as h(x − ν), where x ∈ I, ν ∈ Zn and ‖ν‖ ≤ 1/h.
We observe that

Lh(q − f)(x′) = Lσ1/h(q − f)(x′/h) = Lσ1/h(q − f)(x− ν)

= TνLσ1/h(q − f)(x) = LTνσ1/h(q − f)(x).

Note that |q(x) − f(x)| = 0 for ‖x‖ ≤ 2 and |q(x) − f(x)| ≤ 2|q(x)| for all x ∈ Rn.
Hence for any h > 0 and x ∈ Rn,

|(LTνσ1/h)(q − f)(x)| =
∣∣∣ ∫ K(x, y)[(Tνσ1/h)(q − f)](y) dy

∣∣∣
=
∣∣∣ ∫ K(x, y)[σ1/h(q − f)](y − ν) dy

∣∣∣ =
∣∣∣ ∫ K(x, y)(q − f)(hy − hν) dy

∣∣∣
=
∣∣∣ ∫
‖hy−hν‖>2

K(x, y)(q − f)(hy − hν) dy
∣∣∣ ≤ 2

∫
‖hy−hν‖>2

|K(x, y)||(hy − hν)α| dy.

However, ‖hy − hν‖ > 2 implies that |(hy − hν)α| ≤ ‖(hy − hν)‖m = hm‖y − ν‖m.
Hence it follows that

|(LTνσ1/h)(q − f)(x)| ≤ 2hm
∫
‖y−ν‖>2/h

|K(x, y)|‖y − ν‖m dy.

Recall that ‖ν‖ ≤ 1/h. Hence ‖y − ν‖ > 2/h implies

‖y‖ ≥ ‖y − ν‖ − ‖ν‖ > 1/h ≥ ‖ν‖.

It follows that ‖y − ν‖ ≤ ‖ν‖+ ‖y‖ ≤ 2‖y‖. Therefore, for x ∈ I and ‖ν‖ ≤ 1/h, we
have

|(LTνσ1/h)(q − f)(x)| ≤ 2hm
∫
‖y−ν‖>2/h

|K(x, y)|(2‖y‖)m dy ≤ 2m+1hmM,

where M is a constant such that
∫
|K(x, y)|‖y‖m dy ≤M for almost every x ∈ I. The

existence of such a constant is guaranteed by (1.4). Consequently,

|Lh(q − f)(x′)| ≤ 2m+1hmM for a.e. x′ ∈ I,

from which (3.6) follows at once. This completes the proof of the theorem.
Remarks. Theorems 2.1 and 3.1 together characterize the approximation order

of an integral operator with its kernel satisfying (1.2)–(1.4) by means of the degree
of polynomials the operator can reproduce. Therefore, only integer approximation
orders appear in our settings. Also, Theorem 3.1 remains true if the cube I in (3.1)
is replaced by any nonempty open subset of Rn.

The following corollary will play an important role in the rest of the paper.
Corollary 3.4. Let S be a shift-invariant subspace of Lp(Rn). Let K be a kernel

function satisfying conditions (1.2)–(1.4), and let L be the integral operator given in
(1.1). Suppose that L is a projection onto S, i.e., L maps Lp(Rn) to S and Lf = f
for all f ∈ S. Then S provides approximation order m if and only if Πm−1 ⊂ S.
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Proof. If Lq = q for all q ∈ Πm−1, then by Theorem 2.1 we have

‖Lhf − f‖p ≤ C|f |m,phm for all f ∈Wm
p (Rn).

Consequently, since L(σ1/hf) ∈ S,

inf
s∈S
‖σhs− f‖p ≤ ‖σhLσ1/hf − f‖p = ‖Lhf − f‖p = O(hm) for all f ∈Wm

p (Rn).

Hence S provides approximation order m.
For the necessity part, assume that S provides approximation order m. Consider

f ∈ C∞c (Rn). Then

inf
sh∈σh(S)

‖f − sh‖p = O(hm).

But for any s ∈ S,

Lh(σhs) = (σhLσ1/h)(σhs) = (σhL)(s) = σhs.

It follows that

‖f − Lhf‖p ≤ ‖f − σhs‖p + ‖σhs− Lhf‖p

= ‖f − σhs‖p + ‖Lh(σhs− f)‖p

≤ (1 + ‖L‖p)‖f − σhs‖p.

Here we used ‖Lh‖p = ‖L‖p, proved by a change of variables. From the preceding
inequality, we have

‖Lhf − f‖p ≤ (1 + ‖L‖p) inf
s∈S
‖f − σhs‖p = O(hm).

By Theorem 3.1, Lq = q for all q ∈ Πm−1.

4. Stable families. In this section, we study finitely generated shift-invariant
spaces whose generators decay in a polynomial rate and have stable shifts.

In order to give a precise definition of “decay” for a function, we utilize a family
of spaces Lm, which originated from [13]. For m ∈ Z+, Lm is defined to be the space
of functions f such that

ess sup
x∈I

∑
ν∈Zn

|f(x+ ν)|(1 + ‖x+ ν‖)m <∞.

If f ∈ Lm, then we denote by ‖f‖Lm the essential supremum in this definition. It is
clear that Lm ⊂ Lp(Rn) for all 1 ≤ p ≤ ∞ and for all m = 0, 1, 2, . . . . The space Lm
is closely related to a certain Banach algebra, which we now define. Let Bm be the
set of functions τ of the form

τ(z) =
∑
ν∈Zn

a(ν)zν , z ∈ Rn,

with

(4.1) ‖τ‖Bm :=
∑
ν∈Zn

|a(ν)|(1 + ‖ν‖)m <∞.
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Here Rn denotes the torus in Cn:

Rn = {(z1, z2, . . . , zn) : zj ∈ C and |zj | = 1 for j = 1, 2, . . . , n}.

With the norm ‖ · ‖Bm and the usual pointwise operations (addition and multipli-
cation), Bm becomes a Banach algebra. The relationship between Lm and Bm is
revealed in the next lemma. For f and g in L := L0, define

[f, g](z) :=
∑
ν∈Zn
〈Tνf, g〉zν , z ∈ Rn.

This series converges uniformly and absolutely. (See part (a) of the following lemma.)
Here 〈f, g〉 :=

∫
f(x)ḡ(x) dx denotes the inner product of two functions f and g on

Rn, and ḡ means the complex conjugate of g. In the following, we use the symbol
∗′ to denote a “semidiscrete” convolution. Thus (f∗′a)(x) =

∑
ν∈Zn f(x− ν)a(ν), or

f∗′a =
∑
ν∈Zn a(ν)Tνf.

Lemma 4.1. Let f, g ∈ Lm and τ ∈ Bm. Write τ(z) =
∑
ν∈Zn a(ν)zν . Then

(a) [f, g] ∈ Bm and ‖[f, g]‖Bm ≤ ‖f‖Lm ‖g‖Lm ,
(b) f∗′a ∈ Lm and ‖f∗′a‖Lm ≤ ‖f‖Lm ‖τ‖Bm , and
(c) 1/τ ∈ Bm if τ(z) 6= 0 for all z ∈ Rn (Wiener’s lemma).
Proof. First note that for any v, w ∈ Rn,

1 + ‖v‖ ≤ 1 + ‖v + w‖+ ‖w‖ ≤ (1 + ‖v + w‖)(1 + ‖w‖).

Consequently,

(4.2) (1 + ‖v‖)m ≤ (1 + ‖v + w‖)m (1 + ‖w‖)m.

Now, to show that [f, g] ∈ Bm, we calculate, with the aid of inequality (4.2),∑
ν∈Zn

|〈Tνf, g〉|(1 + ‖ν‖)m =
∑
ν∈Zn

∣∣∣∣ ∫ f(x− ν)ḡ(x) dx

∣∣∣∣(1 + ‖ν‖)m

≤
∑
ν

∑
µ

∫
I

∣∣f(x+ µ− ν)g(x+ µ)
∣∣(1 + ‖ν‖)m dx

≤
∫
I

∑
µ

∑
ν

∣∣f(x+ µ− ν)
∣∣∣∣g(x+ µ)

∣∣(1 + ‖x+ µ− ν‖)m(1 + ‖x+ µ‖)m dx

≤
∫
I

‖f‖Lm‖g‖Lm dx = ‖f‖Lm‖g‖Lm .

This proves part (a) of the lemma.
For part (b), we have a similar calculation:∑

ν∈Zn
|(f∗′a)(x+ ν)|(1 + ‖x+ ν‖)m

≤
∑
ν

∑
µ

|f(x+ ν − µ)a(µ)|(1 + ‖x+ ν‖)m

≤
∑
µ

∑
ν

|f(x+ ν − µ)||a(µ)|(1 + ‖x+ ν − µ‖)m(1 + ‖µ‖)m

≤ ‖f‖Lm‖τ‖Bm .

Taking the essential supremum for x ∈ I, we obtain the assertion in (b). The assertion
in (c) follows immediately from Lemmas 3.2 and 3.3 of [16].
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We now consider stability of the shifts of a finite number of functions. Let p ∈
[1,∞]. A finite subset Φ = {φj}Nj=1 of L is said to have Lp-stable shifts, if there
are constants A > 0 and B > 0 such that for any finitely supported sequences aj
(j = 1, . . . , N),

(4.3) A

N∑
j=1

‖aj‖`p ≤
∥∥∥ N∑
j=1

φj∗′aj
∥∥∥
Lp
≤ B

N∑
j=1

‖aj‖`p .

The above definition is equivalent to the assertion that (4.3) holds for any sequences
aj ∈ `p when 1 ≤ p <∞ and for any aj ∈ c0 when p =∞. (The space c0 consists of all
sequences vanishing at infinity.) Indeed, the subspace of finitely supported sequences
is dense in `p (1 ≤ p <∞) and dense in c0. Furthermore, the series involved in f∗′a
converges absolutely for any f ∈ L and a ∈ `p (cf. [13]).

Let us recall from [13] that Φ has Lp-stable shifts if and only if there are sequences

bj ∈ `1(Zn), j = 1, . . . , N , such that the functions φ̃j := φj∗′bj are dual to the
functions φj in the sense that

(4.4) 〈Tνφj , Tµφ̃k〉 = δνµδjk, j, k = 1, . . . , N, µ, ν ∈ Zn,

where δ is the Kronecker symbol. Therefore, we may drop the affiliation Lp- from the
word “stability”.

Theorem 4.2. Let Φ = {φ1, φ2, . . . , φN} be a subset of L that has stable shifts.

Then Φ ⊂ Lm if and only if {φ̃1, φ̃2, . . . , φ̃N} ⊂ Lm.
Proof. Because of the dual relationship, we need to prove only one of the two

implications. Suppose that Φ ⊂ Lm. Let Φ(z) be the N ×N Gramian matrix of Φ:

Φ(z) :=
(
[φj , φk](z)

)
1≤j,k≤N , z ∈ Rn.

By Lemma 4.1(a), every entry of Φ(z) lies in Bm. Since Bm is a Banach algebra, every
minor of Φ(z), including the determinant det Φ(z), is in Bm. By Theorems 4.1 and
4.2 of [13], the stability of Φ implies that det Φ(z) 6= 0 for all z ∈ Rn. It follows from
Lemma 4.1(c) that the function 1/ det Φ(z), z ∈ Rn, is in Bm. We conclude that every
entry τjk(z) of the inverse matrix of the Gramian Φ(z) is in Bm. By [13, Theorem
4.1], the dual functions of φj are given by

φ̃j :=
N∑
k=1

φk∗′bjk, j = 1, . . . , N,

where bjk are the sequences representing the functions τjk:

τjk(z) =
∑
ν∈Zn

bjk(ν)zν , z ∈ Rn, j, k = 1, . . . , N.

In light of Lemma 4.1(b), φ̃j ∈ Lm for j = 1, . . . , N .

5. Approximation by projection. In this section, we study the approximation
order provided by projections onto some shift-invariant spaces. We employ the spaces
Lm introduced in the preceding section.

For a finite subset Φ = {φj}Nj=1 of Lp(Rn), we denote by S(Φ)p the Lp(Rn)-
closure of the linear span of the functions φj (j = 1, . . . , N) and their shifts. When
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the generators φj have stable shifts and p = 2, we can use their dual functions to
construct an orthogonal projection onto S(Φ)2. Since the functions in Φ and their
dual functions decay sufficiently fast, we can extend the orthogonal projections to
operators on Lp(Rn) for 1 ≤ p ≤ ∞. These facts are formalized as follows.

Lemma 5.1. Let {φ1, φ2, . . . , φN} be a subset of Lm with stable shifts and let φ̃j
be the dual functions (in the sense of (4.4)). Set

Pf :=

N∑
j=1

∑
ν∈Zn
〈f, Tν φ̃j〉Tνφj , f ∈ Lp(Rn),

K(x, y) :=
N∑
j=1

∑
ν∈Zn

φj(x− ν)φ̃j(y − ν), x, y ∈ Rn.

Then the following statements are true:
(a) P is a projection of Lp(Rn) onto S(Φ)p.
(b) For every f ∈ Lp(Rn), (Pf)(x) =

∫
K(x, y)f(y) dy, x ∈ Rn.

(c) The kernel K satisfies conditions (1.2)–(1.4).

Proof. Let S be the linear space of all functions of the form
∑N
j=1 φj∗′aj , where

aj lies in `p(Zn) for 1 ≤ p <∞ and lies in c0(Zn) for p =∞. Because of the stability
condition in (4.3), the space S is a closed shift-invariant subspace of Lp(Rn). This
is the smallest closed shift-invariant space containing the functions φj (j = 1, . . . , N)
and their shifts. Therefore, S = S(Φ)p. In other words, any function f ∈ S(Φ)p has

a representation of the form
∑N
j=1 φj∗′aj . Now we see that (a) is true by virtue of

the duality (4.4). The assertion in (b) comes from a straightforward calculation. It
remains to verify that the kernel function K satisfies conditions (1.2)–(1.4). Condition

(1.2) is obviously satisfied. From the decay properties of φj and φ̃j , (1.3) follows easily.
Indeed,

ess sup
y∈I

∫
|K(x, y)| dx ≤

N∑
j=1

‖φj‖L1
‖φ̃j‖L.

To verify (1.4), we use (4.2) to obtain

(1 + ‖y‖)m|K(x, y)| ≤
N∑
j=1

∑
ν∈Zn

(1 + ‖y − ν‖)m |φ̃j(y − ν)| (1 + ‖ν‖)m |φj(x− ν)|.

When x ∈ I, ‖ν‖ ≤ 1 + ‖x− ν‖ for every ν ∈ Zn. Consequently,

ess sup
x∈I

∫
(1 + ‖y‖)m|K(x, y)| dy

≤ ess sup
x∈I

N∑
j=1

∑
ν∈Zn

(2 + ‖x− ν‖)m|φj(x− ν)|
∫

(1 + ‖y‖)m|φ̃j(y)| dy.

The right-hand side is finite because of the decay properties of φj and φ̃j .
We are now in a position to consider the approximation power of the projection

operator P , which is determined by the so-called Strang–Fix conditions. Let m ∈ N,
1 ≤ p ≤ ∞, and Φ = {φj}Nj=1 ⊂ Lm. Note that the functions φj decay fast enough

so that the partial derivatives Dαφ̂j exist and are continuous for j = 1, . . . , N and
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|α| ≤ m − 1. (Here φ̂ denotes the Fourier transform of φ.) We say that Φ satisfies
the Strang–Fix conditions of order m if there is a finite linear combination φ of the
functions φj and their shifts such that

(5.1) φ̂(0) 6= 0,

(5.2) Dαφ̂(2πν) = 0, |α| ≤ m− 1, 0 6= ν ∈ Zn.

Theorem 5.2. Let Φ be a finite subset of Lm that has stable shifts. Let P be the
projection given in Lemma 5.1. Let h > 0 and Ph = σhPσ1/h. Then

(a) Ph is a projection onto σh(S(Φ)p);

(b) if Φ satisfies the Strang–Fix conditions of order m, then

(5.3) ‖Phf − f‖p ≤ C|f |m,phm, f ∈Wm
p (Rn),

where C is a constant independent of f , p, and h.

Proof. To prove (a), let sh ∈ Sh. Then sh = σhs for some s ∈ S(Φ)p. It follows
that

Phsh = (σhPσ1/h)(σhs) = σhPs = σhs = sh.

To prove (b), suppose that Φ satisfies the Strang–Fix conditions of order m. Let
q ∈ Πm−1 and write Φ = {φ1, φ2, . . . , φN}. As is well known (see, e.g., [18]), there
exist sequences aj , j = 1, . . . , N , such that

(i) |aj(ν)| = O(‖ν‖m−1) as ‖ν‖ → ∞;

(ii) q =
∑N
j=1 φj∗′aj .

Note that the growth property (i) and the decay properties of φj ensure that the series
defining φj∗′aj are absolutely convergent for almost all x. By the duality relation

(4.4), we have aj(ν) = 〈q, Tν φ̃j〉. Thus

Pq =
N∑
j=1

∑
ν∈Z

aj(ν)Tνφj =
N∑
j=1

φj∗′aj = q.

Since Pq = q for all q ∈ Πm−1, Theorem 2.1 asserts that the estimate in (5.3) is
valid.

The converse of the preceding theorem is also true. Therefore, we have the fol-
lowing characterization.

Theorem 5.3. Let Φ be a finite subset of Lm that has stable shifts. For 1 ≤ p ≤
∞, the shift-invariant space S(Φ)p provides approximation order m if and only if Φ
satisfies the Strang–Fix conditions of order m.

Proof. The sufficiency follows from Theorem 5.2. To prove the necessity, we apply
Lemma 5.1 and Corollary 3.4 to conclude that Pq(x) =

∫
K(x, y)q(y) dy = q(x) for

x ∈ Rn and q ∈ Πm−1, where P and K are as given in Lemma 5.1. Let qα(x) := xα/α!,
x ∈ Rn, and

ρα :=
N∑
j=1

〈qα, φ̃j〉φj , |α| ≤ m− 1.
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Then ρα ∈ span(Φ). Since qα(y) =
∑
β≤α qβ(y−ξ)qα−β(ξ) for all y, ξ ∈ Rn, we obtain

by Lemma 5.1 that

qα(x) = Pqα(x) =

∫ N∑
j=1

∑
ν∈Zn

φ̃j(y − ν)φj(x− ν)qα(y) dy

=
∑
β≤α

∑
ν∈Zn

N∑
j=1

[ ∫
φ̃j(y − ν)qβ(y − ν) dy

]
φj(x− ν)qα−β(ν),

where x ∈ Rn and |α| ≤ m − 1. In short, we get qα =
∑
β≤α ρβ∗′qα−β for |α| ≤

m − 1, which implies that Φ satisfies the Strang–Fix conditions of order m. (Here
and hereafter we use f∗′g for f∗′(g|Zn) when g is a continuous function on Rn.) This
implication is well known. For example, the argument used in [12] can be carried over
verbatim to the present setting.

A few remarks are in order. A characterization of the L2-approximation order of
a shift-invariant space is given in [2], where the conditions on decay and stability are
not required. In [11], a characterization of the Lp-approximation order (1 ≤ p ≤ ∞) is
established for the shift-invariant space generated by a compactly supported function
φ with φ̂(0) 6= 0.

6. Quasi-interpolation and cardinal interpolation. In this section, we con-
sider the approximation power provided by two important approximation schemes:
quasi-interpolation and cardinal interpolation.

Let us first look at quasi-interpolation. A quasi-interpolant associated with a
collection Φ = {φj}Nj=1 ⊂ L is a linear mapping Q(Φ,Λ), given by

(6.1) Q(Φ,Λ)f :=
∑
ν∈Zn

N∑
j=1

λj(T−νf)Tνφj ,

where the λj ’s are linear functionals on Lp(Rn) and Λ is the collection of these λj ’s.
Recall that a bounded linear functional λ on Lp(Rn) (1 ≤ p < ∞) has the

representation

λf =

∫
g(x)f(x) dx, f ∈ Lp(Rn),

where g is some function in Lp′(Rn) with 1/p′+ 1/p = 1. We say that λ is compactly
supported if g is. Moreover, by the Riesz representation theorem (see, e.g., [10,
p. 216]), a bounded linear functional λ on C0(Rn) has the representation

λf =

∫
f dµ, f ∈ C0(Rn),

where µ is a complex Borel measure on Rn. We say that λ is compactly supported if
there is a compact subset F of Rn such that µ(E \ F ) = 0 for every Borel subset E
of Rn. If this is the case, then the domain of λ can be extended to C(Rn).

The approximation order provided by a quasi-interpolant is closely related to
the Strang–Fix conditions (see, e.g., [3, 4, 5, 6, 7, 8, 18]). This fact is substantiated
again in the following theorem. Our primary interest here is to show that the results
concerning approximation power provided by integral operators may be easily applied
to quasi-interpolants.
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Theorem 6.1. Let m ∈ N, 1 ≤ p ≤ ∞, and Φ = {φj}Nj=1 ⊂ Lm. Then there is

a set of compactly supported bounded linear functionals Λ = {λj}Nj=1 on Lp(Rn) for
1 ≤ p <∞ or on C0(Rn) for p =∞ such that the quasi-interpolant Q(Φ,Λ) provides
approximation order m if and only if Φ satisfies the Strang–Fix conditions of order
m.

To prove this theorem we need the following.
Lemma 6.2. Let A be any bounded linear operator on Lp(Rn) (1 ≤ p ≤ ∞). Let

J denote the operator χm∗, where χm is the function given in (2.2). The operator A
provides approximation order m if and only if the composite operator AJ does so.

Proof. By definition, Ah = σhAσ
−1
h , Jh = σhJσ

−1
h , and (AJ)h = σh(AJ)σ−1

h .
Clearly, (AJ)h = AhJh. We also note that by a change of variable, ‖Ah‖p ≤ ‖A‖p for
all h > 0, where ‖Ah‖p and ‖A‖p denote the operator norms of Ah and A on Lp(Rn).
It follows that ∣∣∣‖Ahf − f‖p − ‖(AJ)hf − f‖p

∣∣∣
≤ ‖(Ahf − f)− (AhJhf − f)‖p

= ‖Ah(f − Jhf)‖p ≤ ‖A‖p ‖f − Jhf‖p.

By Lemma 2.3(c), ‖f − Jhf‖p = O(hm). The proof is complete.
Proof of Theorem 6.1. To prove the sufficiency, we assume that Φ satisfies the

Strang–Fix conditions of order m. Recall from [12] that there are finitely supported

sequences aj , j = 1, . . . , N , such that the function φ :=
∑N
j=1 φj∗′aj satisfies φ∗′q = q

for all q ∈ Πm−1. Let Q be the operator given by

Qf := φ∗′(χm∗f), f ∈ Lp(Rn),

where χm is the function given in (2.2). By Lemma 2.3(d), we have Qq = q for all
q ∈ Πm−1. Clearly, the operator Q can be written as a quasi-interpolant in the form
(6.1) and as an integral operator in the form (1.1) with the kernel function

K(x, y) :=

N∑
j=1

∑
ν∈Zn

χm∗′aj(ν − y)φj(x− ν), x, y ∈ Rn.

This kernel function satisfies conditions (1.2)–(1.4) since aj and χm are all compactly
supported. By Theorem 2.1, we conclude that Q provides approximation order m.

To prove the necessity, we assume that Λ = {λj}Nj=1 is a set of linear functionals
as described in the theorem such that the quasi-interpolant Q := Q(Φ,Λ) provides
approximation order m. Consider the composite operator L := QJ , where J := χm∗.
By straightforward computation, we obtain

Lf(x) =

∫
K(x, y)f(y) dy, x ∈ Rn,

where

K(x, y) =
∑
ν∈Zn

N∑
j=1

λj
(
χm(·+ ν − y)

)
φj(x− ν), x, y ∈ Rn.

Clearly, the kernel K satisfies (1.2). Moreover, since the λj ’s are bounded and com-
pactly supported, K satisfies conditions (1.3) and (1.4). In light of Lemma 6.2, L
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provides approximation order m. By Theorem 3.1, Lq = q for all q ∈ Πm−1. Conse-
quently, Qq = q for all q ∈ Πm−1 by Lemma 2.3(d).

In order to complete the proof, we need to consider linear functionals on Πm−1.
Let ∆m−1 denote the set of multiindices β with |β| ≤ m − 1. Let λ be a linear
functional on Πm−1. We claim that there exists a sequence a with support on ∆m−1

such that for all ν ∈ Zn,

(6.2) λ(q(·+ ν)) =
∑
α∈Zn

a(α)q(ν + α) for all q ∈ Πm−1.

Indeed, for each α ∈ ∆m−1, we can find a unique polynomial qα ∈ Πm−1 such that
qα(α) = 1 and qα(γ) = 0 for γ ∈ ∆m−1 \ {α}. Let a(α) := 0 for α ∈ Zn \∆m−1 and
a(α) := λqα for α ∈ ∆m−1. Then for every γ ∈ ∆m−1, we have∑

α∈Zn
a(α)qγ(α) = a(γ) = λqγ .

Since any polynomial q ∈ Πm−1 can be represented as
∑
γ∈∆m−1

q(γ)qγ , it follows
that ∑

α∈Zn
a(α)q(α) = λq.

The above identity is true for all q ∈ Πm−1. Thus if we replace q by q(· + ν), where
ν ∈ Zn, we obtain the desired relation (6.2).

By what has been proved in the previous paragraph, for each j = 1, . . . , N , we
can find sequences aj with support on ∆m−1 such that

λj(q(·+ ν)) =
∑
α∈Zn

aj(α)q(ν + α) for all q ∈ Πm−1.

It follows that

Q(Φ,Λ)q =
∑
ν∈Zn

q(ν)φ(· − ν),

where φ :=
∑N
j=1 φj∗′aj . Therefore, Q(Φ,Λ)q = q for all q ∈ Πm−1 implies that

φ∗′q = q for all q ∈ Πm−1. Hence Φ satisfies the Strang–Fix conditions of order m.
The proof of the theorem is complete.

Now let us consider cardinal interpolation. Let φ be a continuous function in
L. To interpolate a bounded sequence b by the shifts of φ, we look for a bounded
sequence a such that the function φ∗′a agrees with b on Zn. This is often called
“cardinal interpolation.” The problem is said to be “poised” if for any bounded
sequence b there exists a unique bounded sequence a for which φ∗′a is a cardinal
interpolant to b. Employing the same argument used in [3] and [8], we can show that
cardinal interpolation with φ ∈ L is poised if and only if the symbol of φ, defined by
the equation

sφ(ξ) :=
∑
ν∈Zn

φ(ν)eiν·ξ, ξ ∈ Rn,

does not vanish anywhere on Rn. If this is the case, we define the function ψ by the
rule

(6.3) ψ̂ := φ̂/sφ.
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The function ψ turns out to be well defined and to be the basic Lagrange interpolation
function because

ψ(ν) = δ0ν , ν ∈ Zn.

Therefore, ψ∗′ is the cardinal interpolation operator.
Theorem 6.3. Let m > 0 and let φ be a continuous function in Lm. Assume that

cardinal interpolation with φ is poised. Then the function ψ as defined in equation
(6.3) belongs to Lm. Furthermore, the following statements are equivalent:

(a) The cardinal interpolation operator ψ∗′ provides L∞-approximation order m.
(b) The function φ satisfies the Strang–Fix conditions of order m.
(c) The shift-invariant space S(φ)p generated by φ in Lp(Rn) (1 ≤ p ≤ ∞) pro-

vides Lp-approximation order m.
Proof. First, we prove that (a) and (b) are equivalent. Let

Lf := ψ∗′(χm∗f), f ∈ L∞(Rn),

where χm is the function given in (2.2). Then

Lf(x) =

∫
K(x, y)f(y) dy

with the kernel function

K(x, y) =
∑
ν∈Zn

χm(ν − y)ψ(x− ν).

Clearly, K satisfies condition (1.2). Moreover, since ψ ∈ Lm and χm is compactly
supported, K also satisfies conditions (1.3) and (1.4). By Lemma 6.2 and Theorems
2.1 and 3.1, we conclude that the cardinal interpolation operator ψ∗′ provides L∞-
approximation order m if and only if Lq = q for all q ∈ Πm−1. The latter is equivalent
to saying that ψ∗′q = q for all q ∈ Πm−1. If this is true, then by the Poisson
summation formula, we have ψ̂(0) = 1 and Dαψ̂(2βπ) = 0 for |α| ≤ m − 1 and

β ∈ Zn \ {0}. Since φ̂ = ψ̂sφ, by the Leibniz rule for differentiation, we see that φ
satisfies the Strang–Fix conditions of order m. Conversely, if φ satisfies the Strang–
Fix conditions of order m, then so does ψ because ψ̂ = φ̂/sφ. Hence for any q ∈
Πm−1, there exists a sequence a such that |a(ν)| = O(‖ν‖m−1) as ‖ν‖ → ∞ and
q =

∑
ν∈Zn a(ν)ψ(· − ν). But ψ(ν) = δ0ν , so this gives a(ν) = q(ν) for ν ∈ Zn. In

other words, ψ∗′q = q for all q ∈ Πm−1. Thus conditions (a) and (b) are equivalent.
Second, we show that conditions (b) and (c) are equivalent. By the assumption,

sφ(ξ) 6= 0 for all ξ ∈ Rn. It follows that the shifts of φ are stable. Indeed, by the
Poisson summation formula, we have

sφ(ξ) =
∑
β∈Zn

φ̂(ξ + 2πβ), ξ ∈ Rn.

Hence sφ(ξ) 6= 0 implies φ̂(ξ + 2πβ) 6= 0 for at least one β ∈ Zn. Thus Theorem 5.3
is applicable to the present situation. The equivalence of (b) and (c) follows.

Remark. After this work had been completed, we learned that Kyriazis in [15]
also considered approximation by means of kernel operators. In his paper, Kyriazis
obtained lower bounds for the approximation order provided by integral operators
under a different set of conditions assumed for the kernel functions. However, his
paper does not contain any result on the upper bound for the approximation order.
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Abstract. We consider the compressible Euler system of conservation laws for the mass, mo-
mentum, and energy of a gas. We prove that Murat and Tartar’s compensated compactness method
applies to this system in two cases: either

(1) the equations of state have a special form (specifically, the Lagrangian sound speed is a
function of the pressure only) that leads to the existence of a large family of entropy pairs

or

(2) the conservation law of energy is replaced by the conservation law for the specific entropy.
Indeed, the latter is the physically meaningful formulation when the system is derived by relaxation
from an isentropic two-phase mixture.

The paper primarily investigates the structure of the gas dynamics system and includes a com-
plete description of the (i) mathematical entropies, (ii) decoupling properties, (iii) invariant domains
after Chuey, Conley, and Smoller’s theory, and (iv) Tartar’s commutation relations. The existence
of weak solutions in cases (1) and (2) above is deduced from the pioneering work of DiPerna.

Key words. gas dynamics, discontinuous solutions, entropy, compensated compactness method

AMS subject classifications. 35L65, 65M12

PII. S0036141095285831

1. Introduction. This paper considers certain hyperbolic systems of PDEs that
arise in the modeling of compressible fluid flows and multiphase mixtures. We are
interested in proving the existence of entropy discontinuous solutions based on the
vanishing artificial viscosity method. We recall that smooth solutions to hyperbolic
conservation laws do not exist globally in time even if the initial data are smooth.
Weak solutions in the sense of distributions are sought and must be further selected
with the so-called entropy criterion; cf. Lax [17, 18] and Dafermos [12] for background
on hyperbolic problems.

Activity concerning the existence of entropy weak solutions to systems of con-
servation laws with data in L∞ was initiated in the pioneering work of DiPerna
[13, 14, 15]. In particular, in [14], the existence of globally-defined-in-time, weak
solutions to the isentropic Euler system was established. This system is composed of
two conservation laws for the mass and momentum of the gas assuming (formally)
that the specific entropy is a constant. DiPerna’s proof can be viewed as one of the
main success of the compensated compactness method introduced by Murat and Tar-
tar [22, 30]. The latter is an efficient tool for studying nonlinear composite limits of
weakly convergent sequences. The proof by DiPerna uses the fact that the system of
isentropic gas dynamics is genuinely nonlinear in the sense of Lax and admits a large
family of mathematical entropy pairs, i.e., additional conservation laws. The latter
are necessary to take advantage of Tartar’s commutation relations.

DiPerna’s results have been extended in several directions for systems of two (and
more) conservation laws. We refer to the works by Serre [26, 28, 29] and Chen et al.
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[3, 6, 7, 8] and the references cited therein; cf. also the recent contributions by Lions
et al. [19, 20] and Chen and Lefloch [5]..

We focus here on the full system of gas dynamics composed of three conservation
laws of mass, momentum, and energy. Generally speaking, this system shares few
properties with the isentropic system due to the lack of mathematical entropies, and it
has been recognized that the compensated compactness method should fail in general
[2]. In this paper, we intend to tackle this system in two special instances. In both
cases, it will be established that the 3× 3 system of gas dynamics has a very similar
structure to that of the isentropic 2×2 system. Our results can therefore be viewed as
a direct corollary of DiPerna’s fundamental work [13, 14]. The purpose of this paper
is above all to investigate the mathematical properties of the gas dynamics system.
It contains a full description of the mathematical entropies, decoupling properties,
bounded invariant domains, and properties of Tartar’s commutation relations.

Our motivation in this paper has been to search for (necessary and) sufficient
conditions that allow one to use the compensated compactness technique on the gas
dynamics system. In section 2, we investigate a special class of equations of state—
specifically, the case where the Lagrangian sound speed of the gas depends upon the
pressure only. This assumption leads to many interesting properties for the Euler
system. It admits a large family of mathematical entropy pairs, and Chuey, Conley,
and Smoller’s theory applies to obtain bounded invariant domains. It follows that
under the assumption above, the system belongs to the class of rich systems introduced
by Serre [27]. We prove the strong convergence of the vanishing artificial viscosity
method, which implies existence of entropy weak solutions. We recall that the 3× 3
system under consideration possesses two genuinely nonlinear characteristic fields and
one linearly degenerate field. Observe that in our main theorem in section 2 (Theorem
2.1), all of the variables (say, density, velocity, and entropy) are proven to be L∞

functions; furthermore, the entropy variable can propagate oscillations as expected.
Note that Theorem 2.1 allows vacuum states in the solution. The system is not strictly
hyperbolic at those points, and we use [14].

As this paper was completed, we learned of a result similar to our Theorem 2.1—
however, in the Lagrangian framework—by Chen and Dafermos [4].

Section 3 of the paper considers a coupled set of two isentropic Euler systems that
arise in the modeling of two-phase mixtures. By relaxation from this 4× 4 model, a
system of three conservation laws is derived. We observe that, somewhat surprisingly,
and for smooth solutions only, the latter is equivalent to the gas dynamics system.
However, the systems are distinct for discontinuous solutions. Instead of the classical
formulation that is composed of the conservation laws of mass, momentum, and energy
supplemented with the entropy inequality, we arrive at a set of conservation laws for
the mass, momentum, and specific entropy supplemented with an energy inequality.
In this new form, the gas dynamics system happens to share many properties with
the isentropic 2× 2 system. We check that the linearly degenerate characteristic field
is a Temple field so that the method of Benzoni-Gavage and Serre [1] applies. We
prove the existence of entropy solutions for this rather nonclassical formulation of the
gas dynamics system. The key of the proof is that a uniform estimate for the total
variation of the specific entropy can be derived.

For further properties of the compressible Euler equations, we refer to Bonnetier
and LeFloch [2].

2. A class of equations of state. We consider the compressible Euler system,
which consists of the conservation laws for the mass, momentum, and total energy of
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a gas [10]:

(2.1)

∂tρ+ ∂x(ρu) = 0,

∂t(ρu) + ∂x(ρu2 + p) = 0,

∂t(ρE) + ∂x(ρuE + pu) = 0.

The main unknowns are the specific density ρ, the velocity u, and the total energy
E. We define the internal energy e as e = E − u2/2 and the specific entropy S and
the temperature T > 0 by the classical relation TdS = pd(1/ρ) + de. The equation of
state yields the pressure p as a (smooth enough) function of ρ and S:

(2.2a) p = p(ρ, S) > 0, pρ > 0 for all ρ > 0.

We also make the standard assumption that

(2.2b) pρρ > 0 and pS > 0 for all ρ > 0.

The Eulerian sound speed c is classically defined by

c2 = pρ(ρ, S) =
(
pρ + ρ−2ppe

)
(ρ, e).

It will be convenient to express our results in term of the variables u, p, and S. There-
fore, we set ρ = ρ̃(p, S) and e = ẽ(p, S) with the natural constraint ẽp + p

(
1/ρ̃
)
p

= 0.

We introduce the specific volume v = 1/ρ (we shall use the notation v = ṽ(p, S) as
well) and the Lagrangian sound speed C = ρc. The latter is the relevant wave speed
when the mass Lagrangian coordinates are being used.

In view of (2.2), system (2.1) is strictly hyperbolic and possesses two genuinely
nonlinear characteristic fields associated with the wave speeds u± c and one linearly
degenerate field associated with u. Strict hyperbolicity, however, may be lost in the
vacuum where ρ = 0. It is well known that discontinuities form in finite time in
initially smooth solutions to (2.1). We are interested in proving existence of weak
solutions based on the vanishing artificial viscosity method. Therefore, we consider
the following approximation:

(2.3)

∂tρ
ε + ∂x(ρεuε) = ε ∂2

xx(ρε),

∂t(ρ
εuε) + ∂x(ρε(uε)2 + pε) = ε ∂2

xx(ρεuε),

∂t(ρ
εEε) + ∂x(ρuεEε + pεuε) = ε ∂2

xx(ρεEε).

We shall assume that smooth solutions to (2.3) assuming a smooth initial data exist.
For a proof in the isentropic case, see [14]. Initial data for u, p, and S—say, u0, p0,
and S0, respectively—are assumed to be given functions in L∞(R) and, with obvious
notation, we assume that ρ0 and ρ0E0 belong to L1(R). The entropy inequality is
classically stated as

(2.4) ∂t(ρS) + ∂x(ρuS) ≤ 0,

which, at least formally, can be checked for the limit of the (uε, pε, Sε)’s as ε→ 0.
In this section, we consider the case where the Lagrangian sound speed is a

function of the pressure, i.e.,

(2.5) C(p, S) = C0(p) or, equivalently, ρc(p, S) = C0(p).
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As we prove below, (2.5) is satisfied if for some positive constants a and b,

(2.6)
1

ρ̃(p, S)
− aS and ẽ(p, S)− bS are functions of p only.

Our main result of existence and convergence is now stated.
Theorem 2.1. Consider the compressible Euler system (2.1)–(2.2) with an equa-

tion of state of the form (2.6). Then we have the following uniform bounds for the
approximate solutions (uε, pε, Sε) generated by (2.3):

(2.7a)
0 ≤ pε(t, x), |uε(t, x)| ≤ const.

(
‖p0‖L∞(R) + ‖u0‖L∞(R)

)
,

0 ≤ Sε(t, x) ≤ const. supR S0,

where the constants are independent of t, x, and ε, and

(2.7b) ‖ρε(t)‖L1(R) = ‖ρε0‖L1(R), ‖ρε(t)Eε(t)‖L1(R) = ‖ρε0E0‖L1(R).

Let us make one of the following two assumptions:
(1) the approximations are bounded away from the vacuum, i.e.,

(2.8a) 0 < const. ≤ pε(t, x) ≤ const.

with uniform constants ;
(2) the equation of state has the form

(2.8b) p = k ργ with γ > 1 and k > 0.

Then there is a triplet (u, p, S) in L∞(R+×R)3 with ρ and ρE in L∞(R+, L
1(R))

and a subsequence of (uε, pε, Sε) such that

(2.9)
uε → u, pε → p in the strong Lq norm for all finite q,
ρε = ρ̃(pε, Sε) ⇀ ρ = ρ̃(p, S) in the weak-? L∞ topology,

and (u, p, S) is an entropy weak solution to (2.1) and (2.4).
The proof of Theorem 2.1 is based on four lemmas dealing, respectively, with
1. the mathematical entropies (Lemma 2.1),
2. a decoupling property (Lemma 2.2),
3. Tartar’s equation (Lemma 2.3), and
4. the invariant regions (Lemma 2.4).
We shall state these four lemmas, give their proofs, and conclude with a proof of

Theorem 2.1. First, we provide a complete description of the set of entropies. A pair
(U,F ) is a mathematical entropy for the system

∂tw + ∂xf(w) = 0

if every smooth solution w satisfies the additional conservation law

∂tU(w) + ∂xF (w) = 0.

Equivalently, the pair (U,F ) should satisfy

(2.10) ∇F (w) = ∇U(w)∇f(w).
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We prove that (2.5) is a necessary and sufficient condition for the existence of a large
family of entropies for (2.1).

Lemma 2.1. Consider the compressible Euler system (2.1). Let us view C as a
function of the variables (p, S).

(1) Suppose first that ∂SC is identically zero, so (2.5) holds. Then the mathemat-
ical entropies U are of the form

(2.11a) U(u, p, S) = ρh(S) + ρh1(u, p)

(with ρ viewed as a function of (p, S)), where h is an arbitrary function and h1 satisfies
the following wave equation:

(2.11b) ∂2
uuh1 − ∂p

(
C0(p)2 ∂ph1

)
= 0.

(2) Suppose that ∂Sc does not vanish identically on any interval. Then the math-
ematical entropies U are of the form

(2.12) U(u, p, S) = ρh(S),

where h is an arbitrary function.
The existence of entropies that depend upon u for particular equations of state

was discovered by Schochet [25] and Croisille and Villedieu [11]. For simplicity, we
did not include the trivial entropies ρ, ρu, and ρE in case (2) of Lemma 2.1. However,
the latter are recovered in case (1) by a suitable choice of h1.

Lemma 2.2. Assume that (2.5) holds. We denote by g an antiderivative of
−1/C0(p)2 and by G an antiderivative of pg′, i.e.,

g′(p) = − 1

C0(p)2
, G′(p) = pg′(p).

Then there exist two functions g1 = g1(S) and g2 = g2(S), one of which is noncon-
stant, that satisfy

(2.13) g′1(S) ≥ 0 and g′2(S) ≥ 0

so that

(2.14)
1

ρ(p, S)
= g(p) + g1(S), e(p, S) = −G(p) + g2(S).

The assumption (2.6) made in Theorem 2.1 corresponds to the choice g1(S) =
aS and g2(S) = bS in (2.14). We continue our discussion with the more general
assumption, i.e., (2.5). We shall return to (2.6) in the course of the proof of Theorem
2.1. Assuming (2.5), we now show that (2.1) can be formally decoupled into a system
of two equations for u and p and a scalar equation for S. As explained now, the
decoupling holds for smooth solutions in Lagrangian coordinates but also in a weaker
sense for weak solutions in Eulerian coordinates.

For smooth solutions, system (2.1) is equivalent to

(2.15)

∂tp+ u∂xp+
C0(p)2

ρ
∂xu= 0,

∂tu+ u∂xu+
1

ρ
∂xp= 0,

∂tS + u∂xS= 0.
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The decoupling becomes clear when using Lagrangian coordinates. Consider the
change of variables (t, x)→ (t, y) defined by

(2.16) ∂ty = ρu, ∂xy = −ρ.

Again, for smooth solutions, (2.15) transforms into

(2.17)
∂tp+ C0(p)2∂yu= 0,

∂tu+ ∂yp= 0,
∂tS= 0.

The first two equations in (2.17) can be solved independently of the last one. This is
not true when (2.5) is not satisfied and C0 depends on S as well.

Next, consider the case of discontinuous solutions. The change of variables
(t, x) → (t, y) is Lipschitz continuous if ρ and u are measurable and bounded func-
tions. We recall that the Lagrangian–Eulerian transformation preserves the notion of
entropy weak solution [32]. In view of (2.14), the equations in (2.1) take the form

(2.18)

∂t
1

g + g1
+ ∂x

u

g + g1
= 0,

∂t
u

g + g1
+ ∂x

(
u2

g + g1
+ p

)
= 0,

∂t
−G(p) + g2(S) + u2/2

g + g1
+ ∂x

(
(−G(p) + g2(S) + u2/2)u

g + g1
+ pu

)
= 0.

Passing to Lagrangian coordinates, we are left with

(2.19)

∂t(g(p) + g1(S))− ∂yu= 0,

∂tu+ ∂yp= 0,

∂t

(
−G(p) +

u2

2
+ g2(S)

)
+ ∂y(pu) = 0,

i.e.,

(2.20)

∂tg(p)− ∂yu= −∂tg1(S),

∂tu+ ∂yp= 0,

∂t

(
−G(p) +

u2

2

)
+ ∂y(pu) = −∂tg2(S).

Observe that the right-hand side of (2.20) depends on u and p but not on S. Consider
the first two equations in (2.17) and (2.20). The left-hand sides in (2.17) and (2.20)
coincide (up to multiplying the first equation in (2.17) by g′(p)); the right-hand side
of (2.17) is identically zero, whereas the right-hand side of (2.20) contains a term due
to the fact that the specific entropy need not be a smooth function.

Possible oscillations in the sequence (uε, pε, Sε) are classically described by a
Young measure νt,x, i.e., a probability measure for almost every (t, x) such that

f(uε, pε, Sε) ⇀ 〈νt,x, f〉 L∞ weak-?

for every continuous function f . Uniform bounds on the amplitude of the (uε, pε, Sε)’s
are assumed for the time being (cf. Lemma 2.4 below). The following lemma is
concerned with the reduction of the Young measure to a Dirac mass measure.
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Lemma 2.3. Let ν = ν(u, p, S) be a Young measure with compact support that
satisfies Tartar’s commutation relations

(2.21) 〈ν, U1F2 − U2F1〉 = 〈ν, U1〉〈ν, F2〉 − 〈ν, U2〉〈ν, F1〉

for any (U1, F1) and (U2, F2) in the following family of entropy pairs:

(2.22)
U(u, p, S) = ρh(S) + ρh1(u, p),

F (u, p, S) = ρuh(S) + ρuh1(u, p) + k1(u, p),

where h is arbitrary, h1 is a solution to (2.11b), and k1 is given by solving k1,u =
C0(p)2h1,p and k1,p = h1,p. Suppose that either the closure of the support of ν contains
no point with ρ = 0 or C0 is defined from the equation of state (2.8b). Then ν is a
tensor product of the form

(2.23) ν(u, p, S) = δu∗ ⊗ δp∗ ⊗ µ(S),

where u∗ and p∗ are constants and µ = µ(S) is a probability measure.
Let us complete Lemma 2.3 with additional comments. We recall that Tartar

obtained a reduction of the Young measure in the case of scalar equations using only
one entropy function. Next, DiPerna proved a similar result for the elasticity system
[13]. Following [13] and [8, 31], it is not difficult to check the following result for
the 3× 3 system. If the Young measure ν has a small support in the variables (u, p)
about a constant state (u∗, p∗), then one extra entropy pair is enough to obtain the
reduction of the Young measure to the form (2.23). Namely, one can consider the
mathematical entropy

(2.24) U(u, p, S) =
ug(p)

g(p) + g1(S)
, F (u, p, S) = p+

u2

2

g(p)− g1(S)

g(p) + g1(S)
.

It remains to derive the required a priori estimates. The following result was first
mentioned in [27].

Lemma 2.4. Each domain{
±u+

∫ p dp

C0(p)
≤ const.

}
is an invariant domain for (2.1) and (2.3). The uniform bounds

(2.25)

0 ≤ pε(t, x), |uε(t, x)| ≤ const.,

0 ≤ sup
x∈R

Sε(t, x) ≤ sup
x∈R

Sε(0, x)

hold for the approximate solutions (uε, pε, Sε) generated by (2.3) with a constant in-
dependent of t, x, and ε.

We now give the proofs of the lemmas stated above.
Proof of Lemma 2.1. It is convenient to use the Lagrangian coordinates (2.16)

which transform (2.1) into

∂tu+ ∂yp= 0,

∂tp+ C(p, S)2∂yu= 0,

∂tS= 0.
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Searching for conservation laws of the form ∂tϕ(u, p, S) + ∂yψ(u, p, S) = 0, we arrive
at the following necessary and sufficient conditions:

(2.26)

ψu = C(p, S)2ϕp,

ψp = ϕu,

ψS = 0.

Eliminating ψ in (2.26), we obtain

(2.27)

ϕuu =
(
C(p, S)2ϕp

)
p
,

ϕuS = 0,

(C(p, S)2ϕp)S = 0.

First, suppose that C = C0(p). Then the third equation in (2.27) reduces to
ϕpS = 0. It follows that ϕ has the form

ϕ(u, p, S) = h(S) + h1(u, p),

where h is an arbitrary function of S and h1 is a solution to the wave equation (2.11b).
The associated entropy flux ψ is obtained by integration from (2.26). We can recover
the conservation laws (2.1) with suitable choices of h and h1. We also observe that
the entropy flux does not depend on S. In particular, this implies that the pair (h1, ψ)
is also an entropy pair for the 2 × 2 system composed of the first two equations in
(2.17).

Next, consider the case that CS 6= 0. Taking the u-derivative of the third equation
in (2.27) and combining it with the second equation in (2.27) yields (C2)Sϕup = 0.
Therefore, ϕ can be decomposed into

ϕ(u, p, S) = h2(p, S) + h3(u).

From the first equation in (2.27), it follows that h′′3(u) = ∂p
(
C2∂ph2

)
(p, S), which

therefore equals some constant, say α. We deduce the general form of h2 and h3 by
integrating out the latter:

ϕ(u, p, S) =
αu2

2
+ βu+

∫ p αp+ γ

C2(p, S)
dp+ h(S),

where α, β, and γ are arbitrary constants and h is an arbitrary function of S. Choosing
the constant in a proper way, we see that the only available entropies are the specific
volume, the velocity, the energy, and any function of the physical entropy S. In other
words, there is no extra conservation law but

∂tS = 0.

The above conclusions are easily rewritten in the Eulerian setting by observing
that U = ρϕ, F = ρuϕ + ψ is an entropy pair for (2.1) if (ϕ,ψ) is an entropy pair
in the Lagrangian framework. Finally, the conditions that guarantee the convexity of
the entropies are derived from straightforward computations; cf. also Harten [16] for
the entropy (2.12). The proof of Lemma 2.1 is complete.

Proof of Lemma 2.2. Using the specific volume v = 1/ρ instead of ρ, condition
(2.5) reads −pv = C0(p)2, which is readily integrated (in view of the definition of g,
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i.e., g′(p) = −1/C0(p)2) into g(p) = v − g1(S) for some function g1. This leads to
the expression for the density ρ in (2.14). The expression for the energy e follows
immediately by integration from the constraint ẽp + pṽp = 0. Observe that all of
standard thermodynamics constraints are satisfied. In particular, we have

p dv + de = (pg′1(S) + g′2(S)) dS ≡ TdS

with T > 0 if (2.13) holds and if not both of the functions g1 and g2 are con-
stants.

Proof of Lemma 2.3. First, consider relation (2.21) for the family of entropies of
the form of (2.11) with h = 0. We observe that the latter reduces to the classical
commutation relations for the isentropic system. Namely, define a two-variable Young
measure ν̃ = ν̃(u, p) by the relation

〈ν̃, θ〉 =
〈ν, ρ(p, S)θ(u, p)〉
〈ν, ρ(p, S)〉 for every continuous θ.

For every continuous h1 and h2, we have

(2.28)
〈ν, ρh1(ρuh2 + k2)− ρh2(ρuh1 + k1)〉

= 〈ν, ρh1〉〈ν, (ρuh2 + k2)〉 − 〈ν, ρh2〉〈ν, (ρuh1 + k1)〉.

Using (2.28) and choosing h2 = 1 and k2 = 0, we get the following relation for the
new measure ν̃:

〈ν̃, ρuh1〉 − 〈ν̃, (ρuh1 + k1)〉 = 〈ν̃, h1〉〈ν̃, u〉〈ν, ρ〉 − 〈ν, ρ〉
〈
ν̃, uh1 +

k1

ρ

〉
.

This combined with (2.28) easily yields

(2.29) 〈ν̃, h1k2 − k2h1〉 = 〈ν̃, h1〉〈ν̃, k2〉 − 〈ν̃, k2〉〈ν̃, h1〉.

Therefore, we can apply the classical reduction theorem to ν̃ and (2.29), that is, either
the result in [13] in the strictly hyperbolic case (if the support of ν does not meet the
vaccum) or the result in [14] if the equation of state is given by (2.8b) and a vacuum
is allowed. It follows that the Young measure ν̃ is either a Dirac mass in (u, p) or has
its support on the vacuum line

{
p = 0

}
. We observe that we may modify the measure

ν at the vacuum points to meet our purpose, and (2.23) is established.
Proof of Lemma 2.4. Under assumption (2.5), system (2.1) admits the three

Riemann invariants ±u+
∫ p
dp/C0(p) and S as is clear from the decoupled formulation

(2.17). The desired estimates in Lemma 2.4 are a consequence of Chuey, Conley,
and Smoller’s theory about bounded invariant domains for nondegenerate parabolic
equations [9]. The relevant properties for each of the above functions, say G(u, p, S) =
G(ρ, ρu, ρE), are as follows:

(2.30a) ∇(ρ,ρu,ρE)G is a left eigenvector

of the Jacobian matrix of the conservative system (2.1), and G is a quasi-convex
function, that is, for every ξ ∈ R3,

(2.30b) ξ · ∇(ρ,ρu,ρE)G = 0 =⇒ ∇2
(ρ,ρu,ρE)G ≥ 0.

These properties are easily checked for G = ±u+
∫ p
dp/C0(p) or G = S.
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Note that assumption (2.5) is not necessary to derive the a priori estimate for
Sε; cf. [3] for details. Consider for simplicity a sequence of entropy solutions to
(2.1). Consider the entropy inequality associated with the entropy (2.12) for functions
satisfying h′ > 0 and h′′ > 0. Integrating the inequality ∂tρ

ε h(Sε) ≤ 0 with respect
to the space variable, we get

(2.31)
d

dt

∫
R
ρε h(Sε) dx ≤ 0.

Writing (2.31) for the family of functions hq(S) = Sq with q →∞ yields at the limit

d

dt
sup
x∈R

Sε(t, x) ≤ 0,

at least away from the vacuum. We observe that without loss of generality the value
of S can be arbitrarily modified at a point where ρ = 0. Namely, in the equations
in (2.1) and the entropy inequalities, all of the terms containing the variable S are
multiplied by ρ. The proof of Lemma 2.4 is complete.

Proof of Theorem 2.1. In view of Lemma 2.4, there exists a Young measure
to represent the composite weak-? limits of the sequence (uε, pε, Sε). In order to
apply the compensated compactness method to (2.3), we recall [13] that the entropy
dissipation measures corresponding to the entropies in (2.22),

∂tU(u, p, S) + ∂xF (u, p, S),

remain in a compact subset of the negative Sobolev space H−1
loc . This follows from

an energy-type estimate for (2.3) and Murat’s lemma [21]. Therefore, the classical
div–rot lemma applies and provide us with (2.21). Lemma 2.3 shows that the Young
measure is a Dirac mass in the variables (u, p) but not necessarily in S. It follows that
there is a pair (u, p) and a subsequence such that (uε, pε) converges strongly in all
Lq (q < ∞) and Sε converges weakly. Extracting another subsequence if necessary,
we can assume that ρε converges weakly to some function, say ρ. We then define S
by the relation ρ̃(p, S) = ρ. We emphasize that with the choice of variables (u, p, ρ),
the conservative variables and fluxes in (2.1) are linear functions of ρ. Namely, this
is obvious for the conservation laws of mass and momentum. On the other hand, for
the energy equation, we observe that assumption (2.6) used with (2.14) implies

ρE = ρ

(
u2

2
−G(p)− bg(p)

a

)
so that the conservative variable and the flux in the conservation law of energy are
linear in ρ. Note that assumption (2.6) is required in this step of the proof only. Since
uε and pε converge strongly and ρε converges weakly but we need to deal with linear
functions of ρε only, one can justify the passage to the limit in (2.3) and get (2.1).
The proof of Theorem 2.1 is complete.

3. Relaxed model for two-phase mixtures. Let us begin with the following
system of four conservation laws (i = 1, 2):

(3.1)
∂tρi + ∂x(ρiui) = 0,

∂t(ρiui) + ∂x(ρiu
2
i + pi) = si

ρ2

δ
(u1 − u2),
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which describes a mixture of two fluids, say of gas and water bubbles. Here s1 = −1
and s2 = 1. The main unknowns are the mass density ρi and the velocity ui of
the phases i = 1, 2. We supplement the system with the equations of state for the
pressures pi. We shall assume that

pi = p̃i(ρi),
dp̃i
dρ

> 0,
d2p̃i
dρ2

> 0,

which ensures the hyperbolicity and genuine nonlinearity of (3.1). The internal energy
ei = ẽi(ρi) is defined by the relation

(3.2)
dẽ′i
dρ

=
p̃i
ρ2
i

and the total energy for phase i is Ei = ei + u2/2. In view of

(3.3) ∂t(ρiEi) + ∂x(ρiuiEi + piui) = siui
ρ2

δ
(u1 − u2),

which follows from (3.1) (at least for classical solutions), it is natural to supplement
(3.1) with the entropy inequality

(3.4) ∂t(ρ1E1 + ρ2E2) + ∂x(ρ1u1E1 + ρ2u2E2 + p1u1 + p2u2) = −ρ2

δ
(u1−u2)2 ≤ 0.

This model describes a mixture of gas and liquid (or solid) dropplets. The source
term in the momentum equation is called the drag force. The parameter δ can be
identified with a relaxation time, i.e., the time for the small dropplets to acquire the
same velocity as the one of the gas; cf. Sainsaulieu [24] for the derivation of this model
from a more microscopic physical description.

Our focus here is on analyzing the zero-relaxation limiting system derived from
(3.1). When δ → 0, we formally have

(3.5) u1 = u2 ≡ u (average flow velocity),

and we are left with the 3× 3 relaxed system

(3.6)
∂tρi + ∂x(ρiu) = 0, i = 1, 2

∂t
(
(ρ1 + ρ2)u

)
+ ∂x

(
(ρ1 + ρ2)u2 + p1 + p2

)
= 0,

while the entropy inequality (3.4) becomes

(3.7) ∂t

(
ρ1e1 + ρ2e2 +

(ρ1 + ρ2)u2

2

)
+ ∂x

(
(ρ1e1 + ρ2e2)u+ (p1 + p2)u

)
≤ 0.

The main unknowns of the new system are taken to be ρ1, ρ2, and u.
At this stage it is interesting to observe that—for classical solutions—(3.6)–(3.7)

coincides with the gas dynamics system studied in section 2. However, the weak
solutions of both systems do not coincide. To make our point, we introduce the new
variables

ρ = ρ1 + ρ2, S =
ρ2

ρ
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together with the familiar notation

p = p1 + p2, e = e1 + e2, E = e+
u2

2

so that (3.6)–(3.7) takes the form

(3.8)

∂tρ+ ∂x(ρu) = 0,

∂t(ρu) + ∂x(ρu2 + p) = 0,

∂t(ρS) + ∂x(ρSu) = 0

and

(3.9) ∂t(ρE) + ∂x(ρuE + pu) ≤ 0.

For smooth solutions, (3.8) is equivalent to system (2.1). In particular, the family
of mathematical entropies derived in Lemma 2.1 for (2.1) is the same for (3.8). The
entropy weak solutions to both systems are distinct, however, since the classical for-
mulation of the gas dynamic system conserves the total energy and lets the entropy
decrease, while (3.8)–(3.9) conserves the entropy while decreasing the energy!

We shall prove that the new formulation (3.8)–(3.9) allows us to apply the com-
pensated compactness method in all generality without assuming restriction (2.5) on
the equation of state. For the sake of generality, we disregard special form of p that
could be derived from the above relation p = p1 + p2. Consider the approximate
solutions ρε, uε, and Sε given by solving

(3.10)

∂tρ+ ∂x(ρu) = ε ∂xxρ,

∂t(ρu) + ∂x(ρu2 + p) = ε ∂xx(ρu),

∂t(ρS) + ∂x(ρSu) = ε ∂xx(ρS)

from the initial data ρ0, u0, and S0 in L∞. Observe that inequality (3.9) is auto-
matically satisfied in the limit. For simplicity, we restrict ourselves to solutions that
are bounded away from the vacuum. We denote by BV(R) the space of all Lebesgue-
measurable, scalar-valued functions of bounded variation in one variable.

Theorem 3.1. Suppose that ρε, uε, and Sε are smooth solutions to (3.10) that
satisfy the uniform bound

(3.11)
0< const. ≤ ρε(t, x) ≤ const.,

|uε(t, x)| ≤ const., |Sε(t, x)| ≤ const.,

where the constants are independent of t, x, and ε. Suppose that the initial data S0

belongs to the space BV(R). Then there is a triplet (ρ, u, S) in L∞(R+ × R)3 and a
subsequence of (ρε, uε, Sε) so that

(3.12) ρε → ρ, uε → u, Sε → S

in the strong Lq norm for all finite q, and (ρ, u, S) is an entropy weak solution to
(3.8)–(3.9).

This convergence and existence result can be extended to the cases where either
one of the conservation laws of mass, momentum, and energy is used as an “entropy
inequality,” while the rest of the equations are written as conservation laws (including
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the specific entropy). In other words, Theorem 3.1 holds for any of the following two
formulations:

(3.13)

∂tρ+ ∂x(ρu) = 0, ∂tρ+ ∂x(ρu) ≤ 0,

∂t(ρu) + ∂x(ρu2 + p) ≤ 0, ∂t(ρu) + ∂x(ρu2 + p) = 0,

∂t(ρE) + ∂x(ρuE + pu) = 0, ∂t(ρE) + ∂x(ρuE + pu) = 0,

∂t(ρS) + ∂x(ρSu) = 0, ∂t(ρS) + ∂x(ρSu) = 0.

Proof of Theorem 3.1. The heart of the proof is the derivation of an a priori
estimate for the total variation of Sε. A straightforward calculation using the first and
third equations in (3.11) shows that S is a solution to the scalar advection-diffusion
equation

(3.14) ∂tS
ε + V ε ∂xS

ε = ε∂xxS
ε

with

V ε = uε − 2ε∂x(log ρε).

We use a classical approach to estimate the total variation of S as follows. Set
w = ∂xS

ε and take q > 1/2. From (3.14), we deduce

∂t|w|2q + ∂x(V ε|w|2q) + (2q − 1)|w|2q∂xV ε ≤ ε∂xx
(
|w|2q+1

(2q + 1)

)
.

Letting q → 1/2, we obtain

∂t|w|+ ∂x(V ε|w|) ≤ ε∂xx
(
|w|2

2

)
.

Integrating the latter over x ∈ R yields an estimate for ∂xS
ε:

(3.15)

∫
R
|∂xSε(t, x)| dx ≤

∫
R
|S′0(x)| dx

when S0 belongs to W 1,1(R). The case where S0 ∈ BV(R) is treated by a standard
regularization process. By Helly’s theorem, the sequence

{
Sε
}

(or a subsequence of
it) converges in any Lq norm, 1 ≤ q <∞.

Next, we will apply the compensated compactness method to (3.10). We shall
use functions that are entropy functions for the isentropic gas dynamics system but
not for the full system; here we follow the method proposed by Benzoni-Gavage and
Serre. We present the main lines of the proof and refer to [1] for details. The total
variation estimate above allows us to control the nonconservative terms that arise.
As before, let C denote the Lagrangian sound speed and consider the class A of all
pairs (U,F ) of the form U = ρh1(u, p) that satisfies the wave equation (2.11b) with
C0 replaced by C, i.e.,

(3.16) ∂2
uuh1 − ∂p

(
C(p, S)2 ∂ph1

)
= 0

for each value of S. For an entropy pair (U,F ) in the class A, it is not hard to check
using (3.15) that

∂tU + ∂xF ∈ compact set of H−1
loc (R+ × R)
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so that the commutation equation (2.21) is satisfied by every entropy pairs inA. From
the reduction theorem of DiPerna [13] for genuinely nonlinear systems, we deduce that
uε and pε converge in a strong sense. The proof of Theorem 3.1 is complete.

Remark 3.1. Chuey, Conley, and Smoller’s theory does not apply to system (3.10),
and there are in general no available invariant regions. In the special case where
p = a2Sρ/(1− ρ), Peng [23] shows the existence of invariant regions for the Riemann
problem and obtains global existence using the Glimm scheme.

It would be interesting to show that as the relaxation parameter δ tends to 0,
the solutions of (3.1) converge strongly to a solution of the relaxed system (3.8). One
can anticipate that the relaxation terms have the same effect in canceling oscillations,
as we proved for the vanishing viscosity method. Rigorous convergence results were
established by Chen, Levermore, and Liu [6, 7] for genuinely nonlinear 2× 2 systems
with relaxation. Their argument is based on the fact that from every convex entropy
of the relaxed equations stems a compatible entropy of the full system. The scalar
product of the entropy gradient with the relaxation term has a constant sign, which
yields the required H−1

loc compactness property.
Even though (3.1) consists of two genuinely nonlinear systems, coupled only

through the lower-order source terms, a rigorous proof of convergence of the solu-
tions (ρδi , u

δ
i )i=1,2 to a solution of the relaxed system (3.8)–(3.9) seems extremely

difficult. This is due mainly to the form of the relaxation terms, as we now explain.
Let us begin with the vanishing viscosity regularization for (3.1), i.e., for i = 1, 2,

(3.17)
∂tρi + ∂x(ρiui) = ε ∂xxρi,

∂t(ρiui) + ∂x(ρiu
2
i + pi) = si

ρ2

δ
(u1 − u2) + ε ∂xx(ρiui).

We show in Proposition 3.1 below that (3.17) does not admit any invariant domain
in the sense of Chuey, Conley, and Smoller. Nevertheless, assuming a uniform L∞

bound on the solutions of (3.17), a standard energy method yields the following a priori
estimate:

(3.18) δ−1/2‖uε,δ1 − u
ε,δ
2 ‖L2(R) + ε1/2Σi=1,2

(
‖∂xρε,δi ‖L2(R) + ‖∂xuε,δi ‖L2(R)

)
≤ const.

Letting δ tend to 0 first, it is easy to see that the solutions of (3.17) converge strongly
in L2

loc to a solution of (3.8)–(3.9), and Theorem 3.1 applies to the resulting 3 × 3
system.

On the other hand, if we let ε tend to 0 first, the desired convergence result, and
therefore the existence of entropy weak solutions to (3.1) and (3.4), is a consequence
of DiPerna’s theorem for 2 × 2 genuinely nonlinear systems [14]. Furthermore, for
each δ > 0, these solutions satisfy the entropy inequality (3.4). On the other hand, in
the terminology of [6, 7], the total energy is a compatible entropy for (3.1). It turns
out that there is no other compatible entropy.

Proposition 3.1.

(1) System (3.17) does not admit any invariant domain in the sense of Chuey,
Conley, and Smoller.

(2) Every entropy of (3.17) takes the form η1(ρ1, u1) + η2(ρ2, u2), where ηi is an
entropy for the associated subsystem

(3.19)
∂tρi + ∂x(ρiui) = 0,

∂t(ρiui) + ∂x(ρiu
2
i + pi) = 0.

(3) The only compatible entropy for (3.17) is the total energy ρ1E1 + ρ2E2.
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Proof. Let Rδ denote the right-hand side of (3.1). To show the first claim, observe
that the invariant domains in the sense of [9] must be in the form±wi(ρ1, ρ1u1, ρ2, ρ2u2)
≤ 0, where (wi)i=1,4 are four Riemann invariants for (3.1). Another necessary condi-
tion is that

(3.20) ∇wi ·Rδ ≤ 0.

An easy calculation shows that the Riemann invariants of (3.17) are the same as those
of the subsystems and thus depend only on either (ρ1, u1) or (ρ2, u2), whereas Rδ is
proportional to u1 − u2. Thus (3.20) cannot hold.

We now examine the structure of the entropy pairs (U,F )(ρ1, u1, ρ2, u2) for (3.17).
Eliminating the entropy flux F in condition (2.10) yields the following equations for
U :

(3.21)


(u1 − u2) − p̃

′
2

ρ2

p̃′1
ρ1

0

−ρ2 (u1 − u2) 0 − p̃
′
2

ρ2

ρ1 0 (u1 − u2)
p̃′1
ρ1

0 ρ1 −ρ2 (u1 − u2)




Uρ1,ρ2
Uρ1,u2

Uu1,ρ2

Uu1,u2

 = 0

together with

(3.22) Uui,ui =
p̃′i
ρi
Uρi,ρi , i = 1, 2.

If u1 ± (p′1)1/2 6= u2 ± (p′2)1/2, the matrix in (3.21) is invertible and therefore

Uρ1,ρ2 = Uρ1,u2 = Uu1,ρ2 = Uu1,u2 = 0.

The conditions in (2.10) induce exactly the same constraints on F . Thus the entropy
pairs for (3.1) have the form (U,F ) =

(
η1(ρ1, u1) + η2(ρ2, u2), q1(ρ1, u1) + q2(ρ2, u2)

)
,

where ηi satisfies (3.22), i.e., is an entropy for the ith subsystem, and qi is the associ-
ated entropy flux. For such a pair (U,F ) = (η1 + η2, q1 + q2) with convex η1 and η2,
the solutions of (3.1) obtained by the viscosity method satisfy

(3.23) ∂tU(ρδ1, u
δ
1, ρ

δ
2, u

δ
2) + ∂xF (ρδ1, u

δ
1, ρ

δ
2, u

δ
2) ≤ ∇U ·Rδ.

We now seek compatible entropies, i.e., pairs (U,F ) for which the term on the
right-hand side of (3.23) is nonpositive. In other words, we require that

(3.24) sign(u1 − u2)(g1 − g2) ≤ 0

for all quadruples (ρ1, u1, ρ2, u2), where gi(ρi, ui) = ηi,u(ρi, ui)/ρi. Condition (3.24)
implies that gi depends only on ui, and thus

(3.25) ηi,u = ρigi(ui).

From (3.22) and the definition (3.2) of the internal energy, we obtain

∂2ηi
∂ρ2

=
p̃′i
ρ2
i

∂2ηi
∂u2

= ẽ′′i g
′′
i (ui).

Integrating twice with respect to ρi, we find

ηi = ẽig
′
i(ui) + ρih(ui) + k(ui)
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for some functions h and k. From (3.25), we see that k is a constant and

ρ−1
i ẽig

′′
i (ui) = ρ−1

i ẽi(ρi)g
′′
i (ui) = gi(ui)− h(ui),

which implies that g′′i = 0 since the right-hand side is independent of ρi. Thus gi is
a linear function of ui, while (3.25) again implies that h′ = gi. We conclude that the
only compatible entropies have the form

ηi = α(ρiu
2
i /2 + ei) + βρiui + γρi + ζ

for some constants α, β, γ, and ζ, which completes the proof of Proposition 3.1.

REFERENCES

[1] S. Benzoni-Gavage and D. Serre, Compacité par compensation pour une classe de systèmes
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[27] D. Serre, unpublished notes, cours de diplôme d’études approfondies, University of Paris VI,
1988.

[28] D. Serre, Richness and the classification of quasilinear hyperbolic systems, in Multidimen-
sional Hyperbolic Problems and Computations, IMA Vol. Math. Appl. 29, Springer-Verlag,
New York, 1991, pp. 315–333.
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Abstract. We study a multilayer model in geophysical fluid dynamics that approximately
governs the large-scale motions of the atmosphere or the ocean. The model consists of n two-
dimensional Euler equations which represent the evolution of n layers of liquid. These equations
are written using the potential vorticity. The potential vorticity in each layer is obtained from the
velocity potential of the adjacent layers. We show that the Cauchy problem for this model is globally
well-posed in time for smooth initial data. In the second part of the paper, we let the number of
layers tend to infinity while their thickness tends to zero. We write the system as a suitable finite-
element approximation of a continuous model and show the convergence of this approximation to
the classical quasi-geostrophic model.

Key words. geophysical fluid dynamics, layers model, quasi-geostrophic
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1. Introduction, setting of the problem, and statement of results.

1.1. The model. Consider a fluid which is formed by the superposition of a
finite number n of homogeneous layers with uniform density within each layer, the
density being different from one layer to another. The multilayered quasi-geostrophic
model describes concervation of potential vorticity ζl in each layer with the β-plane
approximation. The thickness of each layer has the same value D0, and we denote
by ρl the density in the lth layer, l = 1, . . . , n. The nondimensional model (see [9,
p. 421]) reads 

(
∂

∂t
+ ul

∂

∂x
+ vl

∂

∂y

)
ζl = −avl, l = 1 to n,

ul = −∂ψl
∂y

, vl =
∂ψl
∂x

,

(1)


ζ1 = ∆x,yψ1 + fr1,2(ψ2 − ψ1),

ζl = ∆x,yψl − frl,1(ψl − ψl−1) + frl,2(ψl+1 − ψl), 2 ≤ l ≤ n− 1,

ζn = ∆x,yψn − frn,1(ψn − ψn−1),

(2)

where

frl,1 =
DF

D0

ρ0

ρl − ρl−1
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and

frl,2 =
DF

D0

ρ0

ρl+1 − ρl
.

In the above equations, (ul, vl) is the velocity field within the lth layer. All functions
depend only on the horizontal variables x and y and on the time t. The term −avl
in (1) corresponds to the action of the Coriolis force in the β-plane approximation
[9]. Note that the function ψl is in fact the physical pressure inside the lth layer;
see [9, p. 421]. ρ0 is a characteristic (constant) value for the density of the fluid and
F = f2

0L
2/gD, where L (resp. D), is the characteristic horizontal (resp. vertical) scale

of the fluid. f0 is the Coriolis parameter and g is the gravitational acceleration. We
introduce the following notation,

βl =
DFρ0

D0(ρl − ρl−1)
ε2,

where ε is a small (nondimensional) parameter, and we assume that

1

δ
≥ βl ≥ δ for l = 2, . . . , n,(3)

where δ is a fixed positive number. Relation (3) is taken to be satisfied independently
of n. The parameters frl,1 and frl,2 therefore read

frl,1 =
1

ε2
βl, frl,2 =

1

ε2
βl+1.

With this notation, system (2) takes the form

ζ1 = ∆x,yψ1 +
1

ε2
β2(ψ2 − ψ1),

ζl = ∆x,yψl −
1

ε2
βl(ψl − ψl−1) +

1

ε2
βl+1(ψl+1 − ψl), 2 ≤ l ≤ n− 1,

ζn = ∆x,yψn −
1

ε2
βn(ψn − ψn−1).

(4)

A derivation of this model and its physical meaning can be found in [9, pp. 416–422].
See also the appendix of [6].

We will use periodic boundary conditions that correspond to (x, y) ∈ T2, where
T2 denotes the two-dimensional torus. The aim of this paper is to show that system
(1)–(4) is globally well-posed for smooth initial data and to perform the limit n→∞
in a suitable sense.

The “natural” limit system is the quasi-geostrophic equation(
∂

∂t
− ∂ψ

∂y

∂

∂x
+
∂ψ

∂x

∂

∂y

)(
∆x,yψ +

∂

∂z

(
β(z)

∂ψ

∂z

))
= −a∂ψ

∂x
.(5)

In this equation, z is a spatial variable while the function z 7→ β(z) is proportional to

1

∂ρ(z)

∂z

,
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i.e., to the inverse of the square of the Brunt–Väisälä frequency (see [9, pp. 354–358]).
This system is of considerable physical interest because of the qualitative results

that are readily deduced from it (see [9] and [11]). For its mathematical treatement,
see [1], where the asymptotic expansion leading from some set of primitive equations
to (5) is justified, and [2], where the viscous case is considered. See also [7] and [4]
for analysis of models without vertical stratification.

1.2. Notation and statement of results. In section 2, we prove that for fixed
n, system (1)–(4) is globally well-posed. Our result in this direction is the following
(see Theorem 2.1):

Let s > 2 and (ζ0
1 , . . . , ζ

0
n) ∈ (Hs(T2))n be such that

n∑
l=1

∫
T2

ζ0
l = 0.

Then there exists a unique solution (ζ1, . . . , ζn) ∈ (C(R+, Hs(T2)))n and ((u1, v1), . . . ,
(un, vn)) ∈ (C(R+, Hs−1(T2)))2n to (1) and (4) such that (ζ1, . . . , ζn)(t = 0) =
(ζ0

1 , . . . , ζ
0
n).

In the third section, we show how (1)–(4) may be viewed as a finite-element ap-
proximation in the vertical direction to the continuous system (5) and how the limit
n → ∞ can be performed. Indeed, system (4) can be viewed as a finite-element ap-
proximation in only one direction of a continuous three-dimensional elliptic equation.
This leads us to introduce the functions Ψε

1(x, y, z, t), Ψε
3(x, y, z, t), and Zε2(x, y, z, t)

below in terms of the classical basis functions. However, equation (1) is not a finite-
element approximation of the corresponding continuous equation. We therefore need
to introduce other auxilliary functions (Ψε

2(x, y, z, t) and Zε1(x, y, z, t)) in order to
write system (1)–(4) as a coherent approximation of the quasi-geostrophic model (5).

Specifically, we denote by φεj(z) the functions defined on [0, 1] such that

φε1(z) = 1− z

ε
if 0 ≤ z ≤ ε, 0 elsewhere,

φεi (z) = 1− |z − iε|
ε

if z ∈ [(i− 1)ε, (i+ 1)ε], 0 elsewhere, i = 2, . . . , n− 1,

φεn(z) = 1− 1− z
ε

if z ∈ [1− ε, 1], 0 elsewhere,

where we assume that ε = 1/(n− 1). We assume that there exists a smooth function
β(z) such that

βεl =
1

ε

∫ (l−1)ε

(l−2)ε

β(z)dz for l = 2, . . . , n

and then introduce

Ψε
1(x, y, z, t) =

n∑
l=1

ψεl (x, y, t)φ
ε
l (z).(6)

We also construct the piecewise-constant function Ψε
2(x, y, z, t), which is equal to

ψεl (x, y, t) on [(l − 1)ε, lε[ for l = 1, . . . , n− 1, namely

Ψε
2(x, y, z, t) =

n−1∑
l=1

ψεl (x, y, t)1[(l−1)ε,lε[(z),(7)
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where 1[a,b](z) denotes the characteristic function of [a, b].
In order to solve (4), we need to consider the function Ψε

3 of the following form:

Ψε
3 =

n∑
i=1

fεi φ
ε
i .(8)

Moreover, we impose the condition that Ψε
3 satisfies∫ 1

0

Ψε
3(z)φεi (z)dz = εψεi for all i = 1, . . . , n.(9)

Thus (9) reads ∫ 1

0

Ψε
3φ
ε
k(z)dz =

∫ 1

0

n∑
i=1

fεi φ
ε
i (z)φ

ε
k(z)dz = εψεk.

Using the explicit values of φεl , we find that the coefficients (fεi ) are given byψε1
· · ·
ψεn

 = Bn

 fε1
· · ·
fεn

 ,(10)

where Bn is the n× n matrix

Bn =
1

6



2 1 0
1 4 1 0 0
0 · · · · · · · · · 0

0 1 4 1 0
0 · · · · · · · · · 0

0 0 1 4 1
0 1 2


.

In the same direction, we define the piecewise-constant function Zε1 by

Zε1(x, y, z, t) =
n−1∑
l=1

ζεl (x, y, t)1[(l−1)ε,lε[(z).(11)

We also introduce Zε2(x, y, z, t) defined in the same way as Ψε
3:

Zε2(x, y, z, t) =
n∑
i=1

gεi φ
ε
i ,(12)

where (gεi ) are given by  ζε1
· · ·
ζεn

 = Bn

gε1
· · ·
gεn

 .

With this notation, the original system can be written exactly as follows:

∂

∂t
Zε1 +∇ · ((Uε2 , V ε2 )(Zε1 + ay)) = 0,(13)
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and for all k = 1, . . . , n,∫ 1

0

Zε2φ
ε
k(z)dz =

∫ 1

0

∆x,yΨε
3(z)φεk(z)dz −

∫ 1

0

β(z)
∂Ψε

1

∂z

∂φεk
∂z

dz,(14)

where

Uε2 = −∂Ψε
2

∂y
and V ε2 =

∂Ψε
2

∂x
.(15)

The result that we obtain is as follows (for a precise statement, see Theorem 3.1):

The sequences Ψε
1, Ψε

2, and Ψε
3 converge to the same limit Ψ, which is a solution

of (3).

2. Global existence of strong solution for fixed n. We aim to solve (4) on
the torus T2 with the additional restriction

n∑
l=1

∫
T2

ψl = 0.

We need this condition in order to ensure the uniqueness of the solution of the ellip-
tic system (4). Indeed, this system corresponds to a discretization of a continuous
problem with homogeneous Neuman boundary conditions.

One of the principal goals of this section is to prove the following result.

Theorem 2.1. Let s > 2 and (ζ0
1 , . . . , ζ

0
n) ∈ (Hs(T2))n be such that

n∑
l=1

∫
T2

ζ0
l = 0.

Then there exists a unique solution (ζ1, . . . ζn) ∈ (C(R+, Hs(T2)))n and ((u1, v1), . . . ,
(un, vn)) ∈ (C(R+, Hs+1(T2)))2n to (1) and (4) such that (ζ1, . . . , ζn)(t = 0) =
(ζ0

1 , . . . , ζ
0
n).

To prove this result, we use a classical energy method to obtain local-in-time
existence. Then the solution is shown to extend globally using a priori estimates.
The constants occurring in this section may depend on n.

2.1. Local-in-time existence.

Proposition 2.2. Let (ζ0
1 , . . . , ζ

0
n) ≡ ζ0 ∈ (Hs(T2))n with s > 2 such that

|ζ0|(Hs)n ≤ M . Then for sufficiently small T , there exists a unique solution ζ =
(ζ1, . . . , ζn) to (1)–(4) such that ζ ∈ C([0, T ], (Hs(T2))n) and |ζ|L∞([0,T ],(Hs(Tn))n) ≤
2M .

Proof. For ζ ∈ C([0, T ], (Hs(T2))n), we construct ψ̃ satisfying

ζ1 = ∆x,yψ̃1 +
1

ε2
β2(ψ̃2 − ψ̃1),

ζl = ∆x,yψ̃l −
1

ε2
βl(ψ̃l − ψ̃l−1) +

1

ε2
βl+1(ψ̃l+1 − ψ̃l), 2 ≤ l ≤ n− 1,

ζn = ∆x,yψ̃n −
1

ε2
βn(ψ̃n − ψ̃n−1).

(16)
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Let ũl = −∂ψ̃l∂y and ṽl = ∂ψ̃l
∂x and consider the solution ζ̃ to

(
∂

∂t
+ ũl

∂

∂x
+ ṽl

∂

∂y

)
ζ̃l = −aṽl, l = 1 to n,

ζ̃(0) = ζ0.

(17)

We denote by T the mapping that carries ζ into ζ̃. We want to prove that T is a
contraction in a suitable space C(0, T,X) for sufficiently small T . Let us first solve
the elliptic system. Introduce the operator on Rn whose matrix is

An = −


−β2

ε2
β2

ε2 0
· · · · · ·
βl
ε2 −βl+βl+1

ε2
βl+1

ε2

· · · · · ·
0 βn

ε2 −βnε2

 .

The matrix An is symmetric and

(AnX,X) = −
n−1∑
i=1

βi+1

(
xi+1 − xi

ε

)2

,

where X = (x1, . . . , xn), so that—thanks to (3)—0 is a simple eigenvalue. Hence if
ζ ∈ (C([0, T ], (Hs)))n, then there exists a unique ψ̃ ∈ (C([0, T ], (Hs+2)))n satisfying
(16) such that

∑n
i=1

∫
T2 ψidxdy = 0 and

|ψ̃|(C([0,T ],(Hs+2)))n ≤ C|ζ|(C([0,T ],(Hs)))n .(18)

Let us now apply ∂sα to (17) and form the product with ∂sαζ̃l; an integration yields

∂

∂t

∫
T2

|∂sαζ̃l|2 +

∫
T2

∂sα((ũl, ṽl) · ∇ζ̃l)∂sαζ̃l = −a
∫
T2

∂sαṽl∂
s
αζ̃l.(19)

On the other hand, since ∂
∂x ũl + ∂

∂y ṽl = 0,
∫
T2(ũl, ṽl) · ∇∂sαζ̃l∂sαζ̃l = 0 for all l, and

hence (19) becomes

∂

∂t

∫
T2

|∂sαζ̃l|2 +

∫
T2

(∂sα∇((ũl, ṽl)ζ̃l)− (ũl, ṽl) · ∇∂sαζ̃l)∂sαζ̃l = −a
∫
T2

∂sαṽl∂
s
αζ̃l.(20)

The classical commutator estimate (see [3]) implies

(21)

∂

∂t

∫
T2

|∂sαζ̃l|2 ≤ C(|(ũl, ṽl)|Hs+1 |ζ̃l|L∞ + |∇(ũl, ṽl)|L∞ |ζ̃l|Hs)|ζ̃l|Hs + a|ṽl|Hs |ζ̃l|Hs .

Furthermore, |ζ̃l|L∞ ≤ C|ζ̃l|Hs as soon as s > 1 and |∇(ũl, ṽl)|L∞ ≤ C|(ũl, ṽl)|Hs+1 .
Hence equation (21) leads to

∂

∂t

∫
T2

|∂sαζ̃l|2 ≤ C(|(ũl, ṽl)|Hs+1 |ζ̃l|2Hs) + a|ṽl|Hs |ζ̃l|Hs .(22)
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Thanks to (18), we obtain

∂

∂t
|ζ̃l|2Hs ≤ C1(1 +M)|ζ̃l|2Hs + C2

if |ζ|(L∞(0,T,Hs))n ≤ 2M . This yields

|ζ̃l|2Hs ≤ eC1(1+M)t|ζ0|2Hs + (eC1(1+M)t − 1)
C2

C1(1 +M)

≤ eC1(1+M)tM + (eC1(1+M)t − 1)
C2

C1(1 +M)
.

(23)

Choose T sufficiently small so that the right-hand side of (9) is less than or equal
to 2M . If BM denotes the ball of radius 2M in (C([0, T ], Hs))n, then for sufficiently
small T ,

T maps BM into itself.(24)

We next show that T is a contraction in the (C([0, T ], L2))n norm, provided that T is
sufficiently small. Indeed, for ζ1 and ζ2, we have

|ψ̃1 − ψ̃2|(L∞(0,T,Hs+2))n ≤ C|ζ1 − ζ2|(L∞(0,T,Hs))n .(25)

On the other hand,

∂

∂t
(ζ̃1
l − ζ̃2

l ) + (ũ1
l , ṽ

1
l ).∇(ζ̃1

l − ζ̃2
l ) + ((ũ1

l , ṽ
1
l )− (ũ2

l , ṽ
2
l )) · ∇ζ̃2

l = −a(ṽ1
l − ṽ2

l ).(26)

Multiply (12) by (ζ̃1
l − ζ̃2

l ) and integrate to obtain

∂
∂t

∫
T2 |ζ̃1

l − ζ̃2
l |2≤C ′|∇ζ̃2

l |L∞ |ζ̃1
l − ζ̃2

l |L2 |ζ1 − ζ2|(L2)n

≤C ′|ζ̃1
l − ζ̃2

l |L2 |ζ1 − ζ2|(L2)n

as soon as s > 2, where (11) has been used. We deduce that

|ζ̃1 − ζ̃2|(L∞(0,T,L2))n ≤ C ′T |ζ1 − ζ2|(L∞(0,T,L2))n .

If T is such that C ′T < 1, then T becomes a contraction from BR into itself and there-
fore it has a unique fixed point ζ ∈ (L∞(0, T,Hs))n. Since ∂

∂tζ ∈ (L∞(0, T,Hs−1))n,
we get ζ ∈ (C([0, T ], Hs−η))n for all η > 0. We still have to prove that ζ ∈
(C([0, T ], Hs))n. To this end, we use the fact that (u, v) ∈ (L∞(0, T,Hs+1))n and
write ζ in term of caracteristics. This concludes the proof of Proposition 2.2.

2.2. Globalization. In order to show that the solution is global, it is sufficient
to prove that |ζ|(Hs)n(t) cannot tend to infinity in finite time. To do this, we use the
fact that (22) can be refined by Youdovitch’s techniques [12] for the two-dimensional
Euler equation (see also [3] or [8]). Namely, we have |ζ(t)|(L∞)n ≤ C|ζ0|(L∞)n . It
follows that |(u, v)(t)|C1∗ ≤ C|ζ0|(L∞)n , where C1

∗ denotes Zygmund’s class (see [3]).
Then for all ε > 0, we obtain

|∇(u, v)(t)|(L∞)2n ≤
C

ε
|(u, v)|C1∗ log

(
e+
|(u, v)|C1+ε
|(u, v)|C1∗

)
.
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(See [3] for a proof of this inequality.) In the present context, this gives

|∇(u, v)(t)|(L∞)2n ≤C log(e+ |(u, v)|(Hs+1)n)

≤C log(e+ |ζ|(Hs)n)

as soon as s > 2. Estimate (21) leads to

∂

∂t
|ζ|2(Hs)n ≤ C|ζ|2(Hs)n log(e+ |ζ|(Hs)n),

which gives |ζ|(Hs)n ≤ CeCe
t

. Hence the solution is global.

3. Continuous stratification limit. The above results give some bounds on
the solution. However, these bounds depend on the number of layers n and there-
fore are not directly helpful in performing the limit n → ∞. Here we will derive
some bounds which are independent of the number of layers and introduce functions
depending of a vertical variable z.

Remark 1. The different constants occuring in this section, which we denote
generically by C, do not depend on n.

In this section, we will use the notation introduced in section 1, especially (6)–
(15).

Let ζ0(x, y, z) be defined on T2 × [0, 1], let Vε be the subspace engendered by
{(φεi (z)), i = 1, . . . , n}, and let Πε be the projector onto Vε in L2. We assume that
ζ0(x, y, z) ∈ L2 ∩ C0(T2 × [0, 1]) and ζε0 = Πεζ0.

The result reads as follows.
Theorem 3.1. Let ζ0(x, y, z) ∈ L2 ∩ C0(T2 × [0, 1]). The following convergences

hold for all 0 < T <∞ when ε tends to 0:
(i)

(Uε2 , V
ε
2 )→ (U, V ) in C([0, T ], L2(T2 × [0, 1])) strongly.

(ii) Zε1 and Zε2 converge to the same limit Z in Lp(0, T, L2(T2 × [0, 1])) strongly
for all p <∞ and in L∞(0, T, L2 ∩ L∞(T2 × [0, 1])) weakly.

(iii)

Ψε
3 ⇀ Ψ in L∞(0, T, L2(T2 × [0, 1])) weakly.

(iv)

∇⊥Ψε
1 → ∇⊥Ψ in C([0, T ], L2(T2 × [0, 1])) strongly

and in L∞(0, T,H1(T2 × [0, 1])) weakly.

Moreover, (U, V ), Ψ, and Z satisfy

∂Z

∂t
+∇ · ((U, V )(Z + ay)) = 0,

U = −∂Ψ

∂y
and V =

∂Ψ

∂x
,

and

Z = ∆x,yΨ +
∂

∂z

(
β(z)

∂Ψ

∂z

)
,
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with ∂Ψ
∂z = 0 in z = 0 and z = 1,

Z(t = 0) = ζ0.

We have used the classical notation ∇⊥h for the vector field (−∂h∂y ,
∂h
∂x ). The

remaining of this section is devoted to the proof of this result.

3.1. A priori estimates. We define the sequences Zε01 and Zε02 by (11) and
(12). Then Zε01 and Zε02 converge to ζ0 in L2(T2 × [0, 1]) strongly. Moreover, since
the functions ζεl + ay are transporting by a measure-preserving flow in time, we have
the following:

the sequences Zε1 and Zε2 are bounded in L∞(0,+∞, L2 ∩ L∞(T2 × [0, 1]));(27)

moreover, the following equality holds:

|ay + ζεl (x, y, t)|L2∩L∞(T2) = |ay + ζε0l(x, y)|L2∩L∞(T2).(28)

Definition 3.2. Let us introduce the space Hs
n(T2) as follows.

Hs
n(T2) =

{
ψ = (ψ1, . . . , ψn) ∈ (Hs(T2))n such that

∫
T2

n∑
i=1

ψi = 0 and

1

n− 1

n∑
i=1

∫
T2

|(−∆x,y)s/2ψi|2 +

∫
T2

1

n− 1
|(An)s/2ψ|2 <∞

}
,

where An is the matrix introduced in section 2.1.
The space Hs

n(T2) is endowed with its natural norm.
Remark 2. The matrix An corresponds to a discretization of the operator

∂

∂z

(
β(z)

∂Ψ

∂z

)
with homogeneous Neuman boundary conditions; see, for example, [10].

If we denote the lth eigenvalue of − ∂
∂z (β(z)∂Ψ

∂z ) by λl and the lth eigenvalue of
An by λεl , the Min–Max principle (see [5]) implies that λεl ≥ λl. Moreover, λ0 = 0
and λ1 > 0; hence An has 0 as simple eigenvalue, and the corresponding eigen-
vector is (1, . . . , 1). Therefore, ((1/(n− 1))

∑n
i=1

∫
T2 |(−∆x,y)s/2ψi|2 +

∫
T2(1/(n −

1))|(An)s/2ψ|2)1/2 is a norm on Hs
n(T2).

Lemma 3.3. The sequence (ψεl ) satisfies

|(ψε1, . . . , ψεn)|L∞(R+,H2
n(T2)) ≤ C,

where the constant C is independent of n.
Proof. We form the scalar product of (4) with (∆x,yψ

ε
l ) and (An(ψεl )) and we use

the fact that (ζεl ) is bounded in L∞(R+, H0
n(T2)). This yields the result. Moreover,

we obtain

1

n− 1

∫
T2

|∇x,yA1/2
n (ψεl )|2 ∈ L∞(R+).(29)
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Lemma 3.4. The sequence (ζεl ) satisfies

1

n− 1

n∑
l=1

|∂ζ
ε
l

∂t
|H−1(T2) ≤ K

and
∂Ψε1
∂t is bounded in L∞(R+, H1(T2 × [0, 1])).

Proof. For all l, we have

∂

∂t
ζεl +∇x,y · (∇⊥x,yψεl (ζεl + ay)) = 0.

Furthermore,

|∇x,y · (∇⊥x,yψεl (ζεl + ay))|H−1(T2)≤C|ψεl |H1(T2)|ζεl |L∞(T2)

≤C|ψεl |H1(T2).

These two last inequalities imply that∣∣∣∣∂ζεl∂t
∣∣∣∣
H−1(T2)

≤ C|ψεl |H1(T2).

The first part of the lemma then follows from (29). For the second part, differentiate
(4) with respect to t and multiply it by (ψεl ); we obtain that

∂ψεl
∂t

is bounded in L∞(0, T,H1
n(T2)).

It then follows that
∂Ψε1
∂t is bounded in L∞(R+, H1(T2 × [0, 1])) by the definition (6)

of Ψε
1.
Lemma 3.5. The sequences Ψε

3 and Zε2 are bounded in L∞(R+, L2(T2× [0, 1])).
Proof. It is sufficient to show that the matrix Bn occurring in system (10) is

invertible, the norm of its inverse being bounded independently of n. The matrix
Bn is clearly symmetric and irreductible. Gerschgörin’s theorem implies that its
eigenvalues are included in the union of the disks∣∣∣∣λ− 1

3

∣∣∣∣ ≤ 1

6
and

∣∣∣∣λ− 2

3

∣∣∣∣ ≤ 1

3
.

The lemma follows.

3.2. End of the proof of Theorem 3.1. Let us consider

∇⊥x,yΨε
1 =

n∑
l=1

∇⊥x,yψεl (x, y, t)φεl (z).

The vector field ∇⊥x,yΨε
1 is bounded in L∞(R+, H1(T2× [0, 1])) by (29) and ∂

∂t∇⊥x,yΨε
1

is bounded in L∞(R+, L2(T2×[0, 1])) thanks to Lemma 3.4. We can therefore extract
a subsequence that converges in C([0, T ], L2(T2 × [0, 1])) strongly and in L∞(0, T ,
H1(T2 × [0, 1])) weakly for all T <∞ to a vector field ∇⊥x,yΨ. Moreover, Zε1 ⇀ Z in
L∞(0, T, L2 ∩L∞) weakly. We will now show that the limits of the sequences Zε1 and
Zε2 are the same and that this is also the case for the limits of Ψε

1, Ψε
2, and Ψε

3.
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The function Ψε
1 is related to a P1 finite-element approximation in the z-direction

of Ψ, while Ψε
2 is a piecewise-constant approximation of Ψε

1. It will therefore be
possible to show that ∇⊥x,yΨε

2−∇⊥x,yΨε
1 →ε→0 0 in L∞([0, T ], L2(T2× [0, 1])) strongly;

this is related to the fact that ∇⊥x,yΨε
1 is bounded in L∞([0, T ], H1(T2 × [0, 1])).

The functions Ψε
3 and Zε2 are also some piecewise-constant approximations of Ψ

and Z, but these approximations are obtained versus the mass matrix Bn, and we
cannot directly use the H1 bound of Ψε

1. Therefore, the convergences Ψε
3 − Ψ → 0

and Zε2 − Z → 0 are obtained only in L∞([0, T ], L2(T2 × [0, 1])) weakly.

These results are stated precisely in the next two propositions and proved by some
explicit computations.

Proposition 3.6. The sequence ∇⊥x,yΨε
2 converges to ∇⊥x,yΨ in C([0, T ], L2(T2×

[0, 1])) strongly.

Proof. We compute the L2(T2 × [0, 1]) norm of the difference between ∇⊥x,yΨε
2

and ∇⊥x,yΨε
1 and get

|∇⊥x,yΨε
2 −∇⊥x,yΨε

1|L2(T2×[0,1])

=

∫
T2

∫ 1

0

∣∣∣∣∣
n∑
l=1

∇⊥x,yψεl (x, y, t)φεl (z)−
n−1∑
l=1

∇⊥x,yψεl (x, y, t)1[(l−1)ε,lε[(z)

∣∣∣∣∣
2

dxdydz.

Taking into account the supports of φεl , we obtain

∫ 1

0

∣∣∣∣∣
n∑
l=1

∇⊥x,yψεl (x, y, t)φεl (z)−
n−1∑
l=1

∇⊥x,yψεl (x, y, t)1[(l−1)ε,lε[(z)

∣∣∣∣∣
2

dz

=

∫ 1

0

n∑
l=1

|∇⊥x,yψεl |2|φεl |2dz +
1

n− 1

n−1∑
l=1

|∇⊥x,yψεl |2

− 2

∫ 1

0

n−1∑
l=1

∇⊥x,yψεl φεl∇⊥x,yψεl 1[(l−1)ε,lε[

− 2

∫ 1

0

n−1∑
l=2

∇⊥x,yψεl φεl∇⊥x,yψεl−11[(l−2)ε,(l−1)ε[

+ 2

∫ 1

0

n−1∑
l=1

∇⊥x,yψεl φεl∇⊥x,yψεl+1φ
ε
l+1.

An explicit computation of the integrals yields

∫ 1

0

∣∣∣∣∣
n∑
l=1

∇⊥x,yψεl (x, y, t)φεl (z)−
n−1∑
l=1

∇⊥x,yψεl (x, y, t)1[(l−1)ε,lε[(z)

∣∣∣∣∣
2

dz

=
2ε

3

n−2∑
l=2

∇⊥x,yψεl · (∇⊥x,yψεl −∇⊥x,yψεl−1)

− 2ε

3
∇⊥x,yψεn · ∇⊥x,yψεn−1 +

ε

3
|∇⊥x,yψε1|2 +

ε

3
|∇⊥x,yψεn|2.

(30)
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Then since (∇⊥x,yψε1)l is bounded in L∞(R+, H1
n(T2)), we have∣∣∣∣∣

∫
T2

2ε

3

n−2∑
l=2

∇⊥x,yψεl .(∇⊥x,yψεl −∇⊥x,yψεl−1)

∣∣∣∣∣ ≤ C 2ε

3
−→
ε→0

0

in L∞(0, T ). We still have to deal with the following terms in (30):

−2ε

3
∇⊥x,yψεn.∇⊥x,yψεn−1 +

ε

3
|∇⊥x,yψε1|2 +

ε

3
|∇⊥x,yψεn|2.

Since ∇⊥x,yΨε
1 is bounded in L∞(R+, H1(T2 × [0, 1])), for almost every x and y and

for all i, we have

|∇⊥x,yψεi |2L∞(0,1) ≤ C|∇⊥x,yψεi |2H1(0,1).

Hence ∫
T2

|∇⊥x,yψεi |2 ≤ C|∇⊥x,yΨε
1|2H1((0,1)×T2)

and ∫
T2

(
−2ε

3
∇⊥x,yψεn.∇⊥x,yψεn−1 +

ε

3
|∇⊥x,yψε1|2 +

ε

3
|∇⊥x,yψεn|2

)
−→
ε→0

0

in L∞(0, T ). Plugging this result into (30) and integrating on T2 conclude the proof
of the proposition.

Concerning the sequences Ψε
3 and Zε2 , we have the following result.

Proposition 3.7. The sequences Ψε
3 and Zε2 converge, respectively, to Ψ and Z

in L∞(0, T, L2(T2 × [0, 1])) weakly.
Proof. Since the functions Ψε

3 and Zε2 are obtained by the same construction, it
is enough to show the result for one of them. We will work with Zε2 and show that
Zε1 − Zε2 ⇀ 0 in L∞(0, T, L2(T2 × [0, 1])).

For any interval [a, b] ⊂ [0, 1], for fixed n, there exist two integers k1 and k2 such
that (k1 − 1)/(n− 1) < a ≤ k1/(n− 1) and k2/(n− 1) ≤ b < (k2 + 1)/(n− 1). Then

∫ b

a

(Zε1 −Zε2)dz =

∫ k1
n−1

a

(Zε1 −Zε2)dz+

∫ k2
n−1

k1
n−1

(Zε1 −Zε2)dz+

∫ b

k2
n−1

(Zε1 −Zε2)dz.(31)

Let us compute each term of the right-hand side of (31).
(i)

∫ k2
n−1

k1
n−1

(Zε1 − Zε2)dz =

∫ k2
n−1

k1
n−1

k2∑
l=k1+1

ζεl 1[(l−1)ε,lε[dz −
∫ k2

n−1

k1
n−1

k2∑
l=k1−1

gεl φ
ε
l dz

= ε

k2∑
l=k1+1

ζεl − gεk1−1

ε

2
− gεk2

ε

2
− ε

k2−1∑
l=k1

gεl .

Using the relationship between ζεl and gεl , namely ζεl = (1/6)(gεl−1 + 4gεl + gεl+1) for
1 < l < n, we get after simplification that
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∫ k2
n−1

k1
n−1

(Zε1 − Zε2)dz = εζεk2 −
ε

3
gεk2 −

ε

3
gεk2−1 −

ε

2
gεk1−1 −

ε

3
gεk1+1 −

5ε

6
gεk1 .(32)

Therefore, equation (32) yields∣∣∣∣∣
∫ k2

n−1

k1
n−1

(Zε1 − Zε2)dz

∣∣∣∣∣ ≤ C√ε
(
ε

n∑
l=1

gε2l

)1/2

;(33)

the constant C does not depend on n or [a, b].

(ii) We proceed in the same way for the terms
∫ k1/(n−1)

a
and

∫ b
k2/(n−1)

, and as in

(33), we finally obtain∣∣∣∣∣
∫ b

a

(Zε1 − Zε2)dz

∣∣∣∣∣ ≤ C√ε
(
ε

n∑
l=1

gε2l

)1/2

.(34)

Now take φ ∈ L1(0, T, L2(T2 × [0, 1])) and construct

φN =
N∑
i=1

αNi (x, y, t)1[ai(x,y,t),bi(x,y,t)[(z)

such that

|φ− φN |L1(0,T,L2(T2×[0,1])) −→
N→∞

0.

Then ∫ T

0

∫
T2

∫ 1

0

(Zε1 − Zε2)φdxdydzdt

=

∫ T

0

∫
T2

∫ 1

0

(Zε1 − Zε2)(φ− φN ) +

∫ T

0

∫
T2

∫ 1

0

(Zε1 − Zε2)φN .

The first estimate that we have is∣∣∣∣∣
∫ T

0

∫
T2

∫ 1

0

(Zε1 − Zε2)φ

∣∣∣∣∣ ≤ C|φ−φN |L1(0,T,L2(T2×[0,1])) +

∣∣∣∣∣
∫ T

0

∫
T2

∫ 1

0

(Zε1 − Zε2)φN

∣∣∣∣∣ .
Hence by (24),∣∣∣∣∣

∫ T

0

∫
T2

∫ 1

0

(Zε1 − Zε2)φN

∣∣∣∣∣ ≤
∫ T

0

∫
T2

C
√
ε

(
N∑
i=1

|αNi (x, y, t)|
)(

ε
n∑
l=1

gε2l

)1/2

≤
√
ε

∣∣∣∣∣
(

N∑
i=1

|αNi (x, y, t)|
)∣∣∣∣∣

L2((0,T )×T2)

since (ε
∑n
l=1 g

ε2
l )1/2 is bounded in L∞((0, T ), L2(T2)). We therefore obtain∣∣∣∣∣
∫ T

0

∫
T2

∫ 1

0

(Zε1 − Zε2)φ

∣∣∣∣∣ ≤ C|φ− φN |L1(0,T,L2(T2×[0,1]))
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+ C
√
ε

∣∣∣∣∣
(

N∑
i=1

|αNi (x, y, t)|
)∣∣∣∣∣

L2((0,T )×T2)

.

It follows that

lim sup
ε→0

∣∣∣∣∣
∫ T

0

∫
T2

∫ 1

0

(Zε1 − Zε2)φ

∣∣∣∣∣ ≤ C|φ− φN |L1(0,T,L2(T2×[0,1])).

Letting N →∞ in this expression, we obtain the result.
We can now perform the limit process on (13), (14), and (15). Thanks to Propo-

sition 3.6, (15) directly gives

U = −∂Ψ

∂y
and V =

∂Ψ

∂x
.

On the other hand, since Zε1 ⇀ Z in L∞(0, T, L2 ∩L∞) weakly and since (Uε2 , V
ε
2 )→

(U, V ) in L∞(0, T, L2) strongly, we have

(Uε2 , V
ε
2 )(Zε1 + ay) ⇀ (U, V )(Z + ay) in D′,

and (13) gives

∂Z

∂t
+∇ · ((U, V )(Z + ay)) = 0.

In order to perform the limit on the elliptic equation (14), one use Proposition 3.7
and the classical result of variational approximation.

Moreover, since the L2 norm of Z+ay is conserved by the flow and since Zε01 → ζ0
in L2 strongly, for all t the convergences of Zε1(t) and Zε2(t) are strong in L2; hence
Zε1(t) and Zε2(t) converge to Z(t) in Lp(0, T, L2(T2 × [0, 1])) strongly for all p <∞.
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Abstract. Local Lp-estimates, 1 < p < ∞, of the gradient are proved for minimizers of
certain functionals whose integrands have quadratic growth in the gradient and are polyconvex “at
infinity.” Both variations of dependent and independent variables of the minimizers are used to
derive equations from which Calderon–Zygmund theory gives the result. Hölder continuity of the
minimizers will follow as a corollary.
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1. Introduction. In this paper, local higher integrability of the gradient is
proved for minimizers of certain polyconvex functionals in the calculus of variations.
Specifically, let Ω ⊂ R2 be a bounded domain. Define an energy functional E by

(1.1) E [U ] =

∫
Ω

(
1

2
|DU|2 + h(detDU)

)
dX =

∫
Ω

γ(DU) dX

for each U = (u, v) ∈ W 1,2(Ω; R2), where h ∈ C1(R) is convex, h ≥ 0, and |h′| is
bounded. Thus

(1.2) lim
d→∞

h′(d) = L+ and lim
d→−∞

h′(d) = −L−

exist and are finite. Also assume that h is asymptotically linear in the sense that
there exists β > 0 such that

(1.3)
L+ − h′(d) = O(d−β) as d→∞,
−L− − h′(d) = O(|d|−β) as d→ −∞.

The function U is called a minimizer of E if E(U) ≤ E(W) whenever U − W ∈
W 1,2

0 (Ω; R2). The main result is the following.
Theorem. Let U ∈ W 1,2(Ω; R2) be a minimizer for the functional E given by

(1.1) and (1.3), with β > 0. Then |DU| ∈ Lploc(Ω) for any p ∈ [1,∞). Moreover, for
each p ∈ [1,∞) and Ω′ ⊂⊂ Ω,

(1.4) ‖DU‖Lp(Ω′) ≤ C
(
1 + ‖U‖L2(Ω) + ‖DU‖L2(Ω)

)
,

where C <∞ depends on p, Ω′, Ω, and the structure of h.
The Sobolev and Morrey embedding theorems then give the following.
Corollary. If U is as in the theorem, then U ∈ C0,α(Ω; R2) for any α ∈ (0, 1).
Prior work on higher integrability includes a result of Giaquinta and Giusti (see [7,

Theorem 4.1] or [6, Theorem 3.1, p. 159]). Applying their work to minimizers of (1.1)
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gives |DU| ∈ L2+σ
loc (Ω) for some σ > 0. Their argument is based on the minimality

of U and polynomial growth in DU of the integrand, but it relies neither on any
convexity nor on differentiability of the integrand. A result under more stringent
conditions is given by Chipot and Evans [3], who proved local Lipschitz regularity
for a class of minimizers U ∈ W 1,2(Ω; RN ), Ω ⊂ Rn, of functionals whose Euler–
Lagrange equations become linear, strongly elliptic constant-coefficient equations as
|DU| → ∞. Their estimates arise through a blowup method. For n-dimensional
cases, n ≥ 2, where γ(DU) = |DU|p + h(detDU) and |h(detDU)| ≤ A + B|DU|q,
1 ≤ q < p < ∞, Dougherty and Phillips [5] proved (1.4) by applying a result of
DiBenedetto and Manfredi [4] on solutions of nonhomogeneous p-Laplace equations.

In this paper, the functional (1.1) is differentiable, but the integrand remains
polyconvex at infinity. Indeed, though h(d) becomes linear for large d, this term can
have large oscillations for large |DU|. The method below exploits two systems of
equations derived from (1.1), these being the usual weak Euler–Lagrange equations
and another system derived from variations of the independent variables. The Lp-
boundedness of Riesz potentials (see [8] and [4]) yields the main result.

2. Preliminaries.
Lemma 2.1. Minimizers of (1.1) exist.
Proof. This follows from work of Ball and Murat, who showed that E is sequen-

tially weakly lower semicontinuous and thus that the integrand in (1.1) is W 1,2-quasi-
convex [1, Theorem 4.5].

The weak Euler–Lagrange equations can be obtained from a straightforward ap-
plication of the dominated-convergence theorem. Specifically, it is not hard to show
that the following lemma holds (cf. [6, Chapter I]).

Lemma 2.2. Let E be as in (1.1). If U is a minimizer of E, then the Euler–
Lagrange equations hold in the weak sense:

(2.1.1) ∆u = 5 ·
〈
−h′(d)vy, h

′(d)vx
〉
,

(2.1.2) ∆v = 5 ·
〈
h′(d)uy, −h′(d)ux

〉
,

where d = detDU = uxvy − uyvx.
A simple density argument shows that h(d) can be replaced by any function

(2.2) ĥ(d) = h(d) + a · d+ b,

where a and b are arbitrary constants, without changing the set of minimizers. Indeed,
it is not hard to prove the following.

Lemma 2.3. For any U ∈W 1,2(Ω; R2) and any Φ ∈W 1,2
0 (Ω; R2),

(2.3)

∫
Ω

(
det(DU +DΦ)− det(DU)

)
dX = 0.

Choosing a = (L−−L+)/2 and adjusting b so h ≥ 0 still holds, it can be assumed
without loss of generality that L− = L+ = M > 0. Equation (1.3) can then be
replaced by

(2.4)
|M − h′(d)| ≤ K|d|−β for d ≥ 1,

|−M − h′(d)| ≤ K|d|−β for d ≤ −1.

From now on, it will also be assumed without loss of generality that β ∈ (0, 1).
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Next, consider equilibrium equations which arise from variations of the inde-
pendent variables. For each Φ ∈ C1

c (Ω; R2), define Zε(X) ≡ X + εΦ(X). For |ε|
sufficiently small, U(Zε) − U ∈ W 1,2

0 (Ω; R2), and so E [U ] ≤ E [U(Zε)]. An argument
similar to that given in [2, Theorem A.1] allows differentiation of E [U(Zε)] in ε to get
the following.

Lemma 2.4. For U and E as in the theorem, the following holds for every Φ ∈
C1
c (Ω; R2):

(2.5) 0 =
d

dε

∣∣∣∣
ε=0

E [U(Zε)] =

∫
Ω

(
∂γ

∂U ixj
(DU)U ixkΦkxj − γ(DU)

(
Φ1
x1

+ Φ2
x2

))
dX.

A straightforward calculation then shows this system can be written in D′(Ω) as

(2.6.1)

[
u2
x + v2

x − u2
y − v2

y

2
+ f(d)

]
x

+ [uxuy + vxvy]y = 0,

(2.6.2) [uxuy + vxvy]x +

[
u2
y + v2

y − u2
x − v2

x

2
+ f(d)

]
y

= 0,

where

(2.7) f(d) = dh′(d)− h(d).

Lemma 2.5. For E and U as in Lemma 1.1, f ∈ L 1
1−β (Ω).

Proof. This follows from the asymptotic behavior of h. For d ≥ 1,

|f(d)| =
∣∣d(h′(d)−M) + dM − h(d)

∣∣
≤
∣∣d(h′(d)−M)

∣∣+

∣∣∣∣∣
∫ d

0

(
M − h′(s)

)
ds− h(0)

∣∣∣∣∣
≤ Kd 1−β + 2M +

∫ d

1

Ks−β ds+ |h(0)|.

Replacing M with −M gives a similar result for d ≤ −1, and so for all d,

(2.8) |f(d)| ≤ C(1 + |d|)1−β ,

which gives

(2.9) ‖f(d)‖
L

1
1−β (Ω)

≤ C
(

1 + ‖DU‖2(1−β)
L2(Ω)

)
≤ C

(
1 + ‖DU‖2L2(Ω)

)
.

Now define the following quantities:

(2.10)
A =

u2
x + v2

x − u2
y − v2

y

2
,

B = uxuy + vxvy.

Subtracting ∂/∂y of (2.6.2) from ∂/∂x of (2.6.1) and adding ∂/∂x of (2.6.2) to ∂/∂y
of (2.6.1) gives in D′(Ω) the system

(2.11)
∆A = −fxx + fyy,

∆B = −2fxy.
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The proof of the following lemma follows an argument similar to that given in [2,
pp. 126–127].

Lemma 2.6. For U and E as in the theorem and p ∈ (1,∞), if f(d) ∈ Lp(B3r),
B3r ⊂ Ω, then A,B ∈ Lp(Br), where Br ⊂ B3r are concentric. Furthermore,

(2.12) ‖A‖Lp(Br) + ‖B‖Lp(Br) ≤ cr,p
(
‖f‖Lp(B3r) + ‖DU‖2L2(B3r)

)
.

Proof. Let η ∈ C∞c (B3r), with 0 ≤ η ≤ 1, η = 1 on B2r, |5η| ≤ cr−1, and
|D2η| ≤ cr−2, with c independent of r. Let g ∈ C∞c (Br). Set

(2.13) w(X) =
1

2π

∫
Br

log |X − Z|g(Z) dZ.

Then∫
Br

Ag dX =

∫
R2

Aη∆w dX =

∫
R2

(
A (∆(ηw)− w∆η − 25w · 5η)

)
dX

=

∫
R2

f(d)
(
−(ηw)xx + (ηw)yy

)
dX +

∫
B3r−B2r

A (−w∆η − 25w · 5η) dX

=

∫
B3r

f(d)η(−wxx + wyy) dX

+

∫
B3r−B2r

{
f(d)(−2ηxwx − ηxxw + 2ηywy + ηyyw)−Aw∆η − 2A5w · 5η

}
dX

≡ (I) + (II).

Now let 1 < p < ∞ and q = p/(p − 1). By the Hölder and Calderon–Zygmund
inequalities, it follows that

(2.14)
|I| ≤ cp‖f‖Lp(B3r)‖D2w‖Lq(Br) ≤ cp‖f‖Lp(B3r)‖D2w‖Lq(R2)

≤ c′p‖f‖Lp(B3r)‖g‖Lq(R2) = c′p‖f‖Lp(B3r)‖g‖Lq(Br).

To estimate (II), note first that Hölder’s inequality gives

|w|+ |5w| ≤ c(r, p) ‖g‖Lq(Br) on B3r −B2r.

Thus

(2.15)
(II) ≤ c′(r, p)

{
‖f‖L1(B3r) + ‖A‖L1(B3r)

}
‖g‖Lq(Br)

≤ c′(r, p)
{
‖f‖L1(B3r) + ‖DU‖2L2(B3r)

}
‖g‖Lq(Br).

Combining (2.14) and (2.15) and taking the supremum over all g ∈ C∞c (Br) with
‖g‖Lq = 1 gives

‖A‖Lp(Br) ≤ c′′(r, p)
{
‖f‖L1(B3r) + ‖f‖Lp(Br) + ‖DU‖2L2(B3r)

}
≤ c′′′(r, p)

{
‖f‖Lp(B3r) + ‖DU‖2L2(B3r)

}
.

This proves estimate (2.12) for A, and the estimate for B follows similarly.
Now consider the quantities ν1(x), ν2(x) ≥ 0, defined to be the singular values

of DU , i.e., the eigenvalues of
√
DUTDU . Thus ν2

1 and ν2
2 will each satisfy the

characteristic equation for the matrix

(2.16) DUTDU =

(
u2
x + v2

x uxuy + vxvy

uxuy + vxvy u2
y + v2

y

)



534 MICHAEL M. DOUGHERTY

given by

(2.17) 0 = det

(
(u2
x + v2

x)− λ uxuy + vxvy

uxuy + vxvy (u2
y + v2

y)− λ

)
= λ2 − |DU|2λ+ d 2.

Hence

(2.18)
(
ν2

1 − ν2
2

)2
= |DU|4 − 4d 2 = 4

(
|DU|2

2
+ |d|

)(
|DU|2

2
− |d|

)
,

(2.19) ν2
1 + ν2

2 = |DU|2.

This leads to the following.
Lemma 2.7. For E and U as in Lemma 1.1 and for p ∈ (1,∞), if f(d) ∈ Lp(B3r),

then ν2
1 − ν2

2 ∈ Lp(Br). In particular, the following estimates hold:

‖ν1 − ν2‖L2p(Br) ≤ C
(
1 + ‖f‖Lp(B3r) + ‖DU‖L2(B3r)

)
;(2.20)

∥∥∥∥∥
√
|DU|2

2
− |d|

∥∥∥∥∥
L2p(Br)

≤ C
(
1 + ‖f‖Lp(B3r) + ‖DU‖L2(B3r)

)
.(2.21)

Proof. For almost every point X ∈ Ω,(
DUTDU

)
(X) = PT (X)

(
ν2

1(X) 0
0 ν2

2(X)

)
P(X)

for some P(X) ∈ SO(2). Thus(
A B
B −A

)
= DUTDU − 1

2
|DU|2I

= PT
(
ν2

1 0
0 ν2

2

)
P − 1

2

(
ν2

1 + ν2
2 0

0 ν2
1 + ν2

2

)
,

and so

(2.22)

(
ν2

1 − ν2
2 0

0 ν2
2 − ν2

1

)
= 2P

(
A B
B −A

)
PT ∈ Lploc(Ω;M2×2),

with the same estimate for ν2
1 − ν2

2 as those given by Lemma 2.6 for A and B. Since
ν1, ν2 ≥ 0 and in light of (2.18),

(2.23) |ν1 − ν2|+
√
|DU|2

2
− |d| ≤ 2

√
|ν2

1 − ν2
2 |,

and estimates (2.20) and (2.21) follow.

3. Proof of the theorem. Assume (2.4) without loss of generality. Adding
M∆u to both sides of (2.1.1) and M∆v to both sides of (2.1.2) gives the divergence-
form equations

(3.1)

∆u =
1

M + 1
5 · 〈Mux − h′(d)vy, Muy + h′(d)vx〉 ≡ 5 · F,

∆v =
1

M + 1
5 · 〈Mvx + h′(d)uy, Mvy − h′(d)ux〉 ≡ 5 ·G.
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The result will follow by the Lp-boundedness of Riesz potentials if appropriate
Lp-estimates for the components of F and G can be obtained for all 1 < p < ∞ (cf.
[8] and [4]). The proof utilizes a bootstrapping argument. The first step is proved
for |F | in detail, and |G| follows similarly. The bootstrap for the next step is then
outlined to complete the proof.

Let Ω′ ⊂⊂ Ω. From the integrability of f(d) given in (2.9), Lemma 2.7 gives

‖ν1 − ν2‖
L

2
1−β (Ω′)

≤ C
(

1 + ‖f(d)‖
L

1
1−β (Ω)

+ ‖DU‖L2(Ω)

)
,(3.2)

∥∥∥∥∥
√
|DU|2

2
− |d|

∥∥∥∥∥
L

2
1−β (Ω′)

≤ C
(

1 + ‖f(d)‖
L

1
1−β (Ω)

+ ‖DU‖L2(Ω)

)
.(3.3)

Set

(3.4)

S0 = {X ∈ Ω′ : |d(X)| < 1},
S+ = {X ∈ Ω′ : d(X) ≥ 1},
S− = {X ∈ Ω′ : d(X) ≤ −1}.

By means of singular decomposition, there exist P(X),Q(X) ∈ SO(2) such that

DU = P
(
ν1 0
0 ν2

)
Q on S+,(3.5)

(
1 0
0 −1

)
DU = P

(
ν1 0
0 ν2

)
Q on S−.(3.6)

Claim 1. Mux − h′(d)vy ∈ L
2

1−β (S+), with the estimate

(3.7) ‖Mux − h′(d)vy‖
L

2
1−β (S+)

≤ C
(
1 + ‖DU‖L2(Ω)

)
.

Proof. To prove this, first estimate

(3.8)

|Mux − h′(d)vy| =
1

2

∣∣(M + h′(d))(ux − vy) + (M − h′(d))(ux + vy)
∣∣

≤ 1

2

[∣∣(M + h′(d)) (ux − vy)
∣∣+
∣∣(M − h′(d)) (ux + vy)

∣∣]
≡ 1

2

[
(I) + (II)

]
.

There exist P,Q ∈ SO(2), rotations by angles θ and φ, respectively, such that (3.5)
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holds. Thus

(3.9)

ux − vy = tr

[(
1 0
0 −1

)
DU
]

= tr

[(
1 0
0 −1

)
P
(
ν1 0
0 ν2

)
Q
]

= tr

[(
1 0
0 −1

)(
cos θ sin θ
− sin θ cos θ

)(
ν1 0
0 ν2

)(
cosφ sinφ
− sinφ cosφ

)]
= tr

[(
cos θ sin θ
sin θ − cos θ

)(
ν1 cosφ ν1 sinφ
−ν2 sinφ ν2 cosφ

)]
= (ν1 − ν2)(cos θ cosφ+ sin θ sinφ)
= (ν1 − ν2) cos(θ − φ).

Still confined to S+, since d ≥ 1, estimate
(3.10)

(II) ≤ (M − h′(d))
√

2
√
|DU|2 ≤ K|d|−β

(√
2
√
|DU|2 − 2|d|+ 2|d|

)
≤ 2K|d|−β

√
|DU|2

2
− |d|+ 2K|d|−β

√
|d| ≤ 2K

√
|DU|2

2
− |d|+ 2K|d|

1−β
2 .

From estimates (2.9), (2.20), and (2.21), we get

(3.11)
‖I‖

L
2

1−β (S+)
+ ‖II‖

L
2

1−β (S+)
≤ C

(
1 + ‖f(d)‖

L
1

1−β (Ω)
+ ‖DU‖L2(Ω)

)
≤ C

(
1 + ‖DU‖L2(Ω)

)
.

This completes the proof of Claim 1.

Claim 2. Mux − h′(d)vy ∈ L
2

1−β (S−), with the estimate

(3.12) ‖Mux − h′(d)vy‖
L

2
1−β (S−)

≤ C
(
1 + ‖DU‖L2(Ω)

)
.

Proof. The proof is nearly the same as that of Claim 1, except that the respective
methods for estimating (I) and (II) are reversed. In S−, estimate
(3.13)

(I) ≤ (M + h′(d))
√

2
√
|DU|2 ≤ K|d|−β

(√
2
√
|DU|2 − 2|d|+ 2|d|

)
≤ 2K|d|−β

√
|DU|2

2
− |d|+ 2K|d|−β

√
|d| ≤ 2K

√
|DU|2

2
− |d|+ 2K|d|

1−β
2 .

As for (II), using (3.6), compute as before
(3.14)

ux + vy = tr DU = tr

[(
1 0
0 −1

)2

DU
]

= tr

[(
1 0
0 −1

)
P
(
ν1 0
0 ν2

)
Q
]

= (ν1 − ν2) cos(θ − φ).

Thus

(3.15) ‖I‖
L

2
1−β (S−)

+ ‖II‖
L

2
1−β (S−)

≤ C
(
1 + ‖DU‖L2(Ω)

)
.
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Claim 3. Muy + h′(d)vx ∈ L
2

1−β (S+), along with an estimate of the form (3.7)
for Muy + h′(d)vx.

Proof. As in the proofs of Claims 1 and 2, first estimate this quantity as follows:

(3.16)

|Muy + h′(d)vx| ≤
1

2

[
|(M + h′(d))(uy + vx)|+ |(M − h′(d))(uy − vx)|

]
≡ 1

2
[(III) + (IV)].

Since d ≥ 1, it follows that

uy + vx = (DU)12 + (DU)21 =

[(
P
(
ν1 0
0 ν2

)
Q
)

12

+

(
P
(
ν1 0
0 ν2

)
Q
)

21

]
.

Reading off these entries from the matrix

P
(
ν1 0
0 ν2

)
Q =

(
cos θ sin θ
− sin θ cos θ

)(
ν1 0
0 ν2

)(
cosφ sinφ
− sinφ cosφ

)
gives

(3.17)

uy + vx = (ν1 cos θ sinφ+ ν2 sin θ cosφ− ν1 sin θ cosφ− ν2 cos θ sinφ)

= (ν1 − ν2)(cos θ sinφ− sin θ cosφ)

= (ν1 − ν2) sin(φ− θ).

The estimate for (IV) is the same as for (II) in Claim 1, and so Claim 3 is proved.

Claim 4. Muy + h′(d)vx ∈ L
2

1−β (S−), along with an estimate of form (3.14) for
Muy + h′(d)vx.

Proof. Again, the proof is nearly the same as that of Claim 3, except for the
reversal of the roles of (III) and (IV). The estimate for (I) from Claim 2 holds for (III)
here. To estimate (IV), write

(3.18)

uy − vx =

[(
1 0
0 −1

)
DU
]

12

+

[(
1 0
0 −1

)
DU
]

21

=

{[
P
(
ν1 0
0 ν2

)
Q
]

12

+

[
P
(
ν1 0
0 ν2

)
Q
]

21

}
= (ν1 − ν2) sin(φ− θ).

This completes the proof of Claim 4.

Claim 5. DU ∈ L 2
1−β (S0), with an estimate

(3.19) ‖DU‖
L

2
1−β (S0)

≤ C
(
1 + ‖DU‖L2(Ω)

)
.

Proof. The estimate follows from (2.21) and the observation that the estimate
|DU| ≤

√
|DU|2 − 2|d|+

√
2 holds on S0, and Claim 5 is proved.

We have shown so far that ∆u = 5 · F , where |F | ∈ Lp(Ω′) for p = 2/(1− β).
An argument similar to the one given above shows that |G| ∈ Lp(Ω′) as well. Then
from local estimates for Riesz potentials comes the estimate

(3.20) ‖DU‖
L

2
1−β (Ω′′)

≤ C
(
1 + ‖U‖L2(Ω) + ‖DU‖L2(Ω)

)



538 MICHAEL M. DOUGHERTY

on any subdomain Ω′′ ⊂⊂ Ω′. Now the proof employs the bootsrapping. From (2.8),
it is easy to see that

(3.21) |f(d)| ≤ C(1 + |DU|)2(1−β).

From (3.20), we then get

(3.22) ‖f(d)‖
L

1
(1−β)2 (Ω′′)

≤ C
(
1 + ‖U‖L2(Ω) + ‖DU‖L2(Ω)

)
.

After passing to further subdomains, Lemmas 2.6 and 2.7 apply with p = (1 − β)2,
and estimates (3.7), (3.12), (3.19), and (3.20) follow with (1− β)2 replacing (1 − β)
and with the modification that the ‖U‖L2(Ω) term be included in the right-hand sides
of all these estimates. After m steps, (1−β) is replaced by (1−β)m, and the theorem
follows.

Remark. In the case where β > 1, f(d) ∈ L∞(Ω) and no bootstrap is required.
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STABILITY OF GASEOUS STARS IN SPHERICALLY SYMMETRIC
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Abstract. We study the linearized stability of stationary solutions of gaseous stars which are
in spherically symmetric and isentropic motion. If viscosity is ignored, we have following three types
of problems: (EC), Euler equation with a solid core; (EP), Euler–Poisson equation without a solid
core; (EPC), Euler–Poisson equation with a solid core. In Lagrangian formulation, we prove that
any solution of (EC) is neutrally stable. Any solution of (EP) and (EPC) is also neutrally stable
when the adiabatic index γ ∈ ( 4

3
, 2) and unstable for (EP) when γ ∈ (1, 4

3
). Moreover, for (EPC)

and γ ∈ (1, 2), any solution with small total mass is also neutrally stable. When viscosity is present
(ν > 0), the velocity disturbance on the outer surface of gas is important. For ν > 0, we prove that
the neutrally stable solution (when ν = 0) is now stable with respect to positive-type disturbances,
which include Dirichlet and Neumann boundary conditions. The solution can be unstable with
respect to disturbances of some other types. The problems were studied through spectral analysis of
the linearized operators with singularities at the endpoints of intervals.

Key words. stability, isentropic gas, self-gravitating, solid core, limit-point singularity

AMS subject classifications. 35J65, 35P30, 85A15, 85A20

PII. S0036141095292883

1. Introduction. In this paper, we shall study the stability problem of gaseous
stars which are in spherically symmetric and isentropic motion. The problem orig-
inated in Newtonian (nonrelativistic) astrophysical theory. A model equation for
describing such motion is shown below:

∂ρ

∂t
+ v

∂ρ

∂r
+ ρ

∂v

∂r
+

2

r
ρv = 0,(1.1)

ρ

(
∂v

∂t
+ v

∂v

∂r

)
+
∂p

∂r
=− ρ

r2

{
M0 + 4πδ

∫ r

R0

ρ(t, s)s2ds

}
+ ν

{
∂2v

∂r2
+

2

r

∂v

∂r
− 2

r2
v

}
,(1.2)

p = Aργ ,(1.3)

where t ≥ 0 and 0 ≤ R0 < r < ∞; see, e.g., [6, 7, 8, 9, 10, 11, 12, 13, 14, 20]. Here
the unknown variable ρ is the density of the gas and v is the outward velocity. p is
the pressure, A is a positive constant which is related to entropy, and γ ∈ (1,2) is the
adiabatic exponent.

The explanation of the physical parameters δ,M0, R0, and ν is as follows:
δ is the effect of self-gravitating of gas, the mutual graviational attraction among

gas molecules, and is assumed to be either 0 or 1. If δ = 0, we ignore the effect of
self-gravitating. This may happen when the total amount of gas is relatively small.
If δ = 1, we then consider the self-gravitating of gas to be important.
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research was partially supported by the National Science Council of the Republic of China.
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M0 is the total mass of the solid core surrounded by the gas. If M0 = 0, then
we assume that R0 = 0. This is the case when there is no solid core and also no
vacuum in the central part of the gaseous body. If M0 > 0, we assume that there is
a stationary, spherical solid core surrounded by the gas. In this case, we normalize
the radius of the solid core with R0 = 1. We also assume that the gas is in contact
the surface of the solid core, i.e., no vacuum exists between the core and the gas. A
nonslip condition is now imposed at the interface, i.e.,

v(t, 1) = 0 for t ≥ 0.(1.4)

We note that astrophysicists consider the solid core to be made of condensed gases in
which there may be complicated activity that influences the surrounding gas. How-
ever, for mathematical simplicity, we will consider these condensed gases to be a solid
core and ignore their influence on the surface gas.

ν is viscosity coefficient. We are mainly concered with inviscid flow, i.e., ν = 0.
After presenting a detailed study of inviscid flow, we will discuss the effect of viscosity
on the stability of stationary solutions.

If viscosity is ignored, then according to the different combinations of parameters
δ,M0, and R0, we have following three types of problems:

(EC): Euler equation with solid core (δ = 0, M0 > 0, R0 = 1, ν = 0);
(EP): Euler–Poisson equation without solid core (δ = 1, M0 = 0, R0 = 0, ν = 0);
(EPC): Euler–Poisson equation with solid core (δ = 1, M0 > 0, R0 = 1, ν = 0).

If viscosity is present, i.e., ν > 0, then the Euler equation will be replaced by a Navier–
Stokes equation and we have problems (NSC), (NSP), and (NSPC), respectively.

The stationary solution (ρ(r), 0) of (1.1)–(1.3) satisfies

dp

dr
= − ρ

r2

{
M0 + 4πδ

∫ r

R0

ρ(s)s2

}
.(1.5)

If we introduce the variable u(r) and the parameter µ > 0 in

ρ = Cγu
q and µ = dγM0,

where

q =
1

γ − 1
, Cγ =

{
Aγ

4π(γ − 1)

} 1
2−γ

, and dγ =

{
(4π)γ−1 γ − 1

Aγ

} 1
2−γ

,

then (1.5) and (1.4) can be studied by considering the following initial-value problems:
for (EC),

u′′ +
2

r
u′= 0, r > 1,

u(1, α, µ) = α and u′(1, α, µ) = −µ

}
;(1.6)

for (EP),

u′′ +
2

r
u′ + uq = 0, r > 0,

u(0, α) = α and u′(0, α) = 0

}
;(1.7)

and for (EPC),

u′′ +
2

r
u′ + uq = 0, r > 1,

u(1, α, µ) = α and u′(1, α, µ) = −µ

}
.(1.8)
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Here α > 0 is taken as a shooting parameter.
The total mass of the stationary solution u is given by

M̃(u) = 4πCγ

∫ R

R0

uq(r)r2dr,(1.9)

where R ∈ (R0,∞] is the first zero of u, i.e.,

u(R) = 0 and u(r) > 0 in (R0, R).

From a physical point of view, we are only interested in a stationary solution with
finite total mass.

The solution of (1.6) with finite total mass can be written explicitly as

u = µ

(
1

r
− 1

R

)
(1.10)

for some R ∈ (1,∞].
The solution of (1.7) has been studied extensively by Lane et al.; see, e.g., [1].

Their solutions include the ball type (R <∞), the ground-state type (R = +∞), and
the singularity type, i.e., limr→0+ u(r) =∞.

Equation (1.8) has recently been studied in [5] and may have multiple solutions
for certain µ and M̃ when q > 3.

The multiplicity results of these problems will be given in section 2.
In this paper, we mainly study the stability of stationary solutions obtained from

(1.6), (1.7), and (1.8) since only the local existence and not the global-existance of
the initial-value problem in (1.1)–(1.3) is known (see, e.g., [6, 7, 8, 9, 10, 11, 12, 13, 14]).
We therefore need only study the linearized stability of these stationary solutions.

The linearized stability problem of the stationary solution ρ(r) will be studied in
Lagrangian formulation. Indeed, equations (1.1)–(1.3) can be written in Lagrangian
coordinates as

ρt + 4πρ(r2v)x = 0,(1.11)

vt + 4πr2px +
1

r2
(M0 + x) = 16π2ν(r2ρvx)x − 2νv(r2ρ)−1,(1.12)

r =

{
R0 +

3

4π

∫ x

0

1

ρ(t, y)
dy

} 1
3

and x = 4π

∫ r

R0

ρ(s, t)s2ds,

where t ≥ 0 and x ∈ (0, M̃). We assume that the perturbation of (ρ(x), 0) is in a
radial direction only and write

ρ(t, x) = ρ(x){1 + εeλtΦ(x)} and v(t, x) = εeλtΨ(x)(1.13)

in (1.11) and (1.12), where |ε| is small. Let

φ(x) =

∫ x

0

Φ(y)

ρ(y)
dy.
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Then the linear equations for Φ and Ψ can be simplified as follows:

(ρpφx)x −
1

πγr3 pxφ =
λ2

γ(4πr2)2
φ

− λν

4πγr2

{
16π2

[
r4ρ

(
1

4πr2φ

)
x

]
x

− 2

r2ρ

1

4πr2φ

}
(1.14)

with boundary condition

φ(0) = 0,(1.15)

where

r =

{
1 +

3

4π

∫ x

0

1

ρ(y)
dy

}
.

Transforming (1.14) into r-coordinates and writting φ(x) = ψ(r), we obtain

Lψ ≡ (r−2pψ′)′ − 4

γ
r−3p′ψ =

λ2

γ
r−2ρψ − λν

γ
(r−2ψ′)′(1.16)

with ψ(R0) = 0, where p is the pressure in r-coordinates. Since ρ(R) = 0, if ν = 0,
then (1.16) is singular at r = R. We can prove that the singularity at R is a limit-
point type and so L is self-adjoint. Therefore, λ2 is real for any eigenvalue λ when
ν = 0. Now ρ is called neutrally stable if λ2 < 0 for any eigenvalue λ and unstable if
λ2

1 > 0 for some eigenvalue λ1. Hence if ν = 0, then neutrally stable is the best we
can hope for. Indeed, when ν = 0, we have our stability results for ball-type solutions
as follows.

Theorem 1.1. Assume that ν = 0 and ball-type solutions have been considered.
Then

(I) any solution of (EC) is neutrally stable;
(II) any solution of (EP) is neutrally stable if q ∈ (1, 3) and unstable if q > 3;

and
(III) for (EPC), we have the following:
(i) any solution is neutrally stable if q ∈ (1, 3],
(ii) for any q > 1, u(·, α, µ) is neutrally stable if α ∈ (0, µ], and
(iii) if |R− 1| is sufficiently small, then it is neutrally stable.
Some stability results concerning ground-state-type and singularity-type solutions

are also presented in section 4.
When viscosity is present and λ /∈ [−γν p(R0), 0], then (1.16) is regular atR. In this

case, the viscosity term plays the dominant role in studying the eigenvalue problems.
Now ρ is called stable if Reλ < 0 for any eigenvalue λ and unstable if Reλ1 > 0 for some
eigenvalue λ1. Note that (1.16) is genuinely quadratic in λ (linear in λ2 when ν = 0)
and λ is complex in general. Hence when ν > 0, we may have better than the neutral
stability that we have when ν = 0. Since the outer surface of gas is a free surface,
the velocity disturbance Ψ on it will play an important role. For example, we have
stability results for (EC), (EP), and (EPC) as follows.

Theorem 1.2. Let u be a neutrally stable, ball-type stationary solution of (EC),
(EP), or (EPC) when ν = 0. Then for any ν > 0, u is stable with respect to Ψ =
ψ1 + iψ2 if ψj(M̃)ψ′j(M̃) ≤ 0 for both j = 1 and 2 on the gas surface. On the other
hand, there is a positive constant κ∗ depending on u such that u is unstable with
respect to Ψ = ψ1 + iψ2 if ψ′1(M̃)/ψ1(M̃) ≥ κ∗ and some ψ2.
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The precise definition of stability with respect to the boundary disturbance Ψ is
given in section 5.

The paper is organized as follows. In section 2, we recall some useful multiplic-
ity results for stationary solutions with finite total masses. Their stabilities will be
investigated in subsequent sections. In section 3, we study the linearized operators
L and prove that they have limit-point-type singularities at their endpoints. We also
provide a useful comparison lemma to test for stability. In section 4, we prove various
stability results, which include Theorem 1.1. The solutions for other types of stability
problems are also studied. In section 5, we study the effect of viscosity on stability
problems and prove some results, including Theorem 1.2. In Appendix A, we study
the asymptotic behavior of solutions of (1.16) at R when ν = 0, which is very useful
for studying ball-type solutions. In Appendix B, we recall Friedrichs’ criteria for the
spectrum discreteness of differential operators that have singular endpoints. These
criteria are very useful in studying ground-state-type and singularity-type solutions.

2. Stationary solutions. In this section, we recall some multiplicity results
for stationary solutions without interior vacuums and with finite total masses. Let
R ≤ ∞ be the first zero of solution u and M̃(u) be the total mass given in (1.9). For
notational simplicity, we omit the constant 4πCγ in (1.9) and then define

M(u) =

∫ R

R0

u(r)qr2dr,(2.1)

where R0 = 0 for (EP) and R0 = 1 for (EC) and (EPC).
Since the total mass of a gas remains constant while it is in motion and it may tend

to a stationary state as time goes by, it is useful to know the numbers of stationary
solutions for the same total mass. Hence we try to answer the following questions.

Questions. Given M > 0, how many solutions u are there for (EP) with M(u) =
M? Given µ > 0 and M > 0, how many solutions u are there for (EC) or (EPC) with
M(u) = M?

Complete answers of (EC) and (EP) can be provided; see, e.g., [1]. However,
(EPC) has only recently been studied and the result is complete for 1 < q ≤ 3 but
partial when q > 3; see [5].

First, for (EC), the solution of (1.6) is given by

u(r, α, µ) = α− µ+ µ
1

r
.(2.2)

If α ∈ (0, µ), then u(R(α, µ), α, µ) = 0 with

R(α, µ) =

(
1− α

µ

)−1

.

In this case, we may write u(·, α, µ) = uR,µ with

uR,µ(r) = µ

(
1

r
− 1

R

)
.

It is clear that M(uR,µ) is strictly increasing in R and tends to

M∗q =


+∞ if 1 < q ≤ 3,

1

q − 3
· µq if q > 3.
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If α = µ, then R(µ, µ) = +∞ and

u(r, µ, µ) =
µ

r

with

M(u(·, µ, µ)) = M∗q .

If α > µ, then M(u(·, α, µ)) = ∞, which is not of physical interest. Hence we have
the following unique result for (EC).

Proposition 2.1. For any q > 1, µ > 0, and M ∈ (0,M∗q ), there is a unique
solution uR,µ for (EC) such that M(uR,µ) = M .

Next, for (EP), we consider the initial-value problem

u′′ +
2

r
u′ + uq = 0, r > 0,(2.3)

u′(0, α) = 0 and u(0, α) = α > 0.(2.4)

It is known that solutions of (2.3) have similar properties. Indeed, if u(r) is a
solution of (2.3), then for any β > 0,

uβ(r) = βσu(βr)(2.5)

is also a solution, where σ = 2
q−1 . The total mass of uβ is

M(uβ) = β
3−q
q−1M(u).(2.6)

The property (2.5) is related to the following classical Lane–Emden–Fowler trans-
formations:

Let

r = e−τ and z(τ) = rσu(r).(2.7)

(2.3) can then be transformed into the autonomous equation

z′′ + (2σ − 1)z′ + σ(σ − 1)z + zq = 0(2.8)

or, equivalently, the dynamic system{
z′ = y,
y′= −{2σ − 1)y + σ(σ − 1)z + zq}.(2.9)

If q ∈ (1, 3], then 0 = (0, 0) is the only equilibrium for (2.9) on the right half-plane
R2

+ = {(z, y) : z ≥ 0}. If q > 3, then there is another equilibrium S = (zσ, 0), where

zσ = {σ(1− σ)} 2
σ .(2.10)

0 is always a saddle point with the unstable manifold Γ, which is leaving in the
direction (1, 1 − σ)t, and the stable manifold Γ̃, which is arriving for the direction
(1,−σ), where (a, b)t is the transpose of vector (a, b) in R2. Let

q+ = 1 +
2

σ+
and σ+ =

√
2− 1

2
.
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It is than easy to verify that q+ ∈ (3, 5).
We now list some useful properties of the equilibrium S and system (2.9) on the

phase plane R2
+.

Proposition 2.2.

(I)
(i) If q ∈ (3, q+), then S is a stable improper node.

(ii) If q = q+, then S is a stable proper node.
(iii) If q ∈ (q+, 5), then S is stable spiral.
(iv) If q = 5, then S is a center.
(v) If q > 5, then S is an unstable spiral.

(II)
(i) For q ∈ (3, 5), the unstable manifold Γ of 0 is a heteroclinic orbit connecting

0 and S. There is no nontrivial periodic orbit on R2
+.

(ii) For q = 5, Γ = Γ̃, i.e., Γ is a homoclinic orbit of 0. The inside of Γ is
covered by a family of concentric periodic orbits centered around 0.

(iii) For q > 5, the stable manifold Γ̃ of 0 is a heteroclinic orbit connecting 0 and
S.

The proofs are elementary and omitted; see [1] for details.
Every trajectory in the phase plane of (2.9) represents a family of self-similar

solutions in (2.5). After carefully investigating the trajectories in the phase plane, we
have exactly four types of solutions for (EP) with finite total mass for (EP):

(i) B-type solutions: ball-type solutions that lie on Γ̃ and appear when q ∈
(1, 5);

(ii) G-type solutions: ground-state solutions that also lie on Γ̃ and only appear
when q ≥ 5; they also have fast decay rates as r → +∞, i.e.,

lim
r→+∞

ru(r) ∈ (0,∞);(2.11)

(iii) SB-type solutions: ball-type solutions with a singularity at r = 0 that appear
when q ∈ (3, 5) and are trajectories between Γ and Γ̃ that have a weak singularity,
i.e., u satisfies

lim
r→0+

rσu(r) ∈ (0,∞);(2.12)

(iv) SG-type solutions: ground-state solutions with a singularity at r = 0 that
lie on Γ and satisfy (2.12); they also appear when q ∈ (3, 5);

Note that if the singularity at r = 0 is strong, i.e.,

lim
r→0+

ru(r) > 0,(2.13)

then u has an infinite total mass: for example, the SB-type solution when q ∈ (1, 3).
If the ground-state solution has a slow-decay rate at ∞, i.e.,

lim
r→∞

rσu(r) > 0,(2.14)

then u also has an infinite total mass, which includes the following cases:
(i) qσr

−σ for q > 3; this corresponds to the equilibrium S = (zσ, 0);
(ii) when q = 5, all trajectories lie on homoclinic orbit Γ;

(iii) when q > 5, all trajectories spiral out from S;
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With this preparation complete, we can now state our unique results for (EP).
Proposition 2.3. For (EP), we have the following:

(i) If q ∈ (1, 3) and any M > 0, there is a unique—B-type—solution u such
that M(u) = M .

(ii) If q = 3, only a special M̂ of a stationary solution u—a B-type solution—
admits. (All similar solutions of u also have the same total mass M̂ .)

(iii) If q ∈ (3, 5) and any M > 0, there are unique B-type, SB-type, and SG-type
solutions with the same total mass M .

(iv) If q = 5 and any M > 0, there is a unique—G-type—solution u such that
M(u) = M .

(v) If q > 5, there is no stationary solution with finite total mass.
Proof. The proofs are based on the phase-plane analysis in (2.9) and the use of

(2.6), and they are elementary. Thus the details are omitted.
As for (EPC), there are two types of solutions with finite total mass:

(i) BC-type solutions: ball-type solutions with solid cores;
(ii) GC-type solutions: ground-state solutions with solid cores that satisfy (2.11).

We recall some results from [5].
Proposition 2.4. For (EPC), we have the following:

(i) When q ∈ (1, 3], for any µ > 0 and M > 0, there is a unique—BC-type—
solution u that satisfies M(u) = M .

(ii) When q > 3, for any µ > 0, the solution set is the disjoint union of N
many connected components Ck = {u(·, α, µ) : α ∈ (α̃k, α̂k)}, k = 1, 2, . . . , N , where
N = N(µ, q) is a positive integer or infinity.

At Ck with k ≥ 2, M((u(·, α, µ)) tends to infinity at at least one end. At
C1, α̃1 = 0 and α̂1 > µ.

For detailed statements of Proposition 2.4(ii), see Theorems 3.5, 3.7, 3.9, and 3.13
in [5].

Remark 2.5. When there is a vaccum in the central part of the gaseous body
that is also stationary, then u satisfies

u′′(r) +
2

r
u′(r) + uq(r) = 0, R1 < r < R2,(2.15)

u(R1) = 0 = u(R2),(2.16)

where 0 < R1 < R2 ≤ ∞. For any q > 1 and 0 < R1 < R2 < ∞, Ni and Nussbaum
[17] proved that there is a unique positive solution of (2.15) and (2.16). In contrast
to Proposition 2.3(v), for any q > 1, the solution u of (2.15) and (2.16) with R2 <∞
has a finite total mass. We can then ask the following questions: Given q > 1 and
M > 0, how many solutions u are there for (2.15) and (2.16) with M(u) = M? What
is the stability of these annular-type solutions? These problems will be studied later.

3. Linearizations. In this section, we will use a Lagrangian formulation to
study the stability of the stationary solutions obtained in last section. Since we
want to know the stability result when the outer surface of the gas is also perturbed,
it is convenient to work in Lagrangian coordinates. We study only the inviscid flow
in this section and defer study of the the viscous flow to section 5.

For notational simplicity, we replace r with r in (1.16) with ν = 0. We then
obtain

Lψ = −`Wψ in (R0, R),(3.1)
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where

Lψ ≡ (r−2pψ′)′ − 4

γ
r−3p′ψ, W (r) ≡ ρ(r)

γr2
, and ` = −λ2.

ψ also satisfies the boundary condition

ψ(R0) = 0.(3.2)

In terms of u, (3.1) can also be written as

L0ψ ≡ ψ′′ +
{

(1 + q)
u′

u
− 2

r

}
ψ′ − 4q

r

u′

u
ψ = −`(γACγ−1

γ )−1ψ

u
.(3.3)

Since u(R) = 0, L is singular at R. Furthermore, L is also singular at r = 0 for (EP).
When R <∞, we first study the asymptotic behavior of solution ψ of (3.1) at R.

Indeed, we have the following result. (The proof is given in Appendix A.)
Lemma 3.1. Let R <∞. If ` is real and ψ is a (real) solution of (3.1) in (R0, R),

then either ψ is bounded at r = R or ψ(r) = (R − r)−qψ̂(r) for r close to R, with

ψ̂(R) 6= 0, and ψ̂ is continuous at R. Furthermore, in the former case, ψ is C2 at R,
and in the latter case,

ψ′(r) = q(R− r)−q−1ψ̂(R) + o((R− r)−q−1)(3.4)

as r → R−.
Similarly, if R0 = 0, then either ψ(0) 6= 0 or |ψ(r)| ≤ Cr3 for r close to 0 and

some C > 0.
To study the singularity type at R, it is convenient to remove the weight function

W from right-hand side of (3.1). Indeed, if R0 = 1, let r0 = 1, and if R0 = 0, choose
any r0 ∈ (0, R) and fix it. Then define

s = s(r) =

∫ r

r0

W (τ)dτ =
1

γ

∫ r

r0

τ−2ρ(τ)dτ(3.5)

and

S0 =

∫ R0

r0

W (τ)dτ and S =

∫ R

r0

W (τ)dτ.

It is clear that S0 = 0 when R0 = 1 and S0 = −∞ when R0 = 0. Furthermore, W > 0
in (R0, R) implies that the inverse function of s(r) exists. We may denote it by

r = r(s)

for s ∈ (S0, S). Let

χ(s) = ψ(r(s)).

Then (3.1) is transformed into

L̃χ = −`χ in (S0, S),(3.6)

where

L̃χ =
1

γ

d

ds

(
r−4pρ

dχ

ds

)
− 4

p′

rρ
χ.
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Let L2(S0, S) be the complex-valued L2-space on (S0, S) with the standard inner
product

(χ, χ̃) ≡
∫ S

S0

χχ̃ds.(3.7)

It is clear that

(χ, χ̃) =

∫ R

R0

ψψ̃W (r)dr ≡ (ψ, ψ̃)w.(3.8)

Here ( , )w defines an inner product in space L2
w(R0, R) by (3.8).

Now we can prove L̃ has limit-point-type singularity at S.
Lemma 3.2. If S < ∞, then L̃ is limit-point type at S. Furthermore, for (EP),

L̃ is also limit-point type at −∞.
Proof. From [2], it is known that L̃ is the limit-point-type singularity at S if we

can find a solution pair {`, χ} for (3.6) in a neighborhood of S such that χ is not L2.
This can be done as follows:

Since

p = ACγγu
q+1(3.9)

and

p′ = A(q + 1)Cγγu
qu′,

we have

p′(r)

rρ(r)
= A(q + 1)Cγ−1

γ

u′(r)

r
.(3.10)

Hence (3.10) implies

lim
r→R

p′(r)

rρ(r)
= A(q + 1)Cγ−1

γ

u′(R)

R
.(3.11)

Fix Ŝ ∈ (S0, S). For any real `, let χ be the real solution of the following initial-
value problem:

L̃χ = −`χ in (Ŝ, S),(3.12)

χ(Ŝ) = 0 and χ′(Ŝ) = 1.(3.13)

Denote R̂ = r(Ŝ). Now (3.11) implies that there exists `0 < 0 such that

`0rρ(r)− 4p′(r) ≤ 0(3.14)

in [R̂, R]. We claim that χ /∈ L2(Ŝ, S) if ` ≤ `0.
Indeed, if χ ∈ L2(Ŝ, S), then Lemma 3.1 and (3.8) imply that χ is bounded at S.

From (3.12) and (3.13), we obtain

1

γ

∫ S

Ŝ

r−4pρ

(
dχ

ds

)2

ds = `

∫ S

Ŝ

χ2ds− 4

∫ S

Ŝ

p′

rρ
χ2ds.(3.15)
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Now the left-hand side of (3.15) is positive and the right-hand side of (3.15) is non-
positive when ` ≤ `0, a contradication. This implies that χ /∈ L2(Ŝ, S) for ` ≤ `0.
Therefore, L̃ is limit-point type at S.

For (EP), (3.10) and (1.7) imply that

lim
r→0+

p′(r)

rρ(r)
= −A

3
(q + 1)Cγ−1

γ uq(0).(3.16)

Now using (3.11) and (3.16), we can choose `0 < 0 such that (3.14) holds in (0, R̂).
Let ψ(r) = χ(s(r)); then Lemma 3.1 implies either

ψ(0) 6= 0(3.17)

or

|ψ(r)| ≤ Cr3 and |ψ′(r)| ≤ Cr2(3.18)

for some C > 0. Now we can rule out the possibility of (3.18) when ` ≤ `0. Indeed,
if (3.18) holds, then

0 <
1

γ

∫ Ŝ

−∞
r−4pρ

(
dχ

ds

)2

ds =

∫ Ŝ

−∞

(
`− 4p′

rρ

)
χ2ds < 0,

a contradication.
Hence we must have (3.17) when ` ≤ `0, i.e., χ /∈ L2(−∞, Ŝ). Therefore, L̃ is a

limit-point-type at −∞. The proof is complete.
An immediate consequence of Lemma 3.2 is that L̃ is self-adjoint. Indeed, we

have the following result (for the proof, see [2]).
Corollary 3.3. For (EC) and (EPC), if R < ∞, let D1 be the set of all

functions χ such that
(i) χ is differentiable and χ′ is absolutely continuous on [0, Ŝ] for any Ŝ < S,
(ii) χ and L̃χ ∈ L2(0, S), and
(iii) χ(0) = 0.

Then L̃ is self-adjoint, i.e.,

(L̃χ, χ̂) = (χ, L̃χ̂)(3.19)

for all χ and χ̂ in D1.
Similarly, for (EP), let D0 be the set of all functions χ such that
(i)′ χ is differentiable and χ′ is absolutely continuous over (−∞, Ŝ] for any Ŝ ∈

(−∞, S) and
(ii)′ χ and L̃χ ∈ L2(−∞, S).

Then L̃ is self-adjoint.
Furthermore, using Friedrichs’ criteria, we can prove that L̃ has only a discrete

spectrum.
Theorem 3.4. Let u be a stationary solution of (EC), (EP), or (EPC) with

R < ∞. The spectra of L̃ consist of sequences of strictly increasing eigenvalues
{`j}j=1 with associated eigenfunctions {χj}∞j=1 in D1 (or D0).

Proof. We first claim that no continuous spectrum comes out of S. Indeed, using
(3.5), it can be verified that

s(r) = S − c1(R− r)q+1 + o((R− r)q+1)(3.20)
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for r close to R, where c1 > 0 depends on R, u′(R), and γ.
Let

a(s) =
1

γ
r−4p(r)ρ(r), b(s) =

4p′

rρ
, and c(s) = 1.

(3.20) then implies

a(s) = c2(S − s)2−ε + o((S − s)2−ε),(3.21)

where ε = 1
q+1 and c2 > 0. Let

h(s) =

∫ s

0

1

a(τ)
dτ.

Then (3.21) implies

h(s) = c3(S − s)ε−1 + o((S − s)ε−1)(3.22)

for s close to S, where c3 > 0.
Hence (3.21) and (3.22) imply that

4ah2 = c4(S − s)ε + o((S − s)ε),(3.23)

where c4 > 0. (3.11) now implies that b(s) is bounded at S. Therefore, (3.23) implies
that

Z(s) =
1

c

{
b+

1

4ah2

}
→ +∞(3.24)

as s → S. By Proposition B.3 in Appendix B, no continuous spectrum comes out of
S, and L̃ is totally descrete in R1. In particular, for (EC) and (EPC), the spectrum
of L̃ is a sequence of eigenvalues {`j}∞j=1 such that

lim
j→∞

`j = +∞.(3.25)

For (EP), we also need to prove that (3.24) holds when s→ −∞. From (3.5), we have

s = −c0r−1 + o(r−1)(3.26)

for r → 0+, where c0 > 0. Therefore,

a(s) = c5s
4 + o(s4)(3.27)

as s→ −∞, where c5 > 0. Let

h(s) =

∫ 0

s

1

a(τ)
dτ.

Then (3.27) implies

h(s) = c6(−s)−3 + o(s−3)(3.28)

as s→ −∞, where c6 > 0. Hence (3.27) and (3.28) imply

4ah2 = c7s
−2 + o(s−2)
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as s→ −∞. (3.24) then follows from last equation and (3.16). Hence no continuous
spectrum comes out from −∞ for (EP). The proof is complete.

From Lemma 3.4, L̃ has only the real eigenvalue `. Therefore, λ is either real or
purely imaginary for any eigenvalue λ.

From these observations, we then introduce the following notion of stability.
Definition 3.5. Let u be a ball-type stationary solution of (EC), (EP), or (EPC),

and let {`j}∞j=1 be the associated eigenvalues of L̃ given in Theorem 3.4. u is then

called neutrally stable if `1 > 0 (i.e., λ1 = ±i
√
`1 is purely imaginary), is called

unstable if `1 < 0 (i.e., λ1 = ±
√
|`1| is real), and is called marginally stable if

`1 = 0.
A similar definition can also be given for ground-state- and singularity-type solu-

tions.
Remark 3.6. From Lemma 3.1 and Theorem 3.4, if ψ is an eigenfunction, then

ψ(R) is bounded. Furthermore, for (EP), ψ(r) = O(r3) as r → 0+. Moreover, the
least eigenvalue `1 can be obtained by a variational method; see, e.g., [3]. Indeed, for
(EC) or (EPC), we have

`1 = inf

{
Q(ψ)

I(ψ)
: ψ(1) = 0 and ψ ∈ C1[1, R]

}
,

where

Q(ψ) =

∫ R

1

{
r−2p(r)ψ′2(r) +

4

γ
r−3p′(r)ψ2(r)

}
dr

and

I(ψ) =
1

γ

∫ R

1

r−2ρ(r)ψ2(r)dr.

A similar formulation also holds for (EP) with ψ(r) = O(r3) as r → 0+.
The following comparison lemma is very useful for testing the stability of station-

ary solutions.
Lemma 3.7. Let u be a BC-type stationary solution for (EC) or (EPC). Then

the following hold:
(i) If there exists a ψ̃ ∈ C2([1, R]) with ψ̃(1) = 0, ψ̃ > 0 in (1, R], that satisfies

L0ψ̃ ≤ 0 (but not ≡) in (1, R),

then u is neutrally stable.
(ii) If there exists a ψ ∈ C2([1, R]) with ψ(1) = 0, ψ > 0 in (1, R], that satisfies

L0ψ ≥ 0 (but not ≡) in (1, R),

then u is unstable.
A similar result also holds for a B-type stationary solution u for (EP) provided

the comparison function ψ̃ (or ψ) satisfies ψ̃ (or ψ) ∈ L2
w(0, R) and Lψ̃ (or Lψ) ∈

L2
w(0, R).

Proof. Let ψ1 > 0 in (R0, R) be the associated eigenfunction with respect to `1
in (3.20). If there is a ψ̃ that satisfies all conditions in (i), then it is easy to see that
Lψ̃ ≤ 0 in (1, R), which implies that

0 =

∫ R

1

(ψ̃Lψ1 − ψ1Lψ̃)dr > −`1
∫ R

1

Wψ̃ψ1dr.
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Therefore, `1 > 0. This proves (i). (ii) and the cases for (EP) can be proved analo-
gously. The proof is complete.

4. Stability results. In this section, we shall use the methods developed in the
preceding section to study the stability of various stationary solutions. We begin
with ball-type solutions, proceed to ground-state solutions, and finally conclude with
singular solutions.

4.1. Ball-type solutions. We first introduce an auxiliary operator L̃, defined
as

L̃ψ ≡ ψ′′ − (q + 3)

r
ψ′ +

4q

r2
ψ.(4.1)

L̃ is closed related to L0, as can be seen from the following:

L0ψ = L̃ψ +

{
(1 + q)ψ′ − 4q

r
ψ

}(
u′

u
+

1

r

)
.(4.2)

The following results for operator L̃ are very useful in constructing the comparison
functions ψ̃ and ψ according to Lemma 3.7.

Lemma 4.1. For any q > 1, we have L̃(r4) = 0 and L̃(rq) = 0. Moreover, if
q = 4, we also have L̃(r4 log r) = 0.

Furthermore, if we let (i) ψ̃ = r4 − rq if q ∈ (1, 4), (ii) ψ̃ = r4 log r if q = 4, and
(iii) ψ̃ = rq − r4 if q ∈ (4,∞), then we have (a) L̃ψ̃ = 0 for r > 1, (b) ψ̃(1) = 0, and
(c) the following:

(1 + q)ψ̃′ − 4q

r
ψ̃ > 0 for r > 1.(4.3)

Proof. The computations are straightforward, so we verify only the last inequality
and omit the others. Indeed, for q 6= 4,

(1 + q)(rq − r4)′ − 4q

r
(rq − r4) = q(q − 3)rq−1 − 4r3,

and for q = 4,

(1 + q)(r4 log r)′ − 4q

r
(r4 log r) = 4r3 log r + 5r3.

The result follows.
Next, it is easy to verify the following lemma, so we omit the proof.
Lemma 4.2. If u > 0 in (1, R) and satisfies the equation

u′′ +
2

r
u′ + f(u) = 0 for r > 1,

then

d

dr

(
u′

u
+

1

r

)
= − 1

r2u2
{(ru′ + u)2 + r2uf(u)}.

In particular, if u(·, α, µ) is a solution of (1.6) or (1.8), then α ≤ µ implies(
u′

u
+

1

r

)
< 0 in (1, R).(4.4)

We can now establish the stability results for (EC) and (EPC) when α ≤ µ.
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Theorem 4.3.

(i) For any q > 1, µ > 0, and R > 1, the solution uR,µ of (EC) is neutrally
stable.

(ii) For any q > 1, let u(·, α, µ) be the solution of (EPC). Then u(·, α, µ) is
neutrally stable if α ≤ µ.

Proof. It is not difficult to verify R(α, µ) <∞ when α ≤ µ in (ii). Let ψ̃ be given
as in Lemma 4.1. Then for both (i) and (ii), Lemmas 4.1 and 4.2 imply Lψ̃ < 0 in
(1, R).

Thus Lemma 3.7 implies that uR,µ and u(·, α, µ) with 0 < α ≤ µ are neutrally
stable. The proof is complete.

We can also establish other stability results for (EPC) by choosing appropriate
comparison functions and applying Lemma 3.7. For example, we can prove the fol-
lowing theorem.

Theorem 4.4. For (EPC), we have the following:

(i) If q ∈ (1, 3], then all BC-type solutions are neutrally stable.
(ii) For any q > 1, there is Rq > 1 such that u is neutrally stable whenever the

first zero R of u is less than Rq.

Proof. (i) It is known that R(α, µ) <∞ for any α > 0 and µ > 0 when q ∈ (1, 3];
see, e.g., [18]. Let ψ̃ = r3 − 1. Then ψ̃(1) = 0, ψ̃ > 0 in (0,∞), and

L0ψ̃ =

{
u′

u
(3− q)r2 +

4q

r

}
,

which is negative in (0,∞) if q ∈ (1, 3]. Thus by Lemma 3.7(i), u is neutrally stable.

(ii) Let ψ̃ = log r. Then ψ̃(1) = 0, ψ̃ > 0 in (1,∞), and

L0ψ̃ = −3r−2 +
1

r

u′

u
{(1 + q)− 4q log r}.

Therefore, L0ψ̃ < 0 in (1, R) if R ≤ Rq ≡ exp(1+q
4q ). The result also follows from

Lemma 3.7(i). The proof is complete.

Remark 4.5. By picking a comparison function ψ̃ different from log r in Theorem
4.4(ii), we can also obtain another R̃q, which ensures that u is neutrally stable when

R ≤ R̃q.
By choosing an appropriate comparison function, we obtain the following stability

results for (EP).

Theorem 4.6. For (EP), we have the following:

(i) If q ∈ (1, 3), then any B-type solution is neutrally stable.
(ii) If q = 3, then any B-type solution is marginally stable.

(iii) If q ∈ (3, 5), then any B-type solution is unstable.

Proof. Let ψ̃ = r3. Then ψ̃(0) = ψ̃′(0) = 0 and ψ̃ > 0 in (0,∞). Furthermore,
we have

L0ψ̃ = (3− q)r2u
′

u
.

Hence the result follows by Lemma 3.7. The proof is complete.

Proof of Theorem 1.1. Combining the results from Theorems 4.3, 4.4, and 4.6, we
obtain Theorem 1.1.
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4.2. Ground-state solutions. From section 2, we know that if a ground-state-
type solution u has a finite total mass, then it is necessary that u have a fast decay
rate, i.e.,

lim
r→∞

ru(r) = m ∈ (0,∞).(4.5)

In this section, we will prove that the linearized operator L associated with u has a
continuous spectrum (0,∞). Therefore, u cannot be neutrally stable. In fact, it is
either marginally stable or unstable.

Lemma 4.7. If u is a G- or GC-type solution and satisfies (4.5), then the lin-
earized operator L of u is discrete below 0 and has a continuous spectrum (0,∞).

Proof. In Lemma 3.4, we have shown that no continuous spectrum comes from
r = 0 for L in (EP). Therefore, we need only study L as r → ∞. We may assume
that m = 1 in (4.5). We then have

p(r) = Ãr−1−q + o(r−1−q)

and

p′(r) = −(1 + q)Ãr−q + o(r−q)

as r →∞, where Ã = ACγγ . As before, we have the following asymptotic expansions
for the coefficients of L as r →∞:

a(r) = r−2p(r) = Ãr−3−q + o(r−3−q),

b(r) =
4

γ
r−3p′(r) = −4qÃr−5−q + o(r−5−q),

and

c(r) =
1

γ
r−2ρ(r) = Âr−2−q + o(r−2−q)

as r →∞, where Â > 0 is a constant. Therefore, for large fixed r̂, we have

h(r) =

∫ r

r̂

dτ

a(τ)
= {Ã(4 + q)}−1r4+q + o(r4+q)

as r →∞.
We claim that

Z(r) =
1

c(r)

{
b(r) +

1

4a(r)h2(r)

}
→ 0 as r →∞.(4.6)

Indeed, it is clear that

4a(r)h2(r) = 4Ã−1(4 + q)−2rq+5 + o(r5+q) as r →∞.

Therefore, we have

b(r) +
1

4a(r)h2(r)
= Ã

{
(4 + q)2

4
− 4q

}
r−5−q + o(r−5−q)

=
Ã

4
(q − 4)2r−5−q + o(r−5−q).



STABILITY OF GASEOUS STARS 555

Hence

Z(r) = A∗r−3(q − 4)2 + o(r−3)

for some A∗ > 0. (4.6) follows. Now by Proposition B.3 (II)–(III) in Appendix B, the
linearized operator L of u has a continuous spectrum (0,∞) and is descrete below 0.
The proof is complete.

An immediate consequence of Lemma 4.7 is the following theorem for ground-
state-type stationary solutions.

Theorem 4.8. Any ground-state-type solution of (EC), (EP), or (EPC) is either
marginally stable or unstable.

4.3. Singular solutions. In this section, we will continuously apply Friedrichs’
criteria to study the stability of singularity-type solutions. We know that if q ∈ (3, 5)
and u is a singular solution of (EP) with finite total mass, then u has a weak singularity
at r = 0, i.e.,

lim
r→o+

rσu(r) = m ∈ (0,∞).(4.7)

As in section 4.2, we are interested in the limit of Z(r) as r → 0+. (4.7) now implies
the following expansions:

a(r) = r−2p(r) = Ãr−σ(q+1)−2 + o(r−σ(q+1)−2),

b(r) =
4

γ
r−3p′(r) = −4σqÃr−σ(q+1)−4 + o(r−σ(q+1)−4),

and

c(r) = Âr−2−σq + o(r−2−σq)

as r → 0+ for some positive constants Ã and Â.
Therefore,

h(r) =

∫ r

0

ds

a(s)
= Ã−1{3 + σ(q + 1)}−1rσ(q+1)+3,

with h(0) = 0.
It is straightfoward to compute

Z(r) = A∗r−σ−2

{
1

4
[3 + σ(q + 1)]

2 − 4σq

}
+ o(r−σ−2)

=
A∗

4
r−σ−2{4σ2 + 4σ − 7}+ o(r−σ−2)

for some positive constant A∗.
Hence we obtain the following lemma.
Lemma 4.9. Let u be a singular solution of (EP) satisfying (4.7). Then we have

the following:
(i) if q ∈ (3, q+), then limr→0+ Z(r) = +∞;
(ii) if q = q+, then limr→0+ Z(r) = 0;
(iii) if q ∈ (q+, 5), then limr→0+ Z(r) = −∞;
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and

Ω0 =

∫ r̂

0

{
c(r)

−a(r)Z(r)

} 1
2

dr <∞.

Therefore, by applying Theorem 4.6(iii), Lemma 4.9, and Proposition B.3, we
obtain the following theorem for singularity-type solutions.

Theorem 4.10. For problem (EP), we have the following:
(i) If q ∈ (3, q+), then any SB-type solution is unstable and has no continuous

spectrum. Any SG-type solution is also unstable but has a continuous spectrum (0,∞).
(ii) If q = q+, then any SB-type and SG-type solution is unstable and has a

continuous spectrum (0,∞).
(iii) If q ∈ (q+, 5), then any SB-type and SG-type solution is unstable, and there

is a sequence of pure imaginary eigenvalues {λk} such that limk→∞ λ2
k = −∞.

Proof. For any q ∈ (3, 5) and for an SB-type solution u, choose ψ̃ = r3. Then we
have

Lψ̃ = (3− q)r2u
′

u
> 0.

Therefore, by modifying the proof of Lemma 3.5, we can prove that u is unstable.
The remaining results follow from Lemma 4.9 and Proposition B.3. The details of the
proof are omitted and the proof is complete.

5. Effects of viscosity. In this section, we shall study the effect of viscosity
on the stability problem of stationary solutions. From equation (1.2), it is clear
that stationary solutions for inviscid flow are also solutions for viscous flow. As we
have seen in the previous sections, the best possibilities for stationary solutions are
neutrally stable in the inviscid case. It is known that neutral stability is very sensitive
to disturbances. Therefore, we need to know what effect viscosity has on neutrally
stable stationary solutions.

Since the gaseous mass is not confined from outside, its outer surface is a free
surface maintained by the attraction of the core and its own gravitational forces.
Presumably, the surface of the gas should be very sensitive to a direct disturbance of
it. In this section, we show that this is the case, as mentioned in Theorem 1.2.

When viscosity its present, the linearized equation is

Lψ = λ2Wψ − λνL̂ψ,(5.1)

where

L̂ψ ≡ 1

γ
(r−2ψ′)′(5.2)

or, equivalently,{
r−2

(
p(r) + λ

ν

γ

)
ψ′
}′
− 1

γ
{4r−3p′(r) + λ2r−2}ψ = 0.(5.3)

When ν > 0, the eigenvlaue equation (5.1) is linear for ψ but quadratic for λ,
which is different from ordinary eigenvalue problems. Indeed, if ν = 0 in (5.1), then
(5.1) is linear for ` = −λ2. Since the coefficients of L, L̂, and W are real, it is easy
to see that if {λ, ψ} is a solution of (5.1), then its conjugate {λ, ψ} is also a solution.
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This property does not affect the stability, which depends on the sign of Reλ in the
stationary solution.

In this section, we concentrate on the effects of viscosity and boundary distur-
bances. Therefore, we restrict our study to ball-type solutions which are neutrally
stable. The problems of unstable stationary solutions, ground-state solutions, and
singularity-type solutions will be left for future study.

We first consider (EC) and (EPC) and then continue by studying (EP).
Let

λ∗ =
γ

ν
P (R0).(5.4)

When R0 = 1, we will prove that (5.1) is regular on [1, R] when λ /∈ [−λ∗, 0]. Indeed,
for λ 6= −λ∗, let ψ(·, λ) = ψ(·, λ, ν) be the solution of (5.3) that satisfies the initial
conditions

ψ(1, 0) = 0(5.5)

and

ψ′(1, λ) = 1.(5.6)

We can then prove the following result.
Lemma 5.1. Let u be a BC-type stationary solution of (EC) or (EPC). If λ /∈

[−λ∗, 0], then ψ(·, λ) is C2 on [1, R] and is analytic in λ ∈ C− [−λ∗, 0]. Furthermore,
if λ ∈ (−λ∗, 0), then either ψ(·, λ) is bounded at r = r̂ or |ψ(r, λ)| grows like | log |r−r̂||
as r → r̂, where r̂ ∈ (1, R) satisfies p(r̂) + λ νγ = 0. If λ = −λ∗, then any nontrivial

solution ψ of (5.3) is unbounded in a neighborhood of r = 1. The case in which λ = 0
was studied in Lemma 3.1.

Proof. Let λ = λ1 + iλ2 and ψ = ψ1 + iψ2 in (5.3) and denote

a = r−2
(
p+ λ1

ν
γ

)
, b = λ2

ν

γ
r−2,

c =
1

γ
{4r−3p′ + r−2(λ2

1 − λ2
2)}, d =

2

γ
λ1λ2r

−2.

Then it is clear that a2(r̂) + b2 = 0 for some r̂ ∈ [1, R] if and only if λ2 = 0 and
λ1 ∈ [−λ∗, 0]. In this case, p(r̂) + λ1

ν
γ = 0.

Now (5.3) can be written as the following system of equations:

(aψ′1 − bψ′2)′ = cψ1 − dψ2,
(bψ′1 + aψ′2)′ = dψ1 + cψ2.

(5.7)

For λ /∈ [−λ∗, 0], denote

ψ̃1 = aψ1 − bψ2 and ψ̃2 = bψ1 + aψ2.(5.8)

We then have

ψ1 = (aψ̃1 + bψ̃2)(a2 + b2)−1,

ψ2 = (−bψ̃1 + aψ̃2)(a2 + b2)−1.
(5.9)
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By a straightforward but lengthy computation on (5.7), we obtain the following system
of equations for ψ̃1 and ψ̃2:

ψ̃′′1 = Ãψ̃′1 + B̃ψ̃1 + C̃ψ̃′2 + D̃ψ̃2,

ψ̃′′2 = Ãψ̃′2 + B̃ψ̃2 − C̃ψ̃′1 − D̃ψ̃2,
(5.10)

where

ã = a(a2 + b2)−1, b̃ = b(a2 + b2)−1,(5.11)

and

Ã = a′ã+ b′b̃,

B̃ = (a′′ + c)ã+ (b′′ + d)b̃+ a′ã′ + b′b̃′,

C̃ = a′b̃− b′ã,
D̃ = (a′′ + c)b̃− (b′′ + d)s̃+ a′b̃′ − b′ã′.

(5.12)

Since the coefficients of (5.10) are continuous on [1, R], then ψ̃′1 and ψ̃′2 are C2 on
[1, R] and analytic in λ ∈ C− [−λ∗, 0]. Hence ψ1 and ψ2 have the same properties as
ψ̃1 and ψ̃2. This proves the first part of the lemma.

To study λ ∈ (−λ∗, 0), we write (5.3) as

ψ′′ +

{
1

r − r̂ + g(r)

}
ψ′ +

1

r − r̂ f(r)ψ = 0 for r < r̂,

where g and f are analytic at r̂. Hence r̂ is a regular singular point. Therefore, by a
standard theorem (see, e.g., [2]), this implies that ψ either is bounded at r̂ or grows
logarithmically at r̂.

Finally, if λ = −λ∗, then p(1) = λ∗ νγ . Let s = r− 1; then (5.3) can be written as

ψ′′ +

(
2

s
+ g

)
ψ′ +

( c2
s2

+
c1
s

+ f
)
ψ = 0 for s > 0,

where g and f are continuous at s = 0 and c2 > 0.
Let

µ1 =
1

2
(−1 +

√
1− 4c2) and µ2 =

1

2
(−1−

√
1− 4c2).

If µ1 6= µ2, then ψ behaves asymptotially like sµ1 or sµ2 as s→ 0+. If µ1 = µ2 = − 1
2 ,

then |ψ(s)| behaves asymptotically like s−
1
2 or s−

1
2 | log s| as s → 0+. In any case, ψ

is unbounded at s = 0. The case in which λ = 0 was studied in Lemma 3.1. The
proof is complete.

Considering (1.13) and Lemma 5.1, we introduce the following notion.
Definition 5.2. For λ /∈ [−λ∗, 0], ψ(·, λ) is called a stable mode if Reλ < 0, an

unstable mode if Reλ > 0, and a marginally stable mode if Reλ = 0.
In the following, we shall study the relationship between the sign of Reλ and

ψ(R, λ), i.e., how the disturbance of the gas surface influences the stability of the
stationary solution u.

Since ψ(·, λ) is C2 in [1, R] for λ /∈ [−λ∗, 0], ψ(R, λ) and ψ′(R, λ) satisfies homo-
geneous boundary conditions at R, i.e.,

ajψ
′
j(R) + bjψj(R) = 0,(5.13)
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where ψ1 = Reψ and ψ2 = Imψ, aj = aj(λ) and bj = bj(λ) are analytic in λ /∈ [−λ∗, 0]
for j = 1, 2.

When aj 6= 0, denote

κj(λ) =
bj(λ)

aj(λ)
.(5.14)

Then (5.13) can be written as

ψ′j(R)

ψj(R)
= −κj .(5.15)

When aj = 0, i.e., ψj satisfies the Dirichlet boundary condition ψj(R) = 0, we adopt
the convention κj = +∞.

We can now introduce the notion of the stability of stationary solutions with
respect to the boundary conditions (5.5) and (5.15) (or (5.13)).

Definition 5.3. Let u be a BC-type stationary solution for (EC) or (EPC).
Then u is called stable with respect to (5.5) and (5.15) if any eigenvalue λ of (5.1),
(5.5), and (5.15) satisfies Reλ < 0. u is called unstable if there is an eigenvalue λ̃
of (5.1), (5.5), and (5.15) such that Reλ̃ > 0. u is called marginally stable if any
eigenvalue λ of (5.1), (5.5), and (5.15) satisfies Reλ ≤ 0 and equality holds for some
λ̃.

The stability problem with respect to boundary condition (5.15) can also be
studied by making the following observation:

Denote

C+ = {λ ∈ C : Reλ > 0}, C− = {λ ∈ C : Reλ < 0},
and C0 = {λ ∈ C : Reλ = 0}.

For any stationary solution u and any

(κ1, κ2) ∈ R
2 ≡ R2 ∪ {(k1,∞) : κ1 ∈ R1} ∪ {(∞, k2) : κ2 ∈ R1} ∪ {(∞,∞)},

denote by σ(κ1, κ2) the set of eigenvalues of (5.1), (5.5), and (5.15). Then define

Ks = Ks(u) ≡ {(κ1, κ2) : σ(κ1, κ2) ⊂ C−},

Ku = Ku(u) ≡ {(κ1, κ2) : σ(κ1, κ2) ∩C+ 6= φ},

and

Km = Km(u) = {(κ1, κ2) : σ(κ1, κ2) ∩C+ = φ and σ(κ1, κ2) ∩C0 6= φ}.

From Lemma 5.1, we know that any one of Ks,Ku, and Km is nonempty. Hence
the stability of u with respect to a given (κ1, κ2) is equivalent to deciding to which
set—Ks,Ku, or Km—(κ1, κ2) belongs. In general, for a given u, it is not easy to
completely identify Ks, Ku, and Km. However, we shall find some subsets of Ks and
Ku that will give us sufficient conditions to determine whether u is stable or unstable
with respect to given (κ1, κ2).

We first prove the following stability result.
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Theorem 5.4. Let u be a neutrally stable BC-type stationary solution of (EC)
or (EPC) when ν = 0. Then for any ν > 0, we have

{(κ1, κ2) : κ1 ≥ 0, κ2 ≥ 0} ⊂ Ks(u),(5.16)

i.e., u is stable if

κ1 ≥ 0 and κ2 ≥ 0(5.17)

or, equivalently, if

ψ′j(R)ψj(R) ≤ 0(5.18)

for j = 1, 2.
Proof. Since u is assumed to be neutrally stable when ν = 0, 0 is not an eigenvalue

of (5.1), (5.5), and (5.15). If λ ∈ (−λ∗, 0), then there is nothing to prove. Hence we
consider the case where λ /∈ [−λ∗, 0) and is an eigenvalue with respect to (5.15) such
that (κ1(λ), κ2(λ)) satisfies (5.17). We must prove that

Reλ < 0.(5.19)

Indeed, multiply (5.1) by ψ and then integrate from 1 to R; λ satisfies

aλ2 + bλ+ c = 0,(5.20)

where

a =
1

γ

∫ R

1

r−2ρ(r)(ψ2
1 + ψ2

2)dr > 0,(5.21)

b = −ν
∫ R

1

ψL̂ψdr, and c = −
∫ R

1

ψLψdr.

Since u is assumed to be neutrally stable when ν = 0, we have `1 > 0 in (3.1).
Moreover, ψ is C2 on [1, R]. Hence Remark 3.6 implies that

c > 0.(5.22)

Now let

b = b1 + ib2,(5.23)

where

b1 = −ν
∫ R

1

(ψ1L̂ψ1 + ψ2L̂ψ2)

= ν


2∑
j=1

∫ R

1

r−2(ψ′j)
2 −

2∑
j=1

R−2ψ′j(R)ψj(R)


and

b2 = −ν
∫ R

1

(ψ1L̂ψ2 − ψ2L̂ψ1)

=
ν

γ
R−2(ψ2(R)ψ′1(R)− ψ1(R)ψ′2(R)).
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Assumption (5.18) implies that

b1 > 0.(5.24)

Now we are going to show that the root λ of (5.20) satisfies (5.19) provided the
coefficients satisfy (5.21)–(5.24). It is clear that the roots λ of (5.20) are given by

λ± =
1

2a
{−(b1 + ib2)± (b2 − 4ac)

1
2 }.(5.25)

Let

X = b21 − b22 − 4ac and Y = b1b2.

Then

b2 − 4ac = X + 2iY.

Moreover, if x and y are real numbers such that

(x+ iy)2 = X + iY,

then

x2 =
1

2
{X + (X2 + 4Y 2)

1
2 }.

To show (5.19), it suffices to prove that b1 > |x|, i.e.,

b21 > x2.(5.26)

By (5.21) and (5.22), we have

2b21 −X = b21 + b22 + 4ac > 0.(5.27)

It is easy to check that

(2b21 −X)2 − (X2 + 4Y 2) = 16ac.(5.28)

Hence (5.26) follows from (5.21), (5.22), (5.27), and (5.28). The proof is com-
plete.

Next, we prove the following instability results.
Lemma 5.5. Let u be a neutrally stable BC-type stationary solution of (EC) or

(EPC) when ν = 0. For any ν > 0, if λ is real and λ > 0, we have

ψ(R, λ) > 0 and ψ′(R, λ) > 0.(5.29)

Furthermore, we have

lim
λ→0+

ψ′(R, λ)

ψ(R, λ)
= +∞(5.30)

and

lim
λ→∞

ψ′(R, λ)

ψ(R, λ)
= +∞.(5.31)
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Proof. If λ > 0, then p(r) + λ νγ > 0 in [1, R]. Integrating (5.3) from 1 to r and

using (5.5) and (5.6), we obtain

(5.32)

r−2

(
p(r) + λ

ν

γ

)
ψ′(r) =

(
p(1) + λ

ν

γ

)
+

1

γ

∫ r

1

{4s−3p′(s) + λ2s−2}ψ(s, λ)ds.

If λ2 is large enough that

λ2 + 4s−1p′(s) ≥ 0 in [1, R],(5.33)

then (5.5), (5.6), and (5.32) imply

ψ(r, λ) > 0 and ψ′(r, λ) > 0 in [1, R].(5.34)

In particular, (5.29) holds.
Now by applying Theorem 5.4, we claim that (5.29) also holds for any λ >

0. Otherwise, by the continuous dependence of ψ(R, λ) with respect to λ, we have
ψ′(R, λ1) = 0 or ψ(R, λ1) = 0 for some λ1 > 0. Since (5.18) is satisfied by this λ1,
Theorem 5.4 implies λ1 < 0, a contradiction. Hence (5.29) holds for any λ > 0.

To show (5.30), we note that u is neutrally stable and by Proposition A.1 in
Appendix A, we have

lim
r→R−

(R− r)qψ(r, 0) = c0 > 0(5.35)

and

lim
r→R−

(R− r)q+1ψ′(r, 0) = c1 > 0.(5.36)

From (5.35), (5.36), and (5.29), it is not difficult to prove that (5.30) holds. The
details of the proof are omitted.

Finally, it remains to prove (5.31). If λ > 0 and is large enough, then (5.3), (5.33),
and (5.34) imply that

ψ′′(r, λ) > 0 in [1, R].(5.37)

Moreover, by (5.32), there is a positive constant c2 that is independent on λ such
that for a large λ, we have

ψ′(R, λ) ≥ λc2
∫ R

r

ψ(s, λ)ds(5.38)

for r ∈ [ 1
2R,R]. Now for any s ∈ [ 1

2R,R], write

ψ(s, λ) = ψ(R, λ) + ψ′(R, λ)(s−R) +
1

2
ψ′′(r̃, λ)(s−R)2(5.39)

for some r̃ ∈ (s,R). Subsituting (5.39) into (5.38) and using (5.37), we obtain

ψ′(R, λ)

{
1 +

1

2
λc2(R− r)2

}
≥ λc2ψ(R, λ)(R− r).(5.40)
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If we choose r such that (R−r)λ 1
2 = 1, then (5.40) implies that for a large λ, we have

ψ′(R, λ) ≥ c3λ
1
2ψ(R, λ),

where the positive constant c3 is independent of λ. Hence (5.31) follows. The proof
is complete.

For any real λ /∈ [−λ∗, 0], ψ(r, λ) is a real function, i.e., ψ2 = Imψ ≡ 0. κ2(λ) is
then undetermined for all real λ /∈ [−λ∗, 0]. However, we can define κ2(λ) for these λ
by going through the following limiting process.

Let λ1 and λ2 be real numbers such that λ1 /∈ [−λ∗, 0] and |λ2| 6= 0 and is
sufficiently small. We then have

ψ(r, λ1 + iλ2) = ψ(r, λ1) + iλ2
∂ψ

∂λ
(r, λ1) + o(|λ2|2)(5.41)

as λ2 → 0. Therefore, for any real λ1 /∈ [−λ∗, 0], we can define

κ2(λ1) =
∂2ψ

∂r∂λ
(R, λ1)/

∂ψ

∂λ
(R, λ1).(5.42)

It is not difficult to prove that κ2(λ) is well defined and is continuous for λ ∈ C −
[−λ∗, 0].

Now by applying Lemma 5.5, we have that following instability result.
Theorem 5.6. Let u be a neutrally stable BC-type stationary solution of (EC)

or (EPC) when ν = 0. Then for any ν > 0, there is a positive constant κ∗ = κ∗(ν, u)
such that for any κ1 < −κ∗, there is a nonempty open set U(κ1, ν, u) such that u is
unstable with respect to (5.5) and (5.15) for (κ1, κ2) with κ2 ∈ U(κ1, ν, u).

Proof. For any ν > 0, let

κ∗(ν, u) = min

{
ψ′(R, λ, ν)

ψ(R, λ, ν)
: λ ∈ (0,∞)

}
.

By (5.30) and (5.31), we have κ∗(ν, u) > 0. If κ1 < −κ∗, then there is λ1 > 0 such
that

ψ′(R, λ1)

ψ(R, λ1)
= −κ1.

Let

U(κ1, ν, u) = {κ2 ∈ (−∞,∞] : (κ1, κ2) ∈ Ku}.

Then (5.42) implies that

κ2(λ1) ∈ U(κ1, ν, u).

Thus U(κ1, ν, u) is nonempty. It is clear that U(κ1, ν, u) is open, and the result follows.
The proof is complete.

Proof of Theorem 1.2. Theorem 1.2 follows from Theorems 5.4 and 5.6.
We now come to (EP). In this case, (5.3) has a singularity at r = 0 even for

λ /∈ [−λ∗, 0). Therefore, we need to modify our argument to obtain a result as in
Lemma 5.1. Indeed, the initial conditions (5.5) and (5.6) will be replaced with

r−2ψ(r, λ) = 0 at r = 0(5.43)
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and

(r−2ψ(r, λ))′ = 1 at r = 0.(5.44)

We then have the following result.
Lemma 5.7. Let u be a B-type solution of (EP). Then the solution ψ(r, λ) of

(5.3), (5.43), and (5.44) exists in a neighborhood of r = 0 if λ 6= −λ∗ ≡ γ
ν p(0).

Furthermore, ψ(·, λ) has the same property as in Lemma 5.1.
Proof. Following the same argument as in the proof of Lemma 5.1, we have

equation (5.9) for ψ̃1 and ψ̃2 in r > 0. For λ 6= −λ∗, after a careful computation,
(5.9) can be written as

ψ̃′′1 =

(
−2

r
+ g1

)
ψ̃′1 +

(
2

r2
+ f1

)
ψ̃1 + g2ψ̃

′
2 + f2ψ̃2(5.45)

and

ψ̃′′2 =

(
−2

r
+ g1

)
ψ̃′2 +

(
2

r2
+ f1

)
ψ̃2 − g2ψ̃

′
1 − f2ψ̃1,(5.46)

where gj(r) and rfj(r) are continuous (in fact, C2) at r = 0 for j = 1, 2. Now r = 0 is
a regular singular point in (5.45) and (5.46). By a standard argument, we can prove
that there is bounded solution {ψ̃1, ψ̃2} of (5.45) and (5.46). Moreover, they satisfy

ψ̃1(r) = a0r + o(r),

ψ̃2(r) = b0r + o(r)
(5.47)

as r → 0+. The details of the proof are omitted. Now the initial conditions (5.43)
and (5.44) imply that a0 and b0 satisfy

a0 = p(0) + λ1
ν

γ
and b0 = λ2

ν

γ
.(5.48)

Subsituting (5.47) into (5.9), we obtain

ψ1(r) = r3 + o(r3),
ψ2(r) = O(r3)

(5.49)

as r → 0+.
The other properties of ψ(·, λ) can also be obtained as in proving Lemma 5.1; the

details are omitted. The proof is complete.
By arguing as in Theorems 5.4 and 5.6, we can obtain the following stability result

for problem (EP).
Theorem 5.8. Let u be a neutrally stable B-type stationary solution of (EP)

when ν = 0. Then for any ν > 0, u is stable with respect to (5.43) and (5.15) if
κ1 ≥ 0 and κ2 ≥ 0. On the other hand, there is a positive constant κ∗ = κ∗(ν, u)
such that for any κ1 < −κ∗, there is a nonempty open set U(κ1, ν, u) such that u is
unstable with respect to (5.43) and (5.15) for (κ1, κ2) with κ2 ∈ U(κ1, ν, u).

Proof. The proof is the same as was used for Theorems 5.4 and 5.6. Therefore,
the details are omitted.

Remark 5.9. In their recent work on (EC), Makino et al. [15, 16, 19] showed that
when γ > 4

3 and ν > 0, uR,µ is nonlinearly asymptotically stable with respect to small
perturbations. Their result is consistent with ours.
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Appendix A. Asymptotic behavior at R. In this section, we shall study the
asymptotic behavior of a real solution ψ at R for (3.3) with real `. Let

τ = R− r and ψ̃(τ) = ψ(r).

Then ψ̃ satisfies

ψ̃′′ + {(1 + q)τ−1 + g(τ)}ψ̃′ + τ−1f(τ)ψ̃ = 0.

For simplicity, we omit the ∼’s and write the last equation as

ψ′′ + {(1 + q)τ−1 + g(τ)}ψ′ + τ−1f(τ)ψ = 0, τ > 0,(A.1)

where g and f are continuous at τ = 0.
Then we have the following result concerning the behavior of ψ at 0.
Proposition A.1. For any q > 1, let ψ be a solution of (A.1). Then either ψ is

bounded at 0 or

ψ(τ) = τ−qψ̂(τ)(A.2)

with ψ̂ continuous at 0 and ψ̂(0) 6= 0. Furthermore, in the former case, ψ is C2 at 0,
and in the latter case, we have

ψ′(τ) = −qτ−q−1ψ̂(0) + o(τ−q−1)(A.3)

as τ → 0+.
Proof. If g and f are analytic in a neighborhood of τ = 0, then the result is well

known; see, e.g., [2]. For completeness, we provide a proof here that assumes only
that g and f are continuous at τ = 0. Since the proof is elementary, some details are
omitted.

For τ > 0, let

ψ(τ) = τ−qω(τ).(A.4)

ω then satisfies

ω′′ + {(1− q)τ−1 + g}ω′ + (f − qg)τ−1ω = 0, τ > 0.(A.5)

Let G(0) = 0 and G′(τ) = g(τ), (A.5) can then be written as

(τ1−qeGω′)′ + τ−qeG(f − qg)ω = 0.(A.6)

Fix τ1 > 0 and let τ0 ∈ (0, τ1) be chosen later. After integrating (A.6) from τ to τ0,
we have

ω′(τ) = τ q−1E(τ)C0 + τ q−1E(τ)

∫ τ0

τ

F (s)s−qω(s)ds,(A.7)

where

E(τ) = exp(−G(τ)), F (τ) = (f − qg) exp(G(τ)),

and C0 = τ1−q
0 ω′(τ1) exp(G(τ1)).
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We first claim that

ω and ω′ are bounded on (0, τ ].(A.8)

Indeed, let

C1 = |C0| max
τ∈[0,τ1]

|E(τ)| and C2 = max
τ∈[0,τ1]

|E(τ)| · max
τ∈[0,τ1]

|F (τ)|.

Then from (A.7), we have

|ω′(τ)| ≤ C1τ
q−1 + C2τ

q−1

∫ τ0

τ

s−q|ω(s)|ds,(A.9)

which implies that

|ω′(τ)| ≤ C1τ
q−1 + C3 max

s∈[τ,τ0]
|ω(s)|,

where

C3 = C2 · (q − 1)−1.

Now for any τ ∈ (0, τ0), substituting (A.9) into

ω(τ) = ω(τ0) +

∫ τ

τ1

ω′(s)ds,

we obtain

|ω(τ)| ≤ |ω(τ0)|+ C4 + C3τ0 max
s∈[τ,τ0]

|ω(s)|,(A.10)

where

C4 = C1τ
q
1 .

Now if we choose C3τ0 < 1, (A.10) then implies

|ω(τ)| ≤ (1− C3τ0)−1{|ω(τ0)|+ C4}.

Hence ω is bounded on [0, τ1]. By (A.9), ω′ is bounded on [0, τ1], which also implies
that ω is continuous at 0. Now if ω(0) 6= 0, then (A.4) and (A.8) imply (A.3). If
ω(0) = 0, we shall claim that

|ω(τ)| ≤ C5τ
q(A.11)

for some C5 > 0. Indeed, ω(0) = 0 and ω′ bounded on [0, τ1] implies that

|ω(τ)| ≤ C6τ.(A.12)

Now substituting (A.12) into (A.9), we have

|ω′(τ)| ≤ C7τ
q−1 + C8τ(A.13)

for some C7 > 0 and C8 > 0. Substituting (A.13) into

ω(τ) =

∫ τ

0

ω′(s)ds,

we obtain a better estimate for ω than (A.12). After repeating the processes a finite
number of times, (A.15) follows. The proof is complete.
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Appendix B. Friedrichs’ criteria. In this section, we recall a useful criterion
of Friedrichs [4] for studying the spectra of second-order differential operators that
are self-adjoint and singular at their endpoints.

Let J = (x−, x+) ⊂ R1 be a bounded or unbounded open interval.
Let a(x), a′(x), b(x), and c(x) be continuous functions on J . Furthermore, a(x)

and c(x) are positive on J . The eigenvalue equation

−(a(x)φ′(x))′ + b(x)φ(x) = λc(x)φ(x)

can be written as

Lφ = λφ,

where

L = c−1(x)

{
− d

dx

(
a(x)

d

dx

)
+ b(x)

}
.

Define

h =

∣∣∣∣∫ dx

a(x)
+ C

∣∣∣∣ > 0

in the neighborhood of x− or x+. The constants C = C− or C = C+ should be
chosen such that at the endpoint, h is either zero or infinite.

If h(x−) = 0 (or h(x+) = 0),(B.1)

then we require that

φ(x−) = 0 (or φ(x+) = 0).(B.2)

Otherwise, we need not put conditions on φ at x− or x+.
DefineX = {φ : J → R1 : φ is absolutely continuous and satisfies

∫ x+

x− c(x)φ2(x)dx

< ∞,
∫ x+

x− a(x)φ′2(x)dx < ∞, and
∫ x+

x− |b(x)|φ2(x)dx < ∞ and also satisfies (B.1) if
(B.2) holds} and

(φ, ψ) =

∫ x+

x−
c(x)φ(x)ψ(x)dx.

Definition B.1. The spectrum of L is called discrete below λ∗ if for every
λ′ < λ∗ there exists at most a finite number of mutually orthogonal eigenfunctions
φλ(x) associated with eigenvalue λ ≤ λ′ such that for every φ ∈ X such that

(φ, φλ) = 0,

we have

(φ,Lφ) ≥ λ∗(φ, φ).

L is called totally discrete if L possesses a pure point spectrum.
Remark B.2. If the spectrum is discrete below every λ∗, then it is totally discrete.
Define

Z(x) =
1

c(x)

{
b(x) +

1

4a(x)h2(x)

}
.

Friedrichs’ criterion can then be stated as follows.
Proposition B.3.
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(I) L is totally discrete if

Z(x)→∞ as x→ x− and x→ x+.

(II) L is discrete below λ∗ if

lim inf Z(x) ≥ λ∗ as x→ x− and x→ x+.

(III) L is not discrete below λ∗ if Z(x) is bounded below and

lim supZ(x) < λ∗

as either x→ x− or x→ x+.
(IV) The spectrum of L is discrete below λ∗, unbounded below, if

lim inf
x→x−

Z(x) ≥ λ∗,

lim
x→x+

Z(x) = −∞,

and

Ω =

∫ x+

x0

{
c(x)

−a(x)Z(x)

} 1
2

dx <∞,

where x0 < x+ such that Z(x) < 0 in (x0, x+). A similar result holds if the roles of
x− and x+ are interchanged.

Acknowledgments. The author wishes to thank Professors T. P. Liu and T.
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Abstract. We study the long-time behavior of the solutions of the Cauchy problem

ut −4u+
∂|u|q−1u

∂x1
+
∂|u|p−1u

∂x2
= 0

in RN × (0,∞) with initial data in L1(RN
). We consider the range of exponents

1 < q < 1 +
1

N
, 1 +

q

N + 1
< p.

We prove that nonnegative solutions with smooth initial data satisfy the entropy inequality

∂uq−1

∂x1
≤ C

t
.

With the aid of this inequality, we show that, as t → ∞, solutions behave like the nonnegative
fundamental entropy solution of the reduced equation

ut −
N∑
j=2

∂2u

∂xj2
+
∂|u|q−1u

∂x1
= 0

of mass
∫
RN u(x, 0)dx, which has a self-similar structure.

Key words. parabolic scalar conservation law, convection-diffusion equation, entropy inequality,
entropy solution, conservation of mass, long-time behavior, self-similarity
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Introduction. In this paper, we continue the study of the long-time behavior of
the solutions to some simple examples of scalar parabolic conservation laws, such as

(0.1) ut −4u+
N∑
i=1

∂fi(u)

∂xi
= 0 in Q = RN × (0,∞),

(0.2) u(·, 0) = u0(·) in RN ,

where N ≥ 1, fi ∈ C1([0,∞)) ∩ C2((0,∞)), f(0) = 0, and u0 ∈ L1(RN ).
Solutions of (0.1)–(0.2) with L1 initial data satisfy the following two properties:

(0.3)

∫
RN

u(t, x)dx =

∫
RN

u0(x)dx ∀t ≥ 0 (conservation of mass);
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(0.4) ‖u(t)‖∞ ≤ C
(∫

RN

u0

)
t−

N
2 ∀t > 0 (L∞ decay).

The asymptotic behavior of the solutions of (0.1)–(0.2) was studied in [EZ], [EVZ1],
[EVZ2], [EVZ3], [C1], [C2], and [Z1] under one of the following conditions:

(0.5) for every i ∈ {1, . . . , N}, the limits lim
s→0

fi(s)

|s|1/Ns exist

or

(0.6)


∃q ∈

(
1, 1 +

1

N

)
and j ∈ {1, . . . , N} such that fi ≡ 0 if i 6= j,

fj(0) = f ′j(0) = 0 and the following limit exists:

lim
s→0

f ′′j (s)

|s|q−3s
.

In these papers, three different types of asymptotic behaviors were observed: weakly
nonlinear, self-similar, and strongly nonlinear. Let us briefly recall the main results
obtained in these previous works.

Weakly nonlinear behavior. This case was considered in [EZ, section 6, Theo-
rem 5], where the following result was proved. (See [Z2] for the second term of the
asymptotic development.)

Theorem 0.1. Suppose that fi(s)/|s|1/Ns→ 0 as s→ 0 for all i = 1, . . . , N and
assume that u solves (0.1)–(0.2) with

∫
u0 = M . Then for every r ∈ [1,∞],

lim
t→∞

t
N
2 (1− 1

r )||u(t)−MK(t)||Lr(RN ) = 0,

where K(t, x) is the heat kernel in RN .
Self-similar behavior. It was proved in [AEZ] that if q = 1 + 1/N , then for every

M ∈ R and every C ≡ (C1, . . . , CN ) ∈ RN , there is a unique self-similar solution
ωM,C of the problem

(0.7)


ωt −4ω +

N∑
i=1

Ci
∂|ω|q−1ω

∂xi
= 0 for t > 0, x ∈ RN ,

ω(t, x) = t−N/2g

(
x√
t

)
;

∫
g = M.

We refer to [AEZ] and [K] for further properties of the profiles g. In [EZ] (see
also [Z1]), we then proved the following.

Theorem 0.2. Suppose that f ≡ (f1, . . . , fN ) satisfies fi(s)/|s|1/Ns → Ci as
s → 0 for all i = 1, . . . , N with C = (C1, . . . , CN ) 6= 0, and assume that u is the
solution of (0.1)–(0.2) with

∫
RN u0 = M . Then for every r ∈ [1,∞],

lim
t→∞

t
N
2 (1− 1

r )||u(t)− ωM,C(t)||Lr(RN ) = 0.

Strongly nonlinear behavior. It was proven in [C1] and [C2] that for every M ∈ R
and C ∈ R, there is a unique function vM ∈ BC((0,∞);L1(RN )) which satisfies the
“reduced equation”

(0.8) vt −
N∑
j=2

∂2v

∂xj2
+ C

∂|v|q−1v

∂x1
= 0 in D′((0,∞)×RN ),
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the initial conditions

(0.9)


lim
t→0

∫
RN

v(t, x)φ(x)dx = Mφ(0) ∀φ ∈ BC(RN ),

∀r > 0, lim
t→0

∫
RN−1

∫
|x1|>r

|u(t, x1, x)|dx1dx = 0

with x = (x2, . . . , xN ), and a suitable “entropy condition” (see Proposition 1.2 below
for details).

By BC, we denote the set of bounded and continuous functions.
Note that equation (0.8) has a parabolic nature in the directions x = (x2, . . . , xN )

but a purely hyperbolic one in the direction x1.
In [EVZ2], this uniqueness result was proved in the class of constant-sign solutions.

Then the restriction on the sign was removed by Carpio [C1], [C2].
The entropy solution vM of (0.8)–(0.9) has a self-similar structure and decays

in L∞(RN ) like t−(N+1)/2q, which is a faster decay rate than (0.4) since 1 < q <
(N + 1)/N .

The following result about the asymptotic behavior of the solutions was obtained
in [EVZ2] for constant-sign solutions and then extended to general solutions in [C1]
and [C2].

Theorem 0.3. Suppose that f ≡ (f1, . . . , fN ) satisfies (0.6) with j = 1 and

lim
s→0

f1(s)

|s|q−1s
= C.

Assume that u is the solution of (0.1)–(0.2) with
∫
RN u0 = M . Then for every r ∈

[1,∞),

lim
t→∞

t
N+1
2q (1− 1

r )||u(t)− vM (t)||Lr(RN ) = 0,

where vM is the fundamental entropy solution of (0.8)–(0.9).
If we consider the simple example fi ≡ Ci|u|qi−1u, condition (0.5) means that

for every i, qi ≥ 1 + 1/N , while in the range q ∈ (1, 1 + 1/N), (0.6) means that the
convection is pointing in a fixed space direction.

In this paper, we consider a simple example where, in the frame of strongly
nonlinear behavior, the convection is not unidirectional, namely

(0.10) ut −4u+
∂|u|q−1u

∂x1
+
∂|u|p−1u

∂x2
= 0

with

(0.11) 1 < q < 1 +
1

N
, q < p.

Observe that the first-order, nonlinear term of (0.10) can be written as
q|u|q−1〈(1, (p/q)|u|p−q, 0, . . . , 0),∇u〉, where 〈·, ·〉 denotes the scalar product in RN .
It can therefore be seen as a convection term in the nonconstant direction
(1, (p/q)|u|p−q, 0, . . . , 0). Since the solutions of equation (0.10) with initial data u0 ∈
L1(RN ) decay in L∞ (see (0.4)), as t goes to ∞, the vector that determines the
direction of convection points increasingly in the direction (1, 0, . . . , 0). One is then
tempted to conclude that the solutions u of (0.10) behave like the solutions of the
equation

(0.12) ut −4u+
∂|u|q−1u

∂x1
= 0
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and therefore, in view of Theorem 0.3, like the fundamental entropy solution of the
reduced equation

(0.13) ut −
N∑
j=2

∂2u

∂xj2
+
∂|u|q−1u

∂x1
= 0.

The main result of this paper shows that this is actually true under a further restriction
on p.

Main result. Suppose that

(0.14) 1 < q < 1 +
1

N
and 1 +

q

N + 1
< p.

Assume that u is the solution of (0.10) with initial data u0 in L1(RN ) of mass∫
RN u0 = M . Then for every r ∈ [1,∞),

(0.15) lim
t→∞

t
N+1
2q (1− 1

r )||u(t)− vM (t)||Lr(RN ) = 0,

where vM is the fundamental entropy solution of (0.13) of mass M .
Note that 1 + q/(N + 1) > q if and only if q < 1 + 1/N . Also notice that no sign

conditions are imposed to u0.
Assumption (0.14) is probably sharp, i.e., the long-time behavior is probably of

a different nature in the range 1 < q < 1 + 1/N and q < p ≤ 1 + q/(N + 1).
Although we do not have a rigorous proof of this fact, it will be obvious from the
scaling arguments below. (See section 5.1 for a more detailed discussion.)

Notice that an immediate corollary of our main result is that solutions of (0.10)
decay like t−(N+1)/2q in L∞. Obtaining this decay rate is actually the hardest part
of the proof of the main result. Once the decay estimate is obtained, the proof of
convergence follows from a classical scaling argument where the compactness is derived
by means of the kinetic approach developped by Lions, Perthame, and Tadmor [LPT]
that was adapted to the present frame by Carpio [C1], [C2].

To get such a decay estimate, we will prove an entropy inequality of the following
form:

∂uq−1

∂x1
≤ C

t
,

which is rather classical in the context of scalar hyperbolic conservation laws and
which was proved in [EVZ1] and [EVZ2] for parabolic conservation laws of the form
(0.12).

The remainder of the paper is organized as follows.
Section 1 covers previous results. Section 2 deals with the entropy estimate and

decay in L∞. Section 3 contains the proof of the main result for positive solutions,
and section 4 contains the proof of the main result for general solutions. Finally,
further comments are presented in section 5.

1. Previous results. Throughout this paper, we will use the following result
concerning the existence, uniqueness, and a priori estimates for classical solutions to
(0.11) with initial data in L1(RN ). Its proof is by now very classical. For a very
similar result and its detailed proof, see, for instance, [EZ].

Proposition 1.1. For all p > 1 and q > 1 and all initial data u0 ∈ L1(RN ),
there is a unique, classical solution u ∈ C((0,∞);L1(RN )) of (0.11) and (0.2) such
that

u ∈ C((0,∞);W 2,r(RN )) ∩C1((0,∞);Lr(RN ))
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for every r ∈ (1,+∞). Moreover, this solution satisfies
(1.1){
||u(t)||L1(RN ) ≤ ||u0||L1(RN ),

∀r ∈ [1,+∞], ∃Cr ≡ C(r, ||u0||L1(RN )) ||u(t)||Lr(RN ) ≤ Crt−
N
2 (1− 1

r ) ∀t > 0,

(1.2)

∀u0 ∈ L1(RN )∩Lr(RN ), ||u(t)||Lr(RN ) ≤
(
Crt+ ||u0||

− 2r
N(r−1)

Lr(RN )

)−N2 (1− 1
r )

∀t > 0,

(1.3) ∀u0 ∈ L1(RN ) ∩ L∞(RN ), ||u(t)||L∞(RN ) ≤ ||u0||L∞(RN ) ∀t > 0.

Here we also state the results that we need regarding the entropy solutions of the
reduced equation (0.13).

In what follows, we will use the following notation: every x ∈ RN is written as
x = (x1, x), where x = (x2, . . . , xN ) ∈ RN−1.

Proposition 1.2 (see [EVZ2], [C1], and [C2]). If 1 < q < 1 + 1/N , for every
M ∈ R, there is a unique function vM ∈ C((0,∞);L1(RN )) that satisfies

(1.4) vt −
N∑
j=2

∂2v

∂xj2
+
∂|v|q−1v

∂x1
= 0 in D′((0,∞)×RN ),

(1.5)


|v − ψ|t −

N∑
j=2

∂2|v − ψ|
∂xj2

+
∂||v|q−1v − |ψ|q−1ψ|

∂x1
≤ sign(v − ψ)

N∑
j=2

∂2ψ

∂xj2

in D′((0,∞)×RN ), ∀ψ = ψ(x) ∈ D(RN−1),

(1.6) lim
t→0

∫
v(t, x)φ(x)dx = Mφ(0) ∀φ ∈ BC(RN ),

(1.7) ∀r > 0, lim
t→0

∫
RN−1

∫
|x1|>r

|v(t, x1, x)|dx1dx = 0.

The function vM has the self-similar form

(1.8) vM (t, x) = t−
N+1
2q gM

(
x1

tβ
,
x√
t

)
,

where

(1.9) β =
N + 1 + q −Nq

2q

and gM ∈ L1(RN ) ∩ L∞(RN ) has compact support in the x1 variable and decays
exponentially as |x| → ∞.

Inequality (1.5) is an entropy-type condition in the spirit of Kruzhkov [Kr], which
deals with the fact that equation (1.4) has lost the diffusion term in the x1 variable.
A weak solution of (1.4) that also satisfies (1.6) will be called an entropy solution.
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2. Entropy estimate and decay in L∞(RN ). Observe that when 1 < q <
1 + 1/N , q < 1 + q/(N + 1) < 1 + 1/N and therefore hypothesis (0.14) can be written
as

(2.1) 1 < q < 1 +
q

N + 1
< p.

After the results in [EVZ2], [C1], and [C2], it is clear that in this range of parameters,
problem (0.10) does not have a parabolic scaling in all the variables. In order to make
this statement more precise, let us proceed as follows. If u is the solution of (0.10)
given by Proposition 1.1, we define for every λ > 0

(2.2) uλ(t, x1, x) = λ
N+1
2q u(λt, λβx1,

√
λx),

where

(2.3) β =
N + 1 + q −Nq

2q
.

The function uλ satifies

(2.4)
∂uλ
∂t
−

N∑
j=2

∂2uλ
∂x2

j

+
∂|uλ|q−1uλ

∂x1
= λ1−2β ∂

2uλ
∂x2

1

− λ 1
2−

(N+1)(p−1)
2q

∂|uλ|p−1uλ
∂x2

,

(2.5) uλ(0, x) = λ
N+1
2q u0(λβx1,

√
λx) ∀x ≡ (x1, x) ∈ RN .

Observe that

(2.6)


β >

1

2
⇐⇒ q < 1 +

1

N
,

1

2
− N + 1

2q
(p− 1) < 0⇐⇒ 1 +

q

N + 1
< p.

The idea of the proof of the main theorem is to pass to the limit in (2.4) as λ→∞,
using (2.6), to say that in the limit we obtain a solution U of the problem (0.13) that
can be identified with vM . The main difficulty is to obtain the appropriate a priori
bounds on the family {uλ}. Observe that if we want {uλ(t)} to be uniformly bounded
in Lr(RN ) for some r ≥ 1 and t > 0, we need for u the estimate

(2.7) ||u(t)||Lr(RN ) ≤ Ct−
N+1
2q (1− 1

r ).

One of the main tools for doing this is the entropy estimate. The following theorem,
which is the main result of this section, provides those two estimates.

Theorem 2.1. Suppose that p and q satisfy (2.1). Assume that u is the solution
of (0.10) and (0.2) with nonnegative initial data u0 of mass

∫
RN u0dx = M such that

(2.8) u0 ∈ L1(RN ) ∩ L∞(RN ).

Then there is a positive constant C ≡ C(p, q, ||u0||L∞(RN ),M) such that

(2.9)

[
∂uq−1

∂x1

]+

≤ Ct−1 ∀t > 0
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and

(2.10) ||u(t)||L∞(RN ) ≤ Ct−
N+1
2q ∀t > 0.

Theorem 2.1 will be proved via a sequence of lemmas.
Lemma 2.2. Assume that the hypotheses of Theorem 2.1 hold. Then for some

positive t0 and some positive constant A ≡ A(p, q), we have

(2.11)

[
∂uq−1

∂x1

]+

≤ At−1 ∀t ∈ (0, t0) ∀x ∈ RN .

Moreover, if for some positive constants C0 and α, we have

(2.12) u(t, x) ≤ C0(1 + t)−α ∀t > 0 ∀x ∈ RN ,

then for every τ0 > 0, there is a positive constant C = C(τ0, p, q, C0, α) such that

(2.13)

[
∂uq−1

∂x1

]+

≤ Ct−σ ∀t > τ0 ∀x ∈ RN

with σ = min(1, 2α(p− 1)).
Proof. By the comparison principle, since u0 ≥ 0, the solution u is strictly positive

in (0,∞)×RN . Define z = quq−1. The equation (0.10) then reads

zt −4z − γ
|∇z|2
z

+ z
∂z

∂x1
+ q(q − 1)uq−2 ∂u

p

∂x2
= 0

with γ = (2− q)/(q − 1) > 0. If we differentiate in x1 and denote w = ∂z/∂x1, we
have

(2.14)
wt−4w + w2 + γ

|∇z|2
z2

w +
(
z − 2γ

w

z

) ∂w

∂x1
− 2

γ

z

N∑
j=2

∂z

∂xj

∂w

∂xj

+ q(q − 1)
∂

∂x1

(
uq−2 ∂u

p

∂x2

)
= 0.

Now the last term in the left-hand side is

q(q − 1)
∂

∂x1

(
uq−2 ∂u

p

∂x2

)
= C1(p, q)z

p−1
q−1

∂w

∂x2
+ C2(p, q)

z
p−1
q−1

z
w
∂z

∂x2
.

Therefore, w satisfies

(2.15)

wt −4w + w2 + γ
|∇z|2
z2

w +
(
z − 2γ

w

z

) ∂w

∂x1

− 2
γ

z

N∑
j=2

∂z

∂xj

∂w

∂xj
+ C1(p, q)z

p−1
q−1

∂w

∂x2
+ C2(p, q)

z
p−1
q−1

z
w
∂z

∂x2
= 0.

This is a parabolic equation whose coefficients are not bounded in all of (0,∞)×RN

since u(t, x) tends to zero as |x| → ∞ at any positive time t. Nevertheless, since u > 0
and u is smooth for t > 0, w ∈ L∞loc((0,∞)×RN ) ∩C2,1((0,∞)×RN ).

Let us prove that for t > 0, w(t) ∈ L∞(RN ) and satisfies the estimate (2.11).
To this end, consider the solution uε of (0.10) with initial data uε(0) = u0 + ε and
0 < ε < 1. By the uniqueness of solutions and the classical parabolic regularity, we
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deduce that for every t > 0, uε(t) → u(t) and ∇uε(t) → ∇u(t) uniformly on any
compact subset of RN as ε→ 0.

On the other hand, since u0 ≥ 0, uε ≥ ε. Therefore, the function wε ≡ q(uq−1
ε )x1

is in L∞((0, T ) × RN ) for every ε > 0 and T > 0. Moreover, it satisfies (2.15)
with zε = quq−1

ε instead of z. Therefore, multiplying the equation satisfied by wε by
sign+wε, using Kato’s inequality, and taking into account that∣∣∣∣∣∣z

p−1
q−1
ε

zε
w+
ε

∂zε
∂x2

∣∣∣∣∣∣ ≤ w+
ε

{
δ

∣∣∣∣ ∂zε∂x2

∣∣∣∣2 z−2
ε +

1

4δ
z

2(p−1)
q−1

ε

}

≤ δw+
ε

∣∣∣∣ ∂zε∂x2

∣∣∣∣2 z−2
ε + δ|w+

ε |2 +
1

64δ3
z

4(p−1)
q−1

ε

for any δ > 0, by choosing δ > 0 small enough, we obtain
(2.16)

∂w+
ε

∂t
−4w+

ε +
1

2
(w+

ε )2 +
γ

2

|∇zε|2
z2
ε

w+
ε +

(
zε − 2γ

wε
zε

)
∂w+

ε

∂x1
− 2

γ

zε

N∑
j=2

∂zε
∂xj

∂w+
ε

∂xj

+ C1(p, q)zε
p−1
q−1

∂w+
ε

∂x2
≤ C(p, q)||uε(t)||4(p−1)

L∞(RN )
≤ C(p, q)(||u0||L∞(RN ) + 1)4(p−1)

for all 0 < ε < 1 since ||uε(t)||L∞(RN ) ≤ ||uε(0)||L∞(RN ) = ||u0||L∞(RN ) + ε.

Let us set t0 = (1/2)(||u0||L∞(RN ) + 1)−2(p−1) and define Wε(τ ; t) = A(t + τ)−1

for every ε > 0, where τ ≡ τ(ε) and A > 0 is independent of ε such that
(i) A2/2−A ≥ C(p, q) (with C(p, q) as in the right-hand side of (2.16)),
(ii) 0 < τ < t0, and
(iii) A/τ > ||wε(0)||L∞(RN ).
A simple calculation shows that

dWε

dt
+

1

2
W 2
ε =

(
A2

2
−A

)
(τ + t)−2 ≥ C(p, q)(τ + t)−2 ∀t > 0.

Now if t ∈ (0, t0), we have

(τ + t) ≤ 2t0 = (||u0||L∞(RN ) + 1)−2(p−1).

Then

(τ + t)−2 ≥ (||u0||L∞(RN ) + 1)4(p−1),

and so

dWε

dt
+

1

2
W 2
ε =

(
A2

2
−A

)
(τ + t)−2 ≥ 2C(p, q)(||u0||L∞(RN ) + 1)4(p−1) ∀t ∈ (0, t0).

Since Wε(0) > wε(0) by construction, by the comparison principle, we deduce that

w+
ε (t, x) ≤ A(t+ τ(ε))−1 ≤ At−1 ∀x ∈ RN ∀t ∈ (0, t0).

Passing to the limit as ε→ 0, we obtain (2.11).
In order to prove (2.13), we use the following argument. Since equation (0.10)

is autonomous, for every τ ∈ (0, t0/2), the function defined by ũ(t, x) = u(t + τ, x)
solves (0.10) with initial data ũ(0) = u(τ) and satisfies (2.12). Therefore, the function
w̃ = q∂ũq−1/∂x1 solves an equation similar to (2.15), which for the sake of brevity
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we call (̃2.15). In the same way, we can define ũε, z̃ε, and w̃ε by z̃ε(t) = zε(t+ τ) and
w̃ε(t) = wε(t+ τ), where ũε is the solution of (0.10) with data u(τ) + ε. Then

∂w̃+
ε

∂t
−4w̃+

ε +
1

2
(w̃+

ε )2 +
γ

2

|∇z̃ε|2
z̃2
ε

(w̃+
ε ) +

(
z̃ε − 2γ

w̃ε
z̃ε

)
∂w̃+

ε

∂x1

− 2
γ

z̃ε

N∑
j=2

∂z̃ε
∂xj

∂w̃+
ε

∂xj
+ C1(p, q)z̃

p−1
q−1
ε

∂w̃+
ε

∂x2
≤ C(p, q)(||u0||L∞(RN ) + 1)4(p−1).

Since w̃ε(0) = wε(τ) by (2.11), w̃ε(0) ∈ L∞(RN ). On the other hand, by what
we have just proved, ||w̃ε(0)||L∞(RN ) < Aτ−1 for every ε > 0. By the comparison
principle, we deduce that

∀ε > 0, ∀t > 0, ∀x ∈ RN , w̃ε(t, x) ≤ C(p, q)(||u0||L∞(RN ) + 1)4(p−1)t+Aτ−1,

and so, letting ε→ 0, w̃ ∈ L∞loc((0,∞);L∞(RN )).

Moreover, multiplying (̃2.15) by sign+w̃ and using (2.12), we get
∂w̃+

∂t
−4w̃+ +

1

2
(w̃+)2 +

γ

2

|∇z̃|2
(z̃)2

(w̃+) + (z̃ − 2γ
w̃

z̃
)
∂w̃+

∂x1

− 2
γ

z̃

N∑
j=2

∂z̃

∂xj

∂w̃+

∂xj
+ C1(p, q)z̃

p−1
q−1

∂w̃+

∂x2
≤ C(p, q)(1 + t)−4α(p−1).

We now consider the cases where 2α(p− 1) ≥ 1 and 2α(p− 1) < 1 separately.
The case where 2α(p− 1) ≥ 1. Consider the function W (t) = A(t+ τ1)−1 with A

such that A2/2−A > C(p, q) and 1 > τ1 > 0 such that ||w̃(0)||L∞(RN ) < A/τ1. With
this choice of A and τ1, we have

dW

dt
+

1

2
W 2 =

(
A2

2
−A

)
(τ1 + t)−2 > C(p, q)(1 + t)−4α(p−1).

By the comparison principle, we deduce as before that

w+(t+ τ, x) ≡ w̃+(t, x) ≤ A(t+ τ1)−1 < At−1 ∀t > 0 ∀x ∈ RN .

The case where 2α(p − 1) < 1. Define the function W (t) = A(1 + t)−2α(p−1),
choosing A such that

A

(
A

2
− 2α(p− 1)

)
≥ 2C(p, q) and A ≡ A(τ) > ||w̃(0)||L∞(RN ).

Then

dW

dt
+

1

2
W 2 = A(1 + t)−4α(p−1)

{
A

2
− 2α(p− 1)(1 + t)2α(p−1)−1

}
≥ A(1 + t)−4α(p−1)

{
A

2
− 2α(p− 1)

}
≥ 2C(p, q)(1 + t)−4α(p−1).

Arguing as before, we obtain w̃+(t) ≤ A(1 + t)−2α(p−1) for all t > 0. This gives[
∂uq−1(t+ τ, x)

∂x1

]+

≤ A(1 + t)−σ ∀t > 0
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and, for some C = C(σ, τ0) > 0, [∂uq−1/∂x1]+ ≤ Ct−σ for every t > τ0, and (2.13)
follows.

Lemma 2.3. Assume that the hypotheses of Theorem 2.1 are satisfied and that
(2.12) holds. Then we have the following:

(a) If 2α(p− 1) < 1, for every δ > 0, there exists C ≡ C(p, q, δ, C0) > 0 such that

(2.17)

∥∥∥∥∫
R

u(t, z, x)dz

∥∥∥∥
L∞(RN−1)

≤ Ct−α(N−1)(p−1)+δ ∀t > 2N−1.

(b) If 2α(p− 1) ≥ 1, there exists C ≡ C(p, q, C0) > 0 such that

(2.18)

∥∥∥∥∫
R

u(t, z, x)dz

∥∥∥∥
L∞(RN−1)

≤ Ct−
N−1

2 ∀t > 2N−1.

Proof. Let us define v(t, x) =
∫
R
u(t, z, x)dz. This function satisfies

vt −
N∑
j=2

∂2v

∂xj2
+
∂
∫
R
up(t, z, x)dz

∂x2
= 0,

and therefore it solves the integral equation
(2.19)

v(2t, x) = (KN−1(t) ∗ v(t))(x)−
∫ t

0

(
∂

∂x2
KN−1(t− s) ∗

∫
R

up(s+ t, z, ·)dz
)

(x)ds,

where KN−1 denotes the heat kernel in (0,∞)×RN−1, i.e.,

KN−1(t, x) = (4πt)−
N−1

2 exp

(
−|x|

2

4t

)
.

The following estimates are easily obtained:

||KN−1(t)||Lr(RN−1) ≤ γ0t
−N−1

2 (1− 1
r ),

||∇KN−1(t)||Lr(RN−1) ≤ γ0t
−N−1

2 (1− 1
r )− 1

2

for all r ∈ [1,∞] and t > 0 with γ0 > 0 large enough.
Now consider any r such that

1 < r <
N − 1

N − 2
if N > 2, r > 1 if N = 2

and take Lr(RN−1) norms in (2.19). Using (2.12), we obtain

||v(2t)||Lr(RN−1) ≤ γ0Mt−
N−1

2 (1− 1
r )

+ γ0MCp−1
0

∫ t

0

(t− s)−
N−1

2 (1− 1
r )− 1

2 (1 + s+ t)−α(p−1)ds,

and then

||v(2t)||Lr(RN−1) ≤ γ0Mt−
N−1

2 (1− 1
r ) +

2rγ0MCp−1
0

r − (N − 1)(r − 1)
t−

N−1
2 (1− 1

r )+ 1
2−α(p−1).

If 2α(p− 1) ≥ 1, 1/2− α(p− 1) ≤ 0 and then

(2.20) ||v(t)||Lr(RN−1) ≤ γ1t
−N−1

2 (1− 1
r ) ∀t ≥ 2
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with γ1 = Mγ0(1 + 2rCp−1
0 /(r − (N − 1)(r − 1))).

On the other hand, if 2α(p− 1) < 1,

(2.21) ||v(t)||Lr(RN−1) ≤ γ1t
−N−1

2 (1− 1
r )+ 1

2−α(p−1) ∀t ≥ 2.

When N = 2, this gives an estimate on the Lr(RN ) norm of v(t) for every
finite r > 1. When N > 2, we divide the interval (1/(N − 1), 1) into the intervals
(j/(N − 1), (j + 1)/(N − 1)), j = 1, . . . , N − 2. Now for any r > (N − 1), choose
(rj)

N−2
j=1 such that 1/rj ∈ ((N − j − 1)/(N − 1), (N − j)/(N − 1)) and

(2.22)
1

rN−2
− 1

r
<

1

N − 1
,

(2.23)
1

rj
− 1

rj+1
<

1

N − 1
∀j = 1, . . . , N − 2.

We can now use (2.20)–(2.21) with r1 ∈ (1, (N − 1)/(N − 2)) and take the Lr2(RN−1)
norm in (2.19):

||v(2t)||Lr2 (RN−1) ≤Mγ0t
−N−1

2 ( 1
r1
− 1
r2

)||v(t)||Lr1 (RN−1)

+

∥∥∥∥∫ t

0

(
∂

∂x2
KN−1(t− s) ∗

∫
R

up(s+ t, z, ·)dz
)
ds

∥∥∥∥
Lr2 (RN−1)

.

The last term in the right-hand side can be estimated as follows for 1/r1 + 1/r1 =
1 + 1/r2:∥∥∥∥∫ t

0

(
∂

∂x2
KN−1(t− s) ∗

∫
R

up(s+ t, z, ·)dz
)

(x)ds

∥∥∥∥
Lr2 (RN−1)

≤
∫ t

0

||u(s+ t)||p−1
L∞(RN )

∥∥∥∥∣∣∣∣ ∂∂x2
KN−1(t− s)

∣∣∣∣ ∗ v(s+ t)

∥∥∥∥
Lr2 (RN−1)

ds

≤
∫ t

0

||u(s+ t)||p−1
L∞(RN )

∥∥∥∥ ∂

∂x2
KN−1(t− s)

∥∥∥∥
Lr1 (RN−1)

||v(s+ t)||Lr1 (RN−1)ds.

First, suppose that 2α(p − 1) ≥ 1. Then using (2.12) and (2.20), we obtain, for all
t ≥ 2,

||v(2t)||Lr2 (RN−1) ≤ γ0t
−N−1

2 ( 1
r1
− 1
r2

)γ1t
−N−1

2 (1− 1
r1

)

+ γ0C
p−1
0 γ1

∫ t

0

(t− s)−
N−1

2 ( 1
r1
− 1
r2

)− 1
2 (s+ t)−

N−1
2 (1− 1

r1
)−α(p−1)ds

= γ0γ1t
−N−1

2 (1− 1
r2

)

+ γ0C
p−1
0 γ1

2r1r2

r1r2 − (N − 1)(r2 − r1)
t−

N−1
2 (1− 1

r2
)+( 1

2−α(p−1)).

Since 2α(p− 1) ≥ 1, we deduce that

(2.24) ||v(t)||Lr2 (RN−1) ≤ γ2t
−N−1

2 (1− 1
r2

) ∀t ≥ 4

with γ2 = γ0γ1(1 + Cp−1
0 2r1r2/(r1r2 − (N − 1)(r2 − r1))).
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On the other hand, suppose that 2α(p − 1) < 1. Then using (2.20), we obtain,
for all t ≥ 2,

||v(2t)||Lr2 (RN−1) ≤ γ0γ1t
−N−1

2 (1− 1
r2

)+ 1
2−α(p−1)

+ γ0C
p−1
0 γ1

∫ t

0

(t− s)−
N−1

2 ( 1
r1
− 1
r2

)− 1
2 (s+ t)−

N−1
2 (1− 1

r1
)+ 1

2−2α(p−1)ds

= γ0γ1t
−N−1

2 (1− 1
r2

)+ 1
2−α(p−1)

+ γ0C
p−1
0 γ1

2r1r2

r1r2 − (N − 1)(r2 − r1)
t−

N−1
2 (1− 1

r2
)+2( 1

2−α(p−1)).

Since 2α(p− 1) < 1, we deduce that

(2.25) ||v(t)||Lr2 (RN−1) ≤ γ2t
−N−1

2 (1− 1
r2

)+2( 1
2−α(p−1)) ∀t ≥ 4.

By iteration of this argument, we obtain

(2.26) ||v(t)||Lrj (RN−1) ≤ γjt−θj ∀t ≥ 2j

for j = 1, . . . , N − 2, where

θj ≡


N − 1

2

(
1− 1

rj

)
− j

(
1

2
− α(p− 1)

)
if 2α(p− 1) < 1,

N − 1

2

(
1− 1

rj

)
if 2α(p− 1) ≥ 1

and γj = γ0γ1 · · · γj−1(1 + Cp−1
0 2rj−1rj/(rj−1rj − (N − 1)(rj − rj−1))). Finally, we

take Lr norms in (2.19) and use (2.20)–(2.21) for j = N − 2 and (2.22) to get

(2.27) ||v(t)||Lr(RN−1) ≤ γt−θ ∀t ≥ 2N−1,

where

θ ≡


N − 1

2

(
1− 1

r

)
− (N − 1)

(
1

2
− α(p− 1)

)
if 2α(p− 1) < 1,

N − 1

2

(
1− 1

r

)
if 2α(p− 1) ≥ 1

and γ = γ0γ1 · · · γN−2(1 + Cp−1
0 2rN−2r/(rN−2r − (N − 1)(r − rN−2))).

The estimate in L∞ remains to be proved. Unfortunately, we cannot let r → ∞
in (2.27) since (due to (2.22)–(2.23)) when that happens, rj → (N − 1)/(N − j − 1)
for all j = 1, . . . , N − 2 and then all of the constants γj blow up.

We first consider the case where 2α(p − 1) ≥ 1. For any r > N − 1, taking L∞

norms in (2.19), we obtain

||v(2t)||L∞(RN−1)

≤ γ0t
−N−1

2r γt−
N−1

2 (1− 1
r ) + γ0C

p−1
0 γ

∫ t

0

(t− s)−
N−1
2r −

1
2 (s+ t)−

N−1
2 (1− 1

r )−α(p−1)ds

≤ γ0γ

(
1 +

2rCp−1
0

r − (N − 1)

)
t−(N−1)/2

for every t ≥ 2N−1. This concludes the proof of Lemma 2.3 when 2α(p− 1) ≥ 1.
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Let us now consider the case where 2α(p − 1) < 1. We will use the following
inequality of Gagliardo and Nirenberg (see, for instance, [B, p. 195]):

(2.28) ∀ρ ≥ 1, ∀r > (N − 1), ||v||L∞(RN−1) ≤ C||v||1−aLρ(RN−1)
||v||aW 1,r(RN−1),

where

(2.29) a

(
1

ρ
− 1

r
+

1

(N − 1)

)
=

1

ρ

and the constant C depends only on ρ and r. We will apply (2.28) to v(t) with ρ large.
We then need to estimate ||v(t)||W 1,r for some r > (N − 1). Since we have already
estimated ||v(t)||Lr(RN−1) in (2.27), we only have to estimate ||∇v(t)||Lr(RN−1). Since
by definition v(t, x) =

∫
R
u(t, z, x)dz, we have ∇v(t, x) =

∫
R
∇xu(t, z, x)dz. Let us

define the auxiliary function V (t, x) =
∫
R
|∇xu(t, z, x)|dz. Then, obviously,

∀t > 0, ∀x ∈ RN−1, |∇v(t, x)| ≤ V (t, x).

To estimate ||V (t)||Lr(RN−1), we note that for all t > 0 and τ > 0,

u(t+ τ) = K(t)∗u(τ)−
∫ t

0

∂

∂x1
K(t− s)∗uq(s+ τ)ds−

∫ t

0

∂

∂x2
K(t− s)∗up(s+ τ)ds.

Taking the gradient in the x variables and norms in RN−1 and integrating in R with
respect to x1, we obtain

V (t+ τ, x) ≤
∫
R

(|∇xK(t)| ∗ u(τ))dx1

+ q

∫
R

∫ t

0

∣∣∣∣ ∂∂x1
K(t− s)

∣∣∣∣ ∗ uq−1|∇xu(s+ τ)|dsdx1

+ p

∫
R

∫ t

0

∣∣∣∣ ∂∂x2
K(t− s)

∣∣∣∣ ∗ up−1|∇xu(s+ τ)|dsdx1.

If we denote by K1(t, xi) the heat kernel in the one space variable xi, i.e., K1(t, xi) =
(4πt)−1/2 exp(−|xi|2/4t), thenK(t, x) = K1(t, x1) · · ·K1(t, xN ) and therefore |∇xK(t,
x)| = K1(t, x1)|∇KN−1(t, x)|. It is then straightforward to see that

∫
R
|∇xK(t)|∗

u(τ)dx1 = |∇KN−1(t)| ∗ v(τ). On the other hand,∫
R

∣∣∣∣ ∂∂x1
K(t− s)

∣∣∣∣ ∗ uq−1|∇xu(s+ τ)|dx1

=

∫
RN−1

KN−1(t− s, x− y)∫
R

∫
R

|x1 − y1|
2(t− s) K1(t− s, x1 − y1)uq−1(s+ τ, y)|∇xu(s+ τ, y)|dy1dx1dy

≤
(∫

R

|z|
2(t− s)K1(t− s, z)dz

)
Cq−1

0 (s+ τ)−α(q−1)∫
RN−1

KN−1(t, x− y)

∫
R

|∇xu(s+ τ, y)|dy1dy

≤ C(q, τ)√
t− s

KN−1(t− s) ∗ V (s+ τ)
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and∫
R

∣∣∣∣ ∂∂x2
K(t− s)

∣∣∣∣ ∗ up−1|∇xu(s+ τ)|dx1

=

∫
RN−1

∣∣∣∣ ∂∂x2
KN−1(t− s, x− y)

∣∣∣∣∫
R

∫
R

K1(t− s, x1 − y1)up−1(s+ τ, y)|∇xu(s+ τ, y)|dy1dx1dy

≤ Cp−1
0 (s+ τ)−α(p−1)

∫
RN−1

∣∣∣∣ ∂∂x2
KN−1(t− s, x− y)

∣∣∣∣ ∫
R

|∇xu(s+ τ, y)|dy1dy

≤ C(p, τ)

∣∣∣∣ ∂∂x2
KN−1(t− s)

∣∣∣∣ ∗ V (s+ τ).

For all t > 0 and τ > 0, we deduce that

||V (t+τ)||Lr(RN−1) ≤ Ct−
1
2 ||v(τ)||Lr(RN−1)+C(p, q, τ)

∫ t

0

(t−s)− 1
2 ||V (s+τ)||Lr(RN−1).

For any τ > 0 fixed, if we set g(t) = ||V (t + τ)||Lr(RN−1), we can write, for every
t ∈ (0, 1),

g(t) ≤ t− 1
2 ||v(τ)||Lr(RN−1) + C

∫ t

0

(t− s)− 1
2 g(s)ds.

By Gronwall’s lemma, we deduce that there is a positive constant C ′ = C ′(p, q, C0)
such that g(t) ≤ C ′||v(τ)||Lr(RN−1)t

−1/2 for every t ∈ (0, 1). In particular, for every
τ > 0,

||∇v(1 + τ)||Lr(RN−1) ≤ ||V (1 + τ)||Lr(RN−1) ≡ g(1) ≤ C ′||v(τ)||Lr(RN−1).

By (2.27), there is a positive constant Γ such that for all t ≥ 2N ,

(2.30) ||v(t)||W 1,r(RN−1) ≤ Γt−θ.

We use now (2.27), (2.28), and (2.30) to obtain

(2.31) ||v(t)||L∞(RN−1) ≤ C(ρ, r)γ1−aΓat−Θ ∀t ≥ 2N

with

Θ ≡ (1− a)

[
N − 1

2

(
1− 1

ρ

)
− (N − 1)

(
1

2
− α(p− 1)

)]
+ a

[
N − 1

2

(
1− 1

r

)
− (N − 1)

(
1

2
− α(p− 1)

)]
,

which we can rewrite as

Θ ≡ (1− a)(N − 1)α(p− 1)− (1− a)
N − 1

2ρ

+ a

[
N − 1

2

(
1− 1

r

)
− (N − 1)

(
1

2
− α(p− 1)

)]
.
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By (2.29), we have a ≡ a(ρ, r) = (1 − ρ/r + ρ/(N − 1))−1. Now we leave r > N − 1
fixed and let ρ→∞. Then a(ρ, r)→ 0 as ρ→∞ and

lim
ρ→∞

Θ =


(N − 1)α(p− 1) if 2α(p− 1) < 1,

N − 1

2
if 2α(p− 1) ≥ 1.

This completes the proof of Lemma 2.3 when 2α(p− 1) < 1.
Lemma 2.4. Assume that the hypotheses of Theorem 2.1 are satisfied and that

for some positive constants l, τ1, and C1,[
∂uq−1

∂x1

]+

≤ C1t
−l ∀t > τ1.

Then for every x ∈ RN−1,

(2.32) sup
x1∈R

|u(t, x1, x)| ≤
(

q

q − 1

) 1
q

C
1
q

1 t
− l
q

(∫
R

u(t, z, x)dz

) 1
q

∀t > τ1.

Proof. We follow the argument of [EVZ2]. We fix a time t > τ1 and consider a
point (y1, y, t). At this point, we call B = uq−1(y1, y, t). By hypothesis, we have

∀x1 ∈
[
y1 −

B

C1
tl, y1

]
, uq−1(x1, y, t) ≥ B − C1

(y1 − x1)

tl

or, equivalently,

u(y1 − z, y, t) ≥
(
C1

tl

) 1
q−1
(
Btl

C1
− z
) 1
q−1

∀z ∈
[
0,
Btl

C1

]
.

Integrating with respect to z on (0, Btl/C1) gives

∫
R

u(z, y, t)dz ≥
(
C1

tl

) 1
q−1
∫ Btl

C1

0

(
Btl

C1
− z
) 1
q−1

dz

=

(
C1

tl

) 1
q−1
∫ Btl

C1

0

s
1
q−1 ds =

q − 1

q
B

q
q−1

tl

C1
∀t > τ1.

Therefore,

uq(y1, y, t) ≤
q

q − 1
C1t
−l
∫
R

u(z, y, t)dz ∀t > τ1.

Proof of Theorem 2.1. By (2.8), applying estimates (1.1) and (1.3) of Proposition
1.1, we have that for some positive constant C0, the solution u satisfies

(2.33) u(t, x) ≤ C0(1 + t)−
N
2 ∀t > 0 ∀x ∈ RN .

We can then apply Lemma 2.2 with α = N/2. Thus for every τ0 > 0, there is a
positive constant C = C(τ0, p, q, C0) such that

(2.34)

[
∂uq−1

∂x1

]+

≤ Ct−σ ∀t > τ0
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with σ = min(1, N(p− 1)).
From (2.34) and (2.11), we immediately see that if N(p− 1) ≥ 1, (2.9) is proved.

Moreover, by Lemma 2.3 and, more precisely, by (2.18),∫
R

u(z, y, t)dz ≤ Ct−
N−1

2 ∀t > 2N−1

for some other constant C = C(p, q, C0). Then by Lemma 2.4,

|u(t, x1, x)| ≤
(

q

q − 1

) 1
q

C
1
q t−

1
q

(∫
R

u(t, z, x)dz

) 1
q

≤
(

q

q − 1

) 1
q

C
1
q t−

1
q−

N−1
2q ∀t > 2N ∀x ∈ RN .

Taking into account the fact that (1.1) holds, this implies (2.10) since (N + 1)/2q >
N/2.

We can now suppose that N(p− 1) < 1. Then σ = N(p− 1) and by Lemma 2.3,
for every δ > 0, there exists C ≡ C(p, q, δ, C0) > 0 such that

(2.35)

∥∥∥∥∫
R

u(t, z, x)dz

∥∥∥∥
L∞(RN−1)

≤ Ct−
N(N−1)(p−1)

2 +δ ∀t > 2N−1.

We now choose δ in the following way. Since p > 1 + q/(N + 1), we have (N + 1)(p−
1)/q > 1. Therefore, for k large enough,

(p− 1)2(N + 1)N

q

(
(N + 1)(p− 1)

q

)k−1

> 2.

Let us set

(2.36) k0 = min

{
k ∈ N :

(p− 1)2(N + 1)N

q

(
(N + 1)(p− 1)

q

)k−1

> 2

}
.

We choose δ such that

(2.37)


(N + 1)N(p− 1)

2q
− k0

δ

q
>

(N + 1)N(p− 1)

4q
,

δ <
N(N − 1)(p− 1)−Nq

2
.

Now using (2.34), (2.35) (with δ defined by (2.37)), and Lemma 2.4,

(2.38)


u(t, x) ≤ Ct−α1 ∀t > τ ∀x ∈ RN ,

α1 =
N(N + 1)(p− 1)

2q
− δ

q

for some τ > 0. Using Lemma 2.2, this in turn gives

(2.39) ∀τ0 > 0, ∃C > 0

[
∂uq−1

∂x1

]+

≤ Ct−σ1 ∀t > τ0

with τ > 0 and σ1 = min(1, 2α1(p − 1)). Therefore, if 2α1(p − 1) ≥ 1, in view of
(2.11) and (2.39), (2.9) is proved and (2.10) follows as above. On the other hand, if
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2α1(p− 1) < 1, then σ1 = 2α1(p− 1), and then by (2.39) and (2.17), for every δ > 0,
there exists C ≡ C(p, q, δ, C0) > 0 such that

(2.40)

∥∥∥∥∫
R

u(t, z, x)dz

∥∥∥∥
L∞(RN−1)

≤ Ct−α1(N−1)(p−1)+δ1 ∀t > 2N−1.

We choose δ1 to be

(2.41) δ1 ≡ δ
(N + 1)(p− 1)

q
.

Again by (2.39)–(2.41) and Lemma 2.4, we obtain
u(t, x) ≤ Ct−α2 ∀t > 0 ∀x ∈ RN ,

α2 =
(N + 1)(p− 1)

q

(
N(N + 1)(p− 1)

2q
− 2

δ

q

)
.

In this way, step by step, by choosing δj = δj−1(N + 1)(p− 1)/q we obtain a sequence
of numbers

αk =

[
(N + 1)(p− 1)

q

]k−1(
N(N + 1)(p− 1)

2q
− k δ

q

)
such that if 2αj−1(p− 1) < 1, then

u(t, x) ≤ Ct−αj ∀t > 0 ∀x ∈ RN ,∫
R

u(t, z, x)dz ≤ t−αj−1(N−1)(p−1)+δj−1 ∀t > 2N−1 ∀x ∈ RN .

We claim that for k = k0 (where k0 is defined by (2.36)), we have 2αk0(p−1) > 1.
For this observe that by the choice of δ (see (2.37)),

αk0 =

(
N(N + 1)(p− 1)

2q
− k0

δ

q

)[
(N + 1)(p− 1)

q

]k0−1

≥ N(N + 1)(p− 1)

4q

(
(N + 1)(p− 1)

q

)k0−1

,

and so by the choice of k0,

2αk0(p− 1) ≥ (p− 1)2(N + 1)N

q

[
(N + 1)(p− 1)

q

]k0−1

> 1.

Thus (2.9) and (2.10) are deduced as above.
Corollary 2.5. Under the hypotheses of Theorem 2.1, there is a positive con-

stant C such that

(2.42)
∂uq

∂x1
≤ C u

1 + t
∀t > 0,

(2.43)

∫
RN

∣∣∣∣∂uq∂x1

∣∣∣∣ dx ≤ CM

(1 + t)
∀t > 0.

Proof. Inequality (2.42) is a direct consequence of Theorem 2.1.
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For (2.43), we use the fact that∫
RN

∂uq

∂x1
dx = 0.

Then by (2.42),∫
RN

(
∂uq

∂x1

)−
dx =

∫
RN

(
∂uq

∂x1

)+

≤ C

1 + t

∫
RN

udx.

3. Main result for nonnegative solutions. In this section, we prove the main
result for nonnegative initial data. By the maximum principle, this means that the
solution u is also nonnegative. In order to pass to the limit in (2.4) as λ → ∞, we
need some further estimates on the family {uλ} defined in (2.2).

Lemma 3.1. If u solves (0.10) and (0.2) and uλ is the family of functions defined
by (2.2), then

(3.1)

∫ T

τ

∫
RN

(
|∇xuλ(t, x)|2 + λ1−2β

∣∣∣∣∂uλ(s+ τ)

∂x1

∣∣∣∣2
)
dxdt

≤ 1

2

∫
RN

|uλ(τ, x)|2dx ≤ C(M)τ−
(N+1)

2q ∀λ > 0

for all T > 0 and τ ∈ (0, T ).
Proof. Multiplying equation (0.10) by u and integrating by parts, we get that for

every T > 0 and τ ∈ (0, T ),∫ T

τ

∫
RN

|∇u(t, x)|2dxdt ≤ 1

2

∫
RN

|u(τ, x)|2dx ≤ C(M)τ−
(N+1)

2q .

The result follows from the definition of uλ.
Lemma 3.2. If u solves (0.10) and (0.2) and uλ is the family of functions defined

by (2.2), then for every τ > 0, there is a positive constant such that

(3.2) ||∇xuλ(t)||L1(RN ) ≤ C ∀t ≥ τ0,

where ∇xu = (∂u/∂x2, . . . , ∂u/∂xN ).
Proof. For every λ, the function uλ satisfies

uλ(t+ τ) = Kλ(t) ∗ uλ(τ)−
∫ t

0

Kλ(t− s) ∗
(
∂uqλ(s+ τ)

∂x1

)
ds

− λ 1
2−

(N+1)(p−1)
2q

∫ t

0

(
∂Kλ(t− s)

∂x2

)
∗ upλ(s+ τ)ds,

where Kλ(t, x) = λβ−1/2K(t, λβ−1/2x1, x). Then for every t ∈ (0, 1) and τ > τ0,

||∇xuλ(t+ τ)||L1(RN )

≤M ||∇xKλ(t)||L1(RN ) +

∫ t

0

||∇xKλ(t− s)||L1(RN )

∥∥∥∥∂uqλ(s+ τ)

∂x1

∥∥∥∥
L1(RN )

ds

+ λ
1
2−

(N+1)(p−1)
2q

∫ t

0

∥∥∥∥∂Kλ(t− s)
∂x2

∥∥∥∥
L1(RN )

||∇xupλ(s+ τ)||L1(RN )ds

≤ Ct− 1
2 + C

∫ t

0

(t− s)− 1
2 (s+ τ)−1ds
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+

∫ t

0

(t− s)− 1
2 (s+ τ)−

(N+1)(p−1)
2q ||∇xupλ(s+ τ)||L1(RN )ds.

If g(t) = ||∇xuλ(t+ τ)||L1(RN ), we have for t ∈ (0, 1) and for all τ > τ0 that

g(t) ≤ (C
√
t+ CMt−

1
2 ) + Cτ

− (N+1)(p−1)
2q

0

∫ t

0

(t− s)− 1
2 g(s)ds.

From Gronwall’s lemma, we deduce that (3.2) holds.
Lemma 3.3. There is a sequence {λn} and U ∈ L∞((0,∞);L1(RN ))∩L∞((0,∞)

×RN ), a solution of (1.4), satisfying the entropy condition (1.5) and such that

∀ε > 0, ∀t2 > t1 > 0, uλn → U in C([t1, t2];W−ε,2
loc

(RN )),

∀r ∈ [1,∞), ∀t > 0, uλn(t)→ U(t) in Lrloc(RN ).

Proof. By Theorem 2.1 and Corollary 2.5, if u0 is nonnegative and satisfies (2.8),
the family uλ defined by (2.2) satisfies

(3.3) 0 < uλ(t, x) ≤ Ct−
N+1
2q ∀t > 0 ∀x ∈ RN ,

(3.4)
∂uq−1

λ (t)

∂x1
≤ Ct−1 in (0,+∞)×RN ,

(3.5)

∫
RN

∣∣∣∣∂uqλ(t)

∂x1

∣∣∣∣ dx ≤ CMt−1 ∀t > 0,

(3.6)

∫
RN

∣∣∣∣∣∂uq+rλ (t)

∂x1

∣∣∣∣∣ dx ≤ CMt−1−rN+1
2q ∀t > 0.

The argument now follows [EVZ2]:
(i) From (3.2)–(3.3) and (3.6), we deduce that the family {uq+rλ } is uniformly

bounded in L∞(τ,∞;W 1,1(RN )) for every r ≥ 1 and τ > 0.
(ii) From (3.1), (3.2), (3.5), and (2.4), we deduce that {∂tuλ} is uniformly bounded

in L2
loc((0,∞);H−sloc (RN )) for some positive s.
(iii) From (i), we deduce that {uλ} is uniformly bounded in L∞loc((0,∞);L2

loc(RN )).
For every bounded set Ω of RN , since L2(Ω) is compactly embedded in H−ε(Ω)

for every ε > 0 and H−ε(Ω) is continuously embedded in H−s(Ω) for every s > ε, we
deduce from (ii), (iii), and the compactness result of [S] that

(iv) {uq+rλ } is relatively compact in C([t1, t2];H−ε(Ω)).
We can therefore extract a subsequence λn →∞ such that

(3.7) uλn → U in C([t1, t2];H−ε(Ω))

for every bounded domain Ω in RN and every ε < s. Since by (i) and (3.3), we know
that {uλ(t)} is relatively compact in Lrloc(RN ) for every 1 ≤ r <∞ and every t > 0,
we deduce that

(3.8) uλn(t)→ U(t) in Lrloc(RN ).

Then passing to the limit in (2.4) through the sequence {λn} in the sense of the
distributions D′((0,∞) ×RN ), we see that U is a weak solution of (1.4). Moreover,
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since for every n, uλn is a regular solution of (0.10), for any ψ ∈ D(RN−1), ψ = ψ(x),
we have

|uλn − ψ|t − 4̃|uλn − ψ|+
∂

∂x1
|uqλn − |ψ|

q−1ψ|

≤ sign(uλn − ψ)4̃ψ + λ1−2β ∂
2uλn
∂x2

1

sign(uλn − ψ)− λ 1
2−

(N+1)(p−1)
2q

∂|upλn − |ψ|
p−1ψ|

∂x2

in the sense of the distributions D′((0,∞)×RN ), where ∆̃ denotes the Laplacian in
the variables (x2, . . . , xN ). Taking into account that

∂2uλn
∂x2

1

sign(uλn − ψ) ≤ ∂2|uλn − ψ|
∂x2

1

+
∂2ψ

∂x2
1

sign(uλn − ψ)

and passing to the limit as n → ∞, we obtain that U satisfies the entropy condition
(1.5). Moreover, U satisfies (3.3) and (3.4). We then have that U ∈ L∞((τ,∞)×RN )
for every τ > 0, and since ||u(t)||L1(RN ) = M , we also have that U ∈ L∞((0,∞);

L1(RN )) and
∫
RN U(t, x)dx ≤M ∀t > 0.

In order to identify U as the function vM of Proposition 1.2, we also need to prove
that U takes the initial data Mδ in the sense of (1.6)–(1.7). To this end, we need the
following.

Lemma 3.4. Suppose that u is the classical solution of (0.10) and (0.2) and the
family {uλ} is the one defined in (2.2). (Note that we do not assume u to be of
constant sign.) Then for every t0 > 0 and ε > 0, there are k0 > 0 and λ0 > 0 such
that

(3.9)

∫
|x1|+|x|≥k0

|uλ|(t, x1, x)dx1dx ≤ ε

for every t ∈ (0, t0) and λ ≥ λ0.
Proof. If N ≥ 3, we define

vλ(t, x3, . . . , xN ) =

∫
R2

uλ(t, x1, x2, x3, . . . , xN )dx1dx2.

For every λ > 0, the function vλ satisties the (N−2)-dimensional linear heat equation.
Since the family of initial data {vλ(0)} is an approximation of the identity in RN−2,
we deduce that for every t2 > t1 > 0 and every ε > 0, there are k0 > 0 and λ0 > 0
such that∫

|(x3,...,xN )|>k0
vλ(t, x3, . . . , xN )dx3 · · · dxN

≡
∫
R2

∫
|(x3,...,xN )|>k0

uλ(t, x3, . . . , xN )dx1dx2dx3 · · · dxN ≤ ε

∀λ ≥ λ0 ∀t ∈ (0, t0).

Therefore, in order to prove (3.9), we need only the fact that under the same condi-
tions,

(3.10)

∫
|x1|≥k0

∫
RN−1

uλ(t, x1, . . . , xN )dx1 · · · dxN ≤ ε ∀λ ≥ λ0 ∀t ∈ (0, t0),

(3.11)

∫
|x2|≥k0

∫
RN−1

uλ(t, x1, · · · , xN )dx1 · · · dxN ≤ ε ∀λ ≥ λ0 ∀t ∈ (0, t0).
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Let us estimate (3.10); the bound (3.11) can be obtained in the same way. We define

vλ(t, x1, x) =

∫ x1

−∞
uλ(t, z, x)dz ∀(x1, x) ∈ RN .

Then vλ satisfies

∂vλ
∂t
−

N∑
j=2

∂2vλ
∂x2

j

−λ1−2β ∂
2vλ
∂x2

1

−λ 1
2−

(N+1)(p−1)
2q

∂

∂x2

∫ x1

−∞
|uλ|p−1uλdz = −|uλ|q−1uλ ≤ 0.

Take wλ(t, x1) =
∫
RN−1 vλ(t, x1, x)dx. The function wλ then satisfies

∂wλ
∂t
− λ1−2β ∂

2wλ
∂x1

2
≤ 0; wλ(0) =

∫
RN−1

∫ x1

−∞
uλ(t, z, x)dzdx,

and it is bounded from above by the solution Wλ of the equation

∂tWλ − λ1−2β ∂
2Wλ

∂x2
1

= 0

with the same initial data. We have Wλ(t, x1) = (Kλ(t)∗wλ(0))(x1) with Kλ(t, x1) =
λβ−1/2K1(t, λβ−1/2x1) and where K1 is the one-dimensional heat kernel. Let us show
that for every k0 > 0 and every t > 0,

(3.12) lim
λ→∞

wλ(t,−k0) = lim
λ→∞

∫
RN−1

∫ −k0
−∞

uλ(t, z, x)dx1dx = 0.

By definition,

Wλ(t,−k0) = λβ−
1
2 (4πt)−

1
2

∫
R

exp

(
− |z|2

4tλ1−2β

)
wλ(0,−k0 − z)dz

≤Mλβ−
1
2 (4πt)−

1
2

∫
{|z|≥k/2}

exp

(
− |z|2

4tλ1−2β

)
dz

+ λβ−
1
2 (4πt)−

1
2

∫
{|z|<k/2}

exp

(
− |z|2

4tλ1−2β

)
wλ(0,−k0 − z)dz

and

lim
λ→∞

∫
{|z|≥k/2}

exp

(
− |z|2

4tλ1−2β

)
dz = 0

since 1−2β < 0. Moreover, by construction, we have uniformly on the set {|z| < k/2}
that

lim
λ→∞

wλ(0,−k0 − z) = lim
λ→∞

∫
RN−1

∫ −k0−z
−∞

uλ(0, y, x)dydx

≤ lim
λ→∞

∫
RN−1

∫ −λβk0/2
−∞

u0(y, x)dydx = 0,

from which, using that
∫
R
Kλ(t, y)dy = 1 for every t, we deduce that

lim
λ→∞

∫
{|z|<k/2}

exp

(
− |z|2

4tλ1−2β

)
wλ(0,−k0 − z)dz = 0,
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and (3.12) follows. It is easy to see that the limits above are uniform on intervals of
the form (0, t0) with t0 > 0 finite.

On the other hand, now define wλ(t, x1) =
∫
RN−1

∫∞
x1
uλ(t, z, x)dzdx. Then wλ

satisfies

∂wλ
∂t
− λ1−2β ∂

2wλ
∂x1

2
=

∫
RN−1

|uλ|q−1uλdx

≤ Ct−
N+1
2q (q−1)

∫
RN−1

uλ(x1, x)dx ≡ −Ct−
N+1
2q (q−1) ∂wλ

∂x1
.

By the classical parabolic comparison principle, for every λ > 0, the function wλ is
bounded from above by Wλ, the solution of

∂Wλ

∂t
− λ1−2β ∂

2Wλ

∂x1
2

+ Ct−
N+1
2q (q−1) ∂Wλ

∂x1
= 0,

Wλ(0, x1) =

∫
RN−1

∫ ∞
x1

uλ(0, z, x)dzdx.

Therefore, the function

ωλ(t, x1) ≡Wλ

(
t, x1 +

C

β
tβ
)

(where, remember, β is defined in (2.3)) satisfies

∂ωλ
∂t
− λ1−2β ∂

2ωλ
∂x1

2
= 0; ωλ(0, x1) =

∫
RN−1

∫ ∞
x1

uλ(0, z, x)dzdx.

By the same argument as before, we deduce that for every k > 0 and for all t0 > 0,

(3.13) lim
λ→∞

∫
RN−1

∫ ∞
k

uλ(t, z, x)dx1dx = 0 ∀t ∈ (0, t0).

From (3.12) and (3.13), we deduce (3.10). The same argument gives the estimate for
(3.11), and this completes the proof of Lemma 3.4 for the case where u0 ≥ 0. Of
course the same proof holds for nonpositive initial data u0 ≤ 0.

In the general case, let

u+
0 = max(0, u0), u−0 = min(0, u0)

so that u0 ≡ u+
0 + u−0 . Let v and w be the solutions of (0.10) and (0.2) with,

respectively, u+
0 and u−0 as initial data. By the maximum principle, w ≤ u ≤ v on

(0,∞) × RN . Thus for every λ > 0, wλ ≤ uλ ≤ vλ on (0,∞) × RN . Therefore,
using (3.9) for nonpositive and nonnegative initial data, we deduce the lemma in the
general case.

We can show now that the function U takes Mδ as initial data in the sense of
(1.7).

Lemma 3.5. For every function ϕ ∈ BC(RN ),

(3.14) lim
t→0

∫
RN

U(t, x)ϕ(x)dx = Mϕ(0).
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Proof. Let us prove (3.14) for ϕ ∈ D(RN ) first. To this end, we multiply equation
(2.4) by ϕ and integrate by parts on (0, t)×RN . This gives∣∣∣∣∫

RN

uλ(t, x)ϕ(x)dx−
∫
RN

uλ(0, x)ϕ(x)dx

∣∣∣∣
≤
∣∣∣∣∫ t

0

∫
RN

uλ(s, x)4̃ϕ(x)dxds

∣∣∣∣+ λ1−2β |
∫ t

0

∫
RN

uλ(s, x)
∂2ϕ

∂x2
1

(x)dxds|

+

∣∣∣∣∫ t

0

∫
RN

|uλ(s, x)|q−1uλ(s, x)
∂ϕ

∂x1
dxds

∣∣∣∣
+ λ

1
2−

(N+1)(p−1)
2q

∣∣∣∣∫ t

0

∫
RN

|uλ(s, x)|p−1uλ(s, x)
∂ϕ

∂x2
dxds

∣∣∣∣
≤Mt||4̃ϕ||L∞(RN ) + λ1−2βt

∥∥∥∥∂2ϕ

∂x2
1

∥∥∥∥
L∞(RN )

+ 2
√
t

∥∥∥∥ ∂ϕ∂x1

∥∥∥∥
L∞(RN )

+ λ
1
2−

(N+1)(p−1)
2q

t1−
N
2 (p−1)

1− N
2 (p− 1)

∥∥∥∥ ∂ϕ∂x2

∥∥∥∥
L∞(RN )

.

Since {uλ(0)} is an approximation of the identity, for every ε > 0, there is a τ > 0
and λ0 > 0 such that if t ∈ (0, τ) and λ > λ0,∣∣∣∣∫

RN

uλ(t, x)ϕ(x)dx−Mϕ(0)

∣∣∣∣ ≤ ε.
Passing to the limit as λk goes to ∞, we obtain∣∣∣∣∫

RN

U(t, x)ϕ(x)dx−Mϕ(0)

∣∣∣∣ ≤ ε ∀t ∈ (0, τ).

Using Lemma 3.4 and (3.14), we easily conclude the proof of Lemma 3.5.
From Lemma 3.5, we easily deduce the following for U .
Corollary 3.6. The function U satisfies U ∈ C((0,∞);Lp(RN )) for every

p ∈ [1,∞) and uλk(t, .) → U(t, .) in Lp(RN ) uniformly in t ∈ [t1, t2] with 0 < t1 <
t2 <∞. Moreover, it is an entropy solution of (1.4)–(1.7).

We then deduce by the uniqueness of the function vM of Proposition 1.2 that
U ≡ vM and that it is the entire family uλ which converges to vM as λ→∞ uniformly
in C([t1, t2], Lr(RN )) for every r ∈ [1,∞) and 0 < t1 < t2 <∞. As in section 2, this
implies that for all such r’s,

(3.15) lim
λ→∞

||uλ(1, ·)− vM (1, ·)||Lr(RN ) = 0.

By a simple change of variables, (3.15) proves the main result if the initial data u0 ≥ 0
satisfy (2.8).

Suppose now that we only have u0 ≥ 0 with u0 ∈ L1(RN ). By (1.1), we have
that for any fixed τ > 0, u(τ) satisfies (2.8). Applying the previous arguments to
the function ũ(t) = u(t + τ), we deduce the main result for nonnegative initial data
u0 ∈ L1(RN ).

4. Proof of the main result for general initial data. In this section, we
consider the solutions of (0.10) and (0.2) where the initial data u0 may be any function
of L1(RN ), not necessarily positive or negative but which may change sign. Then we
no longer have the entropy inequality (2.9) anymore. Regardless, since

∀t > 0, ∀x ∈ RN , |u(t, x)| ≤ u(t, x),
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where u is the solution of (0.10) with initial data u(0) = |u0|, the decay estimate
(2.10) is still true. The proof follows the same lines as in the case of nonnegative
initial data. The only difference is how we obtain the compactness of the family {uλ}.
Since we cannot use the entropy inequality, we use a general compactness result of
[LPT] based on the kinetic approach and slightly modified in [C1] and [C2] to handle
nonlinearities which are not of class C2.

Proposition 4.1. Let ρλ ∈ C(0,∞;L1(RN ))∩L∞(RN × (0,∞)) be a family of
solutions of

(4.1)
∂ρλ
∂t
− λ1−2β ∂

2ρλ
∂x2

1

−
N∑
j=2

∂2ρλ
∂x2

j

+
∂|ρλ|q−1ρλ

∂x1
+ λ

1
2−

(N+1)(p−1)
2q

∂|ρλ|p−1ρλ
∂x2

= 0

such that the following hold:
1. For all convex functions S,

(4.2)

∂S(ρλ)

∂t
− λ1−2β ∂

2η11(ρλ)

∂x2
1

−
N∑
j=2

∂2ηjj(ρλ)

∂x2
j

+
∂η1(ρλ)

∂x1
+ λ

1
2−

(N+1)(p−1)
2q

∂η2(ρλ)

∂x2
≤ 0,

where

η1(t) = q

∫ t

0

S′(s)|s|q−1ds, η2(t) = pλ
1
2−

(N+1)(p−1)
2q

∫ t

0

S′(s)|s|p−1ds,

η11 = λ1−2β(S(t)− S(0)), ηjj = (S(t)− S(0)) ∀j ∈ {2, . . . , N}.

2. ρλ is bounded in L∞((0,∞)×RN ) ∩ L∞((0,∞);L1(RN )) uniformly in λ.
Then ρλ is relatively compact in L1

loc((0,∞)×RN ).
By (2.10), the family uλ satisfies condition 2 above. Since for every λ > 0, the

function uλ is a classical solution of the parabolic equation (4.1), it satisfies (4.2).
We then deduce that uλ is relatively compact in L1

loc((0,∞)×RN ). The proof then
follows the same lines as in section 3.

5. Further comments.

5.1. More general nonlinearities. With some trivial modifications in the proof,
one can show that the main result is still true for the solutions of the Cauchy problem
with initial data u0 ∈ L1(RN ) that satisfies

(5.1) ut −4u+
N∑
i=1

∂|u|ri−1u

∂xi
= 0 in Q = RN × (0,∞)

with {ri}Ni=1 such that for some q ∈ (1, 1 + 1/N), either ri = q or ri > 1 + q/(N + 1).
Under slight modifications in the proof, the same result can be extended to small

perturbations of the pure power-like case. More precisely, consider the Cauchy prob-
lem with initial data in L1(RN ) associated with the equation

(5.2) ut −4u+
N∑
i=1

∂fi(u)

∂xi
= 0 in (0,∞)×RN

with fi ∈ C1([0,∞)) ∩ C2((0,∞)), fi(0) = f ′i(0) = 0. Moreover, suppose that there
exist q ∈ (1, 1 + 1/N), j ∈ {1, . . . , N}, and ri > 1 + q/(N + 1) for i 6= j such that the
limits

lim
s→0

f ′′j (s)

|s|q−3s
= q(q − 1)C 6= 0 and lim

s→0

f ′′i (s)

|s|ri−3s
, i 6= j,
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exist. Then the main result stated in the introduction remains true for the solutions
of (5.2) and (0.2), where the limiting equation is

ut − 4̃u+ C
∂|u|q−1u

∂xj
= 0.

5.2. Open problems. We cannot consider the case where one of the powers ri
is such that q < ri < 1 + q/(N + 1). Even the simplest equation

ut −4u+
∂|u|q−1u

∂x1
+
∂|u|p−1u

∂x2
= 0

with 1 < q < p ≤ 1 + q/(N + 1) is out of the scope of our results.
However, looking at the scaling transformation (2.4), we see that when p = 1 +

q/(N + 1), the nonlinearities remain invariant. Therefore, in this particular case, one
expects the large-time behavior to be given by self-similar entropy solutions of the
reduced equation

ut −
N∑
j=2

∂2u

∂xj2
+
∂|u|q−1u

∂x1
+
∂|u|p−1u

∂x2
= 0.

Note that the two nonlinearities are present. The large-time behavior is probably of
a completely different nature in the range 1 < q < p < 1 + q/(N + 1).
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Abstract. It is shown for a large class of reaction-diffusion systems with Neumann boundary
conditions that in the presence of a separable Lyapunov structure, the existence of an a priori Lr

estimate, uniform in time, for some r > 0, implies the L∞-uniform stability of steady states. The
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are not bounded by any polynomial.
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1. Introduction. One of the persistent problems in the theory of systems of
reaction-diffusion equations concerns the description of the qualitative effects of adding
diffusion to systems of ordinary differential equations. To be more precise, if f =
(fi)

m
i=1: Rm → Rm, then solutions to the system of ordinary differential equations

(1.1)
u̇(t) = f(u(t)), t > 0,

u(0) = u0

determine constant solutions to the reaction-diffusion system

(1.2)

∂u/∂t = D∆u+ f(u) on Ω× (0,∞),

∂u/∂n = 0 on ∂Ω× (0,∞),

u( · , 0) = u0( · ) on Ω,

where u = (u1, . . . , um)T , D is a diagonal matrix with distinct entries di > 0 along
the diagonal and ∆ denotes the vector Laplacian. One principal question associated
with these systems is whether or not global existence of solutions to (1.1) for all
choices of initial data guarantees global existence of solutions to (1.2) for all choices
of sufficiently smooth initial data. This question remained unresolved until the recent
work of Pierre and Schmidt [19]. In that work, the authors give an example of a two-
component system for which solutions to (1.1) exist globally while those to the partial
differential equation blow up in finite time. Their work is related to a long-standing
question pointed out by Martin in the early 1980s regarding the global existence of
nonnegative solutions to two component systems of the form

(1.3)
∂u/∂t = d1∆u+ f1(u, v),

∂v/∂t = d2∆v + f2(u, v)
on Ω× (0,∞),
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where f1(0, v), f2(u, 0) ≥ 0 for all u, v ≥ 0 and f1(u, v) + f2(u, v) ≤ 0 for all u, v ≥ 0.
These two conditions on the vector field (f1, f2) are referred to, respectively, as quasi
positivity and balancing.

This has given rise to similar questions about more general, balanced, quasi-
positive reaction-diffusion systems of the form

(1.4) ∂ui/∂t = di∆ui + fi(u) on Ω× (0,∞), i = 1, . . . ,m,

where u = (u1, . . . , um)T , fi(u) ≥ 0 whenever u ∈ Rm+ with ui = 0, and
∑m
i=1 fi(u) ≤ 0

for all u ∈ Rm+ . It should be noted that these balancing and quasi positivity assump-
tions easily imply that f(0) = 0 and that all solutions of the ordinary differential
equation in (1.1) having nonnegative initial data exist and are bounded for all t ≥ 0.
In particular, for any M > 0, the region{

u
∣∣∣ n∑
i=1

ui ≤M, ui ≥ 0

}
is invariant for these systems; therefore, the zero solution is stable with respect to
Rm+ .

This structure is merely a simple case of a more general, separable Lyapunov
structure for (1.1). Such a structure has the form H(u) =

∑m
i=1 hi(ui), where

H: Rm+ → [0,∞) is a convex function that has a unique zero in Rm+ and whose
level hypersurfaces bound invariant regions for solutions of (1.1). The existence of
such an H easily guarantees the stability of the steady state z. Recent work in this
vein includes [1], [5], [6], [10], [14], and [16].

The work at hand concerns the persistence of stability of steady-state solutions
to (1.1) in the presence of a separable Lyapunov structure when diffusion is added
to the system, that is, in the setting of (1.2) with nonnegative, continuous initial
data. Questions of stability for nonlinear systems are frequently resolved via linearized
stability or Lyapunov-type methods. Typically, when one attempts to lift Lyapunov
functions from the setting of (1.1) to (1.2), one obtains estimates in L1(Ω) or Lp(Ω)
and not the optimal uniform L∞(Ω) estimates needed to obtain stability. Therefore,
the central theme of our work will be the introduction of an intermediate notion of
stability from C(Ω) to Lp(Ω), and the bootstrapping of Lp(Ω) estimates to L∞(Ω).

We should point out the phenomena of diffusion driven instabilities. It is well
known that the addition of diffusion can destabilize constant steady states; see, e.g.,
[3] and [18]. Therefore, we shall be lead to the conclusion that the systems of ordinary
differential equations which admit diffusion-driven instability do not have a Lyapunov
structure of the type to be described.

Our subsequent development consists of five sections. In addition to detailing our
hypotheses and outlining relevant theory, the second section introduces the central
notion of stability from C(Ω) to Lp(Ω) and bootstraps this stability from Lp(Ω)
to L∞(Ω). As such, the second section forms the theoretical basis of the paper.
The third section introduces the notion of D-diffusively convex Lyapunov functionals
and demonstrates the connection to the work in section 2. The fourth section is
concerned with application of the theory. It begins by considering balanced two-
component systems and then applies the theory to dissipative chemical systems and
Lotka–Volterra systems. We conclude with some general comments and remarks.

We conclude this section with two remarks. First, our result gives a partial answer
to Martin’s original question. We determine that balanced, quasi-positive reaction-
diffusion systems subject to homogeneous Neumann boundary conditions have global
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solutions for all choices of continuous, sufficiently small, nonnegative initial data. Sec-
ond, we have limited our discussion to the case of homogeneous Neumann boundary
conditions for the following reason. If all components of our system satisfy strictly dis-
sipative boundary conditions, such as homogeneous Dirichlet or homogeneous Robin,
then the presence of a separable Lyapunov structure along with these boundary con-
ditions allows one to employ linearized stability arguments to obtain asymptotic sta-
bility. In the case of a mixture of homogeneous Neumann boundary conditions and
dissipative conditions (as mentioned above), the arguments follow our development.

2. Preliminaries and ∞–r stability. In what follows, Ω shall be a bounded
domain in Rn that lies locally on one side of its C2+α boundary ∂Ω. We shall always
assume that the initial data u0 = (u01

, . . . , u0m)T ∈ C(Ω)m and that the vector field
f = (fi)

m
i=1 has the property that

(2.1) f ∈ C1(Rm; Rm).

However, we make no assumptions concerning the growth rates of the individual
components fi of f . The symbol D will denote an m×m diagonal matrix with distinct
entries di > 0, i = 1 to m, along the diagonal. We point out that all results contained
herein would trivialize were we to assume that the di’s are identical. We hope that
we shall not introduce undue confusion by using the symbol “∆” to denote both the
vector and the scalar Laplacian. Equations without subscripts will typically denote
vector equations and nonsubscripted scalar equations shall be specifically referred to
as such.

In our general discussion, we use the notation z0 = (z01
, . . . , z0m)T ∈ Rm to

denote an equilibrium point (or steady state) of (1.1). Namely, we have

(2.2) f(z0) = 0.

A closed subset of M ⊆ Rm will be called a forward invariant set for (1.2) if u0(x) =
(u01(x), . . . , u0m(x))T ∈M for all x ∈ Ω implies that

(2.3) u(x, t) = (u1(x, t), . . . , um(x, t)) ∈M

for all (x, t) ∈ Ω× [0, Tmax). Here [0, Tmax) denotes the maximal interval of existence
for solutions to the initial boundary value problem (1.2). We shall require that there
exists a forward invariant set M (not necessarily bounded) for solutions to (1.2).
Hence because the di’s are assumed to be distinct, we assume that there exists a
forward invariant m-cube

(2.4) M = M1 × · · · ×Mm

for (1.2), where each Mi, i = 1 to m, is a closed interval. We point out that we
have said nothing concerning the boundedness of M , and consequently we make no
presuppositions concerning the global existence of solutions to (1.2). For example, M
may well be Rm+ (the positive orthant) or all of Rm.

In what follows, the mild abuse of notation v ∈ M will be used frequently to
indicate that a function v : Ω→ Rm has the property that v(x) ∈M for all x ∈ Ω.

Our analysis will involve the standard Lebesgue spaces Lp(Ω), p ≥ 1:

Lp(Ω) =

{
u
∣∣∣ ∫

Ω

|u|pdx <∞
}

;(2.5)

‖u‖p,Ω =

(∫
Ω

|u|pdx
)1/p

.(2.6)
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We shall also want to consider the analogous spaces obtained with 0 < p < 1. Al-
though (2.6) does not define a norm on Lp(Ω) if 0 < p < 1, we will use the same
notation for the functional defined on Lp(Ω) by the right side of (2.6). If p ≥ 1

and k > 0, then W
(k)
p (Ω) denotes the usual kth-order Sobolev space in Lp(Ω) and

W
(2k,k)
p (Ω × (τ, T )) denotes its analogue in Lp(Ω × (τ, T )). For definitions of these

spaces for both integral and nonintegral k, we refer the reader to [12].
We will need the following fractional-Sobolev-space embedding theorem of Amann

[2].
Theorem 2.1. Let k ∈ N and suppose that ∂Ω is uniformly regular of class Ck.

If 0 ≤ s′ ≤ s ≤ k and 1 < p, q < ∞, then W s
p (Ω) embeds continuously in W s′

q (Ω)
whenever 1/p ≥ 1/q and s− (n/p) ≥ s′ − (n/q).

We now introduce the notion of∞–r stability. It will be a notion of stability with
respect to M , which will allow us to consider steady states belonging to ∂M .

Definition 2.2. Let z0 ∈M be an equilibrium point of the vector field f = (fi)
m
i=1

and let 0 < r ≤ ∞. Then z0 is said to be uniformly ∞–r stable with respect to M if
for all ε > 0 there exists a δ > 0 such that u0 ∈ M and ‖u0i − z0i‖∞,Ω < δ for i = 1
to m imply

(i) a classical solution to (1.2) exists on Ω× [0,∞);
(ii) ‖u0i(· , t)− z0i‖r,Ω < ε for i = 1 to m and t > 0.
An ∞–r stable equilibrium point z0 ∈M is said to be uniformly ∞–r asymptot-

ically stable if there exists a δ > 0 such that u0 ∈M and ‖ui − z0i‖∞,Ω < δ for i = 1
to m imply

(iii) limt→∞ ‖ui(· , t)− z0i‖r,Ω = 0 for i = 1 to m.
The usual notions of stability with respect to M now correspond to∞–∞ stability

with respect to M as stated formally in the following definition.
Definition 2.3. An equilibrium point z0 ∈M is said to be uniformly stable with

respect to M if it is uniformly ∞–∞ stable with respect to M . A stable equilibrium
point z0 ∈ M is said to be uniformly asymptotically stable with respect to M if it is
uniformly ∞–∞ asymptotically stable with respect to M .

We shall see in what follows that the notion of ∞–r stability is intermediate and
may be subsumed by the notion of stability. For a given point v0 ∈ Rm, let the
symbol Cη(v0) denote the m-dimensional cube centered at v0 with diameter 2

√
mη

and Bδ(v0) denote the m-dimensional ball of radius δ about v0. We remark that
Cε(v0) ⊆ B√mε(v0). The analysis that follows will require “cutoff” functions ϕη,v0 ∈
C∞(Rm; [0, 1]), defined for η > 0 by

(2.7)
ϕη,v0(u) = 1 for u ∈ Cη(v0),

ϕη,v0(u) = 0 for u ∈ Rm \ C2η(v0).

If z0 ∈ M is an equilibrium point, we truncate the vector field f by componentwise
multiplication by ϕη,z0 for η > 0, i.e., we define f [η, z0] = (fi[η, z0])mi=1 by

(2.8) fi[η, z0](u) = ϕη,z0(u)fi(u).

Then solutions to the truncated system

∂v/∂t = D∆v + f [η, z0](v) on Ω× (0,∞),(2.9a)

∂v/∂n = 0 on ∂Ω× (0,∞),(2.9b)

v(· , 0) = v0 on Ω,(2.9c)
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where v0i = ϕη,z0(u0)u0i , exist on Ω × [0,∞) and are globally bounded. Moreover,
it is trivial to observe that if z0 ∈ M is an equilibrium point of f , then z0 is also an
equilibrium point of f [η, z0].

We now formally state a few simple observations concerning solutions to (2.9).
Lemma 2.4. If η > 0, v0 ∈ C(Ω;C2η(z0)), and f [η, z0] is the vector field defined

via (2.8), then (2.9) has a unique classical solution on Ω× [0,∞). Moreover,
(i) v(· , t) ∈ C2η(z0) ∩M for t ≥ 0;
(ii) if v(· , t) ∈ Cη(z0) ∩M for 0 ≤ t < T , then v(x, t) = u(x, t) for (x, t) ∈ Ω×

[0, T ), where u is the solution to (1.2).
Proof. We observe that M ∩ C2η(z0) is a bounded invariant region for (2.9)

because the vector field f [η, z0] is identically zero exterior to C2η(z0) and does not
point out of M . Therefore, solutions to (2.9) exist globally and remain confined to
M ∩ C2η(z0) for all time [21]. Classical uniqueness theory for parabolic equations
together with the observation that f [η, z0]|Cη(z0) = f |Cη(z0) immediately confirms the
second assertion.

Lemma 2.5. If z0 is uniformly ∞–r stable for (2.9) with respect to M for some
r ∈ (0,∞), then z0 is uniformly ∞–p stable for (2.9) with respect to M for all p ∈
(0,∞). Analogous results hold for uniform ∞–r asymptotic stability.

Proof. If 0 < p < r, the results follow easily by the Jensen inequality and the
convexity of g(z) = |z|r/p. If r < p, then because g(z) = |z−z0i |p−r is bounded above
by (2

√
mη)p−r on C2η(z0) and since v(x, t) ∈ C2η(z0) for all (x, t) ∈ Ω × (0,∞), we

have

(2.10) |vi − z0i |p ≤ (2
√
mη)p−r|vi − z0i |r on Ω× (0,∞),

from which the desired results follow.
The next theorem provides the foundation of our development. It states that

∞–r stability of the truncated system (2.9) guarantees ∞–∞ stability of the original
system (1.2).

Theorem 2.6. Let z0 ∈ M be an equilibrium point of the vector field f . If
r > 0 and z0 is a uniformly ∞–r stable equilibrium point for (2.9), then z0 is a uni-
formly stable solution for (1.2). Analogous results hold for uniformly ∞–r asymptotic
stability.

Proof. We begin by fixing η > 0. If we are able to choose δ > 0 so that solutions
to (2.9) have the property that v0 ∈ Cδ(z0) implies that v(x, t) ∈ Cε(z0), where ε < η,
then solutions to (2.9) and (1.2) coincide. Therefore, it will suffice to demonstrate
that uniformly ∞–r stable solutions of (2.9) are uniformly stable solutions of (2.9).

By virtue of Lemma 2.5 with p = 2, we know that there exists a continuous
function ρ̃1 with ρ̃1(0) = 0 and ρ̃1(s) > 0 for s > 0 such that for i = 1 to m and
t ∈ [0,∞),

(2.11) ‖vi(· , t)− z0i‖2,Ω ≤ ρ̃1(‖v0 − z0‖∞,Ω).

We shall demonstrate via an iteration scheme that there exists a continuous func-
tion ρ with ρ(0) = 0 and ρ(s) > 0 such that for i = 1 to m and t ∈ [0,∞), we
have

(2.12) ‖vi(· , t)− z0i‖∞,Ω ≤ ρ(‖v0 − z0‖∞,Ω),

and we shall thereby obtain our desired conclusion. Toward this end, we set

(2.13) w(x, t) = v(x, t)− z0
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and multiply the ith component of (2.9a) by wi to obtain

(2.14) wi∂wi/∂t− widi∆wi = wifi[η, z0](v).

Because f [η, z0] is Lipschitz, there exists an N such that integration of (2.14) on the
space–time cylinder Ω× (τ, T ) yields

1

2
‖wi(· , T )‖22,Ω + di

∫ T

τ

∫
Ω

|∇wi|2dxdt

≤ 1

2
‖wi(· , τ)‖22,Ω +N

m∑
k=1

∫ T

τ

∫
Ω

|wi||wk|dxdt.

This implies that if τ ≥ 0 and τ + 1 < T < τ + 3, then

1

2
‖wi(· , T )‖22,Ω + di

∫ T

τ+1

∫
Ω

|∇wi|2dxdt(2.15)

≤ 1

2
‖wi(· , τ)‖22,Ω +N

m∑
k=1

max
[τ, τ+3]

∫
Ω

|wi||wk|dx.

After applying Young’s inequality and (2.11) to the right side of (2.15) and the
mean-value theorem for integrals to the t-integral on the left side, we construct an
increasing sequence {T1,j}∞j=1 with

(2.16) T1,1 ≤ 3 and 1 < T1,j+1 − T1,j < 3 ∀j ∈ N

and a continuous function ρ1 with ρ1(0) = 0 and ρ1(s) > 0 for s > 0 such that

(2.17) ‖wi(· , T1,j)‖(1)
2,Ω ≤ ρ1(‖v0 − z0‖∞,Ω) ∀j ∈ N.

Now we begin to make use of a well-known classical estimate for parabolic initial
boundary value problems from Ladyženskaja, Solonnikov, and Uralćeva [12, p. 341].
More specifically, recall that if 1 < q < ∞, 0 < τ < T ≤ τ + 3, θ ∈ Lq(Ω × (τ, T )),

φ0 ∈W 2−2/q
q (Ω), and φ solves

(2.18)

∂φ/∂t = di∆φ+ θ on Ω× (τ, T ),

∂φ/∂n = 0 on ∂Ω× (τ, T ),

φ( · , τ) = φ0 on Ω,

then there exists c > 0 such that

(2.19) ‖φ‖(2,1)
q,Ω×(τ,T ) ≤ c

[
‖θ‖q,Ω×(τ,T ) + ‖φ0‖(2−2/q)

q,Ω

]
,

where c depends only on di and Ω. Applying this parabolic regularity estimate with
q = 2, we obtain a constant c1 > 0 such that

(2.20) ‖wi‖(2,1)
2,Ω×(T1,j ,T1,j+1) ≤ c1

(
‖fi[η, z0](v)‖2,Ω×(T1,j ,T1,j+1) + ‖wi(· , T1,j)‖(1)

2,Ω

)
.

We now claim that for every k ∈ N, there exist
(i) a sequence {Tk,j}∞j=1 such that Tk,1 ≤ k+2 and 1 < Tk,j+1−Tk,j < 3 ∀j ∈ N,
(ii) a constant ck > 0, and
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(iii) a function ρk ∈ C([0,∞), [0,∞)) such that ρk(0) = 0

such that for all j ∈ N, the estimate
(2.21)

‖wi‖(2,1)
qk,Ω×(Tk,j ,Tk,j+1) ≤ ck

(
‖fi[η, z0](v)‖qk,Ω×(Tk,j ,Tk,j+1) + ρk(‖v0 − z0‖∞,Ω)

)
is valid with qk = 2

(
(n+ 2)/n

)k−1
.

To establish this claim, we begin by noting that (2.16), (2.17), and (2.20) combine
to give the claim for k = 1. We now proceed by induction on k. Suppose that the
claim holds for k = ` ≥ 1 and consider the case where k = ` + 1. Since fi[η, z0] is
Lipschitz, we can use our hypothesis and Lemma 2.5 with p = q` to conclude from
(2.21) that there exists a continuous function ρ̃` such that ρ̃`(0) = 0 and

(2.22) ‖wi‖(2,1)
q`,Ω×(T`,j , T`,j+4) ≤ ρ̃`(‖v0 − z0‖∞) ∀j ∈ N.

Note that T`,j+4 − T`,j > 4. Therefore, (2.22) implies the following inequalities:

(2.23)

∫ T
`,j

+1

T
`,j

(
‖wi‖(2)

q`,Ω

)q`
dt,

∫ T
`,j

+3

T
`,j

+2

(
‖wi‖(2)

q`,Ω

)q`
dt ≤

[
ρ̃`(‖v0 − z0‖∞,Ω)

]q` .
Consequently, we can construct a sequence {T`+1,j}∞j=1 with

(2.24) T`,k < T`+1,2k−1 < T`,k + 1 and T`,k + 2 < T`+1,2k < T`,k + 3

such that

(2.25) ‖wi(· , T`+1,j)‖(2)
q`,Ω
≤ ρ̃`(‖v0 − z0‖∞) ∀j ∈ N.

We now apply Theorem 2.1 to conclude that W
(2)
q` (Ω) imbeds continuously into

W
(2−2/q`+1)
q`+1 (Ω). Therefore, there exists ρ`+1 ∈ C([0,∞), [0,∞)) such that ρ`+1(0) = 0

and

(2.26) ‖wi(· , T`+1,j)‖(2−2/q`+1)
q`+1,Ω

≤ ρ`+1(‖v0 − z0‖∞) ∀j ∈ N.

Now by combining (2.26) with the parabolic regularity estimate in (2.19), we see that
our claim is true for k = `+ 1, thus establishing the claim for all k ∈ N.

Now with k taken such that qk > (n+ 2)/2, we have from [12] that there exists
C > 0 such that

‖w‖∞,Ω×(Tk,j ,Tk,j+1) ≤ C‖w‖(1,2)
qk,Ω×(Tk,j ,Tk,j+1) ∀j ∈ N.

Therefore, if we combine this with our claim above, we find that there exists a con-
tinuous function ρ̃k such that ρ̃k(0) = 0 and

‖w‖∞,Ω×(Tk,j , Tk,j+1) ≤ ρ̃k(‖v0 − z0‖∞) ∀j ∈ N.

However, Tk,1 ≤ k + 2, so

(2.27) ‖w‖∞,Ω×[k+2,∞) ≤ ρ̃k(‖v0 − z0‖∞).
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We now recall that the operator −di∆ with homogeneous Neumann boundary con-
ditions generates a nonexpansive analytic semigroup Ti(t) on C(Ω); see Stewart [22].
Therefore, we have

wi(t) = Ti(t)(v0i − z0i) +

∫ t

0

Ti(t− s)fi[η, z0](v(· , s))ds

= Ti(t)(v0i − z0i) +

∫ t

0

Ti(t− s)
(
fi[η, z0](v(· , s))− fi[η, z0](z0)

)
ds,

which implies that

‖wi(t)‖∞,Ω ≤ ‖v0 − z0‖∞,Ω +

∫ t

0

Kη‖w(· , s)‖∞,Ωds.

Therefore, since ‖w(· , t)‖∞,Ω = max1≤i≤m ‖wi(· , t)‖∞,Ω, we have

‖w(· , t)‖∞ ≤ eKηt‖v0 − z0‖∞.

Consequently, because of (2.27) we have

(2.28) ‖w‖∞,Ω×R+ ≤ max
{
eKη(k+2)‖v0 − z0‖∞, ρ̃k(‖v0 − z0‖∞)

}
.

Finally, since η > 0 is fixed, for any ε ∈ (0, η) there exists δ > 0 such that

‖v0 − z0‖∞ < δ implies ‖v − z0‖∞,Ω×R+
= ‖w‖∞,Ω×R+

< ε.

We point out that if z0 is not a constant, we can modify the preceding arguments
as follows. Suppose that z0 = w is a smooth function satisfying

−D∆w = f(w) on Ω,(2.29a)

∂w/∂n = 0 on ∂Ω(2.29b)

In a manner similar to what was done above, the vector field may be truncated in a
rectangular neighborhood containing {w(x) | x ∈ Ω}. For η > 0, let b1(η, w) be an
m-dimensional cube such that w ∈ intb1(η, w) with η = infx∈Ω dist(w(x), ∂b1(η, w)),
and let b2(η, w) denote the m-cube concentric to b1(η, w) with twice the diameter.
We mollify the characteristic function of b1(η, w) to produce a nonnegative function
ϕη,w such that

(i) ϕη,w ∈ C∞(Rm; [0, 1]),
(ii) ϕη,w(u) = 1 if u ∈ b1(η, w), and
(iii) ϕη,w(u) = 0 if u ∈ Rm \ b2(η, w),

and thus produce a corresponding truncated system (cf. (2.8) and (2.9)):

(2.30)

∂v/∂t = D∆v + f [η, w](v) on Ω× (0,∞),

∂v/∂n = 0 on ∂Ω× (0,∞),

v(· , 0) = ϕη,w(u0)u0 on Ω.

If µ = v − w and η is chosen such that η > ‖w‖∞, we have

∂µi/∂t = di∆µi + fi[η, w](v)− fi[η, w](w) onΩ× (0,∞),

∂µi/∂n = 0 on∂Ω× (0,∞),

µi(x, 0) = v0i − wi onΩ.
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Then it is not difficult to establish an analogue of Lemma 2.4 and deduce that global
solutions to (2.30) exist and that if they are sufficiently close to w, they satisfy (2.30).
The following result concludes this section. Its proof is essentially a verbatim repeti-
tion of the one given for Theorem 2.6.

Theorem 2.7. Let w ∈ M be a classical, spatially nonhomogeneous solution to
the elliptic system (2.29). If r > 0 and w is a uniformly ∞–r stable steady state of
(2.30), then w is a uniformly stable steady-state solution of (1.2). Analogous results
hold for uniformly ∞–r asymptotically stable solutions.

We remark that an interesting reference pertaining to (2.29) is Matano [15].

3. D-diffusively convex Lyapunov functionals. The most common tool for
analyzing he local stability of equilibrium points for systems of ordinary differential
equations of the form of (1.1) is the principle of linearized stability. If all the eigenval-
ues of the derivative of f at z0 have negative real part, then z0 is locally asymptotically
stable. On the other hand, if any of the eigenvalues have positive real part, then the
equilibrium point z0 is unstable. These ideas carry over to the context of semilinear
parabolic equations; see, e.g., [9]. In the case of nonhyperbolic equilibrium points,
however, linearization methods do not apply.

Questions of nonlinear stability are frequently resolved by Lyapunov’s direct
method. Roughly speaking, a Lyapunov function V is a nonnegative functional which
is defined and continuously differentiable in a neighborhood of a equilibrium point z0

and is uniquely minimized in that neighborhood by z0. If

(3.1) V̇ (u) = ∂V (u)f(u) ≤ 0

in this neighborhood, then it follows that z0 is a stable equilibrium point. Asymptotic
stability can be deduced from conditions such as

(3.2) V̇ (u) < −αV (u)

for some α > 0. In certain cases, a Lyapunov functional satisfying (3.1) in a neighbor-
hood of an equilibrium point of a system of ordinary differential equations is useful
in the context of the associated reaction-diffusion system. For this purpose, we intro-
duce the notion of D-diffusively convex Lyapunov functionals for reaction-diffusion
systems.

Definition 3.1. Let D be the matrix of diffusion coefficients for (1.2) and sup-
pose that M is a forward invariant rectangle (possibly unbounded) for (1.2). If z0 ∈M
is an equilibrium point of f , we say that a nonnegative functional V is a D-diffusively
convex Lyapunov functional around z0 provided that the following conditions hold:

(i) There exists a ξ > 0 such that V ∈ C2(M ∩Bξ(z0); R+).
(ii) There exist constants r > 0 and K > 0 such that

V (u) ≥ K
m∑
i=1

|ui − z0i |r for u ∈ Bξ(z0) ∩M.

(iii) V (z0) = 0.
(iv) The matrix D∂2V (u) is positive semidefinite for u ∈ Bξ(z0) ∩M . (Here

∂2V (u) is the Hessian matrix of V .)
(v) ∂V (u)f(u) ≤ 0 for u ∈ Bξ(z0) ∩M .
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We remark that conditions (i)–(iii) and (v) are essentially those which define a
Lyapunov functional for (1.1) around z0 and that condition (iv) represents an addi-
tional strengthening of the concept. If the functional V is separable, i.e.,

(3.3) V (u) =
n∑
i=1

Vi(ui),

then we may ensure (iv) by assuming that V ′′i (ui) ≥ 0. In general, however, convexity
of V does not suffice for condition (iv). It is relatively straightforward to see that
D-diffusively convex Lyapunov functionals guarantee the persistence of stability of
equilibrium points. We have the following theorem.

Theorem 3.2. Let z0 ∈ M be an equilibrium point for the vector field f , where
M is a forward invariant set for the semilinear parabolic system (1.2). If there exists
a D-diffusively convex Lyapunov functional V for f around z0, then z0 is a stable
steady state for (1.2) with respect to M . Moreover, if V also satisfies (3.2), then z0

is asymptotically stable with respect to M .
Proof. We choose η > 0 so that the cube C2η(z0) is contained in Bξ(z0), and we

construct the truncated vector field f [η, z0] as in (2.8) and (2.9). If v0(x) ∈ C2η(z0)∩M
for x ∈ Ω, it is immediately verified that

(3.4) ∂V (v(x, t))f(v(x, t)) = ∂V (v(x, t))f [η, z0](v(x, t)) ≤ 0.

If we multiply the ith component of (2.9a) by ∂V (v)/∂vi, we obtain

(3.5) (∂V (v)/∂vi)∂vi/∂t = di(∂V (v)/∂vi)∆vi + (∂V (v)/∂vi)fi[η, z0](v).

If we integrate this expression on the space–time cylinder and sum the components,
we observe that∫

Ω

V (v(x, t))dx =−
∫ T

0

∫
Ω

(∇v)TD∂2V (v)∇vdxdt

+

∫ t

0

∫
Ω

∂V (v)f [η, z0](v)dx+

∫
Ω

V (v0(x))dx.

Hence by virtue of conditions (iv) and (v) in Definition 3.1, we have

(3.6)

∫
Ω

V (v(x, t))dx ≤
∫

Ω

V (v0(x))dx.

Using (3.6) and the coercivity of V , we get

K

[
m∑
i=1

‖vi(· , t)− z0,i‖r,Ω

]
≤
[∫

Ω

V (v(x, t))dx

]1/r

(3.7)

≤
[∫

Ω

V (v0(x))dx

]1/r

≤ ρ
(

m∑
i=1

‖v0i − z0i‖∞,Ω

)

for some continuous ρ with ρ(0) = 0 and ρ(s) > 0 for s > 0. This will ensure ∞–r
stability, and from Theorem 2.6 we may conclude that z0 is stable. Finally, in case
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(3.2) holds, we take v0 sufficiently close to z0 to guarantee that our solution stays
close to z0 for all t > 0. Then we can obtain the estimate

(3.8)

∫
Ω

V (v(x, t))dx ≤ e−αt
∫

Ω

V (v0(x))dx,

and from this follows the asymptotic stability assertion.
In view of Theorem 2.7, one can naturally be lead to attempt to use D-diffusively

convex Lyapunov functions to analyze the stability of spatially nonhomogeneous
steady-state solutions. The following simple proposition squashes this endeavor for
large classes of dynamical systems.

Proposition 3.3. Let M be a forward invariant set for (1.2) and let V (v) =∑m
i=1 Vi(vi) be a nonnegative separable function which satisfies the defining hypothe-

ses of Definition 3.1, except possibly (ii) and (iii), for all points of M . If w =
(w1, . . . , wm)T ∈M is a solution to (2.29), then the following are true:

(i) If there exists α > 0 such that V ′′i (vi) > α for all v = (v1, . . . , vm)T ∈ M ,
then f(w) = 0.

(ii) If V (v) =
∑m

i=1 civi, ∂V (v)f(v) ≤ 0 and M ⊆ Rm+ , then there exists a
k > 0 such that y(x) =

∑m
i=1 cidiwi(x) = k for all x ∈ Ω, i.e., w(x) belongs to a

closed bounded subset of the hyperplane {v | Σcidivi = k} ∩ Rm+ .
Proof. In the first case, we multiply the ith component of (2.29a) by V ′i (wi) to

obtain

(3.9) −diV ′i (wi)∆wi = V ′i (wi)fi(w).

If we sum these terms and integrate on Ω, we have

(3.10)
m∑
i=1

di

∫
Ω

V ′′i (wi)|∇wi|2dx =

n∑
i=1

∫
Ω

V ′i (wi)fi(w)dx ≤ 0.

Consequently,

(3.11)

m∑
i=1

αdi

∫
Ω

|∇wi|2dx = 0,

and we may conclude that eachwi is a constant. Therefore, because w = (w1, . . . , wn)T

is a solution to (2.29), we must have fi(w) = 0. If we follow the same train of reason-
ing for the second case, then we observe that −∆(Σcidiwi) ≤ 0. The fact that M is
required to lie in Rm+ implies that Σdiwi ≥ 0, and hence we conclude from maximum
principles that ∇(Σcidiwi) vanishes and Σcidiwi(x) = k for some constant k ≥ 0.
Thus w(x) lies in the hyperplane {v | Σcidivi = k}. The continuity of y implies that
its range is closed and bounded.

As a closing remark for this section, we point out that an additional treatment of
Lyapunov theory in the context of reaction-diffusion systems can be found in [20].

4. Applications. We begin by considering of the two-component system

(4.1)

∂u/∂t− d1∆u = −f(u, v) on Ω× (0,∞),

∂v/∂t− d2∆v = f(u, v) on Ω× (0,∞),

∂u/∂n = ∂v/∂n = 0 on ∂Ω× (0,∞),

u( · , 0) = u0( · ), v( · , 0) = v0( · ) on Ω,
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where f ∈ C2(R2
+; R+) and f(0, v) = 0 for all v ∈ R+. Here we assume that the

initial data u0 and v0 are continuous and nonnegative on Ω. It may be surprising that
questions concerning the global existence of solutions to this system remain open. If
the nonlinearity f is polynomially bounded, then it is known [10] that solutions to
(4.1) exist for all time and remain uniformly bounded in the L∞(Ω) norm. Analogous
results [8] have also have been obtained in the case where the nonlinearity is of the
form

(4.2) f(u, v) = uϕ(v),

where ϕ need not be polynomially bounded but is required to grow less than expo-
nentially, e.g., ϕ(v) = e

√
v.

We are able to establish a simple result concerning the stability of the steady
state (0, ṽ) for (4.1).

Proposition 4.1. If ṽ ≥ 0, then the constant solution (u, v) = (0, ṽ) is a stable
equilibrium point for (4.1) with respect to R2

+.
Proof. By assumption, f(0, ṽ) = 0, and hence (0, ṽ) is a steady-state solution

of the system. In the case where ṽ = 0, the result follows by noting that R2
+ is an

invariant m-cube for the system, that ∞–1 stability follows from integrating each
equation on the space–time cylinder and adding them to obtain the conservation law

(4.3a)

∫
Ω

(u(x, t) + v(x, t))dx =

∫
Ω

(u0(x) + v0(x))dx,

and that V = u+ v defines a D-diffusively convex Lyapunov functional around (0, 0)
with respect to R2

+. Now suppose that ṽ > 0 and let 0 < ε < ṽ. Maximum principles
demonstrate that solutions which initially lie in Mε = {(u, v) | u ≥ 0, v ≥ ṽ − ε}
remain so. The conservation law

(4.3b)

∫
Ω

(u(x, t) + v(x, t)− (ṽ − ε))dx =

∫
Ω

(u0(x) + v0(x)− (ṽ − ε))dx

follows as before. Thus if the initial data are close to (0, ṽ − ε) in the L∞ norm,
then the solution remains close in the L1 norm. Also, V = u + v − (ṽ − ε) defines
a D-diffusively convex Lyapunov functional around (0, ṽ − ε) with respect to Mε.
Consequently, ∞–1 stability implies uniform stability with respect to Mε. Therefore,
it follows that solutions in Rm+ can be made to remain uniformly close to (0, ṽ).

We hope that we do not belabor the issue by pointing out that the system

(4.4)
∂u/∂t = d1∆u− uekvγ ,
∂v/∂t = d2∆v + uekv

γ

,

for example, with ∂u/∂n = ∂v/∂n = 0 on ∂Ω and any γ ≥ 1 satisfies the hypotheses
and hence admits (0, ṽ) as a stable solution with respect to M as above whenever
ṽ ≥ 0.

We now focus on a general class of diffusive Lotka–Volterra systems. Typically,
Lotka–Volterra systems feature quadratic nonlinearities. They are intended to de-
scribe the species interaction among m-species ecological systems. Here we follow the
development of Leung [13] and consider systems of the form

(4.5)

∂u/∂t = D∆u+ U(e+ Pu) on Ω× (0,∞),

∂u/∂n = 0 on ∂Ω× (0,∞),

u( · , 0) = u0( · ), on Ω,
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where U = diag{u1, . . . , um}, e = (e1, . . . , em)T is a constant vector, and P = (pij)
is an m ×m matrix with constant entries. We assume that the following conditions
are satisfied.

(LV)1 There is a vector q = (q1, . . . , qm)T , with each qi > 0, that solves the linear
system

(4.6) e+ Pq = 0.

(LV)2 For each q satisfying (4.6) there is a diagonal matrix A = diag{a1, . . . , am},
with each ai > 0, such that for all w ∈ Rm,

(4.7) (Aw)TPw =
m∑

i,j=1

aiwipijwj ≤ 0.

Condition (LV)1 guarantees the existence of a steady state with positive com-
ponents. However, we have made no assumptions concerning the nonsingularity of
the matrix P . Indeed, many Lotka–Volterra systems feature a multiplicity of positive
steady states. The nonnegativity of the quadratic form (4.7) translates as weighted
conservation of the interaction between the species of the system. Leung refers to this
condition as admissibility.

The next lemma asserts that a well-known Lyapunov function for (4.5) provides
a D-diffusively convex Lyapunov structure.

Lemma 4.2. There exists ξ > 0 such that the function V on Rm+ ∩Bξ(q) defined
by

(4.8) V (v) =
m∑
i=1

Vi(vi) =
m∑
i=1

(
ai(ui − qi)− aiqi log(ui/qi)

)
is D-diffusively convex on Rm+ ∩Bξ(q).

Proof. If Bξ(q) does not intersect the coordinate hyperplanes of Rm+ , then it is
clear that V is continuously differentiable and nonnegative on Bξ(q). Moreover, it
is clear that V (q) = 0, and a careful analysis will reveal that K > 0, ξ > 0, and
r > 0 may be chosen so that hypothesis (ii) of Definition 3.1 holds. We observe that
if u ∈ Rm+ , then

(4.9) ∂V (u)f(u) = (A(u− q))TP (u− q) =
m∑

i,j=1

ai(ui − qi)Pij(uj − qj) ≤ 0.

The separability of V and the observation that V ′′i (vi) = aiqi/vi complete the
proof.

We immediately have the following result.
Proposition 4.3. If (LV)1 and (LV)2 are satisfied, then the steady-state solution

q = (q1, . . . , qm)T is stable. Moreover, the semilinear elliptic system

(4.10)
−D∆w = W (e+ Pw) on Ω,

∂w/∂n = 0 on ∂Ω,

where W = diag{w1, . . . , wm}, has no spatially nonhomogeneous positive solutions.
Proof. Because Rm+ is an invariant m-cube for solutions to (4.5), Lemma 4.2 and

Theorem 3.2 establish the first assertion. To establish the second assertion, we let M1
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be an m-cube which contains both w ∈ Rm+ and q ∈ Rm+ and does not intersect the
coordinate hyperplanes of RM+ , and we let M2 be a second m-cube which contains M1

and also does not intersect the coordinate hyperplanes. Now let ϕ ∈ C∞(Rm; R+) be
such that ϕ(u) = 1 if u ∈ M1 and ϕ(u) = 0 for u ∈ Rm \M2. From the application
of part (i) of Proposition 3.3 to the truncated system

(4.11)
−D∆w = ϕ(w)W (e+ Pw) on Ω,

∂w/∂n = 0 on ∂Ω,

the remaining assertion follows directly.
We mention that for n ≥ 3, the question of global existence for (4.5) is in general

unresolved. For spatial dimension one, global existence and uniform boundedness
for solutions may be established by applying results in [16], and for n = 2, we are
at least assured the existence of long-time solutions; see [17]. We mention this to
underscore the point that global well-posedness theory for reaction-diffusion systems
remains incomplete.

Differential equations which describe the dispersion and reaction of m chemical
species are generally of the form

(4.12) ∂u/∂t = D∆u+ f(u),

where the ith component of the dependent variable u = (u1, . . . , um)T represents
the concentration density of the ith chemical species. The vector field f = (fi)

m
i=1

is assumed to be in each component a polynomial function of the components of u
and is intended to model the chemical reaction kinetics. In his study of dissipative
chemical reactions [7], Gröger introduced the following hypothesis.

(G) There exists a vector e = (e1, . . . , em)T with each ei > 0 such that f(e) = 0
and

m∑
i=1

fi(u) log(ui/ei) ≤ 0.

Furthermore, the quantity
∑m
i=1 fi(u) log(ui/ei) is known to have the physical inter-

pretation of being a suitably scaled rate of chemical dissipation, and work on the
mathematical theory of reaction networks [11] confirms that many nontrivial systems
satisfy this hypothesis. If the chemical species are required to remain confined to a
reaction vessel for all time, the appropriate boundary conditions are given by

(4.13) ∂u/∂n = 0 on ∂Ω× (0,∞).

Finally, a condition of the form

(4.14) fi(u) ≥ 0 for all u ∈ Rm+ with ui = 0

together with the maximum principle ensures that Rm+ is a forward invariant set for
(4.12). We have the following proposition.

Proposition 4.4. We consider (4.12) together with the boundary conditions
(4.13). If all the conditions describing a dissipative chemical reaction outlined above
hold, then the steady state u = e is uniformly stable. Moreover, the elliptic system

(4.15)
−D∆w = f(w) on Ω,

∂w/∂n = 0 on ∂Ω
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has no spatially inhomogeneous positive solutions.
Proof. We define

(4.16) V (u) =
m∑
i=1

Vi(u) =
m∑
i=1

(ui log(u/ei)− ui + ei)

and verify that all of the conditions of Definition 3.1 hold locally about e. Conse-
quently, Theorem 3.2 implies that e is uniformly stable. An argument analogous to the
one of Proposition 4.3 ensures the nonexistence of positive spatially inhomogeneous
steady states.

The comments concerning the global well-posedness and boundedness of solutions
to Lotka–Volterra systems also apply to this class of dissipative chemical systems.

In addition to satisfying f(0) = 0 and a condition of the form (4.4), many reaction-
diffusion systems satisfy a linear balancing condition of the following form.

(B) There exist positive constants ci for i = to m such that for all n ∈ Rm+ ,

m∑
i=1

cifi(u) = 0.

In this case, an obvious generalization of Proposition 4.1 dictates the stability of the
zero solution.

5. Further generalizations and concluding remarks. Our results tend to
support the general hypothesis that the addition of diffusion to systems of ordinary
differential equations which have D-diffusively convex Lyapunov functions does not
create exotic spatial or temporal phenomena which did not originally exist. If this is
indeed the case, then the presence of diffusion in these systems is irrelevant to their
long-term dynamics, and any spatial phenomena produced by diffusion must be of a
transient nature.

We need not have limited our consideration to diffusion mechanisms of the form
D∆u. We could have allowed operators of the form

n∑
j,k=1

∂

∂xk

(
dijk(x, t)

∂ui
∂xj

)
in each component. In this case, it is necessary to assume uniformly strong ellipticity
along with smoothness conditions on coefficients and some conditions on the deriva-
tives of the coefficients. In general, the arguments could become quite technical but
should be tractable. We leave the details to the interested reader. Numerical exper-
iments [4] with two-component systems which model exothermic chemical reactions
indicate that quasi-linear diffusivities do have an effect on the intermediate dynamics
of the systems.

The necessity that our forward invariant set M be an m-cube described by (2.4) is
purely a consequence of assuming distinct diffusion coefficients and in no way actually
enters into the preceding analysis. Other types of geometries can arise in situations
where some of the diffusion coefficients are equal. As a simple example, consider a
three-component model of the form

(5.1)

∂u/∂t−∆u= −α1f(u, v, w) on Ω× (0,∞),
∂v/∂t−∆v= −α2f(u, v, w) on Ω× (0,∞),

∂w/∂t− d∆w= f(u, v, w) on Ω× (0,∞),
∂u/∂n = ∂v/∂n = ∂w/∂n = 0 on ∂Ω× (0,∞),
u( · , 0) = u0, v( · , 0) = v0, w( · , 0) = w0 on Ω,
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where f ∈ C2(R3
+; R+); f(0, v, w) = f(u, 0, w) = 0 for all u, v, w ∈ R+; α1, α2, d > 0;

and the initial data u0, v0, and w0 are continuous and nonnegative on Ω. By the
maximum principle, it follows that minΩ{α1v0 −α2u0} ≤ α1v−α2u ≤ maxΩ{α1v0 −
α2u0} and w ≥ minΩ w0. Consequently, if z1, z3 ≥ 0, then the set

M1 = {(u, v, w) | α1v − α2u ≤ −α2z1, v ≥ 0, w ≥ z3}
is a forward invariant set for (5.1), and if z2, z3 ≥ 0, then the set

M2 = {(u, v, w) | u ≥ 0, α1v − α2u ≥ α1z2, w ≥ z3}
is a forward invariant set for (5.1). Now in a manner similar to the proof of Proposition
4.1, one can show that any point (z1, 0, z3) with z1, z3 ≥ 0 is stable with respect to
M1 and any point (0, z2, z3) with z2, z3 ≥ 0 is stable with respect to M2. One can
then continue to argue as in the proof of Proposition 4.1 that such equilibrium points
are stable with respect to R3

+.
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Abstract. An inverse problem is formulated to determine the two coefficients in the pressure
head formulation of the porous flow equation from a simple hydraulic experiment. Integral identities
are derived which relate changes in the coefficients to changes in measured outputs. These identities
are used to precisely define the sense in which the experimental data are able to distinguish between
different porous media. It is also shown that the mapping associating input coefficient values to
output data values is explicitly invertible and that there is a related output least squares problem
whose solution is the solution of the inverse problem.
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Introduction. Flow in an unsaturated porous medium can be modeled by non-
linear partial differential equations in which the coefficients in the equation character-
ize the hydraulic properties of the medium. Treatment of such equations is simplified
by assuming that the coefficients are functions of the unknown dependent variable
only. This is equivalent to supposing the medium is homogeneous and isotropic, and
in such cases it is feasible to seek coefficients which are characteristic of a specific
porous medium [2, 5, 7, 10].

Since direct experimental measurement of hydraulic properties of porous media
is often inconvenient, attempts have been made to obtain the properties indirectly by
formulating and solving a suitable inverse problem. The goal of the indirect approach
is to replace a difficult physical experiment by an inverse problem for which the input
data are easy to measure and whose solution leads to the hydraulic properties of the
medium. The requirement that the data be easy to measure suggests that the data
should be dynamic rather than steady state and should be measured on the boundary
of the physical domain [5, 12].

An obstacle to considering inverse problems involving nonlinear partial differen-
tial equations is the lack of an explicit solution for the so-called direct problem. One
approach, referred to in the literature as the method of output least squares, seeks
to avoid this obstacle by formulating the inverse problem as an optimization problem
seeking coefficients which produce a solution for the differential equation that best
matches some experimentally measured output [4, 11]. The appeal of the output least
squares approach lies in the well-developed theory for dealing with optimization prob-
lems. On the other hand, it is usually not evident that the solution to the optimization
problem solves the original inverse problem. In particular, the error functional may
be based on data which do not uniquely determine the unknown coefficients. In [6,
8], examples are constructed which illustrate the difficulties with this approach.

This paper formulates an inverse problem to determine simultaneously the two
coefficients in the pressure head formulation of the porous flow equation from a simple
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hydraulic experiment. These coefficients, water capacity and hydraulic conductivity,
characterize the hydraulic properties of a porous medium. Integral identities are
derived which relate changes in the coefficients to changes in measured outputs. Using
these identities it is possible to precisely define the sense in which the experimental
data are able to distinguish between porous media. In addition it can be shown that
a coefficient pair that optimizes an output least squares functional whose definition is
based on the measured outputs of this inverse problem must necessarily also solve the
inverse problem. Finally, the mapping associating coefficient values to output data
values is shown to be explicitly invertible in a suitable class of coefficient pairs. More
precisely, it is shown that if the measured data satisfy certain necessary conditions
then it is possible to construct coefficients which approximately reproduce this output
when used in the model equations. If the output is known to have been generated by
a suitable coefficient pair, then it can be shown that the constructed coefficient pair
approximates the actual coefficients.

Two experiments and the associated inverse problems are described here. In the
first experiment, termed the phase one experiment, an initially saturated vertical col-
umn of soil is allowed to drain to equilibrium under gravity. Solution of the associated
phase one inverse problem determines the hydraulic functions for the soil in the col-
umn over a portion of their domain. A second experiment, labeled phase two, leads
to an inverse problem whose solution extends the portion of the domain over which
the hydraulic functions are determined. These experiments are probably not unique
but illustrate what seems to be an important feature for successful identification of
unknown ingredients in partial differential equations where the ingredients are func-
tions of the state variable only. The identification is considerably simplified if it is
possible to construct an experiment where the boundary value of the state variable
varies monotonically with time. In the two experiments described here, the boundary
measurement of the pressure head p(t) = h(0, t) is forced to behave monotonically;
gravity is the driving force in phase one, and in the phase-two experiment it is the
applied suction.

The organization of this paper is as follows. Section 1 establishes several essential
facts about the solution of the so-called direct problem associated with the phase-
one experiment and derives key integral identities for analyzing the inverse problem.
Uniqueness and solvability results for the phase-one inverse problem are presented in
section 2. Sections 3 and 4 repeat these procedures for the phase-two experiment.

1. The phase-one direct problem. Consider a vertical soil column which is
totally saturated and then allowed to drain under gravity. If there is no flow across
the top end of the column and if the bottom end of the column is at the water table,
then the capillary pressure head h(z, t) can be shown to satisfy

(1.1)

C(h)∂th(z, t) = ∂z(K(h)(∂zh(z, t)− 1)) for 0 < z < L, 0 < t < T,

h(z, 0) = 0 for 0 < z < L,

∂zh(0, t)− 1 = 0, h(L, t) = 0 for 0 < t < T.

Here C and K denote the water capacity and hydraulic conductivity, respectively.
The column is assumed to be of length L with z = 0 at the top of the column and
z = L at the bottom. For notational convenience, let QT = {(z, t): 0 < z < L,
0 < t < T}.

Problem (1.1) will be called the phase-one direct problem. For suitable coefficients
C and K this direct problem has a unique smooth solution [4, 9]. This solution is
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initially zero at each point and tends toward a steady state equal to the linear function
h(z) = z−L, 0 < z < L, as t tends to infinity. In point of fact, there is no finite time
T at which h(0, T ) actually equals −L but for every small positive ε there exists a
finite time T = T (ε) such that h(0, T ) = −L+ε. Then as (z, t) ranges over QT , h(z, t)
takes its values in the interval [−L + ε, 0] rather than in (−L, 0). Recognizing this,
the parameter T will nevertheless be assumed here to denote a fixed, large, positive
number; the head values h(z, t) will vary between zero and −L during this phase of
the experiment; and the ε will be omitted from subsequent discussions.

Coefficients C and K are said to be admissible if they satisfy

(1.2)
(i) CεC(−∞, 0] and 0 < c0 ≤ C(h) ≤ c1 for h < 0,

(ii) Kε Piecewise−C1(−∞, 0] and 0 < k0 ≤ K(h) ≤ k1 for h < 0.

For each pair of admissible coefficients (C,K), the direct problem (1.1) has a unique
solution h(z, t) whose dependence on the coefficients will be indicated by the notation
h = Ψ1[C,K]. In a physical experiment in which a vertical column drains under
gravity as described, it is relatively easy to measure the pressure head at the top of
the column and to measure the flux or outflow at the bottom of the column. The
draining of the column may be simulated by solving (1.1) for h = Ψ1[C,K], and the
measured data then correspond to the computed functions

(1.3) p(t) = h(0, t) and q(t) = K(h(L, t))(∂zh(L, t)− 1) for 0 < t < T.

The dependence of the outputs p(t) and q(t) on the coefficients C and K will
be indicated by the notation (p, q) = Γ · Ψ1[C,K]. The notations p = Γ0 · Ψ1[C,K]
and q = ΓL · Ψ1[C,K] indicate the association between the individual outputs and
the coefficient pairs. This association defines the coefficient-to-data mapping for the
phase-one experiment. Since the functions (p, q) are viewed as system outputs it is
reasonable to expect that their properties are determined by, and must be deduced
from, the equation and properties of the coefficients. These properties are of some
interest in their own right, and they are essential to the analysis of the inverse problem
described in subsequent sections of the paper. This first lemma characterizes the
behavior of the output function q(t) in the phase-one experiment.

Lemma 1.1. For admissible coefficients C and K, the output q(t) = ΓL ·Ψ1[C,K]
satisfies

(1.4) qεC[0, T ), q(0) = −K(0), and q(t) < 0 for 0 < t < T.

Proof. The smoothness properties of the solution imply that q(t) is continuous
on [0, T ], and it then follows from the initial and boundary conditions that q(0) =
−K(0) ≤ −k0.

For h = Ψ1[C,K] and an arbitrary smooth function ϕ(z, t),

(1.5)

∫∫
QT

[∂ta(h(z, t))− ∂z(K(h)(∂zh(z, t)− 1))]∂zϕdz dt = 0,

where

a(h(z, t)) =

∫ h(z,t)

0

C(s) ds.
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Then ∂ta(h(z, t)) = C(h)∂th(z, t) and a(h(z, 0)) = 0 for h = Ψ1[C,K]. Integration
by parts shows

∫∫
QT

∂ta(h(z, t))∂zϕdz dt =

∫ L

0

a(h)∂zϕ

∣∣∣∣∣
t=T

t=0

dz −
∫∫

QT

a(h)∂tzϕdz dt

=

∫∫
QT

∂zhC(h)∂tϕdz dt−
∫ T

0

a(h)∂tϕ

∣∣∣∣∣
z=L

z=0

dt

+

∫ L

0

a(h)∂zϕ

∣∣∣∣∣
t=T

t=0

dz

and ∫∫
QT

[∂z(K(h)(∂zh(z, t)− 1))]∂zϕdz dt

=

∫ T

0

(K(h)(∂zh(z, t)− 1))∂zϕ

∣∣∣∣∣
z=L

z=0

dt

−
∫∫

QT

(K(h)(∂zh(z, t)− 1))∂zzϕdz dt.

Then

(1.6)

∫∫
QT

[(∂zh− 1)(C(h)∂tϕ+K(h)∂zzϕ) + C(h)∂tϕ] dz dt

=

∫ T

0

a(h)∂tϕ+K(h)(∂zh− 1)∂zϕ

∣∣∣∣∣
z=L

z=0

dt−
∫ L

0

a(h)∂zϕ

∣∣∣∣∣
T

0

dz.

Now suppose ϕ(z, t) solves the adjoint problem

C(h)∂tϕ(z, t) +K(h)∂zzϕ(z, t) = 0 in QT ,

ϕ(z, T ) = 0, 0 < z < L,

ϕ(0, t) = 0, ∂zϕ(L, t) = ϑ(t), 0 < t < T

for arbitrary smooth boundary input ϑ(t). Then

a(h(z, 0)) = 0 and a(h(L, t)) = 0,

∂tϕ(0, t) = 0 and ∂zϕ(z, T ) = 0,

∂zh(0, t)− 1 = 0,

and it follows that (1.6) reduces to the following simple integral identity:∫ T

0

q(t)ϑ(t) dt =

∫∫
QT

C(h)∂tϕ(z, t) dz dt.

Now choose the boundary input ϑ(t) in the adjoint problem such that ϑ(T ) = 0 and
ϑ(t) is sufficiently large and positive for 0 < t < T that ∂zzϕ(z, t) > 0 on QT . Then
∂tϕ(z, t) < 0 on QT , and since ϑ(t) is otherwise arbitrary and C(h(z, t)) ≥ c0 > 0, it
follows from the integral identity that q(t) < 0 almost everywhere on [0, T ].
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Certain properties of the solution of the direct problem are needed if the integral
identity arguments are to be used to analyze the inverse problem. The next lemma
establishes one of these properties.

Lemma 1.2. For admissible coefficients C(h) and K(h), let h = Ψ1[C,K]. Then
∂zh(z, t)− 1 < 0 almost everywhere on QT .

Proof. For h = Ψ1[C,K] and an arbitrary smooth function ϕ(z, t), the basic
integral identity (1.6) is valid. Suppose now that ϕ(z, t) solves the adjoint problem

(1.7)

C(h)∂tϕ(z, t) +K(h)∂zzϕ(z, t) = F (z, t) in QT ,

ϕ(z, T ) = 0, 0 < z < L,

ϕ(0, t) = 0, ϕ(L, t) = 0, 0 < t < T.

Since

a(h(z, 0)) = 0, and ∂zh(0, t)− 1 = 0

and

∂tϕ(0, t) = 0, ∂zϕ(z, T ) = 0, and ∂tϕ(L, t) = 0,

it follows that (1.6) reduces to

(1.8)

∫∫
QT

(∂zh− 1)F (z, t) dz dt = −
∫∫

QT

C(h)∂tϕdz dt+

∫ T

0

q(t)∂zϕ(L, t) dt.

If the function F (z, t) appearing in the adjoint equation is nonnegative inQT , then
the maximum principle asserts that the solution ϕ(z, t) of (1.7) satisfies ϕ(z, t) < 0
in QT . If, in addition, at each z in (0, L), the function F (z, t) is assumed to increase
so rapidly with respect to t that one has ∂zzϕ(z, t) < 0 in QT , then it is clear from
the adjoint equation that ∂tϕ(z, t) > 0 in QT . Finally, ϕ < 0 in QT implies that
∂zϕ(L, t) > 0 for 0 < t < T . Since q(t) is already known to be negative by Lemma
1.1, it follows that the right side of (1.8) is strictly negative. F (z, t) is nonnegative
and increasing with t but is otherwise arbitrary; hence it follows from (1.8) that
∂zh(z, t)− 1 < 0 almost everywhere in QT .

An additional property of the solution to the direct problem, also essential to the
analysis of the inverse problem, is asserted in the following lemma.

Lemma 1.3. For admissible coefficients C and K, let h = Ψ1[C,K]. Then
∂th(z, t) is negative almost everywhere in QT .

Proof. For h = Ψ1[C,K] and an arbitrary smooth function ϕ(z, t),

(1.9)

∫∫
QT

[C(h)∂th(z, t)− ∂z(∂zb(h(z, t))−K(h))]∂tϕdz dt = 0,

where

b(h(z, t)) =

∫ h(z,t)

0

K(s) ds.

Then integration by parts shows that∫∫
QT

∂zzb(h(z, t))∂tϕdz dt =

∫ T

0

[
∂zb(h)∂tϕ+ ∂tb(h)∂zϕ

]z=L
z=0

dt

−
∫ L

0

∂zb(h)∂zϕ

∣∣∣∣∣
t=T

t=0

dz −
∫∫

QT

∂tb(h(z, t))∂zzϕdz dt
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and∫∫
QT

∂zK(h(z, t))∂tϕdz dt =

∫ T

0

K(h)∂tϕ

∣∣∣∣∣
z=L

z=0

dt −
∫ L

0

K(h)∂zϕ

∣∣∣∣∣
t=T

t=0

dt

+

∫∫
QT

∂tK(h(z, t))∂zϕdz dt.

Then

(1.10)

∫∫
QT

∂th[C(h)∂tϕ+K(h)∂zzϕ+K ′(h)∂zϕ] dz dt

= −
∫ L

0

K(h)(∂zh− 1)∂zϕ

∣∣∣∣∣
t=T

t=0

dz

+

∫ T

0

[
(∂zb(h)−K(h))∂tϕ+ ∂tb(h)∂zϕ

]z=L
z=0

dt.

If ϕ(z, t) solves

(1.11)

C(h)∂tϕ+K(h)∂zzϕ+K ′(h)∂zϕ = F (z, t) in QT ,

ϕ(z, T ) = 0, 0 < z < L,

∂zϕ(0, t) = 0, ∂zϕ(L, t) = 0, 0 < t < T,

then ∫ T

0

[
(∂zb(h)−K(h))∂tϕ+ ∂tb(h)∂zϕ

]z=L
z=0

dt =

∫ T

0

q(t)∂tϕ(L, t) dt

since ∂zb(h)−K(h) = K(h)(∂zh− 1) equals 0 and q(t) at z = 0, L, respectively, and
∂tb(h(L, t)) = K(0)∂th(L, t) = 0. Also,

∫ L

0

K(h)(∂zh− 1)∂zϕ

∣∣∣∣∣
t=T

t=0

dz = −K(0)

∫ L

0

∂zϕ(z, 0) dz = K(0)(ϕ(0, 0)− ϕ(L, 0))

since ∂zϕ(z, T ) = 0 and ∂zh(z, 0)− 1 = −1. Then (1.10) reduces to

(1.12)

∫∫
QT

∂th(z, t)F (z, t) dz dt =

∫ T

0

q(t)∂tϕ(L, t) dt+K(0)(ϕ(0, 0)− ϕ(L, 0)).

If F (z, t) is nonnegative in QT , then the maximum principle applied to (1.11) asserts
that ϕ(z, t) can have no maximum on the interior of QT . Moreover, since ∂zϕ = 0
at z = 0, L, it follows [1, p. 261, 3] that ϕ(z, t) cannot achieve a maximum at either
of the boundary points z = 0, L. Then the maximum value of ϕ(z, t) must occur at
t = T , where ϕ(z, T ) is known to vanish for 0 < z < L. It follows that ϕ(z, t) < 0 in
QT . In particular, ϕ(L, t) < 0 for 0 < t < T and ϕ(L, T ) = 0. The nonnegative, but
otherwise arbitrary, function F (z, t) may be chosen to grow so rapidly with respect to
t near z = L that ∂tϕ(L, t) > 0 for 0 < t < T . In Lemma 1.1, q(t) has been shown to
be negative, so the first integral on the right side of (1.12) is strictly negative. Since F
is nonnegative and increasing with t but is otherwise arbitrary, the values of F can be
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adjusted to cause ϕ(0, 0)−ϕ(L, 0) ≥ 0. Then the right side of (1.12) is negative, and
it follows that unless ∂th(z, t) < 0 almost everywhere in QT it is possible to further
adjust the nonnegative function F so that a contradiction of (1.12) is obtained.

The final lemma relating to properties of the solution to the direct problem char-
acterizes the behavior of the output function p(t) = h(0, t) during the phase-one
experiment.

Lemma 1.4. For admissible coefficients C and K let h(z, t) = Ψ1[C,K]. Then
for each τ , 0 < τ ≤ T ,

z − L < h(z, t) < 0 and h(0, τ) < h(z, t) < 0 for 0 < z < L, 0 < t < τ.

In addition, p(t) = h(0, t) = Γ0 ·Ψ1[C,K] satisfies

(1.13) pεC1[0, T ], p(0) = 0, and p′(t) < 0 for 0 < t < T.

Proof. For h(z, t) = Ψ1[C,K], let u(z, t) =: h(z, t) − z + L. Then for any τ ,
0 < τ ≤ T , u(z, t) solves

C(h)∂tu = ∂z(K(h)∂zu) in Qτ ,

u(z, 0) = L− z, 0 < z < L,

∂zu(0, t) = 0, u(L, t) = 0, 0 < t < τ.

The maximum–minimum principle implies that 0 < u(z, t) < L − z in Qτ for each τ
in (0, T ]; hence z−L < h(z, t) < 0 in QT . Evidently, the maximum over the parabolic
boundary for the function h(z, t) occurs at z = 0, where ∂zh(0, t) = 1, and this leads
to h(0, τ) < h(z, t) < 0 for (z, t) in Qτ , 0 < τ ≤ T .

To prove (1.13) choose the test function ϕ(z, t) in the identity (1.10) to solve the
following adjoint problem:

C(h)∂tϕ+K(h)∂zzϕ+K ′(h)∂zϕ = 0 in QT ,

ϕ(z, T ) = 0, 0 < z < L,

∂zϕ(0, t) = ϑ(t), ϕ(L, t) = 0, 0 < t < T.

Then (1.10) reduces to the identity

K(0)

∫ L

0

∂zϕ(z, 0) dz = −
∫ T

0

K(h(0, t))∂th(0, t)ϑ(t) dt;

i.e.,

K(0)ϕ(0, 0) =

∫ T

0

K(h(0, t))p′(t)ϑ(t) dt.

Choose the input ϑ(t) in the adjoint problem such that ϑ(T ) = 0 and ϑ(t) < 0 for t
in [0, T ). Then it follows from the extended maximum principle [1] that the maximum
value of ϕ(z, t) on the parabolic boundary of QT occurs at z = 0. Evidently, ϕ(0, t) is
positive if ϑ(t) is negative for t in [0, T ); hence ϕ(0, 0) is positive and K(0)ϕ(0, 0) is
positive as well. Since ϑ(t) is negative but is otherwise arbitrary, it follows from the
last identity that p′(t) must be negative for 0 < t < T .

Note that conditions (1.4) and (1.13) are necessary conditions for (p, q) to be a
data pair generated by admissible coefficients as described by (1.3). A function pair
(p, q) will be said to be an admissible data pair if they satisfy conditions (1.13) and
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(1.4), respectively. The following theorem contains the integral identity on which the
analysis of the inverse problem rests.

Theorem 1.5. For admissible coefficients Cj and Kj, j = 1, 2, let hj(z, t) =
Ψ1[Cj ,Kj ]. For arbitrary smooth functions ϑ0(t), ϑ1(t), let the notation ϕ = Ψ∗[ϑ0, ϑ1]
indicate the solution of the following adjoint initial boundary value problem:

(1.14)
α(z, t)∂tϕ(z, t) + β(z, t)∂zzϕ+ γ(z, t)∂zϕ = 0, 0 < z < L, 0 < t < τ,

ϕ(z, τ) = 0, 0 < z < L,

β(0, t)∂zϕ(0, t) = ϑ0(t), ϕ(L, t) = ϑ1(t), 0 < t < τ,

where the coefficients α, β, γ are given by

β(z, t) =

∫ 1

0

K1(h2(z, t) + s(h1(z, t)− h2(z, t))) ds,(1.15)

α(z, t) =

∫ 1

0

C1(h2(z, t) + s(h1(z, t)− h2(z, t))) ds,(1.16)

γ(z, t) =

∫ 1

0

K ′1(h2(z, t) + s(h1(z, t)− h2(z, t))) ds.(1.17)

If (pj , qj) = Γ ·Ψ1[Cj ,Kj ], j = 1, 2, then increments in the inputs of ∆C = C1 − C2,
∆K = K1 −K2, lead to increments in output of ∆q = q1 − q2, ∆p = p1 − p2, and for
any τ , 0 < τ ≤ T , the input and output increments are related by

(1.18)

∫ τ

0

[∆q(t)ϑ1(t) + ∆p(t)ϑ0(t)] dt

=

∫∫
Qτ

[∆K(h2)(∂zh2(z, t)− 1)∂zϕ+ ∆C(h2)ϕ∂th2] dz dt.

Proof. For admissible coefficients Cj and Kj , let hj(z, t) = Ψ1[Cj ,Kj ], j = 1, 2.
Then for an arbitrary smooth function ϕ(z, t) and any τ, 0 < τ ≤ T ,∫∫

Qτ

ϕ[∂t(a1(h1)− a1(h2))− ∂z(∂z(b1(h1)− b1(h2))−K1(h1) +K1(h2))] dz dt

= −
∫∫

Qτ

ϕ[∂t(a1(h2)−a2(h2))−∂z(∂z(b1(h2)−b2(h2))−K1(h2)+K2(h2))] dz dt.

Integration by parts leads to

−
∫∫

Qτ

[α(z, t)∂tϕ+ β(z, t)∂zzϕ+ γ(z, t)∂zϕ]∆h(z, t) dz dt

+

∫ L

0

[a1(h1)− a1(h2)]ϕ

∣∣∣∣∣
t=τ

t=0

dz

+

∫ τ

0

[(b1(h1)−b1(h2))∂zϕ− (∂z(b1(h1)−b1(h2))− (K1(h1)−K1(h2)))ϕ]

∣∣∣∣z=L
z=0

dt

=

∫ τ

0

∆K(h2)(∂zh2 − 1)ϕ

∣∣∣∣z=L
z=0

dt

−
∫∫

Qτ

[∆K(h2)(∂zh2 − 1)∂zϕ+ ∆C(h2)∂th2ϕ] dz dt,
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where α(z, t), β(z, t), and γ(z, t) are defined in (1.15), (1.16), and (1.17); i.e., recall
that for any smooth function of one variable, F ,

F (u)− F (v) = G(x)(u− v), where G(x) =

∫ 1

0

F ′(v(x) + s(u(x)− v(x))) ds.

If ϕ(x, t) solves the auxiliary problem (1.14), then this expression reduces to
(1.18), since in this case

[a1(h1)− a1(h2)]ϕ
∣∣∣t=τ
t=0

= (a1(h1)− a1(h2))ϕ(z, τ)

− (a1(z − 1)− a1(z − 1))ϕ(z, 0) = 0,

[(b1(h1)− b1(h2))∂zϕ
∣∣∣z=L
z=0

= (b1(0)− b1(0))∂zϕ(1, t)− (b1(h1)− b1(h2))∂zϕ(0, t)

= 0−∆h(0, t)β(0, t)∂zϕ2(0, t) = −(p1(t)− p2(t))ϑ1(t),

[(∂z(b1(h1)− b1(h2))− (K1(h1)−K1(h2))) + ∆K(h2)(∂zh2 − 1)]ϕ
∣∣∣z=L
z=0

= (K1(h1)(∂zh1 − 1)−K2(h2)(∂zh2 − 1))ϕ
∣∣∣z=L
z=0

= ∆q(t)ϑ0(t)− 0.

The integral identity (1.18) provides an explicit expression relating changes in
input to changes in output for the coefficient to data mapping (p, q) = Γ · Ψ1[C,K].
Note that for ϕ = ϕ0 = Ψ∗[ϑ0, 0], (1.18) becomes

(1.19)

∫ τ

0

∆p(t)ϑ0(t) dt =

∫∫
Qτ

[∆K(h2)(∂zh2(z, t)−1)∂zϕ0+∆C(h2)ϕ0∂th2] dz dt,

and for ϕ = ϕ1 = Ψ∗[0, ϑ1], (1.18) reduces to the identity

(1.20)

∫ τ

0

∆q(t)ϑ1(t) dt =

∫∫
Qτ

[∆K(h2)(∂zh2(z, t)−1)∂zϕ1 +∆C(h2)ϕ1∂th2] dz dt.

The identity (1.18) relates changes ∆C and ∆K in the hydraulic properties of
the porous medium to the corresponding changes ∆p and ∆q which then occur in the
measured experimental output for the phase-one experiment. This identity contains
information on the Jacobian of the coefficient to data mapping which associates a
coefficient pair (C,K) to an output pair (p, q) in the phase-one experiment.

2. The phase-one inverse problem. For admissible coefficients C,K it was
shown in Lemma 1.4 that for each t, 0 < t < T , the solution h = Ψ1[C,K] of the
phase-one direct problem assumes all values between 0, at the bottom of the column,
and p(t) = h(0, t) at the top of the column. Then for a fixed tε[0, T ], the coefficients
C(h(z, t)) and K(h(z, t)) are evaluated at all points of the interval [p(t), 0] as z varies
from 0 to L. As (z, t) ranges over the rectangle QT , C(h(z, t)) and K(h(z, t)) are
evaluated at all points on the inverval [−L, 0]. Then the phase-one experiment explores
the interval [−L, 0] in the domain of the coefficients C and K, and the coefficient to
data mapping Γ ·Ψ carries function pairs that are defined and smooth on [−L, 0] onto
pairs of data functions (p, q) that are defined and continuous on [0, T ]. The phase-one
inverse problem consists of using the output pair [p(t), q(t): 0 ≤ t ≤ T ] to find the
coefficient pair [C(h),K(h) : −L ≤ h ≤ 0]. Recall that there is no finite time T at
which h(0, T ) actually equals −L but for every positive ε there exists a finite time
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T = T (ε) such that h(0, T ) = −L+ε. Then the data [p, q] on [0, T ] determine C and K
on [−L+ε, 0]. Since the ε can be chosen to be arbitrarily small, for practical purposes
of identification ε is zero; hence the ε will be omitted from subsequent discussions.

The integral identities derived in the previous section suggest a natural interpre-
tation of the sense in which the measured output [p, q] is able to distinguish between
coefficient pairs [C,K]. It will be shown that the measured outputs p and q determine
the coefficients C and K uniquely within an appropriate class of distinguishable func-
tions. Moreover, a constructive algorithm will be defined for inverting the coefficient
to data mapping in one such class. Finally, it will be shown that the inverse problem
has an equivalent formulation as an output least squares optimization problem whose
solution can be shown to solve the inverse problem.

Continuous functions f1 and f2 that are not identical on an interval [λ, ρ] are said
to be distinguishable on [λ, ρ] if there exists a partition {λ = ξ0 < ξ1 < · · · < ξn = ρ}
of [λ, ρ] such that on each subinterval (ξm−1, ξm) of the partition either

(i) f1(x) = f2(x) for ξm−1 ≤ x ≤ ξm
or else (ii) f2(x) 6= f1(x) for ξm−1 < x < ξm.

It will be convenient for the proofs to follow if the number of subintervals in the
partition is minimal. That is, subintervals on which f1 coincides with f2 do not
occur consecutively, and consecutive subintervals (ξm−1, ξm), (ξm, ξm+1), where the
graphs of f1 and f2 do not cross, are separated by a point where f1 equals f2; i.e.,
f1(ξm) = f2(ξm). A partition with this property will be said to be adjusted to the
functions f1 and f2.

Functions that are not distinguishable need not be equal at all points of their
domain. For example, the function f1(x) = x sin(1/x) is neither distinguishable from
nor identical to f2(x) = 0 on [0, 1], since f1 is clearly not identical to f2 yet f1 and
f2 are equal at infinitely many points in every neighborhood of zero. However, there
exist classes of functions which are proper subsets of the continuous functions and any
two functions from the class are either distinguishable on the interval of definition or
else they are identical there. Analytic functions are one such class, as are the so-
called polygonal functions that are continuous and piecewise linear on their interval
of definition.

Theorem 2.1. For admissible coefficients Cj and Kj, j = 1, 2, let hj(z, t) =
Ψ1[Cj ,Kj ]. Let (pj , qj) = Γ ·Ψ1[Cj ,Kj ] for j = 1, 2. If the pairs C1,K1 and C2,K2

are distinguishable on the interval [−L, 0] then p1, p2 and q1, q2 are not identical on
[0, T ].

Proof. Suppose that C1,K1 and C2,K2 are distinguishable on the interval [−L, 0]
and q1 = q2 and p1 = p2 on [0, T ]. It will now be shown that the two conditions are
inconsistent.

Let {0 = ξ0 > ξ1 > · · · > ξn = h(0, T )} denote a partition of [h(0, T ), 0] adjusted
to the distinguishable functions K1 and K2 and let {0 = ξ0 > ξ′1 > · · · ξ′n−1 > ξn}
denote a (possibly different) partition of [h(0, T ), 0] adjusted to C1 and C2. For
the sake of discussion, suppose that K1(h) 6= K2(h) for ξ0 < h < ξ1 and suppose
C1(h) 6= C2(h) for ξ0 < h < ξ′1. Let η1 denote the smaller of the two numbers ξ1
and ξ′1 and let τ ≤ T denote the unique value at which the monotone function q(t)
satisfies q(τ) = η1. Then ∆K(h) = K1(h) −K2(h) and ∆C(h) = C1(h) − C2(h) do
not vanish at any point of the interval (0, η1).

Let ϕ1 = Ψ∗[0, ϑ1], where the input function ϑ1(t) satisfying ϑ1(τ) = 0 is chosen
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to be sufficiently large and positive for 0 < t < τ that

(2.1) ϑ1(t) > ϕ1(z, t) > 0 and ∂zϕ1(z, t) > 0 for 0 < z < L, 0 < t < τ.

Similarly, for ϑ0(t) satisfying ϑ0(τ) = 0, choose ϑ0 sufficiently large and positive for
0 < t < τ that ϕ2 = Ψ∗[ϑ0, 0] satisfies

(2.2) ϕ2(z, t) < 0 and ∂zϕ2(z, t) > 0 for 0 < z < L, 0 < t < τ.

It follows from Lemmas 1.2 and 1.3 that ∂zh2(z, t)− 1 and ∂th2(z, t) are strictly
negative almost everywhere on Qτ . If q1 = q2 and p1 = p2 on [0, T ] then ∆q(t) =
q1(t) − q2(t) = 0 and ∆p(t) = p1(t) − p2(t) = 0 for 0 ≤ t ≤ τ , and it follows from
(1.19) and (1.20) that∫∫

Qτ

∆K(h2)(∂zh2(z, t)− 1)∂zϕ1 dz dt = −
∫∫

Qτ

∆C(h2)ϕ1∂th2 dz dt,(2.3) ∫∫
Qτ

[∆K(h2)(∂zh2(z, t)− 1)∂zϕ2 dz dt = −
∫∫

Qτ

∆C(h2)ϕ2∂th2 dz dt.(2.4)

Now because of (2.1), (2.3) implies that ∆K and ∆C have opposite signs, whereas
(2.4), taken with (2.2), implies ∆K and ∆C are of the same sign on (0, η1). It then
follows that q1, q2 and p1, p2 cannot be identical on [0, T ] if C1, C2 and K1,K2 are
distinguishable on the interval [−L, 0]. Only a slight modification of the argument is
required to deal with alternative possibilities for ∆C and ∆K on the initial subinter-
vals of the partitions.

Inverse problems are often reformulated as optimization problems in which an
error functional based on the measured output data is to be minimized over a class of
admissible inputs. Although this has the advantage of providing a means of computing
a solution to the problem, it is often not evident that the solution of the optimization
problem is also a solution of the inverse problem. It will be shown here that for a
properly formulated error functional, any pair of admissible coefficients (C,K) that
minimizes the error functional must also solve the inverse problem.

Theorem 2.2. For a fixed pair of admissible coefficients C0, K0, let (p(t;C0,K0),
q(t;C0,K0)) = Γ · Ψ1[C0,K0] denote the corresponding measured output. For an
arbitrary pair of admissible coefficients C, K, let h(z, t) = Ψ1[C,K] and (p(t;C,K),
q(t;C,K)) = Γ ·Ψ1[C,K]. Define the output least squares error functional associated
to the pair (C,K) to be

(2.5) J [(C,K)] =

∫ T

0

(p(t;C,K)−p(t;C0,K0)2dt+

∫ T

0

(q(t;C,K)−q(t;C0,K0))2dt.

Then the variation of this functional is given by

(2.6) δJ [(C,K), (δC, δK)] =

∫∫
QT

[δK(h)(∂zh(z, t)−1)∂zϕ+ δC(h)∂th(z, t)ϕ] dz dt,

where ϕ(z, t) = Ψ∗[ϑ0, ϑ1] with data ϑ0(t) = 2(p(t;C,K) − p(t;C0,K0)) and ϑ1(t) =
2(q(t;C,K) − q(t;C0,K0)). Moreover, if (C,K) minimizes the functional J then
Γ ·Ψ1[C,K] = Γ ·Ψ1[C0,K0]; i.e., (C,K) solves the inverse problem.

Proof. The variation of the functional J is easily computed to be

δJ [(C,K), (δC, δK)] =

∫ T

0

2(p(t;C,K) − p(t;C0,K0))δp(t) dt

+

∫ T

0

2(q(t;C,K)− q(t;C0,K0))δq(t) dt,
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where δp and δq denote the differences δp(t) = p(t;C + δC,K + δK)− p(t;C,K) and
δq(t) = q(t;C + δC,K + δK)− q(t;C,K). If ϕ denotes the solution of (1.14) for data
ϑ0(t) = 2(p(t;C,K)− p(t;C0,K0)) and ϑ1(t) = 2(q(t;C,K)− q(t;C0,K0)), then the
result (1.18) with h2(z, t) = Ψ1[C,K] asserts that

δJ [(C,K), (δC, δK)] =

∫ T

0

[ϑ0(t)δp(t) + ϑ1(t)δq(t)] dt

=

∫∫
QT

[δC(h2)ϕ∂th2 + δK(h2)(∂zh2 − 1)∂zϕ] dz dt.

But this is precisely (2.6).
Now if (C,K) is an admissible coefficient pair that causes the variation

δJ [(C,K), (δC, δK)] to vanish for arbitrary perturbations (δC, δK) of the coefficients,
then it follows from (2.6) in combination with Lemmas 1.2 and 1.3 that ϕ and δzϕ
must vanish on QT . However, ϕ is the solution of the parabolic problem (1.14) and
can vanish identically if and only if the data ϑ0(t) and ϑ1(t) are each zero. But this is
to say that the computed outputs p(t;C,K) and q(t;C,K) agree with the measured
outputs p(t;C0,K0) and q(t;C0,K0). Then (C,K) solves the inverse problem.

This result establishes that if the inverse problem is reformulated as an output
least squares problem based on the overspecified data p and q, then a solution of the
output least squares problem is truly a solution of the inverse problem.

Theorem 2.1 asserts that distinguishable coefficient pairs cannot produce pairs of
data functions that are identical; i.e., the measured boundary data (p, q) determine
the coefficient pair (C,K) uniquely within any subset of the admissible coefficients
where functions that are indistinguishable are identical. One such subset is the set of
polygonal coefficient functions constructed on a fixed partition of [−L, 0].

Theorem 2.1 may be interpreted as an assertion that the coefficient to data map-
ping (p, q) = Γ·Ψ1[C,K] is injective from the set of polygonal coefficients to admissible
data pairs, but this is not quite sufficient to ensure invertibility. In fact, the coefficient
to data mapping is separately monotone in each coefficient and a monotone mapping
on a totally ordered space is invertible. Hence if the space of coefficients can be
parameterized in a totally ordered fashion then the coefficient to data mapping can
be inverted. Such a parameterization and inversion becomes possible due to the fact
that monotonicity permits the coefficient to data mapping to be factored into a prod-
uct of simpler maps.

Let p and q denote admissible data functions on an interval [0, T ], and let {0 =
t0 < · · · < tn = T} denote a partition of [0, T ]. The data function p(t) = h(0, t)
is monotone decreasing from the value 0 at t = 0 down to the value p(T ) = −L
(i.e., −L + ε) at t = T . Then the data values pm = p(tm) define a corresponding
partition, {0 = p0 > · · · > pn = −L} of the interval [−L, 0], which is the domain of
the coefficients C, K during phase one.

Define a mapping Πn: C[−L, 0] −→ Rn+1 which carries functions K(h) and
C(h) from C[−L, 0] onto arrays of values {κm} and {ξn} equal to the values of the
coefficients at the node points of the partition {pm: m = 0, . . . , n} of their domain
[−L, 0]; i.e.,

(2.7)
ΠnK = {κm = K(pm) : 0 ≤ m ≤ n} and ΠnC = {ξm = C(pm) : 0 ≤ m ≤ n}.

It will also be convenient to define a mapping Pn carrying an array of n+ 1 real
values to a polygonal (continuous and piecewise-linear) function. This mapping, Pn,
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may be defined to have the following action on the array {κ0, κ1, . . . , κn}:

(2.8) Pn{κm} =
n∑

m=0

κmΛm(v),

where Λm(v) denotes the piecewise-linear, continuous “hat functions” defined as fol-
lows on the partition {pm} of [−L, 0]: for m = 0, 1, 2, . . . , n,

Λ0(v) = 1− v/p1 if 0 = p0 ≤ v ≤ p1,

Λm(v) =


v − pm−1

pm − pm−1
, if pm−1 ≤ v ≤ pm,

pm+1 − v
pm+1 − pm

if pm ≤ v ≤ pm+1,

Λm(v) = 0 if v < pm−1 or v > pm+1.

For admissible coefficients C and K and a given partition {pm} of [−L, 0], the
polygonal functions C∗ = PnΠnC and K∗ = PnΠnK denote the unique polygonal
approximations to C and K on the partition {pm}; i.e., at each node point p = pm,
C∗(p) = C(p) and K∗(p) = K(p).

Similarly, for arbitrary arrays {κ0, κ1, . . . , κn} and {ξ0, . . . , ξn} of positive pa-
rameters, (2.8) defines polygonal coefficients K∗(v) = Pn[κ0, . . . , κn](v) and C∗(v) =
Pn[ξ0, . . . , ξn](v) on pn ≤ v ≤ p0 = 0. When these coefficients are used, the direct
problem (1.1) has a unique solution h∗ = Ψ1[C∗,K∗] on QT [9]. The corresponding
data pair (p∗, q∗) = Γ · Ψ1[C∗,K∗] is an admissible pair by the lemmas of the previ-
ous section. An algorithm can now be defined that produces arrays {κ0, κ1, . . . , κn}
and {ξ0, . . . , ξn} of parameters for which the corresponding computed output (p∗, q∗)
approximates the measured data (p, q).

Assume an admissible data pair (p, q) is given on [0, T ]. Let {tm : 0 ≤ m ≤ n}
denote an arbitrary partition of [0, T ], and let {pm : 0 ≤ m ≤ n} denote the associated
partition of [p(T ), 0] induced by the monotone function p(t). For each k, 1 ≤ k ≤ n,
let ϕk(z, t) = Ψ∗[ϑk, 0] and ψk(z, t) = Ψ∗[0, ρk] denote solutions to adjoint problems
(1.14) with τ = tk. For each k, (1.14) is equivalent to a linear one-dimensional
parabolic initial boundary value problem that is driven from a zero initial state by
controlling the flux ϑk(t) at the left endpoint or by controlling the function value
ρk(t) at the right endpoint. The data functions ϑk and ρk in the adjoint problems
are chosen to satisfy ϑk(tk) = ρk(tk) = 0. In addition, ϑk(t), ρk(t) can be chosen
sufficiently large and positive for 0 < t < tk that it follows

ϕk(z, t) < 0, ∂zϕk(z, t) > 0,

and

ψk(z, t) > 0, ∂zψk(z, t) > 0 on Qτ .

Then the pairs (κ0, ξ0), (κ1, ξ1), . . . , (κn, ξn) of parameters defining the polygonal ap-
proximations for K and C are constructed, one at a time, according to the following
algorithm.

Step 0. Assume κ0 = K(0) and ξ0 = C(0) are given. (These are the values of K
and C at saturation.)
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Step 1. For τ = t1, let

C] = Pn[ξ0, ξ0, . . . , ξ0] and K] = Pn[κ0, κ0, . . . , κ0],

h2(z, t) = Ψ1[C],K]]

(p], q]) = Γ ·Ψ1[C],K]].

Then (κ1, ξ1) are given by

(2.9)

(
κ1

ξ1

)
=

(
κ0

ξ0

)
+ [M ]−1

(
d1

e1

)
,

where the entries of the 2 × 2 matrix M are given by

(2.10)

M11 =

∫∫
Qτ

Λ1(h2)(∂zh2 − 1)∂zϕ1 dz dt, M12 =

∫∫
Qτ

Λ1(h2)ϕ1∂th2 dz dt,

M21 =

∫∫
Qτ

Λ1(h2)(∂zh2 − 1)∂zψ1 dz dt, M22 =

∫∫
Qτ

Λ1(h2)ψ1∂th2 dz dt

and

(2.11) d1 =

∫ T

0

(q − q])ϑ1(t) dt, e1 =

∫ τ

0

(p− p])ρ1(t) dt.

Then C∗(h) = ξ0Λ0(h) + ξ1Λ1(h) and K∗(h) = κ0Λ0(h) + κ1Λ1(h) for p1 ≤ h ≤ 0.
Proceed in this way to generate pairs (κ1, ξ1), . . . , (κm−1, ξm−1) which define the

polygonal coefficients C∗ and K∗ on the portion pm−1 ≤ h ≤ 0 of their domain.
Pairs (κi, ξi), i = 0, 1, . . . ,m − 1, are known at this stage. To compute the next pair
(ξm, κm), given the pairs (κi, ξi), 0 ≤ i ≤ m− 1, continue as follows:

Step m. For τ = tm, let

C] = Pn[ξ0, ξ1, . . . , ξm−1, . . . , ξm−1] and K] = Pn[κ0, κ1, . . . , κm−1, . . . , κm−1],

h2(z, t) = Ψ1[C],K]]

(p], q] = Γ ·Ψ1[C],K]].

Then (κm, ξm) are given by

(2.12)

(
κm
ξm

)
=

(
κm−1

ξm−1

)
+ [M ]−1

(
dm−1

em−1

)
,

where the entries of the 2× 2 matrix M are given by

(2.13)

M11 =

∫∫
Qτ

Λ1(h2)(∂zh2 − 1)∂zϕm dz dt, M12 =

∫∫
Qτ

Λ1(h2)ϕm∂th2 dz dt,

M21 =

∫∫
Qτ

Λ1(h2)(∂zh2 − 1)∂zψm dz dt, M22 =

∫∫
Qτ

Λ1(h2)ψm∂th2 dz dt

and

(2.14) d1 =

∫ τ

0

(q − q])ϑm(t) dt, e1 =

∫ τ

0

(p− p])ρm(t) dt.



POROUS-MEDIUM INVERSE PROBLEM 625

In this way, n pairs of parameter values can be generated. It remains to be seen
in what sense the polygonal coefficients based on these parameter pairs can produce
computed output that approximates the measured output (p, q) used in the algorithm
to find the parameters.

Theorem 2.3. Let [p(t), q(t)] denote an admissible data pair on [0, T ], and let
{0 = t0 < · · · < tn = T} denote an arbitrary partition of the interval [0, T ]. Suppose
that parameter pairs {(ξ0, κ0), . . . , (ξn, κn)} have been generated using the algorithm
described previously and that (p∗, q∗) = Γ · Ψ1[C∗,K∗] for C∗ = Pn[ξ0, . . . , ξn] and
K∗ = Pn[κ0, . . . , κn]. Then

(a)
∫ tm
0

(p(t)− p∗(t))ϑm(t) dt =
∫ tm
0

(q(t)− q∗(t))ρm(t) dt = 0,m = 1, . . . , n,
(b) if p, qεC2[tm−1, tm] for m = 1, . . . n, then |p(tm) − p∗(tm)| ≤ ν∆t2 and

|q(tm) − q∗(tm)| ≤ ν∆t2 for m = 1, . . . , n for a positive constant ν depending on p
and q and ∆t = max(tm − tm−1).

Proof. Suppose (p, q) is an admissible data pair; i.e., p and q satisfy (1.13) and
(1.4), respectively. Let {0 = t0 < · · · < tn = T} denote a partition of the interval
[0, T ], and let {0 = p0 > · · · > pn = −L} denote the corresponding partition of the
interval [−L, 0] induced by the monotone function, p(t).

The initial parameter pair ξ0 = C(0), κ0 = K(0) is assumed to be known. This
represents no loss of generality since these values are often known from independent
experiments, or they may be determined by asymptotic estimates from the data p(t),
q(t), [5, 6].

The computed outputs (p∗, q∗) = Γ·Ψ1[C∗,K∗] have been generated by the polyg-
onal coefficients C∗ = Pn[ξ0, . . . , ξn] and K∗ = Pn[κ0, . . . , κn]. Let (p], q]) denote
outputs computed from the coefficients C] = Pn[ξ0, . . . , ξ0] and K] = Pn[κ0, . . . , κ0],
and let

(2.15)

(
κ′1
ξ′1

)
=

(
κ0

ξ0

)
+ [M ]−1

(
d′1
e′1

)
,

where the entries of the 2× 2 matrix M are given by (2.10) and

(2.16) d′1 =

∫ t1

0

(q − q∗)ϑ1(t) dt, e′1 =

∫ t1

0

(p− p∗)ρ1(t) dt.

Then it follows from (2.9), (2.11) and (2.15), (2.16) that(
κ′1
ξ′1

)
=

(
κ0

ξ0

)
+ [M ]−1

(
d1

e1

)
+ [M ]−1

(
d′′1
e′′1

)
,

where

d′′1 =

∫ t1

0

(q] − q∗)ϑ1(t) dt, e′′1 =

∫ t1

0

(p] − p∗)ρ1(t) dt.

This may be written as

(2.17)

(
κ′1
ξ′1

)
=

(
κ1

ξ1

)
+ [M ]−1

(
d′′1
e′′1

)
.

Applying the integral identities (1.19) and (1.20) to the coefficient pairs (C1,K1) =
(C],K]) and (C2,K2) = (C∗,K∗) leads to

(κ0 − κ1)M11 + (ξ0 − ξ1)M12 = d′′1 ,

(κ0 − κ1)M21 + (ξ0 − ξ1)M22 = e′′1 .
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That is,

(2.18) [M ]

(
κ0 − κ1

ξ0 − ξ1

)
=

(
d′′1
e′′1

)
,

where the entries of the 2 × 2 matrix M are given by (2.10) and we have used the
fact that ∆K(v) = K](v) − K∗(v) = κ0Λ0(v) + κ0Λ1(v) − (κ0Λ0(v) + κ1Λ1(v)) =
(κ0 − κ1)Λ1(v) and ∆C(v) = (ξ0 − ξ1)Λ1(v). Now (2.17) and (2.18) together imply
that (

κ′1
ξ′1

)
=

(
κ1

ξ1

)
+ [M ]−1[M ]

(
κ0 − κ1

ξ0 − ξ1

)
=

(
κ0

ξ0

)
,

and this result, taken with (2.15), implies d′1 = e′1 = 0. However, this is result (a)
in the case where m = 1. In much the same way, one can show that (a) holds for
1 < m ≤ n by letting (

κ′m
ξ′m

)
=

(
κm−1

ξm−1

)
+ [M ]−1

(
d′m−1

e′m−1

)
and proceeding as above to show that d′m−1 = e′m−1 = 0.

To prove (b) introduce the family of functions {λm(t)}, piecewise-linear, contin-
uous functions on the partition {tm} of [0, T ]. The family {λm(t)} is analogous to
the family {Λm(v)} on the partition {pm} of [−L, 0]. Then, with a slight abuse of
notation, Pnq(t) = [q(t0), q(t1), . . . , q(tn)]εRn+1 and

ΠnPnq(t) =
n∑
i=0

q(ti)λi(t),

where ΠnPnq denotes the unique polygonal approximation to q(t) on the partition
{tm} of [0, T ].

For outputs p∗ and q∗ generated by the polygonal coefficients of the algorithm,
use (a) in the case where m = 1 to write∫ t1

0

p(t)− p∗(t))ϑ1(t) dt =

∫ t1

0

(p(t)−ΠnPnp(t))ϑ1(t) dt

+

∫ t1

0

(ΠnPnp(t)−ΠnPnp
∗(t))ϑ1(t) dt+

∫ t1

0

(ΠnPnp
∗(t)− p∗(t))ϑ1(t) dt = 0.

On [0, t1], ΠnPnp(t)−ΠnPnp
∗(t) = (p(t1)− p∗(t1))λ1(t); hence

|p(t1)−p∗(t1)| =
∣∣∣∣∫ t1

0

(p(t)−ΠnPnp(t))ϑ1(t) dt+

∫ t1

0

(ΠnPnp
∗(t)− p∗(t))ϑ1(t) dt|

∣∣∣∣ /I1,
where I1 =

∫ t1
0
λ1(t)ϑ1(t) dt > 0. Making use of a well-known property of the trape-

zoidal approximation for integrals, it follows that if pεC2[0, t1] then for η1, a positive
constant depending on p(t) and p∗(t),

|p(t1)− p∗(t1)| ≤ η1(t1 − 0)3 = η1∆t31.

Similarly, |q(t1)− q∗(t1)| ≤ η1∆t31 with a possibly large value of η1.
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For m = 2, it follows from (a) that∫ t2

t1

(ΠnPnp
∗(t)−ΠnPnp(t))ϑ2(t) dt =

∫ t2

0

(p(t)−ΠnPnp(t))ϑ2(t) dt

+

∫ t2

0

(ΠnPnp
∗(t)− p∗(t))ϑ2(t) dt−

∫ t1

0

(ΠnPnp
∗(t)−ΠnPnp(t))ϑ2(t) dt.

Hence

|p(t2)− p∗(t2) ≤
∣∣∣∣∫ t2

0

(p(t)−ΠnPnp(t))ϑ2(t) dt

∣∣∣∣ /I2
+

∣∣∣∣∫ t2

0

(ΠnPnp
∗(t)− p∗(t))ϑ2(t) dt

∣∣∣∣ /I2 + η1∆t31

∫ t2

0

λ1(t)ϑ2(t) dt/I2.

Again using the property of the trapezoidal approximation for integrals leads to

|p(t2)− p∗(t2)| ≤ η1∆t31 + η2∆t32 + η∗1∆t31 + η∗2∆t32 + η1I
′
1/I2∆t31.

Then there exist positive constants, which we denote again by η1 and η2, such that

|p(t2)− p∗(t2)| ≤ η1∆t31 + η2∆t32 and |q(t2)− q∗(t2)| ≤ η1∆t31 + η2∆t32.

For each m, 1 ≤ m ≤ n, one can show in this way that

|p(tm)− p∗(tm)| ≤
m∑
i=1

ηi∆t
3
i and |q(tm)− q∗(tm)| ≤

m∑
i=1

ηi∆t
3
i .

Letting ∆t = max{∆ti: 1 ≤ i ≤ n}, note that m∆t ≤ n∆t ∼ T ; hence if η = max ηi,
then

|p(tm)− p∗(tm)| ≤ (ηn∆t)∆t2 and |q(tm)− q∗(tm)| ≤ (ηn∆t)∆t2.

Letting ν = ηT gives part (b) of the theorem.
Theorem 2.3 shows that given any admissible data pair (p, q) it is always possible

to construct a pair of polygonal coefficients C∗,K∗ such that the resulting computed
output (p∗, q∗) = Γ ·Ψ1[C∗,K∗] reproduces the measured output (p, q) with accuracy
dependent on the mesh size for the partition {tm}. In case it is known that the
measured data (p, q) are in fact equal to Γ · Ψ1[C,K] for some admissible coefficient
pair (C,K), then the following theorem describes how (C∗,K∗) is related to (C,K).

Theorem 2.4. Let (p, q) = Γ ·Ψ1[C,K] for (C,K), an admissible coefficient pair,
and let {0 = t0 < · · · < tn = T} denote an arbitrary partition of the interval [0, T ].
Suppose parameter pairs {(ξ0κ0), . . . , (ξn, κn)} have been generated using the algorithm
described previously and that (p∗, q∗) = Γ · Ψ1[C∗,K∗] for C∗ = Pn[ξ0, . . . , ξn] and
K∗ = Pn[κ0, . . . , κn]. If C,KεC2[pi, pi−1] for 1 ≤ i ≤ n, then

|ξi − C(pi)| ≤ ν∆p and |κi −K(pi)| ≤ ν∆p for 1 ≤ i ≤ n,

for a positive constant ν depending on C and K for ∆p = max{pi−1 − pi}.
Proof. Apply the integral identities (1.19) and (1.20) with the coefficient pairs

(C1,K1) = (C,K) and (C2,K2) = (C∗,K∗) and τ = t1. Then with ϕj = Ψ∗[ϑj , 0]
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and ψj = Ψ∗[0, ρj ] as they were in Theorem 2.3, by part (a) of Theorem 2.3,∫∫
Qτ

[∆K(h2)(∂zh2(z, t)− 1)∂zϕ+ ∆C(h2)ϕ∂th2] dz dt = 0,∫∫
Qτ

[∆K(h2)(∂zh2(z, t)− 1)∂zψ + ∆C(h2)ψ∂th2] dz dt = 0,

where ∆K(h) = K(h)−K∗(h) and ∆C(h) = C(h)−C∗(h). Now letting ΠnPnK and
ΠnPnC denote the polygonal approximations to K and C on the partition {pm} of
[−L, 0] leads to∫∫

Qτ

(ΠnPnK(h2)−K∗(h2))(∂zh2(z, t)− 1)∂zϕdz dt

+

∫∫
Qτ

(ΠnPnC(h2)− C∗(h2))ϕ∂th2 dz dt

=

∫∫
Qτ

(ΠnPnK(h2)−K(h2))(∂zh2(z, t)− 1)∂zϕdz dt

+

∫∫
Qτ

(ΠnPnC(h2)− C(h2))ϕ∂th2 dz dt,∫∫
Qτ

(ΠnPnK(h2)−K∗(h2))(∂zh2(z, t)− 1)∂zψ dz dt

+

∫∫
Qτ

(ΠnPnC(h2)− C∗(h2))ψ∂th2 dz dt

=

∫∫
Qτ

(ΠnPnK(h2)−K(h2))(∂zh2(z, t)− 1)∂zψ dz dt

+

∫∫
Qτ

(ΠnPnC(h2)− C(h2))ψ∂th2 dz dt.

It follows from Lemma 1.4 that p1 ≤ u2(z, t) ≤ p0 = 0 for (z, t)εQt1 . Then

ΠnPnK(h2)−K∗(h2) = (K(p1)− κ1)Λ1(u2(z, t)),

ΠnPnC(h2)− C∗(h2) = (C(p1)− ξ1)Λ1(u2(z, t)) on Qt1

and for M the 2× 2 matrix whose entries are given by (2.10)

(2.19) [M ]

[
K(p1)− κ1

C(p1)− ξ1

]
=

[
I(K,ϕ) + J(C,ϕ)

I(K,ϕ) + J(C,ψ)

]
.

Using the lemmas of section 1 together with a well-known property of the polyg-
onal approximation for a smooth function, it follows that for τ = t1 there exists a
positive constant ν1 such that

|I(K,ϕ)| =
∣∣∣∣∫∫

Qτ

(ΠnPnK(h2)−K(h2))(∂zh2(z, t)− 1)∂zϕdz dt

∣∣∣∣ ≤ ν1(p1 − p0)2,

|J(C,ϕ)| =
∣∣∣∣∫∫

Qτ

(ΠnPnC(h2)− C(h2))ϕ∂th2 dz dt

∣∣∣∣ ≤ ν1(p1 − p0)2,

and for a larger constant, which we still denote by ν1,

|I(K,ϕ)|+ |J(C,ϕ)| ≤ ν1(p1 − p0)2 and |I(K,ψ)|+ |J(C,ψ)| ≤ ν1(P1 − p0)2.
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Then it follows from (2.19) that there exists a positive constant, denoted again by ν1,
such that

|K(p1)− κ1| ≤ ν1(p1 − p0)2 and |C(p1)− ξ1| ≤ ν1(p1 − p0)2.

Continuing in a fashion similar to what was done in the proof of Theorem 2.3, we
obtain for each i, 1 ≤ i ≤ n,

|K(pi)− κi| ≤
i∑

j=1

νj∆p
2
j and |C(pi)− ξj | ≤

i∑
j=1

νj∆p
2
j .

Let ∆p and ν denote the largest of the numbers ∆pj and νj , respectively, and note
that n∆p ∼ L. Then for each i, 1 ≤ i ≤ n,

|K(pi)− κi| ≤ Lν∆p and |C(pi)− ξi| ≤ Lν∆p,

which is what was to be proven.
Theorem 2.4 asserts that for a vertical column, initially saturated and allowed

to drain to equilibrium under the force of gravity, it is possible to construct polyg-
onal functions which approximate the hydraulic functions C(h), K(h) on the range
−L ≤ h ≤ 0 for a column of length L; i.e., this phase-one experiment determines the
hydraulic coefficients on the range −L ≤ h ≤ 0 from data {p(t), q(t): 0 ≤ t ≤ T} mea-
sured at the top and bottom of the column. The monotonicity of the data function
p(t) permits the parameter pairs characterizing the polygonal functions approximat-
ing C and K to be found one at a time rather than as an ensemble. In effect, the
coefficient to data mapping is factored into n mappings, each of which associates a
coefficient parameter pair (ξi, κi) to a data parameter pair (pi, qi). Each of these
factor mappings is then uniquely invertible as expressed, for example in (2.12).

It will be shown in the next section that the range over which the coefficients can
be determined can be extended by applying suction to the bottom of the column in
what will be referred to as phase two of the experiment.

3. The phase-two direct problem. Consider a vertical soil column, initially
saturated and allowed to drain to a state of equilibrium under gravity. The column
will now be drained further by applying suction. If there is no flow across the top end
of the column and a suction s(t) is applied to the bottom end of the column, then the
capillary pressure head h(z, t) can be shown to satisfy

(3.1)

C(h)∂th(z, t) = ∂z(K(h)(∂zh(z, t)− 1)) for 0 < z < L, 0 < t < T,

h(z, 0) = z − 1 for 0 < z < L,

∂zh(0, t)− 1 = 0, h(L, t) = s(t) for 0 < t < T.

Here C and K continue to denote the water capacity and hydraulic conductivity,
respectively. In fact, they are the same functions as seen previously since the phase-
two experiment deals with the same soil subject, now for conditions designed to explore
more of the range of the hydraulic functions C and K. The applied suction at the
bottom, denoted by s(t), is assumed to be smooth and monotone in time; i.e., s(t)
satisfies

(3.2) sεC1[0, T ], s(0) = 0, s′(t) < 0 for 0 < t < T.
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Problem (3.1) is called the phase-two direct problem. For each pair of admissible
coefficients (C,K), the direct problem (3.1) has a unique solution h whose dependence
on the coefficients will be indicated by writing h = Ψ2[C,K]. In the phase-two
experiment, it is still relatively easy to measure the pressure head h(0, t) at the top of
the column and the flux or outflow, K(h)(∂zh(1, t)−1), at the bottom of the column.
Likewise, for h = Ψ2[C,K], we can compute the functions

(3.3) p(t) = h(0, t) and q(t) = K(h)(∂zh(1, t)− 1) for 0 < t < T.

The dependence of p(t) and q(t) on the coefficients C and K will be indicated by
writing (p, q) = Γ · Ψ2[C,K], and this association is called the coefficient-to-data
mapping for the phase-two experiment. The functions (p, q) are viewed as output,
and their properties are determined by and must be deduced from the properties of
the input, particularly the suction s(t). The following lemmas are the analogues of
corresponding lemmas for the phase-one experiment and are needed in order to carry
out the analysis of the inverse problem associated with the phase-two experiment.

Lemma 3.1. For admissible coefficients C and K, let (p, q) = Γ ·Ψ[C,K]. If s(t)
satisfies (3.2), then q(t) defined in (3.3) satisfies

(3.4) qεC[0, t], q(0) = 0, and q(t) < 0 for 0 < t < T.

Proof. Let ϕ(z, t) = s(t) + z−L. Then ∂tϕ(z, t) = s′(t) and ∂zϕ(z, t) = 1. Hence
if h(z, t) solves (3.1), it follows that C(h)∂t(h− ϕ) = ∂z(K(h)∂z(h− ϕ))−C(h)s′(t).
Then w(z, t) = h(z, t)− ϕ(z, t) solves the initial boundary value problem

C(h)∂tw(z, t)− ∂z(K(h)∂zw(z, t)) = −C(h)s′(t) > 0,

w(z, 0) = z − L− (z − L) = 0,

∂zw(0, t) = ∂zh(0, t)−∂zϕ(0, t) = 0, w(1, t) = s(t)−s(t) = 0.

Then the maximum principle can be applied as in the proof of Lemma 1.1 and the
conclusion follows.

Lemma 3.2. For admissible coefficients C and K, let h = Ψ2[C,K]. If s(t)
satisfies (3.2), then ∂zh(z, t)− 1 < 0 almost everywhere in QT .

The proof of this and the next two lemmas are similar to the proofs of Lemmas
1.2, 1.3, and 1.4 and are omitted.

Lemma 3.3. For admissible coefficients C and K, let h = Ψ2[C,K]. If s(t)
satisfies (3.2), then ∂th(z, t) < 0 almost everywhere in QT .

Lemma 3.4. For admissible coefficients C and K, let (p, q) = Γ · Ψ2[C,K]. If
s(t) satisfies (3.2), then h = Ψ2[C,K] satisfies

for each τ, 0 < τ ≤ T, s(τ) + z − L < h(z, t) < z − L for 0 ≤ z ≤ L, 0 ≤ t ≤ τ

and p(t) = h(0, t) satisfies

(3.5) pεC1[0, T ], p(0) = −L, and p′(t) < 0 for 0 < t < T.

Theorem 3.5. For admissible coefficients Cj and Kj, j = 1, 2, let hj(z, t) =
Ψ2[Cj ,Kj ] and suppose s(t) satisfies (3.2). Let (pj , qj) = Γ · Ψ2[Cj ,Kj ], j = 1, 2.
Then for any τ , 0 < τ ≤ T .∫ τ

0

∆p(t)ϑ(t) dt =

∫∫
Qτ

[∆K(h2)(∂zh2(z, t)− 1)∂zϕ1 + ∆C(h2)ϕ1∂th2] dz dt,(3.6)

∫ τ

0

∆q(t)ρ(t) dt =

∫∫
Qτ

[∆K(h2)(∂zh2(z, t)− 1)∂zϕ2 + ∆C(h2)ϕ2∂th2] dz dt,(3.7)
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where ϕ1 = Ψ∗[ϑ, 0] and ϕ2 = Ψ∗[0, ρ], respectively.

The proof of this theorem is nearly identical to the proof of Theorem 1.5 and is
omitted.

Note that conditions (3.4) and (3.5) are necessary conditions for (p, q) to be a
data pair generated from the phase-two experiment by admissible coefficients C and
K. A function pair (p, q) as defined in (1.3) will be said to be a phase-two admissible
data pair if they satisfy conditions (3.4) and (3.5), respectively.

4. The phase-two inverse problem. In the phase-one experiment the data
p(t) and q(t) measured over the interval [0, T ] are used to determine the coefficients
C and K on the interval [−L, 0]. In the phase-two experiment, the coefficients are
assumed to be known on [−L, 0], and a new experiment is conducted, applying suction
to the column and again measuring p(t) and q(t) for a period of time. The time interval
for the phase-two experiment will also be denoted by [0, T ], although T in phase two
does not need to have a connection to the T for phase one.

In Lemma 3.1, it was shown that h = Ψ2[C,K] satisfies h(z, t) > s(t) + z − L in
QT . Then the domain of the coefficient-to-data mapping consists of pairs of functions
that are continuous on the interval [h∗, 0] for h∗ = −L + s(T ). The range of the
coefficient-to-data mapping consists of pairs of functions that are continuous on [0, T ].
Thus while the phase-one inverse problem determines the coefficients C and K on the
interval [−L, 0], for s(t) satisfying (3.2), the phase-two inverse problem will extend
knowledge of the unknown coefficients to the interval [−L+ p(T ),−L].

The next theorems are the phase-two analogues of Theorems 2.1, 2.3, and 2.4.
The proofs of these theorems are virtually the same as the proofs of the phase-one
theorems and are therefore omitted.

Theorem 4.1. For admissible coefficients Cj and Kj, j = 1, 2, let hj(z, t) =
Ψ2[Cj ,Kj ] and suppose s(t) satisfies (3.2). Let (pj , qj) = Γ · Ψ2[Cj ,Kj ], j = 1, 2. If
C1, C2 and K1,K2 are distinguishable on the interval [h∗, 0], then p1, p2 and q1, q2 are
not identical on [0, T ].

Theorem 4.1 asserts that distinguishable coefficients cannot produce phase-two
experimental data pairs that are identical. Then the coefficient pairs are uniquely
determined by the data collected for the phase-two experiment. The theorem may also
be interpreted as asserting that the coefficient-to-data mapping (p, q) = Γ ·Ψ2[C,K]
is an injection from a class of distinguishable functions into the set of admissible data.
The injectivity of this mapping implies invertibility in the sense of Theorem 2.3.

Theorem 4.2. Let [p(t), q(t)] denote a phase-two admissible data pair on [0, T ],
and let {0 = t0 < · · · < tn = T} denote an arbitrary partition of the interval [0, T ].
Suppose parameter pairs {(ξ0, κ0), . . . , (ξn, κn)} have been generated using the algo-
rithm described in section 2 (modified to apply to the phase-two experiment) and that
(p∗, q∗) = Γ ·Ψ1[C∗,K∗] for C∗ = Pn[ξ0, . . . , ξn] and K∗ = Pn[κ0, . . . , κn]. Then

(a)
∫ tm
0

(p(t)− p∗(t))ϑm(t) dt =
∫ tm
0

(q(t)− q∗(t))ρm(t) dt = 0,m = 1, . . . , n;

(b) if p, qεC2[tm−1, tm] for m = 1, . . . n, then |p(tm) − p∗(tm)| ≤ ν∆t2 and
|q(tm) − q∗(tm)| ≤ ν∆t2 for m = 1, . . . , n for a positive constant ν depending on p
and q and ∆t = max(tm − tm−1).

Note that for each m, ξm, κm represent approximations to the values C(−1 + sm)
and K(−1 + sm), respectively. Thus ξ0 and κ0 are the last values obtained in the
phase-one experiment and are therefore known for the phase-two experiment.

Theorem 4.3. Let (p, q) = Γ ·Ψ1[C,K] for (C,K) an admissible coefficient pair,
and let {0 = t0 < · · · < tn = T} denote an arbitrary partition of the interval [0, T ].
Suppose that parameter pairs {(ξ0, κ0), . . . , (ξn, κn)} have been generated using the al-
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gorithm described previously and that (p∗, q∗) = Γ ·Ψ1[C∗,K∗] for C∗ = Pn[ξ0, . . . , ξn]
and K∗ = Pn[κ0, . . . , κn]. If C,KεC2[pi, pi−1] for 1 ≤ i ≤ n, then

|ξi − C(pi)| ≤ ν∆p and |κk −K(pi)| ≤ ν∆p for 1 ≤ i ≤ n

for a positive constant ν depending on C and K and for ∆p = max{pi−1 − pi}.
Theorem 4.3 asserts that by applying suction to one end of a vertical column of

soil, it is possible to extend the interval over which the hydraulic functions C and K
can be determined. The extent of the domain of determination is then limited only
by the experimental capabilities of the suction apparatus.
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1. Introduction. The simplest equation considered in this paper is the follow-
ing:

h2∆u− V (x)u+K(x)|u|p−1u = 0, x ∈ Rn,(1)

where 1 < p < (n + 2)/(n − 2)+ (= ∞ if n = 1, 2) and V (x) and K(x) are positive
smooth functions with V (x) bounded below by a positive constant and K(x) bounded.
We are interested in the existence and concentration behavior of positive ground states
of (1) and its generalization (4) (see below) in the semiclassical limit h→ 0. We are
also interested in finding a necessary condition for location of concentration of positive
bound states of these equations. A ground state of (1) is a solution of the equation
which has the least energy,

1

2

∫
Rn

(h2|∇u|2 + V (x)u2) dx− 1

p+ 1

∫
Rn

K(x)|u|p+1 dx,

among all nontrivial solutions of (1). A bound state is a solution with finite but not
necessarily least energy.

Equation (1) arises at least in the study of standing-wave solutions of the following
time-dependent nonlinear Schrödinger equation:

ih
∂ψ

∂t
= −h2∆ψ + V (x)ψ −K(x)|ψ|p−1ψ, x ∈ Rn.

It also provides standing-wave solutions of the Klein–Gorden equations. See [1] and
the references therein for more background. Many authors [1], [2], [3], [4], [5], [6], [7],
[8], [9], [10], [11], [13], [16], [17], [18], [19], [20] have worked on equation (1) in various
forms and obtained numerous results on existence, uniqueness, and radial symmetry
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of solutions. Of particular interest in this paper is the following existence result of
Rabinowitz [19]: if

K(x) ≡ 1 and lim inf
|x|→∞

V (x) > inf
x∈Rn

V (x) > 0,(2)

then for small h, (1) has a positive ground state. Subsequently, Wang [22] addressed
the concentration problem of bound states of (1). For ground states, he proved that
under condition (2), any sequence of ground states contains a subsequence which
concentrates at a global minimum of V (x) as h tends to zero. Moreover, if we hold
V (x) constant instead of K(x), by essentially the same proof as in [22], we can show
that ground states concentrate at a global maximum of K(x). When neither V (x) nor
K(x) is constant, there would presumably be competition between V (x) and K(x):
each would try to attract ground states to their minimum and maximum points,
respectively. Now some natural questions arise: Do ground states still concentrate?
If so, where? These questions are the primary motivation of this paper.

By variational techniques as developed by Rabinowitz [19] and Wang [22], we
show that under certain conditions on the potential functions V (x) and K(x), positive
ground states still exist for small h and as h approaches zero, they concentrate at a
point on the “middle ground” between “valleys” of V (x) and “peaks” of K(x). More
precisely, we prove that if

lim inf|x|→∞ V (2p+2+n−np)/(2p−2)(x)

lim sup|x|→∞K2/(p−1)(x)
> inf
x∈Rn

V (2p+2+n−np)/(2p−2)(x)

K2/(p−1)(x)
,(3)

then positive ground state solutions of (1) exist for small positive h and concentrate
at a global minimum point of g(x) := V (2p+2+n−np)/(2p−2)(x)/K2/(p−1)(x) as h ap-
proaches zero (see Corollaries 2.9 and 3.2). We remark that if (3) does not hold, even
the existence is in question. However, if we know that a sequence {uhk} of positive
ground states of (1) exists with each having a local maximum point moving toward
a point x0 as hk → 0, then x0 is a global minimum point of g(x) and {uhk} concen-
trates at x0. Consequently, in the even worse scenario in which g(x) does not have
a minimum point, the positive ground states, if any, do not concentrate as h shrinks
(they move off to infinity).

To gain further insight into the effect of potential functions on the concentration
process, we also consider the following generalization of (1):

h2∆u− V (x)u+K(x)|u|p−1u+Q(x)|u|q−1u = 0, x ∈ Rn,(4)

where 1 < q < p < (n+ 2)/(n− 2)+ and Q(x) is a bounded smooth function that is
allowed to change its sign. When V (∞) =∞, a result in [19] implies the existence of
ground states of (4) for any h > 0. In other cases, we cannot find any result in the
literature that can be directly applied to obtain even the existence of ground states.
The ground-energy function C(s), which is defined to be the least (or ground) energy
associated with

∆u− V (s)u+K(s)|u|p−1u+Q(s)|u|q−1u = 0, x ∈ Rn,(5)

where s ∈ Rn is regarded as a parameter instead of an independent variable, plays a
central role in our results and analysis. (See section 2 for the precise definition.) Let
c∞ be the ground energy associated with

∆u− V∞u+K∞|u|p−1u+Q∞|u|q−1u = 0, x ∈ Rn,
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where

V∞ = lim inf
|s|→∞

V (s), K∞ = lim sup
|s|→∞

K(s), Q∞ = lim sup
|s|→∞

Q(s).

We prove that if

c∞ > inf
s∈Rn

C (s),

then for small h (4) has a positive ground state uh and as h shrinks to zero, after
passing to a subsequence uh concentrates at a global minimum point of C(s) (see
Theorems 2.7 and 3.1). From this we will obtain some concrete sufficient conditions
(explicitly expressed in terms of the potential functions) for the existence of positive
ground states of (4) with small h—see Corollary 2.8. As will be seen, in the case of (1),
g(s) is just a positive constant multiple of the ground-energy function C(s) (see (34)).
Thus the results for (1) described above are consequences of these general results for
(4). However, unlike (1), in the general case (4), we do not (and it is impossible to)
have an explicit formula for C(s), and hence we cannot explicitly express the location
of concentration of ground states in terms of the potential functions V (x), K(x), and
Q(x).

In this paper, we also provide a necessary condition for location of concentration
of positive bound states (not necessarily with least energy) of (4). We prove that a
point x0 at which a sequence of positive bound states concentrates as h → 0 must
be a critical point of the ground-energy function C(s), provided that (5) with s = x0

has at most one positive decaying solution (up to translations); in the special case
(1), this means that the concentration points of positive bound states can only be
critical points of g(x) := V (2p+2+n−np)/(2p−2)(x)/K2/(p−1)(x). (See Theorem 4.1 for
the precise statement as well as some specific conditions that ensure the uniqueness of
aforementioned solutions of (5).) This generalizes the corresponding result in Wang
[22], where the case K(x) ≡ 1 is considered. This is also in the converse direction of
the following result of Floer, Weinstein, and Oh [6], [16], [17]: for small h, (1) with
K(x) ≡ 1 has a positive “multibump” bound state which concentrates at any given
finite set of nondegenerate critical points of V (x) under the condition, say, that V (x)
is bounded. (See [22] for a remark on this condition.)

We mention that in Zeng’s thesis [24], for equation (1), an existence result in the
spirit of [6], [16], and [17] is established under a technical nondegeneracy condition. In
particular, if both V (x) and K(x) share a common critical point x0 (so x0 is a critical
point of g(x)) and if none of (∂2/∂x2

i )g (x0), i = 1, 2, . . . , n, is zero, then for small
h, (1) has a positive bound state concentrating at x0 as h → 0. In this connection,
after our work was completed, we received an interesting preprint by Gui, “Existence
of multi-bump solutions for nonlinear Schrödinger equations via variational method,”
which deals with the equation

h2∆u− V (x)u+ f(u) = 0, x ∈ Rn.(6)

Gui proves the existence of bound states concentrating at finitely many local (not nec-
essarily strict) minimum points of V (x). However, he does not consider the competing
potential K(x). Rabinowitz later informed us that, in his thesis, Thandi proved the
existence of solutions of (6) with infinitely many bumps and that Del Pino and Felmer
also obtained existence results similar to Gui’s independently.

We remind the reader that throughout this paper, we always make the following
assumptions:
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(H1): V (x), K(x), and Q(x) are C1 smooth in Rn.
(H2): infx∈Rn V (x) = V > 0, and both K(x) and Q(x) are bounded in Rn, with

K(x) > 0 and Q(x) allowed to change sign.

2. Existence of ground states.

2.1. Preliminaries. We start by transforming equation (4). Let v(x) = u(hx).
Then equation (4) becomes

∆v(x)− V (hx)v +K(hx)|v|p−1v +Q(hx)|v|q−1v = 0, x ∈ Rn.(7)

Since equations (4) and (7) are equivalent, we shall thereafter focus on equation (7).
Let Eh be the Hilbert subspace of v ∈ H1(Rn) under the norm

‖v‖2Eh :=

∫
Rn

(|∇v|2 + V (hx)v2) dx < +∞.

Define the energy functional associated with (7) by

Ih(v) :=
1

2

∫
Rn

(|∇v|2 + V (hx)v2) dx− 1

p+ 1

∫
Rn

K(hx)|v|p+1 dx

− 1

q + 1

∫
Rn

Q(hx)|v|q+1 dx(8)

for v ∈ Eh and h > 0, and define the solution manifold of (7) by

Mh :=

{
v ∈ Eh\{0} :

∫
Rn

(|∇v|2 + V (hx)v2) dx =

∫
Rn

K(hx)|v|p+1 dx

+

∫
Rn

Q(hx)|v|q+1 dx

}
.(9)

(Any nontrivial solution of (7) in H1(Rn) belongs to Mh; hence we have the name for
Mh.) A ground state of (7) is defined as a solution of (7) which minimizes Ih(v) on
Mh. The ground energy associated with (7) is defined as

ch := inf
v∈Mh

Ih(v).(10)

By the Sobolev imbedding theorem, it is easy to see that the ground energy ch is
finite. It is also routine to show that (i) any minimizer of Ih on Mh is a solution of
(7); (ii) any minimizer is of one sign and since Ih is even, we can always take it to
be positive. Thus to show that (7) has a positive ground state, we only need to show
that Ih has a minimizer over Mh.

We now show that these minimizers can be found through a minimax process.
Let

Γh := { η ∈ C([0, 1], Eh) : η(0) = 0, η(1) 6≡ 0, Ih(η(1)) ≤ 0 }(11)

and define

c∗h := inf
η∈Γh

max
0≤t≤1

Ih(η(t)).(12)

Thus c∗h is the mountain-pass minimax value associated with Ih.
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Define yet another minimax value,

c∗∗h := inf
v∈Eh\{0}

max
t≥0

Ih(tv).(13)

Lemma 2.1. ch = c∗h = c∗∗h .
Remark. This kind of result has already been observed [14], [19] for equations

which do not include our (7) or (4) when Q is negative. From this result, we see that
to show the existence of ground states of (7), we just need to prove that the minimax
value given by (12) and (13) is a critical value of Ih, though we shall not strictly follow
this course when proving existence in the future.

Proof. We first show that ch = c∗∗h . This will follow if we can show that for
any v ∈ Eh\{0}, the ray Rt = {tv : t ≥ 0} intersects the solution manifold Mh once
and only once at θv (θ > 0), where Ih(tv), t ≥ 0, achieves its maximum. A direct
computation shows that critical points of the function f(t) := Ih(tv) occur at and
only at the intersections of the ray Rt and Mh. It is easy to see that the ray Rt
intersects Mh. Suppose this occurs first at t = t0 > 0. Let

g(t) = Atp−1 +Btq−1,(14)

where A =
∫
Rn

K(hx)|v|p+1 dx and B =
∫
Rn

Q(hx)|v|q+1 dx. Then∫
Rn

(|∇v|2 + V (hx)v2) dx = g(t0).

On the other hand, it is elementary to show that

g(t) is strictly increasing on any interval where g(t) > 0.(15)

Thus g(t) is strictly increasing for t ≥ t0, and hence the ray Rt intersects Mh only
once. We have shown that ch = c∗∗h .

It remains to show that ch = c∗h. The inequality c∗h ≤ c∗∗h = ch is true because for
each nonzero v ∈ Eh, there exists a segment of the half-line {tv : t ≥ 0} that contains
the maximum point of Ih(tv) and is a path in Γh. Now we show that ch ≤ c∗h.

By the Sobolev embedding theorem, for nonzero v with ‖v‖Eh small,∫
Rn

(|∇v|2 + V (hx)v2) dx >

∫
Rn

K(hx)|v|p+1 dx+

∫
Rn

Q(hx)|v|q+1 dx.(16)

We claim that any path η(t) in Γh crosses Mh. Otherwise, by the continuity of η(t),
inequality (16) still holds true when v is replaced by each nonzero η(t) for t ∈ [0, 1].
Recall that η(1) is nonzero. Then

Ih(η(1)) =
1

2

∫
Rn

(|∇η|2 + V (hx)η2) dx− 1

p+ 1

∫
Rn

K(hx)|η|p+1 dx

− 1

q + 1

∫
Rn

Q(hx)|η|q+1 dx

>
1

q + 1

∫
Rn

(|∇η|2 + V (hx)η2) dx− 1

p+ 1

∫
Rn

K(hx)|η|p+1 dx

− 1

q + 1

∫
Rn

Q(hx)|η|q+1 dx

≥
(

1

q + 1
− 1

p+ 1

)∫
Rn

K(hx)|η|p+1 dx

> 0.
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The above inequality violates the definition of η(1). Thus η(t) crosses Mh, and hence

max
0≤t≤1

Ih(η(t)) ≥ inf
v∈Mh

Ih(v) = ch.

This completes the proof of Lemma 2.1.
Now we discuss the properties of the ground energy ch given by (10). Denote c1

by c(V,K,Q). The following comparison result is similar to the one in [19].
Lemma 2.2. Suppose that Va(x), Vb(x), Ka(x), Kb(x), Qa(x), and Qb(x) satisfy

our (standing) conditions (H1) and (H2). If

Va ≤ Vb, Ka ≥ Kb, Qa ≥ Qb,(17)

then

c (Va,Ka, Qa) ≤ c (Vb,Kb, Qb).

If, in addition, one of the inequalities in (17) is strict and Vb(x), Kb(x), and Qb(x)
are constant functions, then

c (Va,Ka, Qa) < c (Vb,Kb, Qb).

Proof. Let Ia be the energy functional associated with c (Va,Ka, Qa). Define
other related notation in the obvious way. Note that Eb ⊂ Ea and for any v ∈ Eb,
Ia(v) ≤ Ib(v). Thus by Lemma 2.1,

c (Vb,Kb, Qb) = inf
v∈Eb\{0}

max
t≥0

Ib(tv) ≥ inf
v∈Ea\{0}

max
t≥0

Ia(tv)

= c (Va,Ka, Qa).

Now we prove the second assertion. Since Vb(x), Kb(x), and Qb(x) are constants,
we have that Eb = Ea = H1. Furthermore, it is well known that there exists a ground
state vb ∈ H1 such that c (Vb,Kb, Qb) = Ib(vb). (See, e.g., [19, Theorem 4.23]. We
should mention that condition (f5) in [19] is not satisfied if Qb < 0, but that condition
is used there to show identities like those in our Lemma 2.1.) Now we have

c (Vb,Kb, Qb) = Ib(vb) = max
t≥0

Ib(tvb) > max
t≥0

Ia(tvb)

≥ inf
v∈H1\{0}

max
t≥0

Ia(tv) = c (Va,Ka, Qa).

Here we used Lemma 2.1. This proves Lemma 2.2.
Next, we define the ground-energy function C(s) mentioned in section 1. For each

s ∈ Rn, consider

∆v(x)− V (s)v +K(s)|v|p−1v +Q(s)|v|q−1v = 0, x ∈ Rn.(18)

Let Is be the associated energy functional, i.e.,

Is(v) :=
1

2

∫
Rn

(|∇v|2 + V (s)v2) dx− 1

p+ 1

∫
Rn

K(s)|v|p+1 dx

− 1

q + 1

∫
Rn

Q(s)|v|q+1 dx.(19)
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Define the ground-energy function by

C (s) = inf
v∈Ms

Is(v),(20)

where Ms is the solution manifold of (18) defined as in (9). As mentioned in the
proof of Lemma 2.1, it is well known that for each s ∈ Rn, (18) has a positive ground
state vs(x) (i.e., vs(x) solves (20)). By [7], vs is spherically symmetric about, say, the
origin and is decreasing in r = |x|.

Lemma 2.3.

(i) The ground energy function C(s) is locally Lipschitz continuous in s ∈ Rn.
(ii) Denote by Cli(s) and Cri (s), i = 1, 2, 3, . . . , n, the left and right partial

derivatives of C(s) with respect to ith variable si, respectively. Then they always
exist at all s ∈ Rn and

Cli(s) = sup
vs∈Gs

[
1

2

∂V (s)

∂si

∫
Rn

v2
s(x) dx

− 1

p+ 1

∂K(s)

∂si

∫
Rn

vp+1
s (x) dx− 1

q + 1

∂Q(s)

∂si

∫
Rn

vq+1
s (x) dx

]
,(21)

Cri (s) = inf
vs∈Gs

[
1

2

∂V (s)

∂si

∫
Rn

v2
s(x) dx

− 1

p+ 1

∂K(s)

∂si

∫
Rn

vp+1
s (x) dx− 1

q + 1

∂Q(s)

∂si

∫
Rn

vq+1
s (x) dx

]
,(22)

where i = 1, 2, 3, . . . , n and Gs = the set of all positive (radial) ground states of (18).
(iii) The function C(s) is C1 smooth throughout Rn in any of the following cases:

(a) n = 1; (b) Q(s) ≤ 0 in Rn; (c) 1 < q < p ≤ n/(n− 2) and n > 2.
Remark. In general, by Rademacher’s theorem and (i), C(s) is differentiable

almost everywhere in Rn. Also, if (18) has a unique positive ground state (up to
translations) for each s, then C(s) is C1 smooth. Unfortunately, the uniqueness is
known only in the cases listed in (iii). We point out that if (b) in part (iii) holds at
a point, then all partial derivatives of C(s) exist at that point.

Proof. As discussed in the proof of Lemma 2.1, for any s, t ∈ Rn, there is a
unique positive constant θ(s, t) such that θ(s, t)vt(x) ∈Ms. Thus∫

Rn
(|∇vt(x)|2 + V (s)v2

t (x)) dx

= θp−1(s, t)

∫
Rn

K(s)vp+1
t (x) dx+ θq−1(s, t)

∫
Rn

Q(s)vq+1
t (x) dx(23)

and θ(t, t) = 1. By the implicit-function theorem, θ(s, t) is differentiable with regard
to variable s.

Claim 2.3.1. θ(s, t) is bounded for bounded s and t.
To see this, we first observe that

C(t) = It(vt) =

(
1

2
− 1

q + 1

)∫
Rn

(|∇vt(x)|2 + V (t)v2
t (x)) dx

+

(
1

q + 1
− 1

p+ 1

)∫
Rn

K(t)vp+1
t (x) dx

=

(
1

2
− 1

p+ 1

)∫
Rn

K(t)vp+1
t (x) dx
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+

(
1

2
− 1

q + 1

)∫
Rn

Q(t)vq+1
t (x) dx.(24)

From this, Lemma 2.2, and the Sobolev imbedding theorem, we have that C(t) and
the H1, Lp+1, and Lq+1 norms of vt are bounded for bounded t; moreover, for such
a t, C(t), and the Lp+1 norm of vt are bounded from below by a positive constant.
Now from (23), we see that Claim 2.3.1 is true.

To prove (i), we first note that the gradient with respect to variable s of

Is(θ(s, t)vt(x))

=
1

2
θ2(s, t)

∫
Rn

(|∇vt(x)|2 + V (s)v2
t (x)) dx

− 1

p+ 1
θp+1(s, t)

∫
Rn

K(s)vp+1
t (x) dx− 1

q + 1
θq+1(s, t)

∫
Rn

Q(s)vq+1
t (x) dx.

is given by

∇s Is(θ(s, t)vt)

=
1

2
θ2(s, t)∇sV (s)

∫
Rn

v2
t (x) dx− 1

p+ 1
θp+1(s, t)∇sK(s)

∫
Rn

vp+1
t (x) dx

− 1

q + 1
θq+1(s, t)∇sQ(s)

∫
Rn

vq+1
t (x) dx

+∇sθ(s, t)
[
θ2(s, t)

∫
Rn

(|∇vt(x)|2 + V (s)v2
t (x)) dx

− θp+1(s, t)

∫
Rn

K(s)vp+1
t (x) dx− θq+1(s, t)

∫
Rn

Q(s)vq+1
t (x) dx

]
/θ(s, t)

=
1

2
θ2(s, t)∇sV (s)

∫
Rn

v2
t (x) dx− 1

p+ 1
θp+1(s, t)∇sK(s)

∫
Rn

vp+1
t (x) dx

− 1

q + 1
θq+1(s, t)∇sQ(s)

∫
Rn

vq+1
t (x) dx(25)

because θ(s, t)vt(x) ∈Ms. Thus by Claim 2.3.1, for any R > 0, there exists a constant
M such that

|∇s Is(θ(s, t)vt)| ≤ M, |s|, |t| ≤ R.(26)

From this it follows that for any |s1|, |s2| ≤ R,

C(s1)− C(s2) ≤ Is1(θ(s1, s2)vs2)− Is2(vs2)

= (s1 − s2) · ∇s Is(θ(s, s2)vs2(x))
∣∣
s=ξ∈[s1, s2]

≤M |s1 − s2|,

where [s1, s2] is the segment connecting s1 and s2.
Similarly, we can show

C(s1)− C(s2) ≥ −M |s1 − s2|.

This finishes the proof of part (i) of Lemma 2.3.
Claim 2.3.2. For any sequence {sk} → s0, there exists a subsequence (still

denoted by {sk}) such that vsk → w0 strongly in H1, where w0 is a positive ground
state of (18) with s = s0.
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As noted earlier, ‖vs‖H1 is bounded for bounded s. Therefore, by the standard
elliptic regularity theory, we have, after passing to a subsequence,

vsk → some w0 weakly in H1 and strongly in C2
loc,(27)

where w0 ≥ 0 satisfies (18) with s = s0.
Since

−V (sk)vsk(0) +K(sk)|vsk |p−1vsk(0) +Q(sk)|vsk |q−1vsk(0) = −∆vsk(0) ≥ 0

(recall that vs(x) is radially decreasing), we have

K(s0)|w0|p−1(0) +Q(s0)|w0|q−1(0) ≥ V (s0) > 0.

Thus w0 6≡ 0, and hence by the strong-maximum principle, w0(x) > 0. Since it
belongs to H1 space, it is easy to show that w0(x) → 0 as x → ∞. From this, (27),
and the fact that vs(x) is radially decreasing, we obtain that for any small δ > 0,
there exists a constant ρ > 0 such that

|vsk(x)| < δ for |x| > ρ and k = 1, 2, . . . .(28)

Now take a sufficiently small δ such that

V − ‖K‖L∞ δp−1 − ‖Q‖L∞ δq−1 >
1

2
V ,

where V = inf V (x). Then by (18) and (28), vsk is a subsolution of

∆w − 1

2
V w = 0 for |x| > ρ.

By the comparison principle,

|vsk(x)| ≤ δ exp{−C1(|x| − ρ)} for |x| ≥ ρ,(29)

where C1 is a positive constant independent of k. Moreover, by virtue of the elliptic
interior estimates, the gradient of vsk(x) also decays exponentially fast at∞ uniformly
with respect to k. Combining these estimates for vsk(x) with (27), we deduce that
(ρ′ > ρ)

‖vsk − w0‖2H1(Rn) = ‖vsk − w0‖2H1(Bρ′ )
+

∫
Bc
ρ′

(|∇vsk −∇w0|2 + |vsk − w0|2) dx

converges to zero as k →∞. From this and the continuity of C(s) (already proved),
it follows that w0 is a ground state of (18) with s = s0. This completes the proof of
Claim 2.3.2.

Now we proceed to prove part (ii). To save notation, we assume without loss of
generality that s ∈ R1, i.e., n = 1. For the same reason, we shall prove (21) and (22)
only at s = 0.

For any v0 ∈ G0, the set of all positive (radial) ground states of (18) with s = 0,
and for any r > 0, we have

C(r)− C(0) ≤ Ir(θ(r, 0)v0) − I0(v0)

= r∇s Is(θ(s, 0)v0)
∣∣
s=ξ∈[0, r]

.
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This, (25), and the fact that θ(s, 0)→ θ(0, 0) = 1 as s→ 0 imply that

lim sup
r→0+

C(r)− C(0)

r
≤ inf
v0∈G0

[
1

2
V ′(0)

∫
v2

0(x) dx

− 1

p+ 1
K ′(0)

∫
vp+1

0 (x) dx− 1

q + 1
Q′(0)

∫
vq+1

0 (x) dx

]
.(30)

On the other hand,

C(r)− C(0) ≥ Ir(θ(r, r)vr) − I0(θ(0, r)vr)

= r∇s Is(θ(s, r)vr)
∣∣
s=ξ∈[0, r]

.

From this, Claim 2.3.2, and (25), we have

lim inf
r→0+

C(r)− C(0)

r
≥ right-hand side of (30).

Thus (22) is true. (21) follows similarly.
To prove part (iii), we notice that in all cases (a)–(c), we have the uniqueness

(up to translations) of positive ground states of (18) (see [1] when n = 1 and [2],
[9], and [15, Appendix C] in cases (b) and (c)), and consequently the right and left
partial derivatives of C(s) are equal at all s. Furthermore, by Claim 2.3.2, the partial
derivatives given by (21) or (22) are continuous in s. This completes the proof of
Lemma 2.3.

Using the arguments in the proof of Lemma 2.3(i), we easily see that the following
is true.

Lemma 2.4. If V , K, and Q are constant functions, c(V, K, Q) (defined before
the statement of Lemma 2.2) depends continuously on them.

We now present an expression for C(s) which, in particular, enables us to express
C(s) explicitly in terms of V (s) and K(s) in the case where Q(s) = 0. Substituting
v(x) = λw(µx) with µ2 = V (s), λ = [V (s)/K(s)]1/(p−1), and

α(s) =
Q(s)

V
p−q
p−1 (s)K

q−1
p−1 (s)

,(31)

into (18), we have

∆w(x)− w + |w|p−1w + α(s)|w|q−1w = 0.(32)

Lemma 2.5. Let cα(s) := c (1, 1, α(s)), i.e., the ground energy associated with
(32). Then cα(s) is a decreasing function of α(s) and

C (s) =
V

p+1
p−1−

n
2 (s)

K
p+1
p−1−1(s)

cα(s).(33)

In particular, if Q(s) = 0, then

C (s) =

(
1

2
− 1

p+ 1

)
V

p+1
p−1−

n
2 (s)

K
p+1
p−1−1(s)

∫
Rn

Up+1(x) dx,(34)

where U(x) is the unique positive ground state (up to translation) of (32) with α = 0.
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Proof. The monotone property of cα(s) follows from Lemma 2.2.
Since (18) and (32) are related as indicated above, by direct computations, we

obtain (33) and (34).
We close this subsection by a result which will be very important to the existence

and concentration results.
Lemma 2.6. There exists positive constant c such that ch > c. On the other

hand,

lim sup
h→0+

ch ≤ inf
s∈Rn

C (s).

Proof. By Lemma 2.2, ch ≥ c(inf V, ‖K‖L∞ , ‖Q‖L∞), which is positive (as can
be seen from an expression like (24)).

The remaining part of lemma can be proved by choosing good test functions. See
the proof of Lemma 2.2 in [22] for a similar situation.

2.2. Existence results. Define

V∞ = lim inf
|s|→∞

V (s), K∞ = lim sup
|s|→∞

K(s), Q∞ = lim sup
|s|→∞

Q(s).(35)

Let c∞ := c (V∞,K∞, Q∞). If V∞ = +∞ , define c∞ := +∞ (see (33)).
Theorem 2.7. If

c∞ > inf
s∈Rn

C (s),(36)

then for small h > 0, equation (7) (and hence (4)) has a positive ground-state solu-
tion.

Proof. By Lemma 2.1, we can find a sequence {um} such that ‖um‖Eh = 1 and

max
t≥0

Ih(tum)→ ch as m→∞.

By [12, Theorem 4.3] and Lemma 2.1 again, there exist a sequence {wm} in Eh and
a sequence {ξm} such that

Ih(wm)→ ch, I ′h(wm)→ 0 and ‖wm − ξmum‖Eh → 0.(37)

(The fact that [12, Theorem 4.3] applies in situations like ours was pointed out in
[19].)

Claim 2.7.1. |ξm| has a positive lower bound.
Otherwise, since {um} is bounded in Eh, we have, after passing to a subsequence

if necessary, wm → 0 in Eh. Hence Ih(wm) → 0 = ch, which contradicts Lemma 2.6.
This proves Claim 2.7.1.

By (37), for large m,

ch + 1 + ‖wm‖Eh ≥ Ih(wm)− 1

q + 1
I ′h(wm)wm

≥
(

1

2
− 1

q + 1

)
‖wm‖2Eh .

It follows that {wm} is bounded in Eh. Hence by (37), {ξm} is bounded. Further-
more, along a subsequence if necessary, wm → some w0 weakly in Eh, strongly in
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Lτloc(Rn), 1 < τ < 2n/(n− 2)+, and almost everywhere in Rn; by (37) again, w0 is a
weak and hence classical solution of equation (7).

If w0 6≡ 0, then w0 ∈Mh. By Fatou’s lemma,

ch = lim
m→∞

(
Ih(wm)− 1

q + 1
I ′h(wm)wm

)
= lim
m→∞

[(
1

q + 1
− 1

p+ 1

)∫
Rn

K(hx)|wm|p+1 dx+

(
1

2
− 1

q + 1

)
‖wm‖2Eh

]
≥
(

1

q + 1
− 1

p+ 1

)∫
Rn

K(hx)|w0|p+1 dx+

(
1

2
− 1

q + 1

)
‖w0‖2Eh

= Ih(w0) ≥ ch.

This implies that Ih(w0) = ch and hence |w0| is a positive ground state of (7), and
we are done.

Now we show that w0 6≡ 0 for small h. Otherwise,

wm → 0 in Lτloc(Rn), 1 < τ <
2n

(n− 2)+
.(38)

Claim 2.7.2.
∫
Rn
|um|p+1 dx has a positive lower bound.

Otherwise, by passing to a subsequence if necessary and by Hölder’s inequality,
we have that the Lp+1 and Lq+1 norms of um converge to 0 as m→∞. Thus this is
also true for wm by (37) and the boundedness of ξm. Now we are led to

ch = lim
m→∞

[
Ih(wm)− 1

2
I ′h(wm)wm

]
= lim
m→∞

∫
Rn

[(
1

2
− 1

p+ 1

)
K(hx)|wm|p+1 +

(
1

2
− 1

q + 1

)
Q(hx)|wm|q+1

]
dx

≤ lim
m→∞

[(
1

2
− 1

p+ 1

)
‖K‖L∞

∫
Rn
|wm|p+1 dx

+

(
1

2
− 1

q + 1

)
‖Q‖L∞

∫
Rn
|wm|q+1 dx

]
= 0.

This contradicts Lemma 2.6 and proves Claim 2.7.2.
By assumption (36) and Lemma 2.4, we can choose ε > 0 so small that

cε := c (V∞ − ε,K∞ + ε,Q∞ + ε) > inf
s∈Rn

C (s)(39)

Take a constant ρ sufficiently large such that for |x| > ρ,

V (x) > V∞ − ε, K(x) < K∞ + ε, Q(x) < Q∞ + ε.(40)

Let M ε denote the solution manifold for the equation

∆v − (V∞ − ε)v + (K∞ + ε)|v|p−1v + (Q∞ + ε)|v|q−1v = 0, x ∈ Rn.(41)

From the proof of Lemma 2.1, there exists αm > 0 such that αmum ∈M ε. It is easy
to see that for some κ > 0 independent of m,

αp+1
m

∫
Rn

(K∞ + ε)|um|p+1 dx+ αq+1
m

∫
Rn

(Q∞ + ε)|um|q+1 dx
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= α2
m

∫
Rn

(|∇um|2 + (V∞ − ε)|um|2) dx

≤ κα2
m‖um‖2Eh = κα2

m.

This and Claim 2.7.2 imply the boundedness of αm.
Now observe that by (40),

ch = lim
m→∞

max
t≥0

Ih(tum)

≥ lim sup
m→∞

Ih(αmum)

= lim sup
m→∞

[
1

2

∫
Rn

(|∇(αmum)|2 + V (hx)(αmum)2) dx

− 1

p+ 1

∫
Rn

K(hx)|αmum|p+1 dx− 1

q + 1

∫
Rn

Q(hx)|αmum|q+1 dx

]
≥ lim sup

m→∞

[
1

2

∫
Rn

(|∇(αmum)|2 + (V∞ − ε)(αmvm)2) dx

− 1

p+ 1

∫
Rn

(K∞ + ε)|αmvm|p+1 dx− 1

q + 1

∫
Rn

(Q∞ + ε)|αmvm|q+1 dx

+
1

2

∫
Bρ/h

(V (hx)− (V∞ − ε))(αmum)2 dx

− 1

p+ 1

∫
Bρ/h

(K(hx)− (K∞ + ε))|αmum|p+1 dx

− 1

q + 1

∫
Bρ/h

(Q(hx)− (Q∞ + ε))|αmum|q+1 dx

]
,(42)

where Bρ/h is the ball in Rn centered at 0 with radius ρ/h.
On the other hand, by the Sobolev embedding theorem, for 1 < τ < 2n/(n−2)+,

‖wm − ξmum‖Lτ ≤ C(n, τ)‖wm − ξmum‖Eh → 0.

Therefore, by Claim 2.7.1 and (38), we have that ‖um‖Lτ (Bρ/h) → 0 as m → ∞.
This fact, together with (42) and the boundedness of αm, implies ch ≥ cε, which is
impossible for small h according to Lemma 2.6 and (39).

The following result gives several sufficient conditions for existence which are more
specific than condition (36).

Corollary 2.8. If one of the following hypotheses holds true, then for small h,
equation (7) (and hence (4)) has a positive ground-state solution. (Recall that V∞,
K∞, and Q∞ are defined in (35).)

1. V∞ = supx∈Rn V (x), K∞ = infx∈Rn K(x), and Q∞ = infx∈Rn Q(x).
2. There exists a point s0 ∈ Rn such that

V∞ ≥ V (s0), K∞ ≤ K(s0), and Q∞ ≤ Q(s0),

with one of the above inequalities being strict.
3. There exists a point s0 ∈ Rn such that

V
(2p+2+n−np)/(2p−2)
∞

K
2/(p−1)
∞

≥ V (2p+2+n−np)/(2p−2)(s0)

K2/(p−1)(s0)
,

Q∞

V
(p−q)/(p−1)
∞ K

(q−1)/(p−1)
∞

≤ Q(s0)

V (p−q)/(p−1)(s0)K(q−1)/(p−1)(s0)
,
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with one of the above inequalities being strict.
4. K∞ = 0 and Q∞ < 0. In this case, h need not be small.
Remark. If V∞ = +∞, then it is already proved in [19, Theorem 1.7] that (4)

has a positive ground state for every h > 0. See also a recent preprint by Bartsch
and (Z. Q.) Wang, “Existence and multiplicity results for some superlinear elliptic
problems on Rn,” which weakens this condition. However, our result here is not
covered by [19] or any other papers to our knowledge.

Proof. By using Lemmas 2.2 and 2.5, it is easy to verify that each of the conditions
1–3 is sufficient to guarantee that either c∞ > infs∈Rn C (s) or V (x), K(x), and Q(x)
are all constant functions. The desired existence follows either from Theorem 2.7 or,
in the case where V (x), K(x), and Q(x) are constant functions, from [20, Theorem
4.23].

Under condition 4, note that by Lemma 2.2, cα(s) ≥ c (1, 1, 0) > 0 if |s| is suf-
ficiently large. That is, cα(s) has a positive lower bound. Then (33) implies that
c∞ = +∞. Replacing every V∞ in the proof of Theorem 2.7 by a large number, we
see that (4) has a positive ground state for every h.

In the particular case of equation (1), i.e., Q(x) ≡ 0 in equation (4), Corollary
2.8 immediately implies the following.

Corollary 2.9. If

lim inf |x|→∞ V (2p+2+n−np)/(2p−2)(x)

lim sup|x|→∞K2/(p−1)(x)
> inf
x∈Rn

V (2p+2+n−np)/(2p−2)(x)

K2/(p−1)(x)
,(43)

then for small h, equation (1) has a positive ground-state solution.

3. Concentration of ground states. In this and the following sections, vh is
always referred to a positive ground state of (7), and uh(x) := vh(x/h) is always a
positive ground state of (4). We shall always assume that they are related in this way.

Theorem 3.1. Under condition (36), for every sequence {h′k} → 0+, there exists
a subsequence {hk} such that a sequence of positive ground states {uhk(x)} of (4)
concentrates at a global minimum point x0 of C (s) in the following sense: for each
small positive hk, uhk(x) has a unique maximum point xk with limhk→0+ xk = x0;
moreover, for each positive δ and large k,

max
|x−x0|≤δ

uhk(x) > C1(44)

and

uhk(x) ≤ C2

∣∣∣∣x− xkhk

∣∣∣∣
1−n

2

exp

(
−V

1
2

∣∣∣∣x− xkhk

∣∣∣∣) for x ∈ Rn,(45)

where C1 and C2 depend only on n, p, q, V := inf V , K̂ := supK, and Q̂ := supQ.
As an immediate consequence of this and Lemma 2.5, we have the following result.
Corollary 3.2. Assume (43). For every sequence {h′k} → 0+, there exists

a subsequence {hk} such that a sequence of positive ground states {uhk(x)} of (1)
concentrates at a global minimum point x0 of

g(x) :=
V (2p+2+n−np)/(2p−2)(x)

K2/(p−1)(x)

in the sense specified in the statement of Theorem 3.1.



CONCENTRATION OF NONLINEAR SCHRÖDINGER EQUATIONS 647

The proof of this theorem will be lengthy but will be along the main lines of
the proof of the corresponding result in [22]. We shall first show that there exists a
sequence of points {yhk} in Rn such that (i) most of the “mass” of vhk is contained in
a ball (of fixed size) centered at yhk and (ii) hkyhk is bounded. This will be done in
Lemmas 3.3 and 3.4. Then in Lemma 3.5, we show that (i) any limit point of hkyhk
is a global minimum point of the ground-energy function C(s) and (ii) wk(x) :=
vhk(x + yhk) = uhk(hkx + hkyhk) converges in H1(Rn). After finishing these steps,
the theorem will follow from modifying the arguments in the proof of [22, Theorem
2.1] (which is from (2.15) to the end in that paper). We shall not give the details of
the easy modifications.

Now we proceed to prepare the first of these lemmas. Observe that for any v on
the solution manifold Mh,

Ih(v) =

(
1

2
− 1

q + 1

)∫
Rn

(|∇v|2 + V (hx)v2) dx

+

(
1

q + 1
− 1

p+ 1

)∫
Rn

K(hx)|v|p+1 dx.(46)

Define a measure µh by

µh(Ω) =

∫
Ω

[(
1

2
− 1

q + 1

)
(|∇vh|2 + V (hx)v2

h) +

(
1

q + 1
− 1

p+ 1

)
K(hx)|vh|p+1

]
dx.

By Lemma 2.6, along a subsequence if necessary, as h→ 0,

µh(Rn) = ch → c̃ ≤ inf
s∈Rn

C (s),(47)

where c̃ ≥ c > 0. By the concentration-compactness lemma of P. L. Lions in [11, part
1] (or see [21]), there are three possibilities:

1 (compactness). There exists a sequence {yhk} that satisfies the following: for
any ε > 0, there is a ρ > 0 such that∫

Bρ(yhk )

dµhk ≥ c̃− ε.(48)

2 (vanishing). There exists a sequence {hk} that tends to zero such that for all
ρ > 0,

lim
hk→0+

sup
y∈Rn

∫
Bρ(y)

dµhk = 0;

3 (dichotomy). There exist a constant c̃′ with 0 < c̃′ < c̃, sequences {ρhk} → ∞
and {yhk} ⊂ Rn, and two nonnegative measures µ1

hk
and µ2

hk
such that

0 ≤ µ1
hk

+ µ2
hk
≤ µhk ,

supp(µ1
hk

) ⊂ Bρhk (yhk), supp(µ2
hk

) ⊂ Bc2ρhk (yhk),

µ1
hk

(Rn)→ c̃′, µ2
hk

(Rn)→ c̃− c̃′.
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Lemma 3.3. Neither vanishing (2) nor dichotomy (3) occurs.
Proof.
Claim 3.3.1. Vanishing (2) does not occur.
Otherwise, vhk → 0 in Lτ for each τ with 2 < τ < 2n/(n − 2)+ (see [11, part 2]

or [4]). Then

0 = lim
k→∞

(
1

2
− 1

p+ 1

)
K̂

∫
Rn

vp+1
hk

dx+

(
1

2
− 1

q + 1

)
Q̂

∫
Rn

vq+1
hk

dx

≥ lim sup
k→∞

(
1

2
− 1

p+ 1

)∫
Rn

K(hkx)vp+1
hk

dx+

(
1

2
− 1

q + 1

)∫
Rn

Q(hkx)vq+1
hk

dx

= lim sup
k→∞

chk ≥ c > 0.

This contradiction proves Claim 3.3.1.
Claim 3.3.2. Dichotomy (3) does not occur.
Otherwise, take φh ∈ C1

0 (Rn) such that φh ≡ 1 in Bρh(yh), φh ≡ 0 in Bc2ρh (yh),
and 0 ≤ φh ≤ 1, |∇φh| ≤ 2/ρh.

Write

vh = φhvh + (1− φh)vh =: v1h + v2h,

where v1h and v2h are defined in the last equality. Then as hk → 0,

Ihk(v1hk) ≥ µhk(Bρhk (yhk)) ≥ µ1
hk

(Bρh(yhk))

= µ1
hk

(Rn) → c̃′(49)

and

Ihk(v2hk) ≥ µhk(Bc2ρhk
(yhk)) ≥ µ2

hk
(Bc2ρhk

(yhk))

= µ2
hk

(Rn) → c̃− c̃′.(50)

Let Ωh = B2ρh(yh)\Bρh(yh). Then(
1

2
− 1

q + 1

)∫
Ωhk

(| ∇ vhk |2 + V (hkx)v2
hk

) dx+

(
1

q + 1
− 1

p+ 1

)∫
Ωhk

K(hkx)vp+1
hk

dx

= µhk(Ωhk)

= µhk(Rn)− µhk(Bρhk (yhk))− µhk(Bc2ρhk
(yhk))

≤ µhk(Rn)− µ1
hk

(Rn)− µ2
hk

(Rn)

→ 0.(51)

Thus by the Sobolev embedding theorem, we have∫
Ωhk

(vp+1
hk

+ vq+1
hk

) dx→ 0 as hk → 0+.

Consequently,∫
Rn

K(hkx)vp+1
hk

dx =

∫
Rn

K(hkx)(v1hk + v2hk)p+1 dx
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=

∫
Bρhk

(yhk )

K(hkx)vp+1
1hk

dx+

∫
Ωhk

K(hkx)vp+1
hk

dx

+

∫
Bc2ρhk

(yhk )

K(hkx)vp+1
2hk

dx

=

∫
Rn

K(hkx)vp+1
1hk

dx+

∫
Rn

K(hkx)vp+1
2hk

dx+ o(1).(52)

Similarly,∫
Rn

Q(hkx)vq+1
hk

dx =

∫
Rn

Q(hkx)vq+1
1hk

dx+

∫
Rn

Q(hkx)vq+1
2hk

dx+ o(1).(53)

Next, observe that∫
Rn

(|∇vhk |2 + V (hkx)v2
hk

) dx =

∫
Rn

(|∇v1hk |2 + V (hkx)v2
1hk

) dx

+

∫
Rn

(|∇v2hk |2 + V (hkx)v2
2hk

) dx+ Jhk ,(54)

where Jhk := 2
∫
Rn

(∇v1hk · ∇v2hk + V (hkx) v1hkv2hk) dx → 0 as hk → 0 because of
(51).

Now (49)–(50) and (52)–(54) imply that

c̃ = lim
hk→0+

Ihk(vhk)

= lim
hk→0+

(Ihk(v1hk) + Ihk(v2hk) + o(1))

≥ lim inf
hk→0+

Ihk(v1hk) + lim inf
hk→0+

Ihk(v2hk)

≥ c̃′ + (c̃− c̃′) = c̃.

Therefore,

lim
hk→0+

Ihk(v1hk) = c̃′, lim
hk→0+

Ihk(v2hk) = c̃− c̃′.(55)

Let

J1
hk

:=

∫
Rn

(|∇v1hk |2 + V (hkx)v2
1hk

) dx−
∫
Rn

K(hkx)vp+1
1hk

dx−
∫
Rn

Q(hkx)vq+1
1hk

dx

and

J2
hk

:=

∫
Rn

(|∇v2hk |2+V (hkx)v2
2hk

) dx−
∫
Rn

K(hkx)vp+1
2hk

dx−
∫
Rn

Q(hkx)|v2hk |q+1 dx.

By the fact that vh ∈Mh and by equalities (52)–(54), we get

J1
hk

= −J2
hk

+ o(1).(56)

Now we conclude our proof of Claim 3.3.2 by showing that (56) is not true. We discuss
all three possible cases and show that each leads to a contradiction.

For simplicity of notation, let

A1 :=
∫
Rn

K(hkx)vp+1
1hk

dx and B1 :=
∫
Rn

Q(hkx)vq+1
1hk

dx.
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Take θ1 > 0 such that θ1v1h ∈Mh. That is,

θp+1
1 A1 + θq+1

1 B1 = θ2
1

∫
Rn

(|∇v1h|2 + V (hx)v2
1h) dx.

Case 1. After passing to a subsequence, J1
hk
≤ 0. In this case, we have

θp−1
1 A1 + θq−1

1 B1 =

∫
Rn

(|∇v1hk |2 + V (hkx)v2
1hk

) dx ≤ A1 +B1.

Thus θ1 ≤ 1 (see (15)) and hence by (55), as hk → 0+,

chk ≤ Ihk(θ1v1hk) ≤ Ihk(v1hk)→ c̃′ < c̃.

This is absurd because chk → c̃ > c̃′.
Case 2. After passing to a subsequence, J2

hk
≤ 0. In this case, we will be led to a

contradiction again as in Case 1.
Case 3. After passing to a subsequence, J1

hk
> 0 and J2

hk
> 0. From (56), it

follows that J1
hk

= o(1) and J2
hk

= o(1). If θ1 ≤ 1 + o(1), we are done by arguments
similar to those in the proof for Case 1. Now suppose that limhk→0+ θ1 = θ0 > 1. We
claim that along a subsequence, limhk→0+(A1 +B1) > 0. Otherwise,

lim
hk→0+

∫
Rn

(|∇v1hk |2 + V (hkx)v2
1hk

) dx ≤ lim
hk→0+

J1
hk

= 0,

which implies that c̃′ = limhk→0+ Ihk(v1hk) = 0. This is absurd.
Now observe that

0 = lim
hk→0+

J1
hk

= lim
hk→0+

(θp−1
1 A1 + θq−1

1 B1 −A1 −B1)

≥ lim
hk→0+

(θq−1
1 − 1)(A1 +B1) = (θq−1

0 − 1) lim
hk→0+

(A1 +B1)

> 0.

We are led to a contradiction again. This proves Claim 3.3.2 and Lemma 3.3.
Henceforth in this section, the sequence {yhk} is always referred to the one ob-

tained in (48).
Let wk(x) := vhk(x+ yhk) = uhk(hkx+ hkyhk). Then wk(x) is a positive ground

state of

∆wk − V (hkx+ hkyhk)wk +K(hkx+ hkyhk)wpk +Q(hkx+ hkyhk)wqk = 0.(57)

Lemma 3.4. If (36) holds, then the sequence {hkyhk} is bounded as hk tends to
zero.

Proof. Suppose that after passing to a subsequence, hkyhk → ∞. Since chk is
bounded, so is wk := whk in H1. Therefore, along a subsequence, wk → some w0

weakly in H1, strongly in Lτloc, where 1 < τ < 2n/(n − 2)+, and almost everywhere
in Rn. By the compactness condition (48), for any ε > 0, there exists ρ > 0 such that(

1

2
− 1

q + 1

)∫
Bcρ

(|∇wk|2 + V w2
k) dx ≤ µhk(Bcρ(yhk)) < ε.

By this and the Sobolev embedding theorem, we have that

wk → w0 strongly in Lτ , 1 < τ <
2n

(n− 2)+
.(58)
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Observe that(
1

2
− 1

p+ 1

)∫
Rn

K̂wp+1
0 dx+

(
1

2
− 1

q + 1

)∫
Rn

Q̂wq+1
0 dx

≥ lim sup
hk→0+

[(
1

2
− 1

p+ 1

)∫
Rn

K(hkx+ hkyhk)wp+1
k dx

+

(
1

2
− 1

q + 1

)∫
Rn

Q(hkx+ hkyhk)wq+1
k dx

]
= lim sup

hk→0+

chk

≥ c > 0.

Thus w0(x) is a nonzero function. Choose ε > 0 such that (39) holds. By (58) and
the assumption hkyhk →∞, we have

∆w0 −
(
V∞ −

ε

2

)
w0 +

(
K∞ +

ε

2

)
wp0 +

(
Q∞ +

ε

2

)
wq0 ≥ 0 in H−1.

In particular,∫
Rn

(|∇w0|2 + (V∞ − ε)w2
0) dx <

∫
Rn

(K∞ + ε)|w0|p+1 dx+

∫
Rn

(Q∞ + ε)|w0|p+1 dx

since w0 6≡ 0. Take θ > 0 such that θw0 ∈ M ε, the solution manifold for equation
(41). Then θ < 1 by the above inequality. Let

A :=
∫
Rn

K(hkx+ hkyhk)wp+1
hk

dx and B :=
∫
Rn

Q(hkx+ hkyhk)wq+1
hk

dx.

By (58) and the assumption that hkyhk →∞, we have

lim sup
hk→0+

A ≤
∫
Rn

(K∞ + ε)wp+1
0 dx and lim sup

hk→0+

B ≤
∫
Rn

(Q∞ + ε)wq+1
0 dx.

These and (48) imply that

cε := c (V∞ − ε,K∞ + ε,Q∞ + ε)

≤ 1

2
θ2

∫
Rn

(|∇w0|2 + (V∞ − ε)w2
0) dx

− θp+1

p+ 1

∫
Rn

(K∞ + ε)wp+1
0 dx− θq+1

q + 1

∫
Rn

(Q∞ + ε)wq+1
0 dx

≤ lim inf
hk→0+

[
1

2
θ2

∫
Rn

(|∇wk|2 + V (hkx+ hkym)w2
k) dx

− θp+1

p+ 1

∫
Rn

K(hkx+ hkym)wp+1
k dx

− θq+1

q + 1

∫
Rn

Q(hkx+ hkym)wq+1
k dx

]
= lim inf

hk→0+
f(θ),

where f(θ) := (1/2)θ2(A + B) − (1/(p + 1))θp+1A − (1/(q + 1))θq+1B. Noting that
A + B > 0, we can easily show that (d/dθ)f(θ) = (A + B)θ − Aθp − Bθq > 0 for
θ ∈ (0, 1). Consequently, f(θ) < f(1) for θ ∈ (0, 1). This and Lemma 2.6 yield

cε ≤ lim inf
hk→0+

f(1) = lim inf
hk→0+

chk ≤ inf
s∈Rn

C (s),
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a contradiction to (39).
Now from Lemma 3.4 and its proof, we know that for any sequence {h′k} → 0,

there exists a subsequence {hk} such that x̄k := hkyhk → x0, and wk → w0 weakly in
H1, where w0 ≥ 0, 6≡ 0; moreover, (58) holds.

Lemma 3.5. C (x0) = infs∈Rn C (s). Furthermore, wk → w0 strongly in H1.
Proof. By (58) and the elliptic regularity theory, as k →∞, wk → w0 in C2

loc and

∆w0 − V (x0)w0 +K(x0)wp0 +Q(x0)wq0 = 0, x ∈ Rn.

Consequently, by (48) and (58) again,

inf
s∈Rn

C (s)

≤ C (x0)

≤
(

1

2
− 1

q + 1

)∫
Rn

(|∇w0|2 + V (x0)w2
0) dx+

(
1

q + 1
− 1

p+ 1

)∫
Rn

K(x0)wp+1
0 dx

≤ lim inf
k→∞

[(
1

2
− 1

q + 1

)∫
Rn

(|∇wk|2 + V (hkx+ x̄k)w2
k) dx

+

(
1

q + 1
− 1

p+ 1

)∫
Rn

K(hkx+ x̄k)wp+1
k dx

]
= lim inf

k→∞
chk ≤ inf

s∈Rn
C (s).

This implies that C (x0) = infs∈Rn C (s). From the above inequalities and (58), we
see that

lim
k→∞

∫
Rn

(|∇wk|2 + V (hkx+ xk)w2
k) dx =

∫
Rn

(|∇w0|2 + V (x0)w2
0) dx.

From this and by arguments involving the application of Fatou’s lemma on the com-
plement of large balls, it is easy to show that wk → w0 in H1.

As mentioned earlier, Theorem 3.1 follows from this lemma and the arguments in
[22]. We omit the details.

Remarks. 1. Condition (36) is used in the proof of Theorem 3.1 to ensure the
existence of ground states and to show the boundedness of {hkyhk} in Lemma 3.4.
If we do not have condition (36) but know that a sequence {uhk} of positive ground
states of (4) exists with each having a local maximum point moving toward a point x0

as hk → 0, then by modifying our proof above, it is easy to show that x0 is a global
minimum point of the ground-energy function C(s) and that {uhk} concentrates at
x0 in the sense specified in the statement of Theorem 3.1. See also [22, Theorem 2.3].

2. From this we see that in the even worse scenario where C(s) does not have
a minimum point, the positive ground states, if any, do not concentrate as h shrinks
(they move off to infinity).

3. As pointed out in section 1, unlike (1), in the general case (4), it is impossible to
have an explicit formula for C(s), and hence we cannot explicitly express the location
of concentration of ground states in terms of the potential functions V (x), K(x),
and Q(x). We believe that if the exponent p in (4) is close to the critical exponent
(n+2)/(n−2)+, then the concentration points of ground states are close to maximum
points of K(x), and if the other exponent q is close to 1, then these concentration
points are close to minimum points of (V (x)−Q(x))(2p+2+n−np)/(2p−2)/K2/(p−1)(x).
The techniques developed in [23] may be useful in proving this.
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4. Necessary condition for location of concentration. In this section, we
assume that there are positive constants γ and C such that

|∇V (x)|, |∇K(x)|, |∇Q(x)| ≤ C exp(γ|x|).(59)

Theorem 4.1. Suppose that a sequence of positive bound states uhk(x) of (4)
concentrates at a point x0 in the following sense: for any ε > 0, there exist positive
constants ρ and N such that

uhk(x) ≤ ε for k ≥ N and |x− x0| ≥ hkρ.(60)

Then in any of the cases (a) n = 1, (b) Q(x0) ≤ 0 in Rn, or (c) 1 < q < p ≤
n/(n − 2) and n > 2, the point x0 is a critical point of the ground energy function
C(s): ∇C(x0) = 0. In particular, in the case of (1) (i.e., Q ≡ 0), ∇g(x0) = 0, where
g(x) = V (2p+2+n−np)/(2p−2)(x)/K2/(p−1)(x).

Remark. Each of (a)–(c) is used only to guarantee the uniqueness of positive
decaying solutions of (63) below. Thus any condition that guarantees the uniqueness
can be a substitute for either of (a)–(c).

Proof. We shall follow the main lines of the proof of the corresponding result
in [22]. First, we show that {uhk} is bounded in L∞(Rn). This can be achieved by
slightly modifying the argument in [22].

Next, let wk(x) = uhk(x0 + hkx). Then

∆wk − V (x0 + hkx)wk +K(x0 + hkx)wpk +Q(x0 + hkx)wqk = 0.(61)

By (60), wk(x) decays to zero uniformly with respect to k. Then a simple comparison
argument shows

wk(x) ≤ C1 exp(−C2|x|) for x ∈ Rn,(62)

where C1 and C2 are positive constants independent of k. By elliptic regularity theory,
together with the boundedness of ‖wk‖L∞ , there exists a w0(x) in C2(Rn) such that,
along a subsequence, wk(x) converges to w0(x) strongly in C2

loc, satisfying (62) and

∆w0(x)− V (x0)w0(x) +K(x0)wp0(x) +Q(x0)wq0(x) = 0.(63)

By the maximum principle, maxx∈Rn wk(x) ≥ C0 > 0, where the constant C0 is
independent of k. This together with (63) implies that all the maximum points of
wk(x) have to remain in a bounded domain for all k. Consequently, maxx∈Rn w0(x) ≥
C0 > 0, and by the strong-maximum principle, w0(x) > 0. Furthermore, as mentioned
in the proof of Lemma 2.3, in each of the cases (a)–(c), (63) has only one positive
decaying solution (up to translation). Thus w0 is a ground state of (63).

Multiplying (61) on both sides by ∇wk(x) and integrating on BR = BR(0), we
have ∫

BR

[
∆wk∇wk −

1

2
∇(V (x0 + hkx)w2

k) +
1

2
hk∇V (x0 + hkx)w2

k

+K(x0 + hkx)
∇wp+1

k

p+ 1
+Q(x0 + hkx)

∇wq+1
k

q + 1

]
dx = 0.

Therefore, by the divergence theorem, we have

hk

∫
BR

[
1

2
∇V (x0 + hkx)w2

k −
1

p+ 1
∇K(x0 + hkx)wp+1

k
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− 1

q + 1
∇Q(x0 + hkx)wq+1

k

]
dx

= −
∫
BR

∆wk∇wk dx+

∫
∂BR

1

2

[
V (x0 + hkx)w2

k ν

− 1

p+ 1
K(x0 + hkx)wp+1

k ν − 1

q + 1
Q(x0 + hkx)wq+1

k ν

]
dS

=

∫
∂BR

[
−∇wk

∂wk
∂ν

+
|∇wk|2

2
ν +

1

2
V (x0 + hkx)w2

k ν

− 1

p+ 1
K(x0 + hkx)wp+1

k ν − 1

q + 1
Q(x0 + hkx)wq+1

k ν

]
dS

=: JR,

where ν stands for the unit outward normal to ∂BR. Note that for each k,∫ ∞
0

|JR| dR ≤
∫ ∞

0

dR

∫
∂BR

[
3

2
|∇wk|2 +

1

2
V (x0 + hkx)w2

k

+
1

p+ 1
K(x0 + hkx)wp+1

k +
1

q + 1
Q(x0 + hkx)wq+1

k

]
dS

≤ 3

2

∫
Rn

[|∇wk|2 + V (x0 + hkx)w2
k +K(x0 + hkx)wp+1

k

+Q(x0 + hkx)wq+1
k ] dx,

which is finite because uhk is a bound state. Consequently, there exists Rm →∞ such
that JRm → 0. Recall that we assume the growth condition (59) and that we have
obtained estimate (62) for wk(x). By the Lebesgue dominated-convergence theorem,

1

2

∫
Rn
∇V (x0 + hkx)w2

k dx

=
1

p+ 1

∫
Rn
∇K(x0 + hkx)wp+1

k dx+
1

q + 1

∫
Rn
∇Q(x0 + hkx)wq+1

k dx.

Letting hk → 0, we obtain

1

2
∇V (x0)

∫
Rn
w2

0(x) dx

=
1

p+ 1
∇K(x0)

∫
Rn

wp+1
0 (x) dx+

1

q + 1
∇Q(x0)

∫
Rn

wq+1
0 (x) dx.(64)

Now the desired conclusion follows from Lemma 2.3 and the remark below it since w0

is a ground state of (63).
Note added in proof. Some of the papers mentioned in section 1 that concern

the existence of concentrating bound states of (6) have already been published:
M. Del Pino and P. Felmer, “Local mountain passes for semilinear elliptic prob-

lems in unbounded domains,” Cal. Var. Partial Differential Equations, 4 (1996), pp.
121–137.

C. Gui, “Existence of multi-bump solutions for nonlinear Schrödinger equations
via variational method,” Comm. Partial Differential Equations, 21 (1996), pp. 787–
820.



CONCENTRATION OF NONLINEAR SCHRÖDINGER EQUATIONS 655
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Abstract. This paper deals with image deblurring when the unknown original image is not
smooth and a priori bounds on its derivatives cannot be prescribed in the inversion algorithm. A
significant class of such deblurring problems occurring in medical, industrial, military, astronomical,
and environmental applications is shown to be equivalent to backwards-in-time continuation in a
generalized diffusion equation that may involve fractional Laplacians. The slow-evolution-from-the-
continuation-boundary (SECB) constraint, introduced by the author in [SIAM J. Numer. Anal., 31
(1994), pp. 1535–1557], is applicable to such nonsmooth image deblurring. A new analytical ap-
proach based on Fourier analysis provides sharp error estimates for SECB deblurring explicitly in
terms of the constants entering the a priori constraints. It also leads to an explicit formula that ex-
presses SECB’s improvement over the classical Tikhonov–Miller method. An example from positron
emission tomography (PET) imaging is used to illustrate the meaning of the SECB constraint. In
this application, use of the SECB constraint reduces the L2 norm of the Tikhonov–Miller inverse
operator by almost a factor of ten.

Key words. ill-posed problems, infinitely smoothing operators, image deblurring, SECB restora-
tion, Tikhonov–Miller restoration, nonsmooth images, PET imaging, error bounds

AMS subject classifications. 35R25, 35B60, 35B35, 65M30, 60E07, 68U10
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1. Introduction. Explicit a priori bounds on derivatives of the unknown solu-
tions underlie much of the analysis and numerical computation of ill-posed inverse
problems in partial differential and integral equations. Mathematically, such a priori
smoothness implies that solutions lie in a compact set in function space. Together
with uniqueness of solutions, this leads to continuity of the inverse operator and stable
numerical algorithms. On the physical side, smoothness constraints are appropriate
in many problems of practical interest where solutions are known to possess relatively
simple structures.

However, there are important classes of problems, notably in medical imaging,
where solutions exhibit fairly complex structures, are typically not smooth, and often
display singularities that may be of vital significance. In such problems, reconstruction
methods that incorporate a priori smoothness assumptions on the solution are ill
advised. The use of such procedures may result in visually pleasing but oversmoothed
solutions in which significant diagnostic information has been eliminated.

In the absence of smoothness, error estimates that imply a rate of convergence as
the data noise level ε ↓ 0 are not possible. However, error bounds valid for fixed small
ε > 0 that remain useful at realistic values of ε are possible, even when smoothness
constraints are inapplicable. This was demonstrated in a recent paper [3] dealing
with ill-posed continuation problems in partial differential equations. A new type
of a priori constraint on solutions is introduced in [3], the so-called slow-evolution-
from-the-continuation-boundary (SECB) constraint. The SECB constraint stabilizes
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the inversion process against noise in the data, even when smoothness constraints
are inapplicable. Applications include the harmonic continuation problem in the unit
disc in the L∞ norm, the spatial continuation problem for the heat equation in the
L2 norm, and the backwards-in-time continuation problem for self-adjoint parabolic
equations in the L2 norm. These three problems are canonical examples of ill-posed
problems involving infinitely smoothing operators [6], [15].

This self-contained paper focuses on L2 error bounds in image deblurring. An im-
portant class of image deblurring problems is shown to be equivalent to backwards-in-
time continuation in a generalized diffusion equation involving fractional Laplacians.
The SECB constraint can be applied to this ill-posed continuation problem. We by-
pass the Banach space approach used to obtain error bounds in [3] and rely instead on
Fourier analysis in L2. This method provides new and sharper estimates explicitly in
terms of the constants entering the a priori constraints. It also leads to an explicit for-
mula that expresses SECB’s improvement over the classical Tikhonov–Miller method
[16]. An example of a nonsmooth image from nuclear medicine illustrates the meaning
of the SECB constraint and provides typical representative values for the constraint
constants. This enables us to relate our analysis to real applications. Since the pri-
mary emphasis is on error bounds for the SECB method, no deblurring experiments
are presented in this paper. However, such experiments are reported in [3, section 5],
where the SECB approach is compared with three other image deblurring methods,
using optimal values for the restoration parameters. These experiments confirm the
analysis in the present paper by showing that the SECB constraint sharply reduces
noise contamination.

2. Image deblurring with class-G point-spread functions. We study a
class of image restoration problems whereby the original image is reconstructed from
a noisy blurred version [1], [7], [14], [21]. Following [21, Chapter 12], we consider
space-invariant point-spread functions p(x, y), and formulate the deblurring problem
as the problem of solving the integral equation Pg = f , where

Pg ≡
∫
R2

p(x− u, y − v)g(u, v)dudv = fe(x, y) + n(x, y) ≡ f(x, y).(1)

Here g(x, y) is the desired unblurred image, fe(x, y) is the blurred image that would
have been recorded in the absence of noise, and n(x, y) represents the cumulative
effects of all noise processes that affect the final acquisition of the actual recorded
image f(x, y). This includes the case of multiplicative noise, where n(x, y) is a function
of fe(x, y). The noise component n(x, y) is unknown but may be presumed small.
Likewise, fe(x, y) is unknown. The type and intensity of the blurring caused by
p(x, y), together with the magnitude of n(x, y), ultimately limit the quality of the
restoration that can be achieved.

We denote by G the class of blurring kernels p(x, y) with Fourier transform given
by

p̂(ξ, η) ≡
∫
R2

p(x, y)e−2πi(ξx+ηy)dxdy

= e−
∑J

i=1
αi(ξ

2+η2)βi , αi ≥ 0, 0 < βi ≤ 1.(2)

While many imaging phenomena are not described by (2), the latter encompasses
highly significant applications. Thus if all αis except one are zero, (2) reduces to
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p̂(ξ, η) = e−α(ξ2+η2)β , which is the characteristic function of a Lévy “stable” proba-
bility distribution [5]. The case β = 1 corresponds to the Gaussian distribution and
occurs in quite diverse contexts, including undersea imaging [27], nuclear medicine
[20], [22], magnetic resonance imaging [17], computed tomography scanners [18], on-
board optical seekers in cruise missiles [2], and ultrasonic imaging in nondestructive
evaluation [12]. The case β = 5/6 describes long-exposure atmospheric-turbulence
blurring [26]. The case β = 1/2 corresponds to the Cauchy distribution and has been
used to model X-ray scattering in radiology [25]. Values of β satisfying 1/2 ≤ β ≤ 1
characterize a wide variety of electron-optical devices [10], [11]. Such devices consti-
tute important components in night-vision and undersea imaging systems [4], [11].
Modern biomedical imaging modalities such as II-TV fluoroscopic systems [23], se-
lenium imaging plates [19], digital TV tomography systems [24], and radiographic
screen-film systems [8], [13] are also based on electron-optical components. Methods
exist for determining the values of α and β in each component electron-optical device
[10]. In a typical imaging situation, several such components are commonly cascaded
and used to image objects through a distorting medium such as the atmosphere or the
ocean. The overall optical-transfer function is then given by (2), which is an example
of an infinitely divisible characteristic function [5]. In many other applications, the
general functional form described by (2) can be used to best-fit empirically deter-
mined optical-transfer functions by suitable choices of the parameters αi, βi, and J .
In summary, the class G defined by (2) is worthy of analytical interest.

When the kernel of the integral operator P in (1) satisfies (2), the blurred noiseless
image fe(x, y) may be identified with u(x, y, 1), where u(x, y, t) is the unique bounded
solution of the well-posed direct problem

ut = −
J∑
i=1

γi(−∆)βiu, t > 0, x, y ∈ R2, γi = αi(4π
2)−βi ,

u(x, y, 0) = g(x, y),

(3)

and g(x, y) is the original unblurred image. This follows by recognizing (2) as the
Fourier transform of the fundamental solution for the initial value problem (3). If all
βi = 1, (3) is the classical heat-conduction equation. For 0 < βi ≤ 1, (3) represents a
generalized diffusion process. The image restoration problem (1) is thus equivalent to
backwards-in-time continuation of the solution of (3) from noisy data f(x, y) at t = 1
rather than fe(x, y), where f(x, y) is the blurred recorded image. The unblurred image
g(x, y) is the continuation at t = 0. For given fixed t with 0 < t < 1, the continuation
at time t represents a partial restoration. As t ↓ 0, the partial restorations become
sharper but noisier. Displaying a sequence of partial restorations at tn as tn ↓ 0 can
be helpful in identifying features which become obscured by noise at t = 0.

Fractional powers of the integral operator P in (1) are naturally related to the
evolution equation (3). For fixed t with 0 ≤ t ≤ 1, define P t to be the convolution
integral operator in L2(R2), with kernel p(t;x−u, y−v), where p(t;x, y) is the inverse

Fourier transform of exp{−
∑J
i=1 tαi(ξ

2 + η2)βi}. Then P tP s = P t+s for all s, t ≥ 0,
and P 0 = I. The solution of (3) may be written as u(t) = P tg, 0 ≤ t ≤ 1. Let ‖ ‖
denote the L2(R2) norm. By continuity, ‖P tg−g‖ is small for sufficiently small t > 0.
Note that P is an infinitely smoothing operator.

Remark 1. The smallness of ‖P sg − g‖ for a given fixed s > 0 need not imply
any smoothness in g. Fix g ∈ L2, fix s > 0, and fix δ > 0. If the αi’s are sufficiently



NONSMOOTH IMAGE DEBLURRING 659

Fig. 1. Left: PET image of transverse slice of human brain. Right: Image intensity as function
of position g(x, y).

small, then ∫
R2

|ĝ(ξ, η)|2
∣∣∣∣1− e−∑J

i=1
sαi(ξ

2+η2)βi
∣∣∣∣2 dξdη < δ,(4)

even if for every q > 0, ∫
R2

(ξ2 + η2)q|ĝ(ξ, η)|2dξdη =∞.(5)

As we will see below, the significance of the SECB constraint derives from this obser-
vation.

3. An example from nuclear medicine. The following example from positron
emission tomography (PET) is helpful in motivating subsequent developments. Neu-
ropsychiatrists have long been interested in correlating brain activity with such disor-
ders as alcoholism, schizophrenia, dementia, Alzheimer’s disease, mood disorders, and
the like. PET imaging is a widely used modality in this field of research. A positron-
emitting radionuclide is used to tag glucose molecules in their course through the
brain. The metabolic rate of glucose is a key parameter that measures cerebral func-
tion and reflects the extent to which regions of the brain are working or failing to
work. An emitted positron travels approximately 1 mm to 2 mm before colliding with
an electron, resulting in an annihilating reaction in which two gamma ray photons
are emitted at 180 degrees from each other. An extracranial ring of coincidence de-
tectors, programmed to count emissions that are paired at 180 degrees, records every
such positron emission. Following a coincidence, the source position can be math-
ematically reconstructed. This leads to an image of the distribution of the glucose
tracer, which enables the radiologist to pinpoint areas of abnormal brain activity or
to determine the health of cells.

A 256 × 256 PET image of a transverse slice of a human brain was obtained
from the Nuclear Medicine Branch of the National Institutes of Health. That image,
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A B

C D

Fig. 2. (A) The empirically determined PET-scanner Gaussian point-spread function p(x, y)
and the kernel of integral operator P ; (B) q(x, y), the 200th convolution root of p(x, y) and the kernel
of P 0.005; (C) P 0.005g with g(x, y) as in Fig. 1; (D) P 0.005g− g. The maximum intensity in (B) is
200 times that in (A), while the maximum intensity in (C) is 167 times that in (D).

displayed on the left in Fig. 1, consists of pixel values ranging from 0 to 255. The
bright spots in the image represent areas of high positron emission and therefore high
levels of brain activity. When the same pixel values are plotted as a function of x and
y, we obtain the function g(x, y) shown on the right in Fig. 1. Evidently, g(x, y) is
not a smooth function. Define the discrete L2 norm of g by

‖g‖ =

(256)−2
256∑
j,k=1

g(xj , yk)2


1/2

.(6)
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We find that ‖g‖ = 40.15. In general, owing to scattering of positrons prior to
annihilation and to detector effects, reconstructed PET images are seldom as sharp
as g(x, y) shown in Fig. 1. Rather, a blurred image f = Pg is obtained, where P is
the convolution integral operator in (1), while g(x, y) in Fig. 1 is the unknown original
image in the deconvolution problem Pg = f . Some concentrated areas of moderate
to high brain activity are quite often not apparent in the blurred image f(x, y) but
become evident only after deconvolution. Thus the mathematical problem becomes
one of recovering g in Fig. 1 from some noisy blurred version f . The point-spread
function associated with a given PET scanner can be determined experimentally by
imaging a known point source. Typically, this empirically determined point-spread
function is found to be well approximated by a Gaussian.

An example of a PET scanner Gaussian point-spread function p(x, y) is shown
in Fig. 2A. In Fig. 2B, q(x, y), the 200th convolution root of p(x, y) is shown. The
function q(x, y) is itself a Gaussian, one where the full width at half maximum is√

200 times smaller than in p(x, y). At the same time, the maximum value in q(x, y)
is 200 times larger than in p(x, y). If P denotes the convolution operator with kernel
p(x, y), then P 0.005 is the operator with kernel q(x, y). The function q(x, y) is a good
approximation of the Dirac δ-function in the following sense. The lack of smoothness
of g(x, y) in Fig. 1 notwithstanding, P 0.005g, shown in Fig. 2C, is almost identical to g.
The difference, (P 0.005g−g), is shown in Fig. 2D. In fact, we find that ‖P 0.005g−g‖ =
0.123 = 0.003‖g‖.

Let ε = 0.001‖g‖ = 0.04 represent an upper bound for the L2 norm of the noise
in the blurred image f = Pg. Smoothness constraints on the unknown sharp image
g are not possible in the ill-posed deconvolution problem Pg = f . Instead, we have
found that g satisfies the following slow-evolution constraint:

‖P 0.005g − g‖ ≤ Kε, K ≥ 3.1.(7)

In section 6, we shall see how this constraint stabilizes the deconvolution problem
Pg = f .

4. Error bounds in Tikhonov–Miller restoration. One of the best known
techniques for regularizing ill-posed integral equations is the Tikhonov–Miller method
[16]. In image deblurring [14], Tikhonov–Miller restoration is considered a canon-
ical method. Seemingly more elaborate stochastic restoration procedures, such as
Wiener filtering or maximum a posteriori (MAP) restoration [1], [14], ultimately re-
sult in mathematically similar expressions for the deblurred image. In addition, the
Tikhonov–Miller method requires no a priori assumptions regarding the statistical
character of the data noise.

In its simplest form, Tikhonov–Miller restoration requires an a priori bound ε for
the L2 norm of the noise in the blurred image f , together with an a priori bound M
for the L2 norm of the unblurred image g:

‖Pg − f‖ ≤ ε, ‖g‖ ≤M.(8)

Here ε/M � 1, and ‖ ‖ denotes the L2(R2) norm. It is assumed that ε and M are com-
patible with the existence of a g(x, y) ∈ L2 satisfying (8). Tikhonov–Miller restoration
[16] is defined as that unique function gT (x, y) which minimizes the functional

‖Ph− f‖2 + ω2‖h‖2, ω = ε/M,(9)

over all h ∈ L2(R2). We have

gT = [P ∗P + ω2I]−1P ∗f, ω = ε/M.(10)
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Because no a priori bounds on derivatives of the unknown solution g were incorporated
in (9), the best possible bound on the error in gT is [16]

‖g − gT ‖ ≤
√

2M,(11)

irrespective of how small ε may be. See Remark 1 following Theorem 1 in [3]. The
estimate in (11) cannot guarantee accuracy; in fact, appreciable noise contamination
of the restored image is commonly experienced [3, section 5]. To get an error bound
implying convergence as ε ↓ 0 in the Tikhonov–Miller method, stronger constraints
need to be imposed on g(x, y). Let L be an elliptic differential operator, let the
unblurred image g(x, y) be sufficiently smooth, and let an a priori bound ‖Lg‖ ≤ N
be known. In this case, the appropriate Tikhonov–Miller functional to be minimized
over all h in L2(R2) is given by

‖Ph− f‖2 + (ε2/N2)‖Lh‖2.(12)

As shown in [6] and [15], an error bound of the form

‖g − gT ‖ = O(N{log(N/ε)}−q) as ε ↓ 0(13)

is the best possible for (12). The value of q > 0 in (13) depends on the order of L
and may be less than 1 if L is a fractional power Laplacian, for example. A major
difficulty in connection with (12) lies in inferring a priori the correct value for N when
the unknown image g(x, y) is suspected of having localized singular behavior; there
is the danger of underestimating N by several orders of magnitude. Moreover, while
(13) implies convergence as ε ↓ 0, in practice, ε is small but fixed, depending as it does
on the various noise processes inherent in the given imaging system. The logarithmic
continuity result in (13) requires ε to be unrealistically small before the error bound
becomes useful. Thus if N = 1000 and q = 1, we have N{log(N/ε)}−1 ≤ 10 if and
only if ε ≤ 10−40. If q = 1/2, the requirement on ε is dramatically more severe.

5. SECB restoration. Like the Tikhonov–Miller method, the SECB approach
requires no a priori knowledge of the statistical character of the data noise, but it
does require an a priori bound ε for the L2 norm of the noise in the blurred image f ,
together with an a priori bound M for the L2 norm of the unblurred image g:

‖Pg − f‖ ≤ ε, ‖g‖ ≤M, ε/M � 1.(14)

In addition, ‖P sg − g‖ is required to be small for some fixed s, 0 < s < 1. This is
always true by continuity if s is sufficiently small. We obtain an additional constraint
on the class of solutions by requiring that s be known and not too small. Specifically,
let ε and M be as above, with ε/M � 1. For given K with 0 < K � M/ε, let s∗ be
defined by

s∗ = log{M/(M −Kε)}/ log(M/ε).(15)

The SECB constraint requires that there exist a constant K with 0 < K �M/ε such
that

‖P sg − g‖ ≤ Kε, s fixed, s∗ < s < 1.(16)

It is desirable (see section 6.2) that both the blurring operator P and the unblurred
image g(x, y) be such that (16) holds with a small K > 0 and a relatively large s < 1
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so that s/s∗ � 1. A large value of s/s∗ reflects a priori knowledge that the given
blurred image f(x, y) has evolved slowly from the unknown sharp image g(x, y), but
it does not imply smoothness of g(x, y). See (4) and (5) in Remark 1 in section 2.
The four parameters {ε, M, K, s} constitute the a priori information in the SECB
method. SECB restoration is then defined as the unique function gmin(x, y) which
minimizes the functional

‖Ph− f‖2 + ω2‖h‖2 +K−2‖h− P sh‖2, ω = ε/M,(17)

over all h ∈ L2(R2). Note that SECB restoration reduces to Tikhonov–Miller restora-
tion if s = 0 or K = ∞ in (17). When applicable, the SECB constraint produces
error bounds that can be useful at realistic values of ε.

Remark 2. In applying the SECB constraint to an image where ε and M are
known, a useful strategy is to first fix a small positive value of s. Since the point-
spread function p(x, y) is known, Fourier analysis may be used to obtain the kernel
of P s and determine how well that kernel approximates the Dirac δ-function. Prior
experience with similar images, along the lines depicted in Fig. 2, may be used to
arrive at an estimate for ‖P sg − g‖ and hence ‖P sg − g‖/ε. The constant K in (16)
is an upper bound for the latter quantity.

Theorem 1. Let the unblurred image g(x, y) satisfy constraints (14) and (16). Let
gmin(x, y) be the function which minimizes (17). Let ω = ε/M , and let Q = Q(K,ω, s)
be the positive definite self-adjoint operator in L2(R2) given by

Q = P ∗P + ω2I +K−2(I − P s)∗(I − P s).(18)

Then gmin is the unique solution of Qgmin = P ∗f , and gmin satisfies

‖Pgmin − f‖2 + ω2‖gmin‖2 +K−2‖(I − P s)gmin‖2 ≤ 3ε2,(19)

‖P (g − gmin)‖2 + ω2‖g − gmin‖2 +K−2‖(I − P s)(g − gmin)‖2 ≤ 3ε2,(20)

‖g − gmin‖ ≤ ε
√

3‖Q−1/2‖.(21)

Proof. Let H denote the Hilbert-space direct sum L2(R2)
⊕
L2(R2)

⊕
L2(R2)

with elements [u, v, w], scalar product ([u1, v1, w1], [u2, v2, w2]) ≡ 〈u1, u2〉+ 〈v1, v2〉+

〈w1, w2〉, and norm ||| |||. Let P̃ : L2(R2) 7→ H be defined by P̃ h =
[
Ph, ωh,

K−1(I − P s)h
]
, and let f̃ = [f, 0, 0]. We seek to minimize |||P̃ h − f̃ ||| over all

h ∈ L2. The normal equation P̃ ∗P̃ gmin = P̃ ∗f̃ gives Qgmin = P ∗f , with Q as in (18).

By hypothesis, |||P̃ g− f̃ |||2 ≤ 3ε2. The minimizing element gmin is such that P̃ gmin is

the orthogonal projection in H of f̃ on the range of P̃ . By the Pythagorean theorem,

|||P̃ gmin − f̃ |||2 + |||P̃ (g − gmin)|||2 = |||P̃ g − f̃ |||2 ≤ 3ε2.(22)

This gives (19) and (20). We now establish (21). From (18) and (20), we have

‖Q1/2(g − gmin)‖2 = 〈Q(g − gmin), (g − gmin)〉 = |||P̃ (g − gmin)|||2 ≤ 3ε2.(23)

Hence

‖g − gmin‖ = ‖Q−1/2 Q1/2(g − gmin)‖
≤ ‖Q−1/2‖‖Q1/2(g − gmin)‖
≤ ε
√

3‖Q−1/2‖.(24)

This completes the proof.
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6. Fourier analysis of SECB restoration. Inequality (21) in Theorem 1 re-
duces the problem of obtaining an error bound in SECB restoration to that of estimat-
ing ‖Q−1/2(ε,M,K, s)‖. With p̂(ξ, η) as in (2), we have the following upon Fourier
transforming Q−1/2h:

̂(Q−1/2h)(ξ, η) =
{
|p̂(ξ, η)|2 + ω2 +K−2|1− p̂s(ξ, η)|2

}−1/2
ĥ(ξ, η).(25)

Using Parseval’s theorem, ‖Q−1/2h‖ = ‖ ̂(Q−1/2h)‖, from which it follows that

‖Q−1/2‖ = sup
ξ,η

{
|p̂(ξ, η)|2 + ω2 +K−2|1− p̂s(ξ, η)|2

}−1/2

=

[
inf
x≥0
{e−2x + ω2 +K−2(1− e−sx)2}

]−1/2

, ω = ε/M.(26)

We now turn our attention to minimizing φ(x) on x ≥ 0, where

φ(x) = e−2x + ω2 +K−2(1− e−sx)2, ω = ε/M.(27)

If s = 0, then φ(∞) = ε2/M2 and ‖Q−1/2‖ = M/ε. In this case, we recover the
Tikhonov–Miller error bound (11). More generally, the next lemma shows why we
need s > s∗ in the SECB constraint (16).

Lemma 1. Let s∗ be as in (15). If s ≤ s∗, M/(ε
√

3) ≤ ‖Q−1/2‖ ≤ (M/ε).
Proof. Let x0 = log(M/ε). Then e−2x0 = ω2 and 1 − e−sx0 ≤ Kω if s ≤ s∗.

Hence ω2 ≤ φ(x0) ≤ 3ω2 if s ≤ s∗, and the result follows from (26).
Lemma 2. Let s > 0. Then on x ≥ 0, φ(x) has a unique minimum at x = x̄ > 0

where

e−2x̄ = sK−2(e−sx̄ − e−2sx̄).(28)

Moreover, if K/s > 1,

2e

1 + 2e
log

{
K

s

}
≤ x̄ ≤ 1

2− s log

{
K2

s
[
1− (s/K)2es/(1+2e)

]} .(29)

Proof. We have φ′(x) = 0 if and only if e−2x = sK−2(e−sx − e−2sx). Let x̄
be the abscissa of the unique point where the curve y = e−2x intersects the curve
y = sK−2(e−sx − e−2sx). We have φ′′(x̄) = 4e−2x̄ − 2s2K−2e−sx̄ + 4s2K−2e−2sx̄.
Using 2s2K−2e−sx̄ = 2se−sx̄ + 2s2K−2e−2sx̄, we find that φ′′(x̄) = (4 − 2s)e−2x̄ +
2s2K−2e−2sx̄. Since 0 < s ≤ 1, φ′′(x̄) > 0. Thus x̄ is the unique minimum. Next,
e−2x̄ = s2K−2x̄(e−sx̄ − e−2sx̄)/sx̄ ≤ s2K−2x̄ since f(y) ≡ (e−y − e−2y)/y is a mono-
tone decreasing function with a maximum value of 1 at y = 0. If 0 < x̄ < 1, then
e−2x̄ < s2K−2, which implies that x̄ > log(K/s). If x̄ ≥ 1, then log(x̄)/x̄ ≤ 1/e
and 1 + log(x̄)/2x̄ ≤ (1 + 2e)/2e. From x̄e2x̄ ≥ K2/s2, we get x̄{1 + log(x̄)/2x̄} ≥
log(K/s). Hence x̄ ≥ {2e/(1 + 2e)} log(K/s) if x̄ ≥ 1, and the inequality remains
valid if 0 < x̄ < 1. To obtain the upper bound on x̄ in (29), first observe that
1 − e−sx̄ ≥ 1 − {s/K}2es/(1+2e). Hence from (28), e−(2−s)x̄ = sK−2(1 − e−sx̄) ≥
sK−2

[
1− {s/K}2es/(1+2e)

]
. The result follows upon taking logarithms.

Lemma 3. If 0 < K/s ≤ 2, ‖Q−1/2‖ < 5.
Proof. From (28), x̄e2x̄ = (K2s−2){sx̄/(e−sx̄ − e−2sx̄)} ≤ 4sx̄/(e−sx̄ − e−2sx̄) if

K/s ≤ 2. Hence (1/4)x̄e(2−s)x̄ ≤ sx̄/(1 − e−sx̄) ≤ x̄/(1 − e−x̄), the last inequality
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resulting from the fact that g(y) ≡ y/(1− e−y) is a monotone increasing function on
y ≥ 0, and 0 < s ≤ 1. Therefore, ex̄ ≤ e(2−s)x̄ ≤ 4(1 − e−x̄)−1. Thus x̄ ≤ log 5, and
e−2x̄ ≥ 1/25. The result now follows from (26). Note that from (15), 0 < K/s ≤ 2
implies s/s∗ ≥ {(M − 2sε)/(2ε)} log(M/ε)� 1.

Lemma 4. Let K/s > 1, and let x0 ≥ (1/(2−s)) log
[
K2/s

{
1− (s/K)2es/(1+2e)

}]
.

Consider the iteration

xn+1e
2xn+1 = K2s−2

{
sxn/(e

−sxn − e−2sxn)
}
, n = 0, 1, 2, . . . .(30)

Then 0 < xn+1 ≤ xn ≤ · · · ≤ x1 ≤ x0, and the sequence {xn} converges to x̄.
Proof. Let h(y) ≡ y/(e−y − e−2y). Then h(y) and ye2y are monotone increasing

functions on y ≥ 0. Since 0 < s ≤ 1, the function xe2x eventually increases faster than
K2s−2h(sx), and the two curves intersect at x = x̄. In particular, xe2x ≥ K2s−2h(sx)
if x ≥ x̄. Therefore, using (29) in Lemma 2, x1e

2x1 = K2s−2h(sx0) ≤ x0e
2x0 , which

implies that x1 ≤ x0. Let An = K2s−2h(sxn) so that xn+1e
2xn+1 = An. Then

xm+1 ≤ xm implies Am+1 ≤ Am. It follows that 0 < xn+1 ≤ xn ≤ · · · ≤ x1 ≤ x0, and
K2s−2 < An+1 ≤ An ≤ · · · ≤ A1 ≤ A0. Therefore, xn converges to z > 0, and An
converges to K2s−2h(sz), which implies z = x̄.

Theorem 2. Let s > s∗, let g satisfy (14) and (16), and let gmin be as in Theorem
1. If 0 < K/s ≤ 2, then ‖g − gmin‖ < 5ε

√
3. If K/s > 2, let

A =
{
sK−2

(
1− {s/K}2es/(1+2e)

)}2/(2−s)
,

B = {ε/M}2 ,

C = K−2
{

1− (s/K)
2es/(1+2e)

}2

.

(31)

Then

‖Q−1/2‖ ≤ {A+B + C}−1/2
(32)

and

‖g − gmin‖ ≤ ε
√

3 {A+B + C}−1/2
.(33)

Proof. If 0 < K/s ≤ 2, the result follows from Lemma 3 and (21). If K/s > 2,
we can use the upper and lower bounds for x̄ in Lemma 2 to estimate φ(x̄). We find
φ(x̄) ≥ A + B + C, where A, B, and C are as in (31). The result follows from (21)
together with ‖Q−1/2‖ = {φ(x̄)}−1/2.

6.1. An example. The above analysis produces reliable error bounds in SECB
restoration. In the PET imaging example of section 3, we have M = 40.15, ε = 0.04,
s = 0.005, and K = 3.1. This gives K/s = 620, s∗ = 4.47 × 10−4, and s/s∗ = 11.2.
Lemma 2 provides upper and lower bounds for x̄ for given K and s. From (29),
we get 5.4308 ≤ x̄ ≤ 5.6045. From (31) in Theorem 2, given ε, M , K, and s, we
can find an upper bound for ‖Q−1/2‖ = {φ(x̄)}−1/2 ≤ {A + B + C}−1/2. We get
‖Q−1/2‖ ≤ 105.87. However, we may also use the iteration in Lemma 4 to calculate
x̄ to high accuracy. Evaluating φ(x̄) then provides the exact value for ‖Q−1/2‖ as
in (26). We find x̄ = 5.5902 and {φ(x̄)}−1/2 = ‖Q−1/2‖ = 103.14. Evidently, the
estimates provided by Lemma 2 and Theorem 2 are in close agreement with the exact
values in this example.
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As previously noted, SECB restoration reduces to Tikhonov–Miller restoration
((9)), if s = 0. The exact value for ‖Q−1/2‖ when s = 0 is M/ε = 1004. The present
value, ‖Q−1/2‖ = 103, is about ten times smaller. This illustrates the stabilizing
property of the SECB constraint. We obtain the estimate ‖g − gmin‖ ≤ 7.15 for the
SECB image, versus ‖g − gT ‖ ≤ 56.78 for the Tikhonov–Miller image.

In [3, section 2], a one-dimensional SECB deblurring example is given where ε =
10−3, M = 10, K = 3, and s = 0.01. In this case, s/s∗ = 307, and ‖Q−1/2‖ = 56.86.
Without the SECB constraint, ‖Q−1/2‖ = M/ε = 104, which is 175 times larger.

6.2. Improvement over Tikhonov–Miller and the ratio (s/s∗). It follows
from (27) that infx≥0 φ(x) > ε2/M2 whenever s > 0. Hence from (26), the SECB
bound for ‖Q−1/2‖ is always smaller than the corresponding Tikhonov–Miller bound
M/ε. However, as may be surmised from Lemma 1 and the above-mentioned exam-
ples, SECB’s improvement over the Tikhonov–Miller value increases as the value of
s/s∗ increases. In the case where K/s ≤ 2, this was noted at the end of the proof of
Lemma 3. For the case where K/s > 2, the role played by s/s∗ in the estimate of
Theorem 2 may be discerned through the following analysis.

With A, B, and C as in (31), let b = 2e/(1 + 2e) ≈ 0.845, and write {s/K}bs =
exp{−bs log(K/s)} ≈ 1− bs log(K/s) for small values of s such as typically enter the
SECB constraint. We may likewise replace the exponent 2/(2− s) by unity. Then

A ≈ bs2K−2 log(K/s), C ≈ b2s2K−2{log(K/s)}2, (K/s) > 2.(34)

Therefore,

(A+B + C)−1/2 ≈ (K/s)

[b2{log(K/s)}2 + b log(K/s) + {Kε/(sM)}2]
1/2

.(35)

From (15), we have s∗ ≈ Kε/{M log(M/ε)} for Kε�M . Hence

K/s ≈ (s∗/s)(M/ε) log(M/ε).(36)

The following result, which shows that ‖Q−1/2‖ � M/ε whenever s∗/s � 1, is
immediate from (32), (35), and (36).

Theorem 3. Let K/s > 2, let b = 2e/(1 + 2e), and let A, B, and C be as in
(31). For small s > 0, we have

‖Q−1/2‖ ≤ (A+B + C)−1/2

≈ (s∗/s)(M/ε) log(M/ε)

[b2{log(K/s)}2 + b log(K/s) + {Kε/(sM)}2]
1/2

, (K/s) > 2.(37)

6.3. Behavior as ε ↓ . While the SECB constraint can result in useful error
bounds at realistic values of ε, the estimates in Theorems 2 and 3 do not imply
convergence as ε ↓ 0. With s fixed in the SECB constraint (16), ε ↓ 0 implies K ↑ ∞,
and Lemma 2 then shows that x̄ ↑ ∞. Thus φ(x̄)→ 0. However, ε{φ(x̄)}−1/2 remains
bounded, and ‖g − gmin‖ becomes small, on the order of ‖P sg − g‖, as ε ↓ 0. We
have the following result.

Theorem 4. Let ‖g‖ ≤M . Fix s > 0, let σ = ‖P sg−g‖, and let b = 2e/(1+2e).
For each ε > 0, let K = σ/ε, let ω = ε/M , and let gmin be the unique solution of
Qgmin = P ∗f , where Q = P ∗P + ω2I +K−2(I − P s)∗(I − P s). Then

‖g − gmin‖ <
√

3‖P sg − g‖+O{(sε)sb} as ε ↓ 0.(38)
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Proof. With K = σ/ε, we have from (27) that

ε−2φ(x̄) = ε−2e−2x̄ +M−2 + σ−2(1− e−sx̄)2

> σ−2(1− e−sx̄)2 > σ−2(1− (sε/σ)sb)2(39)

upon using (29) in Lemma 2. From Theorem 2, we have ‖g− gmin‖ ≤ ε
√

3{φ(x̄)}−1/2

for every ε > 0. The result follows. .

7. Summary. A priori information is essential in the analysis of ill-posed con-
tinuation problems in partial differential equations [9]. The classical approach to reg-
ularization is based on prescribed bounds on the derivatives of the unknown solution.
This approach suffers from three major drawbacks. First, derivatives may fail to exist
in many problems of practical interest. Second, when such derivatives exist, it may
not be possible to estimate them reliably from a priori considerations. Third, when an
estimate N on some Sobolev norm of the desired solution is known, the best possible
error bound for the regularized solution has the form O(N{log(N/ε)}−q), q > 0. This
is the notorious logarithmic continuity described in Fritz John’s writings on ill-posed
problems. Here ε, the norm of the data noise, is fixed and small, but it is seldom
small enough to render that error bound meaningful.

A different method of regularization was examined in this paper for continuation
problems of the form Pg = f , where P is an infinitely smoothing integral operator with
known kernel p(x, y). This method does not require differentiability of the unknown
solution g, yet it leads to useful error bounds at realistic values of ε. The method is
based on the observation that in many applications where the unknown g may not be
differentiable, both g and the integral operator P are sufficiently well-behaved that
for some fixed small s > 0, P s almost acts like the identity operator when applied to
g. Thus ‖P sg − g‖ can be expected to be small. This idea was illustrated in Fig. 2
using an example from nuclear medicine. The SECB constraint consists of imposing
the requirement that ‖P sg − g‖/ε be bounded by some known constant K. The
constraint becomes effective when s can be chosen relatively large with K relatively
small so that s∗/s � 1. In Theorem 2, error bounds were obtained for the SECB
approach explicitly in terms of the constants ε, M , K, and s entering the a priori
constraints. In Theorem 3, an explicit formula was derived that compares the L2

norm of the SECB inverse operator to that of the Tikhonov–Miller inverse operator.
The improvement was shown to be governed by the ratio s∗/s. The SECB error bound
for the regularized solution may be several hundred times smaller than that for the
Tikhonov–Miller method if s∗/s is sufficiently small. Image deblurring experiments
reported in [3] show that substantial improvement occurs even for moderately small
values of s∗/s.
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Abstract. The singular limit ε→ 0 of the S-matrix associated with the equation iεdψ(t)/dt =
H(t)ψ(t) is considered, where the analytic generator H(t) ∈Mn(C) is such that its spectrum is real
and nondegenerate for all t ∈ R. Sufficient conditions allowing us to compute asymptotic formulas
for the exponentially small off-diagonal elements of the S-matrix as ε → 0 are made explicit and
a wide class of generators for which these conditions are verified is defined. These generators are
obtained by means of generators whose spectrum exhibits eigenvalue crossings which are perturbed
in such a way that these crossings turn into avoided crossings. The exponentially small asymptotic
formulas which are derived are shown to be valid up to exponentially small relative error by means
of a joint application of the complex Wentzel–Kramers–Brillouin (WKB) method together with
superasymptotic renormalization. This paper concludes with the application of these results to
the study of quantum adiabatic transitions in the time-dependent Schrödinger equation and of the
semiclassical scattering properties of the multichannel stationary Schrödinger equation. The results
presented here are a generalization to n-level systems, n ≥ 2, of results previously known for two-level
systems only.
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matrix, turning-point theory
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1. Introduction. Several problems of mathematical physics lead to the study
of the scattering properties of linear ordinary differential equations in a singular limit

iεψ′(t) = H(t)ψ(t), t ∈ R, ε→ 0,(1.1)

where the prime denotes the derivative with respect to t, ψ(t) ∈ Cn, and H(t) ∈
Mn(C) for all t. A system described by such an equation will be called an n-level
system. Let us mention, for example, the study of the adiabatic limit of the time-
dependent Schrödinger equation or the semiclassical limit of the one-dimensional mul-
tichannel stationary Schrödinger equation at energies above the potential barriers, to
which we will return below. When the generator H(t) is well behaved at +∞ and
−∞, the scattering properties of the problem can be described by means of a matrix
naturally associated with equation (1.1), the so-called S-matrix. This matrix relates
the behavior of the solution ψ(t) as t → −∞ to that of ψ(t) as t → +∞. Assuming
that the spectrum σ(t) of H(t) is real and nondegenerate,

σ(t) = {e1(t) < e2(t) < · · · < en(t)} ∈ R,(1.2)

the S-matrix is essentially given by the identity matrix

(1.3)

S = diag(s11(ε), s22(ε), . . . , snn(ε)) +O(ε∞), where sjj(ε) = 1 +O(ε) as ε→ 0,
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provided H(t) is C∞; see, e.g., [F1], [F2], and [W]. Moreover, if H(t) is assumed to
be analytic, it was proven in various situations that the off-diagonal elements sjk of
S are exponentially decreasing [FF], [W], [F1], [F2], [JKP], [JP4]:

sjk = O
(

e−κ/ε
)
, ∀j 6= k,(1.4)

as ε → 0. See also [JP1], [N], [M], and [Sj] for corresponding results in infinite-
dimensional spaces. Since the physical information is often contained in these off-
diagonal elements, it is of interest to be able to give an asymptotic formula for sjk
rather than a mere estimate.

For two-level systems (or systems reducible to this case (see [JP2], [J], and [MN])),
the situation is now reasonably well understood, at least under generic circumstances.
Indeed, a rigorous study of the S-matrix associated with (1.1) when n = 2 under the
hypotheses loosely stated above is provided in the recent paper [JP4]. The treatment
presented unifies, in particular, earlier results obtained for either the time-dependent
adiabatic Schrödinger equation (see, e.g., [JP3] and the references therein) or the
study of the above barrier reflexion in the semiclassical limit (see, e.g., [FF] and [O]).
Further references are provided in [JP4]. As an intermediate result, the asymptotic
formula

sjk = gjke−Γjk/ε (1 +O(ε)), ε→ 0,(1.5)

for j 6= k ∈ {1, 2} with gjk ∈ C and ReΓjk > 0 is proven in [JP4]. As is well known,
to get an asymptotic formula for sjk, one has to consider (1.1) in the complex plane,
in particular in the vicinity of the degeneracy points of the analytic continuations of
eigenvalues e1(z) and e2(z). Provided the level lines of the multivalued function

Im

∫ z

0

e1(z′)− e2(z′)dz′ = cst,(1.6)

called Stokes lines, naturally associated with (1.1) behave properly in the complex
plane, the so-called complex Wentzel–Kramers–Brillouin (WKB) method allows to
prove (1.5). More importantly, however, it is also shown in [JP4] how to improve
(1.5) to an asymptotic formula accurate up to an exponentially small relative error:

sjk = g∗jk(ε)e−Γ∗jk(ε)/ε(1 +O(e−κ/ε)), ε→ 0,(1.7)

with g∗jk(ε) = gjk + O(ε) and Γ∗jk(ε) = Γjk + O(ε2). This is achieved by using a
complex WKB analysis jointly with the recently developed superasymptotic theory
[Be], [N], [JP2]. Note that when given a generator, the principal difficulty in justifying
formulas (1.5) and (1.7) is the verification that the corresponding Stokes lines (1.6)
display the proper behavior globally in the complex plane, which may or may not
be the case [JKP]. However, this condition is always satisfied when the complex
eigenvalue degeneracy is close to the real axis, as shown in [J]. See also [MN] and [R]
for recent related results.

For n-level systems, with n ≥ 3, the situation is by no means as well understood.
There are some results obtained with particular generators. In [D], [CH1], [CH2], and
[BE], certain elements of the S-matrix are computed if H(t) = H∗(t) depends linearly
on t, H(t) = A+tB for some particular matrices A and B. The choices of A and B are
such that all components of the solution ψ(t) can be deduced from the first one and
an exact integral representation of this first component can be obtained. The integral
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representation is analyzed by standard asymptotic techniques, and this leads to results
which are valid for any ε > 0, as in the case for the classical Landau–Zener generator.
The study of the three-level problem when H(t) = H∗(t) ∈ M3(R) is tackled in the
closing section of the very interesting paper [HP]. A nonrigorous and essentially local
discussion of the behavior of the level lines of Im

∫ z
0
ej(z

′)− ek(z′)dz′, j 6= k = 1, 2, 3,
is provided, and it justifies in very favorable cases an asymptotic formula for some
elements of the S-matrix. See also the review [So], where a nonrigorous study of
(1.1) is made close to a complex degeneracy point of a group of eigenvalues by means
of an exact solution to a model equation. However, no asymptotic formula for sjk,
j 6= k, can be found in the literature for general n-level systems, n ≥ 3. This is due
to the fact that the direct generalization of the method used successfully for two-level
systems may lead to seemingly inextricable difficulties for n = 3. Indeed, with three
eigenvalues, one has to consider three sets of level lines Im

∫ z
0
ej(z

′)−ek(z′)dz′ to deal
with (1.1) in the complex plane, and the conditions that they have to fulfill in order
for the limit ε → 0 to be controlled may be incompatible for a given generator; see
[F1], [F2], and [HP]. It should be mentioned, however, that there are specific examples
in which this difficult problem can be mastered. Such a result was recently obtained
in the semiclassical study [Ba] of a particular problem of resonances for which similar
considerations in the complex plane are required.

The goal of this paper is to provide some general insight into the asymptotic
computation of the S-matrix associated with n-level systems, n ≥ 3, based on a
generalization of the techniques which proved to be successful for two-level systems.
The content of this paper is twofold. On one hand, we set up a general framework
in which asymptotic formulas for the exponentially small off-diagonal coefficients can
be proven. On the other hand, we actually prove such formulas for a wide class of
n-level systems. In the first part of the paper, we give our definition of the S-matrix
associated with equation (1.1) and make explicit the symmetries it inherits from the
symmetries of H(t) for t ∈ R (Proposition 2.1). We then turn to the determination of
the analyticity properties of the eigenvalues and eigenvectors ofH(z), z ∈ C, which are
at the root of the asymptotic formulas that we derive later (Lemma 3.1). The next step
is the formulation of sufficient conditions adapted to the scattering situation that we
consider, under which a complex WKB analysis allows us to prove a formula like (1.5)
(Proposition 4.1). The conditions stated are similar but not identical to those given
in [JKP] or [HP]. As a final step, we show how to improve the asymptotic formula
(1.5) to (1.7) by means of superasymptotic machinery (Proposition 5.2 and Lemma
5.2). We then turn to the second part of the paper, where we show that a wide class
of generators fits into our framework and satisfies our conditions. These generators
are obtained by perturbation of generators whose eigenvalues display degeneracies on
the real axis (in the spirit of [J]). We prove that for these generators, in the absence
of any symmetry of the generator H(t), at least one element per column in the S-
matrix can be asymptotically computed (Theorem 6.1). This is the main technical
section of the paper. The major advantage of this construction is that it is sufficient
to look at the behavior of the eigenvalues on the real axis to check if the conditions are
satisfied. The closing section contains an application of our general results to the study
of quantum adiabatic transitions in the time-dependent Schrödinger equation and
of the semiclassical scattering properties of the multichannel stationary Schrödinger
equation. In particular, we make explicit use of the symmetries of the S-matrix to
increase the number of its elements for which an asymptotic formula holds. In the
latter application, further specific symmetry properties of the S-matrix are derived
(Lemma 7.1).
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2. Definition and properties of the S-matrix. We consider the evolution
equation

iεψ′(t) = H(t)ψ(t), t ∈ R, ε→ 0,(2.1)

where the prime denotes the derivative with respect to t, ψ(t) ∈ Cn, and H(t) ∈
Mn(C) for all t. We make some assumptions on the generator H(t). The first is the
usual analyticity condition in this context.

H1. There exists a strip

Sα = {z ∈ C| |Imz| ≤ α}, α > 0,(2.2)

such that H(z) is analytic for all z ∈ Sα.
Since we are studying scattering properties, we need sufficient decay at infinity.
H2. There exist two nondegenerate matrices H(+), H(−) ∈ Mn(C) and a > 0

such that

lim
t→±∞

|t|1+a sup
|s|≤α

‖H(t+ is)−H(±)‖ <∞.(2.3)

We finally give a condition which has to do with the physics behind the problem.
H3. For t ∈ R, the spectrum of H(t), denoted by σ(t), is real and nondegenerate

σ(t) = {e1(t) < e2(t) < · · · < en(t)} ⊂ R,(2.4)

and there exists g > 0 such that

inf
j 6=k
t∈R

|ej(t)− ek(t)| ≥ g.(2.5)

As a consequence of H3, for each t ∈ R, there exists a complete set of projectors
Pj(t) = P 2

j (t) ∈Mn(C), j = 1, 2, . . . , n, such that

n∑
j=1

Pj(t) ≡ I,(2.6)

H(t) =
n∑
j=1

ej(t)Pj(t),(2.7)

and there exists a basis of Cn of eigenvectors of H(t). We determine these eigenvectors
ϕj(t), j = 1, 2, . . . , n, uniquely (up to a constant) by requiring them to satisfy

H(t)ϕj(t) = ej(t)ϕj(t),(2.8)

Pj(t)ϕ
′
j(t) ≡ 0, j = 1, 2, . . . , n.(2.9)

Explicitly, if ψj(t), j = 1, 2, . . . , n, form a complete set of differentiable eigenvectors
of H(t), the eigenvectors

ϕj(t) = e
−
∫ t

0
ξj(t
′)dt′

ψj(t) s.t. ϕj(0) = ψj(0)(2.10)

with

ξj(t) =
〈ψj(t)|Pj(t)ψ′j(t)〉

‖ψj(t)‖2
, j = 1, . . . , n,(2.11)
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verify (2.9). The fact that this choice leads to an analytic set of eigenvectors close
to the real axis will be proven below. We expand the solution ψ(t) along the basis
just constructed, thus defining the unknown coefficients cj(t), j = 1, 2, . . . , n, to be
determined,

ψ(t) =
n∑
j=1

cj(t)e
−i
∫ t

0
ej(t

′)dt′/ε
ϕj(t).(2.12)

The phases e
−i
∫ t

0
ej(t

′)dt′/ε
(see H3) are introduced for convenience. By inserting

(2.12) into (2.1), we get the following differential equation for the cj(t)’s:

c′j(t) =
n∑
k=1

ajk(t)ei∆jk(t)/εck(t),(2.13)

where

∆jk(t) =

∫ t

0

(ej(t
′)− ek(t′))dt′(2.14)

and

ajk(t) = −〈ϕj(t)|Pj(t)ϕ
′
k(t)〉

‖ϕj(t)‖2
.(2.15)

Here 〈·|·〉 denotes the usual scalar product in Cn. Our choice (2.9) implies ajj(t) ≡ 0.
It is also shown below that the ajk(t)’s are analytic functions in a neighborhood of
the real axis and that hypothesis H2 implies that they satisfy the estimate

lim
t→±∞

sup
j 6=k
|t|1+a |ajk(t)| <∞.(2.16)

As a consequence of this last property and of the fact that the eigenvalues are real by
assumption, the following limits exist:

lim
t→±∞

cj(t) = cj(±∞).(2.17)

We are now able to define the associated S-matrix, S ∈Mn(C), by the identity

S


c1(−∞)
c2(−∞)

...
cn(−∞)

 =


c1(+∞)
c2(+∞)

...
cn(+∞)

 .(2.18)

Such a relation makes sense because of the linearity of equation (2.13). It is a well-
known result that under our general hypotheses, the S-matrix satisfies

S = I +O(ε).(2.19)

Note that the jth column of the S-matrix is given by the solution of (2.13) at t =∞
subjected to the initial conditions ck(−∞) = δjk, k = 1, 2, . . . , n.

In general, the S-matrix defined above has no particular properties besides that
of being invertible. However, when the generator H(t) satisfies some symmetry prop-
erties, the same is true for S. Since such properties are important in applications, we
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show below that if H(t) is self-adjoint with respect to some indefinite scalar product,
then S is unitary with respect to another indefinite scalar product. Let J ∈ Mn(C)
be an invertible self-adjoint matrix. We define an indefinite metric on Cn by means
of the indefinite scalar product

(·, ·)J = 〈·|J ·〉.(2.20)

It is easy to check that the adjoint A# of a matrix A with respect to the (·, ·)J scalar
product is given by

A# = J−1A∗J.(2.21)

Proposition 2.1. Let H(t) satisfy H1 and H2 and possess n distinct eigenvalues
∀t ∈ R. Furthermore, assume that H(t) is self-adjoint with respect to the scalar
product (·, ·)J ,

H(t) = H#(t) = J−1H∗(t)J, ∀t ∈ R,(2.22)

and the eigenvectors ϕj(0) of H(0) satisfy

(ϕj(0), ϕj(0))J = ρj , ρj ∈ {−1, 1}, ∀j = 1, . . . , n.(2.23)

Then the eigenvalues of H(t) are real ∀t ∈ R and the S-matrix is unitary with respect
to the scalar product (·, ·)R, where R = R∗ = R−1 is the real diagonal matrix R =
diag(ρ1, ρ2, . . . , ρn),

S# = RS∗R = S−1.(2.24)

Remark. The condition (ϕj(0), ϕj(0))J = ±1 can always be satisfied by suitable
renormalization provided (ϕj(0), ϕj(0))J 6= 0.

The main interest of this proposition is that when the S-matrix possesses symme-
tries, some of its elements can be deduced from resulting identities without resorting
to their actual computations.

A simple proof of Proposition 2.1 that makes use of notions discussed in the next
section can be found in Appendix A. Proposition 2.1 can actually be used for the two
main applications that we deal with in section 7. Note that in specific cases, further
symmetry properties can be derived for the S-matrix; see section 7.

3. Analyticity properties. The generator H(z) is analytic in Sα; hence the
solution of the linear equation (2.1) ψ(z) is analytic in Sα as well. However, the
eigenvalues and eigenprojectors of H(z) may have singularities in Sα. Let us recall
some basic properties, the proofs of which can be found in [K]. The eigenvalues and
eigenprojectors of a matrix analytic in a region of the complex plane have analytic
continuations in that region with possible singularities located at points z0, called
exceptional points. In a neighborhood free of exceptional points, the eigenvalues are
given by branches of analytic functions and their multiplicities are constant. One
eigenvalue can therefore be analytically continued until it coincides at z0 with one or
several other eigenvalues. The set of such points defines the set of exceptional points.
The eigenvalues may possess branching points at an exceptional z0, where they are
continuous, whereas the eigenprojectors are also multivalued but diverge as z → z0.
Hence by hypothesis H3, the n distinct eigenvalues ej(t) defined on the real axis are
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Fig. 1. The paths β, δ, and η0 in Sα\Ω.

analytic on the real axis and possess multivalued analytic continuations in Sα, with
possible branching points at the set of degeneracies Ω, given by

Ω = {z0| ej(z0) = ek(z0) for some k and j and some analytic continuation}.(3.1)

By assumption H2, Ω is finite, and by H3, Ω ∩R = ∅ and Ω = Ω due to Schwarz’s
principle. Similarly, the eigenprojectors Pj(t) defined on the real axis are analytic
on the real axis and possess multivalued analytic continuations in Sα with possible
singularities at Ω. To see more precisely what happens to these multivalued functions
when we turn around a point z0 ∈ Ω, we consider the construction described in Figure
1. Let f be a multivalued analytic function in Sα\Ω. We denote by f(z) the analytic
continuation of the restriction of f around 0 along some path β ∈ Sα\Ω from 0 to
z. Then we perform the analytic continuation of f(z) along a negatively oriented

loop δ based at z around a unique point z0 ∈ Ω, and we denote by f̃(z) the function
that we get when we come back to the starting point. (If δ is positively oriented, the
construction is similar.) For later purposes, we define η0 as the negatively oriented
loop homotopic to the loop based at the origin encircling z0 obtained by following β
from 0 to z, δ from z back to z, and β in the reverse sense from z back to the origin.
We will keep this notation in the rest of this section. It follows from the discussion
above that if we perform the analytic continuation of the set of eigenvalues {ej(z)}nj=1,
along a negatively oriented loop around z0 ∈ Ω, we get the set {ẽj(z)}nj=1 with

ẽj(z) = eσ0(j)(z), j = 1, . . . , n,(3.2)

where

σ0 : {1, 2, . . . , n} → {1, 2, . . . , n}(3.3)

is a permutation that depends on η0. Similarly, and with the same notations, we get
for the analytic continuations of the projectors around z0

P̃j(z) = Pσ0(j)(z), j = 1, . . . , n.(3.4)

Let us consider now the eigenvectors ϕj(t). We define W (t) as the solution of

W ′(t) =
n∑
j=1

P ′j(t)Pj(t)W (t)(3.5)

≡ K(t)W (t), W (0) = I,

where t ∈ R. It is well known [K], [Kr] that W (t) satisfies the intertwining identity

W (t)Pj(0) = Pj(t)W (t), j = 1, 2, . . . , n, ∀t ∈ R,(3.6)
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so that if {ϕj(0)}nj=1 denotes a set of eigenvectors of H(0), the vectors defined by

ϕj(t) = W (t)ϕj(0)(3.7)

are eigenvectors of H(t). Moreover, using the identityQ(t)Q′(t)Q(t) ≡ 0, which is true
for any differentiable projector, it is easily checked that condition (2.9) is satisfied by
these vectors. The generator K(t) is analytic on the real axis and can be analytically
continued in Sα\Ω. Actually, K(z) is single valued in Sα\Ω. Indeed, let us consider
the analytic continuation of K(z) around z0 ∈ Ω. We get from (3.4) that

P̃ ′j(z) = P ′σ0(j)(z)(3.8)

so that

K̃(z) =

n∑
j=1

P̃ ′j(z)P̃j(z) =
n∑
j=1

P ′σ0(j)(z)Pσ0(j)(z)

=
n∑
k=1

P ′k(z)Pk(z) = K(z).(3.9)

Consequently, W (t) can be analytically continued in Sα\Ω, where it is multivalued
and satisfies both (3.5) and (3.6) with z ∈ Sα\Ω in place of t ∈ R. Moreover, the
relation between the analytic continuation W (z) from 0 to some point z ∈ Sα\Ω and

the analytic continuation W̃ (z) is given by a monodromy matrix W (η0) such that

W̃ (z) = W (z)W (η0),(3.10)

where η0 is the negatively oriented loop based at the origin which encircles only z0 ∈ Ω
(see Figure 1). Note also that the analytic continuation W (z) is invertible in Sα\Ω
and W−1(z) satisfies

W−1′(z) = −W−1(z)K(z), W−1(0) = I.(3.11)

As a consequence, the eigenvectors (3.7) possess multivalued analytic extensions in
Sα\Ω. Indeed, it is easily seen that the analytic continuation of ϕj(z) along a neg-
atively oriented loop around z0 ∈ Ω, ϕ̃j(z), is proportional to ϕσ0(j)(z). Hence we
introduce the quantity θj(η0) ∈ C by the definition

ϕ̃j(z) = e−iθj(η0)ϕσ0(j)(z), j = 1, 2, . . . , n.(3.12)

Note that this is equivalent to W (η0)ϕj(0) = e−iθj(η0)ϕσ0(j)(0) (see (3.10)). Let us
consider the couplings (2.15). Using the definition (3.7), the invertibility of W (t), and
the identity (3.6), it is not difficult to see that we can rewrite

ajk(t) = −〈ϕj(0)|Pj(0)W (t)−1K(t)W (t)ϕk(0)〉
‖ϕj(0)‖2 , t ∈ R,(3.13)

which is analytic on the real axis and can be analytically continued in Sα\Ω, where it
is multivalued. Thus the same is true for the coefficients cj(t) which satisfy the linear
differential equation (2.13), and their analytic continuations satisfy the same equation
with z ∈ Sα\Ω in place of t ∈ R. We now come to the main identity of this section
regarding the coefficients cj(z). Let us denote by cj(z) the analytic continuation of
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cj(0) from 0 to some z ∈ Sα\Ω. We perform the analytic continuation of cj(z) along
a negatively oriented loop around z0 ∈ Ω and denote by c̃j(z) the function that we
get when we come back at the starting point z.

Lemma 3.1. For any j = 1, . . . , n, we have

c̃j(z)e
−i
∫
η0
ej(u)du/ε

e−iθj(η0) = cσ0(j)(z)(3.14)

where η0, θj(η0) and σ0(j) are defined as above.
Proof. It follows from hypothesis H1 that ψ(z) is analytic in Sα so that

n∑
j=1

cj(z)e
−i
∫ z

0
ej(u)du/ε

ϕj(z)(3.15)

=
n∑
j=1

c̃j(z)
˜

e
−i
∫ z

0
ej(u)du/ε

ϕ̃j(z)

=
n∑
j=1

c̃j(z)e
−i
∫
η0
ej(u)du/ε

e
−i
∫ z

0
eσ0(j)(u)du/ε

e−iθj(η0)ϕσ0(j)(z).

We conclude by the fact that {ϕj(z)}nj=1 is a basis.
Remark. It is straightforward to generalize the study of the analytic continuations

around one singular point of the functions given above to the case where the analytic
continuations are performed around several singular points since Ω is finite. The loop
η0 can be rewritten as a finite succession of individual loops encircling only one point
of Ω so that the permutation σ0 is given by the composition of a finite number of
individual permutations. Thus the factors e−iθj(η0) in (3.12) should be replaced by
a product of such factors, each associated with one individual loop, and the same is
true for the factors exp(−i

∫
η0
ej(z)dz/ε) in Lemma 3.1. This process is performed in

the proof of Theorem 6.1.

4. Complex WKB analysis. This section is devoted to basic estimates on the
coefficients cj(z) in certain domains extending to infinity in both the positive and
negative directions inside the strip Sα. We first consider what happens in neighbor-
hoods of ±∞. It follows from assumption H2 by a direct application of the Cauchy
formula that (possibly by reducing α by an arbitrarily small amount)

lim
t→±∞

sup
|s|≤α

|t|1+a‖H ′(t+ is)‖ <∞.(4.1)

Hence the same is true for the single-valued matrix K(z):

lim
t→±∞

sup
|s|≤α

|t|1+a‖K(t+ is)‖ <∞.(4.2)

Let 0 < T ∈ R be such that

min
z∈Ω

Rez > −T and max
z∈Ω

Rez < +T.(4.3)

All quantities encountered so far are analytic in Sα ∩ {z||Rez| > T}, and we denote
with a “˜” any analytic continuation in that set. As noticed earlier,

W̃ ′(z) = K(z)W̃ (z), z ∈ Sα ∩ {z||Rez| > T}(4.4)
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Fig. 2. The path of integration for ∆̃jk(z) (the x’s denote points of Ω).

so that it follows from (4.2) that the limits

lim
t→±∞

W̃ (t+ is) = W̃ (±∞)(4.5)

exist uniformly in s ∈ ]−α, α[. Consequently (see (3.13)),

lim
t→±∞

|t|1+a sup
|s|≤α

|ãjk(t+ is)| <∞, ∀j, k ∈ {1, . . . , n}.(4.6)

Finally, for |t| > T , we can write

Im∆̃jk(t+ is) = Im

(∫
η

ej(z)dz −
∫
η

ek(z)dz

)
+

∫ s

0

Re(eσ(j)(t+ is′)− eσ(k)(t+ is′))ds′,(4.7)

where this equation is obtained by deforming the path of integration from 0 to z =
t + is into a loop η based at the origin, which may encircle points of Ω, followed by
the real axis from 0 to Rez and a vertical path from Rez to z (see Figure 2) and σ is
the corresponding permutation. Hence we have

sup
z∈Sα∩{z||Rez|>T}

Im∆̃jk(z) <∞,(4.8)

which together with (4.6) yields the existence of the limits

lim
t→±∞

c̃j(t+ is) = c̃j(±∞)(4.9)

uniformly in s ∈ ]−α, α[. We now define the domains in which useful estimates can
be obtained.

Definition. Let j ∈ {1, . . . , n} be fixed. A dissipative domain for the index j,
Dj ⊂ Sα\Ω, is such that

sup
z∈Dj

Rez =∞, inf
z∈Dj

Rez = −∞(4.10)

and is defined by the property that for any z ∈ Dj and any k ∈ {1, . . . , n}, there exists
a path γk ⊂ Dj parameterized by u ∈ ]−∞, t] which links −∞ to z,

lim
u→−∞

Reγk(u) = −∞, γk(t) = z,(4.11)

with

sup
z∈Dj

sup
u∈]−∞,t]

∣∣∣∣ dduγk(u)

∣∣∣∣ <∞,(4.12)
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Fig. 3. The path β along which the analytic continuation of ∆jk(t) in Dj is taken.

and satisfies the monotonicity condition

Im∆̃jk(γk(u)) is a nondecreasing function of u ∈ ]−∞, t].(4.13)

Such a path is a dissipative path for {jk}. Here ∆̃jk(z) is the analytic continuation
of

∆jk(t) =

∫ t

0

(ej(t
′)− ek(t′))dt′, t ∈ R,(4.14)

in Dj along a path β described in Figure 3 going from 0 to −T ∈ R along the real
axis and then vertically up or down until it reaches Dj, where T > 0 is chosen as in
(4.3).

Let c̃k(z), k = 1, 2, . . . , n, z ∈ Dj , be the analytic continuations of ck(t) along the
same path β which are solutions of the analytic continuation of (2.13) in Dj along β:

c̃′k(z) =
n∑
l=1

ãkl(z)e
i∆̃kl(z)/εc̃l(z).(4.15)

We take as initial conditions in Dj

lim
Re z→−∞

c̃k(z) = lim
t→−∞

ck(t) = δjk, k = 1, . . . , n,(4.16)

and we define

xk(z) = c̃k(z)ei∆̃jk(z)/ε, z ∈ Dj , k = 1, . . . , n.(4.17)

Lemma 4.1. In a dissipative domain for the index j, we get the estimates

sup
z∈Dj

|xj(z)− 1| = O(ε),(4.18)

sup
z∈Dj

|xk(z)| = O(ε), ∀k 6= j.(4.19)

Remark. The real axis is a dissipative domain for all indices. In this case, we
have c̃j(t) ≡ cj(t). Hence we get from the application of the lemma for all indices
successively that S = I +O(ε).

The estimates we are looking for are then just a direct corollary.
Proposition 4.1. Assume that there exists a dissipative domain Dj for the index

j. Let ηj be a loop based at the origin which encircles all of the degeneracies between
the real axis and Dj and let σj be the permutation of labels associated with ηj, in the
spirit of the remark ending the previous section. The loop ηj is negatively (respectively,
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positively) oriented if Dj is above (respectively, below) the real axis. Then the solution
of (2.13) subjected to the initial conditions ck(−∞) = δjk satisfies

cσj(j)(+∞) = e−iθj(ηj)e
−i
∫
ηj
ej(z)dz/ε

(1 +O(ε)) ,(4.20)

cσj(k)(+∞) = O
(
εe

Im
∫
ηj
ej(z)dz/ε+hj(eσj(j)(+∞)−eσj(k)(+∞))/ε)

,(4.21)

with hj ∈ [H−j , H
+
j ], where H±j is the maximum (respectively, minimum) imaginary

part of the points at +∞ in Dj:

H+ = lim sup
t→+∞

sup
s|t+is∈Dj

s, H− = lim inf
t→+∞

inf
s|t+is∈Dj

s.(4.22)

Thus we see that it is possible to get the (exponentially small) asymptotic behavior
of the element sσj(j),j of the S-matrix, provided there exists a dissipative domain for
the index j. The difficult part of the problem is, of course, to prove the existence
of such domains Dj , which do not necessarily exist, and to have enough of them to
compute the asymptotic of the whole S-matrix. This task is the equivalent for n-level
systems of studying the global behavior of the Stokes lines for two-level systems. We
postpone this aspect of the problem until the next section. Note that we also get
from this result an exponential bound on the elements sσj(k),j of the S-matrix, k 6= j,
which may or may not be useful. If ηj encircles no point of Ω, we cannot get the
asymptotic behavior of sσj(j),j but only get the exponential bounds. Since our main
concern is asymptotic behaviors, we call the corresponding dissipative domain trivial.

Remark. In contrast with the two-level case (see [JP4]) we have to work with
dissipative domains instead of working with one dissipative path for all indices. In-
deed, it is not difficult to convince oneself with specific three-level cases that such a
dissipative path may not exist, even when the eigenvalue degeneracies are close to
the real axis. In return, we prove below the existence of dissipative domains in this
situation.

Proof of Proposition 4.1. The asymptotic relation is a direct consequence of
Lemma 3.1, (4.9), (4.17), and the first part of Lemma 4.1. The estimate is a conse-
quence of the same equations, the second estimate of Lemma 4.1, and the identity,
for t > T ,

Im∆̃jk(t+ is) = Im

(∫
ηj

ej(z)dz −
∫
ηj

ek(z)dz

)

+

∫ s

0

Re(eσj(j)(t+ is′)− eσj(k)(t+ is′))ds′.(4.23)

The path of integration from 0 to z for ∆̃jk(z) is deformed into the loop ηj followed
by the real axis from 0 to Rez and a vertical path from Rez to z. It remains to take
the limit t→ +∞.

Proof of Lemma 4.1. We rewrite equations (4.15) and (4.16) as an integral equa-
tion and perform an integration by parts on the exponentials:

c̃k(z) = δjk − iε
n∑
l=1

ãkl(z)

ẽk(z)− ẽl(z)
ei∆̃kl(z)/εc̃l(z)

+ iε
n∑
l=1

∫ z

−∞

(
ãkl(z

′)

ẽk(z′)− ẽl(z′)

)′
ei∆̃kl(z

′)/εc̃l(z
′)dz′
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+ iε

n∑
l,m=1

∫ z

−∞

ãkl(z
′)ãlm(z′)

ẽk(z′)− ẽl(z′)
ei∆̃km(z′)/εc̃m(z′)dz′.(4.24)

Since all eigenvalues are distinct in Sα\Ω, the denominators are always different from
0. In terms of the functions xk, we get

xk(z) = δjk − iε
n∑
l=1

ãkl(z)

ẽk(z)− ẽl(z)
xl(z)

+ iε
n∑
l=1

∫ z

−∞

(
ãkl(z

′)

ẽk(z′)− ẽl(z′)

)′
ei(∆̃jk(z)−∆̃jk(z′))/εxl(z

′)dz′

+ iε
n∑

l,m=1

∫ z

−∞

ãkl(z
′)ãlm(z′)

ẽk(z′)− ẽl(z′)
ei(∆̃jk(z)−∆̃jk(z′))/εxm(z′)dz′.(4.25)

We introduce the quantity

|||x|||j = sup
z∈Dj
l=1,...,n

|xl(z)|(4.26)

and consider for each k equation (4.25) along the dissipative path γk(u) described in
the definition of Dj such that∣∣∣ei(∆̃jk(γk(t))−∆̃jk(γk(u)))/ε

∣∣∣ ≤ 1(4.27)

when u ≤ t along that path. Due to the integrability of the ãkl(z) at infinity and the
uniform boundedness of dγk(u)/du, we get the estimate |xk(z)− δkj | ≤ ε|||x|||jA for
some constant A uniform in z ∈ Dj ; hence |||x|||j ≤ 1 + ε|||x|||jA. Consequently, for
ε small enough, |||x|||j ≤ 2 and the result follows.

5. Superasymptotic improvement. All of the results above can be improved
substantially by using the so-called superasymptotic renormalization method [Be], [N],
[JP2]. The joint use of complex WKB analysis and superasymptotic renormalization
is very powerful, as demonstrated recently in [JP4] for two-level systems, and, roughly
speaking, it allows us to replace all remainders O(ε) by O(e−κ/ε), where κ > 0. We
briefly show how to achieve this improvement in the case of n-level systems.

Let H(z) satisfy H1, H2, and H3 in Sα, and let

Ŝα = Sα\ ∪r=1,...,p (Jr ∪ Jr),(5.1)

where each Jr is an open domain containing only one point of Ω in the open upper
half-plane. Hence any analytic continuation ej(z) of ej(t), t ∈ R, in Ŝα is isolated in

the spectrum of H(z) so that ej(z) is analytic and multivalued in Ŝα, and the same is
true for the corresponding analytic continuation Pj(z) of Pj(t), t ∈ R. Let σr be the
permutation associated with the loop ζr based at the origin which encircles Jr once
such that

ẽj(z) = eσr(j)(z),(5.2)

with the convention of section 3. The matrix K(z) is analytic and single valued in

Ŝα. Consider the single-valued analytic matrix

H1(z, ε) = H(z)− iεK(z), z ∈ Ŝα.(5.3)
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For ε small enough, the spectrum of H1(z, ε) is nondegenerate ∀z ∈ Ŝα so that its
eigenvalues e1

j (z, ε) and eigenprojectors P 1
j (z, ε) are multivalued analytic functions in

Ŝα. Moreover, for ε small enough, the analytic continuations of e1
j (z, ε) and P 1

j (z, ε)

around Jr satisfy ẽ1
j (z) = e1

σr(j)(z) and P̃ 1
j (z) = P 1

σr(j)(z), as can be easily deduced

from (5.2) by perturbation theory. Consequently, the matrix

K1(z, ε) =
m∑
j=1

P 1
j
′
(z, ε)P 1

j (z, ε)(5.4)

is analytic and single valued in Ŝα. Defining the single-valued matrix

H2(z, ε) = H(z)− iεK1(z, ε), z ∈ Ŝα,(5.5)

we can repeat the argument for ε small enough. By induction, we set for any q ∈ N

Hq(z, ε) = H(z)− iεKq−1(z, ε),(5.6)

Kq−1(z, ε) =

m∑
j=1

P q−1
j

′
(z, ε)P q−1

j (z, ε), z ∈ Ŝα,(5.7)

for ε is small enough. We have

Hq(z, ε) =
m∑
j=1

eqj(z, ε)P
q
j (z, ε),(5.8)

where the eigenvalues and eigenprojections are multivalued in Ŝα and satisfy

ẽqj(z, ε) = eqσr(j)(z, ε),(5.9)

P̃ qj (z, ε) = P qσr(j)(z, ε), j = 1, . . . , n,(5.10)

with the notations of (5.2). We quote from [JP4] and [JP2] the main proposition
regarding this construction.

Proposition 5.1. Let H(z) satisfy H1, H2, and H3 in Sα, and let Ŝα be defined
as above. Then there exist constants c > 0 and ε∗ > 0 and a real function b(t) with
limt→±∞ |t|1+ab(t) <∞ such that

‖Kq(z, ε)−Kq−1(z, ε)‖ ≤ b(Rez)εqcqq!,(5.11)

‖Kq(z, ε)‖ ≤ b(Rez)(5.12)

for all z ∈ Ŝα, all ε < ε∗, and all q ≤ q∗(ε) ≡ [1/ecε], where [y] denotes the integer
part of y and e is the basis of the neperian logarithm.

We can deduce from this that in Ŝα

eqj(z, ε) = ej(z) +O(ε2b(Rez)),(5.13)

P qj (z, ε) = ej(z) +O(εb(Rez)), ∀q ≤ q∗(ε).(5.14)

We introduce the notation fq
∗(ε) ≡ f∗ for any quantity fq depending on the index q,

and we henceforth drop the ε in the arguments of the functions that we encounter.
We define the multivalued analytic matrix W∗(z) for z ∈ Ŝα by

W∗
′(z) = K∗(z)W∗(z), W∗(0) = I.(5.15)
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Due to the above observations and Proposition 5.1, W∗(z) enjoys all of the properties
that W (z) does, such as

W∗(z)P
∗
j (0) = P ∗j (z)W∗(z),(5.16)

W̃ ∗(z) = W∗(z)W∗(ζr)(5.17)

and, uniformly in s,

lim
t±∞

W∗(t+ is) = W∗(∞).(5.18)

Thus we define for any z ∈ Ŝα a set of eigenvectors of H∗(z) by ϕ∗j (z) = W∗(z)ϕ
∗
j (0),

where H∗(0)ϕ∗j (0) = e∗j (0)ϕ∗j (0), j = 1, . . . , n, that satisfy

ϕ̃∗j (0) = exp{−iθ∗j (ζr)}ϕ∗σr(j)(0),

with θ∗j (ζr) = θ(ζr)+O(ε) ∈ C. Let us expand the solution of (2.1) on this multivalued
set of eigenvectors as

ψ(z) =
n∑
j=1

c∗j (z)e
−i
∫ z

0
e∗j (z′)dz′/ε

ϕ∗j (z).(5.19)

Since the analyticity properties of the eigenvectors and eigenvalues of H∗(z) are the
same as those enjoyed by the eigenvectors and eigenvalues of H(z), we get, as in
Lemma 3.1,

c̃∗j (z)e
−i
∫
ζr
e∗j (u)du/ε

e−iθ
∗
j (ζr) = c∗σr(j)(z), ∀z ∈ Ŝα.(5.20)

Substituting (5.19) in (2.1), we see that in Ŝα the multivalued coefficients c∗j (z) satisfy
the differential equation

c∗j
′(z) =

n∑
k=1

a∗jk(z)ei∆
∗
jk(z)/εc∗k(z),(5.21)

where

∆∗jk(z) =

∫ z

0

e∗j (z
′)− e∗k(z′)dz′(5.22)

and

a∗jk(z) =
〈ϕ∗j (z)(0)|P ∗j (z)(0)W∗(z)

−1
(Kq∗−1(z)−Kq∗(z))W∗(z)ϕ

∗
k(0)〉

‖ϕ∗j (0)‖2 ;(5.23)

compare this with (3.13). The key point of this construction is that it follows from
Proposition 5.1 with q = q∗(ε) that

|a∗jk(z)| ≤ 2b(Rez)e−κ/ε, ∀z ∈ Ŝα,(5.24)

where κ = 1/ec > 0, and it follows from (5.13) that

Im∆∗jk(z) = Im∆jk(z) +O(ε2)(5.25)
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uniformly in z ∈ Ŝα. Thus we deduce from (5.24) that the limits

lim
t→±∞

c∗j (t+ is) = c∗j (±∞), j = 1, . . . , n,(5.26)

exist for any analytic continuation in Ŝα. Moreover, along any dissipative path γk(u)
for {jk}, as defined above, we get from (5.25)∣∣∣ei(∆̃∗jk(γk(t))−∆̃∗jk(γk(u)))/ε

∣∣∣ = O(1), ∀u ≤ t,(5.27)

so that, reproducing the proof of Lemma 4.1, we have the following result.
Lemma 5.1. In a dissipative domain Dj, if c̃∗k(−∞) = c∗k(−∞) = δkj, then

c̃∗j (z) = 1 +O(e−κ/ε),(5.28)

ei∆̃jk(z)εc̃∗k(z) = O(e−κ/ε), ∀k 6= j,(5.29)

uniformly in z ∈ Ŝα.
This lemma yields the following improved version of our main result.
Proposition 5.2. Under the conditions of Proposition 4.1 and with the same

notations, if c∗k(−∞) = δjk, then

c∗σj(j)(+∞) = e−iθ
∗
j (ηj)e

−i
∫
ηj
e∗j (z)dz/ε

(1 +O(e−κ/ε)),(5.30)

c∗σj(k)(+∞) = O
(

e−κ/εe
Im
∫
ηj
ej(z)dz/ε+hj(eσj(j)(+∞)−eσj(k)(+∞))/ε

)
.(5.31)

Note that we may or may not replace ej(z) by e∗j (z) in the estimate without al-
tering the result. It remains to make the link between the S-matrix and the c∗k(+∞)’s
of the proposition explicit. We define β∗±j by the relations

ϕ∗j (±∞) = e−iβ
∗±
j ϕj(±∞)(5.32)

(H∗(z) and H(z) coincide at ±∞). By comparison with (5.19) and (2.12), we deduce
the following lemma.

Lemma 5.2. If ck(t) and c∗k(t) satisfy ck(−∞) = c∗k(−∞) = δjk, then the element
kj of the S-matrix is given by

(5.33)

skj = ck(+∞) = e−i(β
∗+
k
−β∗−

j
)e
−i
∫ +∞

0
e∗k(t′)−ek(t′)dt′/ε

e
−i
∫ 0

−∞
e∗j (t′)−ej(t′)dt′/ε

c∗k(+∞)

≡ e−iα
∗
kj c∗k(+∞),

with β∗±j = O(ε) and
∫ 0

±∞ e∗j (t
′)− ej(t′)dt′/ε = O(ε), i.e., e−iα

∗
kj = 1 +O(ε).

Remarks. (i) Proposition 5.2 together with Lemma 5.2 are the main results of the
first part of this paper.

(ii) As a direct consequence of these estimates on the real axis, we have

sjk = O(e−κ/ε), ∀k 6= j,(5.34)

and

sjj = e−iα
∗
jj (1 +O(e−κ/ε)).(5.35)
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(iii) It should be clear from the analysis performed above that all of the results
obtained hold if the generator H(z) in (2.1) is replaced by

H(z, ε) = H0(z) +O(εb(Rez)),(5.36)

with b(t) = O(1/t1+a), provided H0(z) satisfies the hypotheses we assumed.

6. Avoided crossings. We now come to the second part of the paper, in which
we prove asymptotic formulas for the off-diagonal elements of the S-matrix by means
of the general setup presented above. To start with, we define a class of n-level
systems for which we can prove the existence of one nontrivial dissipative domain
for all indices. They are obtained by means of systems that exhibit degeneracies
of eigenvalues on the real axis, hereafter called real crossings, which we perturb in
such a way that these degeneracies are lifted and turn into avoided crossings on the
real axis. When the perturbation is small enough, this process moves the eigenvalue
degeneracies off the real axis, but they remain close to the place where the real
crossings occurred. This method was used successfully in [J] to deal with two-level
systems. We do not attempt to list all of the cases in which dissipative domains can
be constructed by means of this technique but rather present a wide class of examples
which are relevant in the theory of quantum adiabatic transitions and in the theory
of multichannel semiclassical scattering, as described below.

Let H(t, δ) ∈Mn(C) satisfy the following assumptions.
H4. For each fixed δ ∈ [0, d], the matrix H(t, δ) satisfies H1 in a strip Sα indepen-

dent of δ and H(z, δ) and ∂/∂zH(z, δ) are continuous as a functions of two variables
(z, δ) ∈ Sα × [0, d]. Moreover, it satisfies H2 uniformly in δ ∈ [0, d], with limiting
values H(±, δ) which are continuous functions of δ ∈ [0, d].

H5. For each t ∈ R and each δ ∈ [0, d], the spectrum of H(t, δ), denoted by σ(t, δ),
consists of n real eigenvalues

σ(t, δ) = {e1(t, δ), e2(t, δ), . . . , en(t, δ)} ⊂ R(6.1)

which are distinct when δ > 0:

e1(t, δ) < e2(t, δ) < · · · < en(t, δ).(6.2)

When δ = 0, the functions ej(t, 0) are analytic on the real axis and there exists a
finite set of crossing points {t1 ≤ t2 ≤ · · · ≤ tp} ∈ R, p ≥ 0, such that the following
hold:

(i) ∀t < t1,

e1(t, 0) < e2(t, 0) < · · · < en(t, 0).(6.3)

(ii) ∀j < k ∈ {1, 2, . . . , n}, there exists at most one tr with

ej(tr, 0)− ek(tr, 0) = 0,(6.4)

and if such a tr exists, we have

∂

∂t
(ej(tr, 0)− ek(tr, 0)) > 0.(6.5)

(iii) ∀j ∈ {1, 2, . . . , n}, the eigenvalue ej(t, 0) crosses eigenvalues whose indices
are all superior to j or all inferior to j.
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Fig. 4. A pattern of eigenvalue crossings (bold curves) with the corresponding pattern of avoided
crossings (fine curves) satisfying H5.

Remarks. (i) The parameter δ can be understood as a coupling constant that
controls the strength of the perturbation.

(ii) The eigenvalues ej(t, 0) are assumed to be analytic on the real axis, because of
the degeneracies on the real axis. However, if H(t, δ) is self-adjoint for any δ ∈ [0, d],
this is true for an indexation, as follows from a theorem of Rellich; see [K].

(iii) In Figure 4, we give an example of a pattern of crossings with the correspond-
ing pattern of avoided crossings for which the above conditions are fulfilled.

(iv) The crossings are assumed to be generic in the sense that the derivatives of
ej − ek are nonzero at the crossing tr.

(v) The crossing points {t1, t2, . . . , tp} need not be distinct, which is important
when the eigenvalues possess symmetries. However, for each j = 1, . . . , n, the eigen-
value ej(t, δ) experiences avoided crossings with ej+1(t, δ) and/or ej−1(t, δ) at a subset
of distinct points {tr1 , . . . , trj} ⊆ {t1, t2, . . . , tp}.

We now state the main lemma of this section regarding the analyticity properties
of the perturbed levels and the existence of dissipative domains for all indices in this
perturbative context.

Lemma 6.1. Let H(t, δ) satisfy H4 and H5. We can choose α > 0 small enough
so that the following assertions are true for sufficiently small δ > 0:

(i) Let {tr1 , . . . , trj} be the set of avoided crossing points experienced by ej(t, δ),
j = 1, . . . , n. For each j, there exists a set of distinct domains Jr ∈ Sα, where
r ∈ {r1, . . . , rj},

Jr = {z = t+ is| 0 ≤ |t− tr| < L, 0 < g < s < α′},(6.6)

with L small enough, α′ < α, and g > 0 such that ej(−∞, δ) can be analytically
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continued in

Sjα = Sα\ ∪r=r1,...,rj (Jr ∪ Jr).(6.7)

(ii) Let tr be an avoided crossing point of ej(t, δ) with ek(t, δ), k = j ± 1. Then
the analytic continuation of the restriction of ej(t, δ) around tr along a loop based at
tr ∈ R which encircles Jr once yields ẽj(tr, δ) back at tr with

ẽj(tr, δ) = ek(tr, δ).(6.8)

(iii) For each j = 1, . . . , n, there exists a dissipative domain Dj above or below
the real axis in Sα ∩ {z = t+ is| |s| ≥ α′}. The permutation σj associated with these
dissipative domains (see Proposition 4.1) are all given by σj = σ, where σ is the
permutation that maps the index of the kth eigenvalue ej(∞, 0) numbered from the
lowest one on k for all k ∈ {1, 2, · · · , n}.

Remarks. (i) In part (ii), the same result is true along a loop encircling Jr.
(ii) The dissipative domainsDj of part (iii) are located above (respectively, below)

all of the sets Jr (respectively, Jr), r = 1, . . . , p.
(iii) The main interest of this lemma is that the sufficient conditions required for

the existence of dissipative domains in the complex plane can be deduced from the
behavior of the eigenvalues on the real axis.

(iv) We emphasize that more general types of avoided crossings than those de-
scribed in H5 may lead to the existence of dissipative domains for certain indices, but
we want to obtain dissipative domains for all indices. For example, if part (iii) of H5
is satisfied for certain indices only, then part (iii) of Lemma 6.1 is satisfied for those
indices only.

(v) Note also that there are patterns of eigenvalue crossings for which there exist
no dissipative domain for some indices. For example, if ej(t, 0) and ek(t, 0) display
two crossings, it is not difficult to see from the proof of the lemma that no dissipative
domains can exist for j or k.

We postpone the proof of Lemma 6.1 to the end of this section and continue with
its consequences. By applying the results of the previous section, we get the following
result.

Theorem 6.1. Let H(t, δ) satisfy H4 and H5. If δ > 0 is small enough, the
elements σ(j)j of the S-matrix, with σ(j) defined in Lemma 6.1, are given in the
limit ε→ 0 for all j = 1, . . . , n by

sσ(j)j =

σ(j)∓1∏
k=j

e−iθk(ζk)e
−i
∫
ζk
ek(z,δ)dz/ε

(1 +O(ε)) , σ(j)

{
> j,

< j,
(6.9)

where for σ(j) > j (respectively, σ(j) < j), ζk, k = j, . . . , σ(j) − 1 (respectively,
k = j, . . . , σ(j) + 1), denotes a negatively (respectively, positively) oriented loop based
at the origin which encircles the set Jr (respectively, Jr) corresponding to the avoided
crossing between ek(t, δ) and ek+1(t, δ) (respectively, ek−1(z, δ)) at tr,

∫
ζk
ek(z, δ)dz

denotes the integral along ζk of the analytic continuation of ek(0, δ), and θk(ζk) is the
corresponding factor defined by (3.12); see Figure 5.

More accurately, with the notations of section 5, we have the improved formula

(6.10)

sσ(j)j = e−iα
∗
σ(j)j

σ(j)∓1∏
k=j

e−iθ
∗
k(ζk)e

−i
∫
ζk
e∗k(z,δ)dz/ε

(1 +O(e−κ/ε)), σ(j)

{
> j,

< j.
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Fig. 5. The loops ηj and ζk, k = j, . . . , σ(j)− 1.

The elements σ(l)j, l 6= j, are estimated by

sσ(l)j = O

εeh(eσ(j)(∞,δ)−eσ(l)(∞,δ))/ε
σ(j)∓1∏
k=j

e
Im
∫
ζk
ek(z,δ)dz/ε

 , σ(j)

{
> j,

< j,
(6.11)

where h is strictly positive (respectively, negative) for σ(j) > j (respectively, σ(j) <
j).

Remarks. (i) Since the eigenvalues are continuous at the degeneracy points, we
have that

lim
δ→0

Im

∫
ζk

ek(z, δ)dz = 0, ∀k = 1, . . . , p.(6.12)

(ii) The remainders O(ε) depend on δ, but it should be possible to get estimates
that are valid as both ε and δ tend to zero, in the spirit of [J], [MN], and [R].

(iii) This result shows that at least one off-diagonal element per column of the
S-matrix can be computed asymptotically. However, it is often possible to get more
elements by making use of the symmetries of the S-matrix. Moreover, if there exist
dissipative domains that go above or below other eigenvalue degeneracies further away
in the complex plane, other elements of the S-matrix can be computed.

(iv) Finally, note that all starred quantities in (6.10) depend on ε.
Proof of Theorem 6.1. The first thing to determine is whether the loops ζk are

above or below the real axis. Since the formulas that we deduce from the complex
WKB analysis are asymptotic, it suffices to choose the case that yields exponential
decay of sσ(j)j . It is readily checked in the proof of Lemma 6.1 below that if σ(j) > j,
Dj is above the real axis and if σ(j) < j, Dj is below the real axis. Then it remains
to explain how to pass from the loop ηj given in Proposition 4.1 to the set of loops
ζk, k = j, . . . , σ(j) − 1. We briefly deal with the case where σ(j) > j; the other case
is similar. It follows from Lemma 6.1 that we can deform ηj into the set of loops ζk,
each associated with one avoided crossing, as described in Figure 5. Thus we have∫

ηj

=

σ(j)−1∑
k=j

∫
ζk

(6.13)

for the decay rate and (see (3.10))

W (ηj) = W (ζσ(j)−1) · · ·W (ζj+1)W (ζj)(6.14)
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for the prefactors. Let νj be a negatively oriented loop based at tr which encircles
Jr as described in Lemma 6.1. Now consider the loop ζj associated with this avoided
crossing and deform it to the path obtained by going from 0 to tr along the real axis,
from tr to tr along νj , and back from tr to the origin along the real axis. By point
(ii) of Lemma 6.1, we get

ẽj(0, δ) = ej+1(0, δ)(6.15)

along ζj , and, accordingly (see (3.12)),

ϕ̃j(0, δ) = e−iθj(ζj)ϕj+1(0, δ).(6.16)

This justifies the first factor in the formula. By repeating the argument at the next
avoided crossings, keeping in mind that we get ej+1(0, δ) at the end of ζj and so on,
we get the final result. The estimate on sσ(l)j is obtained by direct application of
lemma 6.1.

Proof of Lemma 6.1. In what follows, we shall denote “ ∂
∂t” by a “′.” We must

consider the analyticity properties of ẽj(z, δ) and define domains in which every point
z can be reached from −∞ by means of a path γ(u), u ∈ ]−∞, t], γ(t) = z such

that Im∆̃jk(γ(u), δ) is nondecreasing in u for certain indices j 6= k when δ > 0 is

fixed. Note that by Schwarz’s principle, if γ(u) is dissipative for {jk}, then γ(u) is
dissipative for {kj}. When γ(u) = γ1(u) + iγ2(u) is differentiable, saying that γ(u) is
dissipative for {jk} is equivalent to

Re(ẽj(γ(u), δ)− ẽk(γ(u), δ))γ̇2(u) + Im(ẽj(γ(u), δ)− ẽk(γ(u), δ))γ̇1(u) ≥ 0,

∀u ∈ ]−∞, t],(6.17)

where “ ˙ ” denotes the derivative with respect to u. Moreover, if the eigenvalues are
analytic in a neighborhood of the real axis, we have in that neighborhood the relation

Im(ẽj(t+ is, δ)− ẽk(t+ is, δ)) =

∫ s

0

Re (ẽ′j(t+ is′, δ)− ẽ′k(t+ is′, δ))ds′,(6.18)

which is a consequence of the Cauchy–Riemann identity. We proceed as follows. We
construct dissipative domains above and below the real axis when δ = 0, and we show
that they remain dissipative for the perturbed quantities ∆̃jk(z, δ), provided δ is
small enough. We introduce some quantities to be used in the construction. Let Cr ⊂
{1, . . . , n}2 denote the set of distinct couples of indices such that the corresponding
eigenvalues experience one crossing at t = tr. Similarly, N ⊂ {1, . . . , n}2 denotes the
set of couples of indices such that the corresponding eigenvalues never cross.

Let Ir = [tr − L, tr + L] ∈ R, r = 1, . . . , p, with L so small that

min
r∈{1,...,p}

min
{jk}∈Cr, j<k

inf
t∈Ir

(e′j(t, 0)− e′k(t, 0)) ≡ 4c > 0.(6.19)

This relation defines the constant c, and we also define b by

min
r∈{1,...,p}

min
{jk}∈Cr, j<k

inf
t∈R\Ir

|ej(t, 0)− ek(t, 0)| ≥ 4b > 0,(6.20)

min
{jk}∈N, j<k

inf
t∈R
|ej(t, 0)− ek(t, 0)| ≥ 4b > 0.(6.21)

We further introduce

Iαr = {z = t+ is|t ∈ Ir, |s| ≤ α}, r = 1, . . . , p.(6.22)
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Then we choose α small enough so that the only points of degeneracy of eigenvalues
in Sα are on the real axis and

min
r∈{1,...,p}

min
{jk}∈Cr, j<k

inf
z∈Iαr

Re(e′j(z, 0)− e′k(z, 0)) > 2c > 0(6.23)

min
r∈{1,...,p}

min
{jk}∈Cr, j<k

inf
z∈Sα\Iαr

|Re(ej(z, 0)− ek(z, 0))| > 2b > 0(6.24)

min
{jk}∈N, j<k

inf
z∈Sα

|Re(ej(z, 0)− ek(z, 0))| > 2b > 0.(6.25)

The fact that this choice is always possible is a consequence of the analyticity of
ej(z, 0) close to the real axis and of the fact that we can essentially work in a compact
because of hypothesis H4. Let a(t) be integrable on R and such that

a(t)

2
> max
j<k∈{1,...,n}

sup
|s|≤α

∣∣Re(e′j(t+ is, 0)− e′k(t+ is, 0))
∣∣.(6.26)

It follows from H4 that such functions exist.
Let r ∈ {1, . . . , p} and γ2(u) be a solution of γ̇2(u) = −γ2(u)a(u)

b , u ∈ ]−∞, tr − L],
γ̇2(u) = 0, u ∈ ]tr − L, tr + L[,

γ̇2(u) = +γ2(u)a(u)
b , u ∈ [tr + L,∞[,

(6.27)

with γ2(tr) > 0. Then γ2(u) > 0 for any u since
γ2(u) = γ2(tr)e

−
∫ u
tr−L

a(u′)du′/b
, u ∈ ]−∞, tr − L],

γ2(u) = γ2(tr), u ∈ ]tr − L, tr + L[,

γ2(u) = γ2(tr)e

∫ u
tr+L

a(u′)du′/b
, u ∈ [tr + L,∞[,

(6.28)

and since a(u) is integrable, the limits

lim
u→±∞

γ2(u) = γ2(±∞)(6.29)

exist. Moreover, we can always choose γ2(tr) > 0 sufficiently small so that γr(u) ≡
u + iγ2(u) ∈ Sα for any real u. Let us verify that this path is dissipative for all
{jk} ∈ Cr, j < k. For u ∈ ]−∞, tr − L], using

Re(ej(z, 0)− ek(z, 0)) < −2b < 0, ∀z ∈ Sα ∩ {z|Rez ≤ tr − L},(6.30)

(6.31)

|Im(ej(t+ is, 0)− ek(t+ is, 0))| < |s| sup
s′∈[0,s]

∣∣Re(e′j(t+ is′, 0)− e′k(t+ is′, 0))
∣∣

(see (6.18)), and the definition (6.26), we have

(6.32)

Re(ej(γ
r(u), 0)− ek(γr(u), 0))γ̇2(u) + Im(ej(γ

r(u), 0)− ek(γr(u), 0))γ̇1(u)

= −Re(ej(γ
r(u), 0)− ek(γr(u), 0))

γ2(u)a(u)

b
+ Im(ej(γ

r(u), 0)− ek(γr(u), 0))

> 2γ2(u)a(u)− γ2(u)a(u)/2 > γ2(u)a(u) > 0.
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Similarly, when u ≥ tr + L, using

Re(ej(z, 0)− ek(z, 0)) > 2b > 0, ∀z ∈ Sα ∩ {z|Rez ≥ tr + L},(6.33)

we get

(6.34)

Re(ej(γ
r(u), 0)− ek(γr(u), 0))γ̇2(u) + Im(e1(γr(u), 0)− ek(γr(u), 0))γ̇1(u)

= Re(ej(γ
r(u), 0)− ek(γr(u), 0))

γ2(u)a(u)

b
+ Im(ej(γ

r(u), 0)− ek(γr(u), 0))

> 2γ2(u)a(u)− γ2(u)a(u)/2 > γ2(u)a(u) > 0.

Finally, for s ∈ [tr − L, tr + L], we have with (6.23) that

(6.35)

Im(ej(γ
r(u), 0)− ek(γr(u), 0)) =

∫ γ2(u)

0

Re(e′j(t
′ + is, 0)− e′k(t′ + is, 0))

≥ γ2(u)2c > γ2(u)c > 0.

Thus γr(u) is dissipative for all {jk} ∈ Cr, j < k. Note that the last estimate shows
that it is not possible to find a dissipative path for {jk} ∈ Cr, j < k below the real
axis.

Now consider {jk} ∈ N, j < k, and let γ+
2 (u) be a solution of

γ̇+
2 (u) = −γ

+
2 (u)a(u)

b
, γ+

2 (0) > 0, u ∈ ]−∞,+∞[,(6.36)

i.e.,

γ+
2 (u) = γ+

2 (0)e
−
∫ u

0
a(u′)du′/b

.(6.37)

As above, we have γ+
2 (u) > 0 for any u and we can choose γ+

2 (0) > 0 small enough
so that γ+(u) ≡ u+ iγ+

2 (u) ∈ Sα for any u ∈ R. Since

Re(ej(z, 0)− ek(z, 0)) > −2b, ∀z ∈ Sα,(6.38)

we check by a computation analogous to (6.32) that γ+(u) is dissipative for {jk} ∈
N, j < k. Similarly, we can verify that if γ−2 (u) is the solution of

γ̇−2 (u) =
γ−2 (u)a(u)

b
, γ−2 (0) < 0, u ∈ ]−∞,+∞[,(6.39)

with |γ−2 (0)| small enough, the path γ−(u) ≡ u+ iγ−2 (u) below the real axis is in Sα
for any u ∈ R and is dissipative for {jk} ∈ N, j < k, as well.

Finally, the complex conjugates of these paths yield dissipative paths above and
below the real axis for {jk} ∈ N, j > k.

We now define the dissipative domains by means of their borders. Let γ+(u) and
γ−(u), u ∈ R, be two dissipative paths in Sα defined as above with |γ−2 (0)| sufficiently
small so that γ− is below γ+. We set

D = {z = t+ is|0 < −γ−2 (t) ≤ s ≤ γ+
2 (t), t ∈ R}.(6.40)
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Fig. 6. The dissipative domain D and some dissipative paths.

Let z ∈ D, and j ∈ {1, . . . , n} be fixed. By assumption H5, the set Xj of indices k
such that {jk} ∈ Cr for some r ∈ {1, . . . , p} consists of values k that satisfy j < k
or it consists of values k that satisfy j > k. Let us assume that the first alternative
takes place. Now for any k ∈ {1, . . . , n}, there are three cases.

(1) If k ∈ Xj , then there exists a dissipative path γr ∈ D for {jk} ∈ Cr, j < k,
constructed as above which links −∞ to z. It is enough to select the initial condition
γ2(tr) suitably; see Figure 6.

(2) Similarly, if j < k 6∈ Xj , there exists a dissipative path γ+ ∈ D for {jk}
constructed as above which links −∞ to z obtained by a suitable choice of γ+

2 (0).
(3) Finally, if k > j, we can take as a dissipative path for {jk} the path γ− ∈ D

constructed as above which links −∞ to z with a suitable choice of γ−2 (0). Hence
D is dissipative for the index j when δ = 0. If j is such that the set Xj consists of
points k with k > j, a similar argument with the complex conjugates of the above
paths shows that the domain D below the real axis is dissipative for j when δ = 0.

Let us show that these domains remain dissipative when δ > 0 is not too large. We
start by considering the analyticity properties of the perturbed eigenvalues ej(z, δ),
δ > 0. Let 0 < α′ < α be such that

Iα
′

r ∩ (D ∪D) = ∅, ∀r = 1, . . . , p.(6.41)

The analytic eigenvalues ej(z, 0), j ∈ {1, . . . , n}, are isolated in the spectrum of

H(z, 0) for any z ∈ S̃α, where

S̃α = Sα\ ∪r=1,...,p I
α′

r .(6.42)

For any j = 1, . . . , n we get from perturbation theory [K] that the analytic continua-

tions ẽj(z, δ) of ej(t1 − L, δ) in S̃α are all distinct in S̃α, provided δ is small enough.
This is due to the fact that assumption H4 implies the continuity of H(z, δ) in δ
uniformly in z ∈ Sα, as is easily verified. More precisely, for any fixed index j, the
eigenvalue ej(t, δ) experiences avoided crossings at the points {tr1 , . . . , trj}. We can
assume without loss of generality that

Iα
′

k ∩ Iα
′

l = ∅, ∀k 6= l ∈ {r1, . . . , rj}.(6.43)

Hence for δ > 0 small enough, the analytic continuation ẽj(z, δ) is isolated in the

spectrum of H(z, δ) uniformly in z ∈ Sα\∪r=r1,...,rj Iα
′

r . Since by assumption H5 there
is no crossing of eigenvalues on the real axis when δ > 0, there exists a 0 < g < α′

that depends on δ such that ẽj(z, δ) is isolated in the spectrum of H(z, δ) uniformly
in z ∈ Sjα, where

Sjα = Sα\ ∪r=r1,...,rj (Jr ∪ Jr)(6.44)
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and

Jr = Iα
′

r ∩ {z| Imz > g}, r = 1, . . . , p.(6.45)

Hence the singularities of ẽj(z, δ) are located in ∪r=r1,...,rj (Jr ∪ Jr), which yields the
first assertion of the lemma.

Consider a path νr from tr − L to tr + L which goes above Jr, where tr is an
avoided crossing between ej(t, δ) and ek(t, δ), k = j ± 1. By perturbation theory
again, ej(tr −L, δ) and ek(tr −L, δ) tend to ej′(tr −L, 0) and ek′(tr −L, 0) as δ → 0
for some j′, k′ ∈ 1, . . . , n, whereas ej(tr +L, δ) and ek(tr +L, δ) tend to ek′(tr +L, 0)
and ej′(tr + L, 0) as δ → 0; see Figure 4. Now the analytic continuations of the
restrictions of ej(t, δ) and ek(t, δ) around tr − L along νr, ẽj(z, δ) and ẽk(z, δ) tend
to the analytic functions ẽj′(z, 0) = ej′(z, 0) and ẽk′(z, 0) = ek′(z, 0) as δ → 0 for all
z ∈ νr. Thus we deduce that for δ small enough,

ẽj(tr + L, δ) ≡ ek(tr + L, δ)(6.46)

since we know that ẽj(tr + L, δ) = eσ(j)(tr + L, δ) for some permutation σ. Hence
point (iii) of the lemma follows.

Note that the analytic continuations ẽj(z, δ) are single valued in S̃α. Indeed, the
analytic continuation of ej(tr − L, δ) along νr, denoted by êj(z, δ), ∀z ∈ νr, is such
that

êj(tr + L, δ) = ẽj(tr + L, δ) = ẽj(tr + L, δ) = ek(tr + L, δ)(6.47)

due to Schwarz’s principle. We further require δ to be sufficiently small so that the
following estimates are satisfied:

min
r∈{1,...,p}

min
{jk}∈Cr
j<k

inf
z∈S̃α\Iαr

|Re(ẽj(z, δ)− ẽk(z, δ))| > b > 0,(6.48)

min
{jk}∈N
j<k

inf
z∈S̃α

|Re(ẽj(z, δ)− ẽk(z, δ))| > b > 0,(6.49)

max
j<k∈{1,...,n}

sup
Imz| z∈S̃α

∣∣Re(ẽ′j(z, δ)− ẽ′k(z, δ))
∣∣ < a(Rez),(6.50)

and, in the compacts Ĩαr = Iαr \Iα
′

r ,

min
r∈{1,...,p}

min
{jk}∈Cr
j<k

inf
z∈Ĩαr

|Im(ẽj(z, δ)− ẽk(z, δ))|

>
1

2
min

r∈{1,...,p}
min
{jk}∈Cr
j<k

inf
z∈Ĩαr

|Im(ẽj(z, 0)− ẽk(z, 0))| > |Imz|c,(6.51)

max
r∈{1,...,p}

max
j<k∈{1,...,n}

sup
z∈Ĩαr

|Im(ẽj(z, δ)− ẽk(z, δ))|

< 2 max
r∈{1,...,p}

max
j<k∈{1,...,n}

sup
z∈Ĩαr

|Im(ẽj(z, 0)− ẽk(z, 0))| < |Imz|a(Rez).(6.52)

The simultaneous requirements (6.26) and (6.50) are made possible by the continuity
properties of H ′(z, δ) and the uniformity in δ of the decay at ±∞ of H(z, δ) assumed
in H4 together with the fact that a(t) can be replaced by a multiple of a(t) if necessary
to satisfy both estimates. The condition on δ is given by the first inequalities in (6.51)
and (6.52), whereas the second ones are just recalls.
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Then it remains to check that the paths γr, γ+, and γ− defined above satisfy the
dissipativity condition (6.17) for the corresponding indices. This is not difficult since
the above estimates are precisely designed to preserve inequalities such as (6.32),
(6.34), and (6.35). However, it should not be forgotten that in the sets Iα

′

r , the
eigenvalues may be singular so that (6.18) cannot be used there. Therefore, when
checking that a path parameterized as above by u ∈ R is dissipative, it is necessary
to consider separately the case u ∈ R\(∪r=1,...,pIr), where we proceed as above with
(6.48), (6.49), (6.50), and (6.18), and the case u ∈ ∪r=1,...,pIr, where we use use
(6.51) and (6.52) instead of (6.18) as follows. If u ∈ Ir for r such that tr is a crossing
point for ej(t, 0) and ek(t, 0), we take (6.51) to estimate Im(ẽj′(z, δ) − ẽk′(z, δ)) for
the corresponding indices j′ and k′, and if tr is not a crossing point for ej(t, 0) and
ek(t, 0), we use (6.52) to estimate Im(ẽj′(z, δ)− ẽk′(z, δ)). Consequently, the domains
D and D defined above keep the same dissipativity properties when δ > 0 is small
enough.

Let us finally turn to the determination of the associated permutation σ. As
noticed earlier, the eigenvalues ẽj(z, δ) are continuous in δ uniformly in z ∈ S̃α.
Hence, since the eigenvalues ej(z, 0) are analytic in Sα, we have

lim
δ→0

ẽj(∞, δ) = ej(∞, 0) j = 1, 2, . . . , n,(6.53)

whereas along the real axis (see Figure 4), we have

lim
δ→0

eσ(j)(∞, δ) = ej(∞, 0),(6.54)

with σ defined in the lemma, from which the result follows.

7. Applications. Let us consider the time-dependent Schrödinger equation in
the adiabatic limit. The relevant equation is then (2.1), where H(t) = H∗(t) is the
time-dependent self-adjoint Hamiltonian. Thus we can take J = I in Proposition 2.1
to get

H(t) = H∗(t) = H#(t).(7.1)

Since the norm of an eigenvector is positive, it remains to impose the gap hypothesis in
H3 to fit in the framework, and we deduce that the S-matrix is unitary since R = I.
In this context, the elements of the S-matrix describe the transitions between the
different levels between t = −∞ and t = +∞ in the adiabatic limit.

We now specify our concern a little further and consider a three-level system, i.e.,
H(t) = H∗(t) ∈M3(C). We assume that H(t) satisfies the hypotheses of Theorem 6.1
with an extra parameter δ, which we omit in the notation, and displays two avoided
crossings at t1 < t2, as shown in Figure 7. The corresponding permutation σ is given
by

σ(1) = 3, σ(2) = 1, σ(3) = 2.(7.2)

By Theorem 6.1, we can compute asymptotically the elements s31, s12, s23, and sjj ,
j = 1, 2, 3. Using the unitarity of the S-matrix, we can get some more information.
Introducing

Γj =

∣∣∣∣∣Im
∫
ζj

ej(z)dz

∣∣∣∣∣ , j = 1, 2,(7.3)
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Fig. 7. The pattern of avoided crossings in the adiabatic context.

where ζj is in the upper half-plane, with the notation of section 6, it follows that

s31 = O(e−(Γ1+Γ2)/ε), s12 = O(e−Γ1/ε), s23 = O(e−Γ2/ε),(7.4)

and

sjj = 1 +O(ε), j = 1, 2, 3.(7.5)

Expressing the fact that the first and second columns as well as the second and third
rows are orthogonal, we deduce

s21 = −s12
s11

s22
(1 +O(e−2Γ2/ε)),(7.6)

s32 = −s23
s33

s22
(1 +O(e−2Γ1/ε)).(7.7)

Finally, the estimate in Theorem 6.1 yields

s13 = O(εe−|h|(e2(∞,δ)−e1(∞,δ))/εe−Γ2/ε) = O(e−(Γ2+Γ2+K)/ε),(7.8)

where K > 0, since we have that Γj → 0 as δ → 0. Hence we get

(7.9)

S =

 s11 s12 O
(
e−(Γ2+Γ2+K)/ε

)
−s12

s11
s22

(
1 +O

(
e−2Γ2/ε

))
s22 s23

s31 −s23
s33
s22

(
1 +O

(
e−2Γ1/ε

))
s33

 ,

where all sjk’s above can be computed asymptotically up to exponentially small rel-
ative error using (6.10).

The smallest asymptotically computable element s31 describes the transition from
e1(−∞, δ) to e3(+∞, δ). The result that we obtain for this element is in agreement
with the rule of thumb that claims that the transitions take place locally at the avoided
crossings and can be considered as independent. Accordingly, we can only estimate
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the smallest element of all, s13, which describes the transition from e3(−∞, δ) to
e1(+∞, δ), for which the avoided crossings are not encountered in the “right order,”
as discussed in [HP]. It is possible, however, to get an asymptotic expression for this
element in some cases. When the unperturbed levels e2(z, 0) and e3(z, 0) possess a
degeneracy point in Sα and when there exists a dissipative domain for the index 3 of
the unperturbed eigenvalues going above this point, one can convince oneself that s13

can be computed asymptotically for δ small enough using the techniques presented
above.

Our second application is the study of the semiclassical scattering properties of
the multichannel stationary Schrödinger equation with energy above the potential
barriers. The relevant equation is then

− ε2 d
2

dt2
Φ(t) + V (t)Φ(t) = EΦ(t),(7.10)

where t ∈ R is a space variable, Φ(t) ∈ Cm is the wave function, ε → 0 denotes
Planck’s constant, V (t) = V ∗(t) ∈Mm(C) is the matrix of potentials, and the spectral
parameter E is kept fixed and large enough so that

U(t) ≡ E − V (t) > 0.(7.11)

Introducing

ψ(t) =

(
Φ(t)
iεΦ(t)

)
∈ C2m,(7.12)

we cast equation (7.10) into the equivalent form (2.1) for ψ(t) with the generator

H(t) =

(
O I
U(t) O

)
∈M2m(C).(7.13)

It is readily verified that

H(t) = J−1H∗(t)J,(7.14)

with

J =

(
O I
I O

)
.(7.15)

Concerning the spectrum of H(t), we should remark that if the real and positive
eigenvalues of U(t), k2

j (t), j = 1, . . . ,m associated with the eigenvectors uj(t) ∈ Cm

are assumed to be distinct, i.e.,

0 < k2
1(t) < k2

2(t) < · · · < k2
m(t),(7.16)

then the spectrum of the generator H(t) given by (7.13) consists of 2m real distinct
eigenvalues

− km(t) < −km−1(t) < · · · < −k1(t) < k1(t) < k2(t) < · · · < km(t)(7.17)

associated with the 2m eigenvectors

χ±j (t) =

(
uj(t)

±kj(t)uj(t)

)
∈ C2m,

H(t)χ±j (t) = ±kj(t)χ±j (t).(7.18)



EXPONENTIAL ASYMPTOTICS FOR n-LEVEL S-MATRICES 697

We check that

(χ±j (0), χ±j (0))J = ±2kj(0)‖uj(0)‖ 6= 0, j = 1, . . . ,m,(7.19)

where ‖uj(0)‖ is computed in Cm, so that Proposition 2.1 applies. Before dealing
with its consequences, we further make explicit the structure of S. Adopting the
notation suggested by (7.17) and (7.18), we write

H(t) =

m∑
j=1

kj(t)P
+
j (t)−

m∑
j=1

kj(t)P
−
j (t),(7.20)

ψ(t) =
m∑
j=1

c+j (t)ϕ+
j (t)e

−i
∫ t

0
kj(t

′)dt′/ε
+

m∑
j=1

c−j (t)ϕ−j (t)e
i
∫ t

0
kj(t

′)dt′/ε
(7.21)

and introduce

c±(t) =


c±1 (t)
c±2 (t)

...
c±m(t)

 ∈ Cm.(7.22)

Hence we have the block structure

S

(
c+(−∞)
c−(−∞)

)
≡
(
S++ S+−
S−+ S−−

)(
c+(−∞)
c−(−∞)

)
=

(
c+(+∞)
c−(+∞)

)
,(7.23)

where Sστ ∈Mm(C), σ, τ ∈ {+,−}.
Let us turn to the symmetry properties of S. We get from (7.19) and Proposition

2.1 that

(7.24)(
S++ S+−
S−+ S−−

)−1

=

(
I O
O −I

)(
S++ S+−
S−+ S−−

)∗(
I O
O −I

)
=

(
S∗++ −S∗−+

−S∗+− S∗−−

)
.

In terms of the blocks Sστ , this is equivalent to

S++S
∗
++ − S+−S

∗
+− = I,(7.25)

S++S
∗
−+ − S+−S

∗
−− = O,(7.26)

S−−S
∗
−− − S−+S

∗
−+ = I.(7.27)

The block S++ describes the transmission coefficients associated with a wave traveling
from the right and S−+ describes the associated reflexion coefficients. Similarly, S−−
and S+− are related to the transmission and reflexion coefficients associated with a
wave incoming from the left. It should be noted that in the case of equation (7.10),
another convention is often used to define an S-matrix (see, for instance, [F1]). This
gives rise to a different S-matrix with a similar interpretation. However, it is not
difficult to establish a one-to-one correspondence between the two definitions. If the
matrix of potentials V (t) is real symmetric, we have further symmetry in the S-matrix.

Lemma 7.1. Let S given by (7.23) be the S-matrix associated with (7.10) under
condition (7.11). If we further assume that V (t) = V (t), then taking ϕ±j (0) ∈ R2m,
j = 1, . . . ,m, in (7.21), we get

S++ = S−−, S+− = S−+.(7.28)
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Fig. 8. The pattern of avoided crossings in the semiclassical context.

The corresponding results for the S-matrix defined in [F1] are derived in [MN].
The proof of this lemma can be found in Appendix B. We now consider (7.10) in the
case where U(t) = U∗(t) = U(t) ∈M2(R), which describes a two-channel Schrödinger
equation. We assume that the four-level generator H(t) displays three avoided cross-
ings at t1 < t2, two of which take place at the same point t1 because of the symmetry
of the eigenvalues, as in Figure 8. By Lemma 7.1, it is enough to consider the blocks
S++ and S+−. The transitions corresponding to elements of these blocks which we
can compute asymptotically are from level 1+ to level 2+ and from level 2− to level
1+. They correspond to elements s++

21 and s+−
12 , respectively. With the notation

Γj =

∣∣∣∣∣Im
∫
ζj

k1(z)dz

∣∣∣∣∣ , j = 1, 2,(7.29)

where ζj is in the upper half-plane, we have the estimates

(7.30)

s++
21 = O(e−Γ1/ε), s+−

12 = O(e−(Γ1+Γ2)/ε), s++
jj = 1 +O(ε), j = 1, 2.

It follows from (7.26) and Lemma 7.1 that the matrix S++S
T
+− is symmetric. Hence

s++
11 s+−

21 + s++
12 s+−

22 = s++
21 s+−

11 + s++
22 s+−

12 ,(7.31)

whereas we get from (7.25) that

s++
11 s++

21 + s++
12 s++

22 = s+−
11 s+−

21 + s+−
12 s+−

22 .(7.32)

The only useful estimate we get with Theorem 6.1 is

s+−
22 = O(e−(Γ1+Γ2+K)/ε), K > 0,(7.33)
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which together with (7.30) in (7.31) yields

s+−
21 = s++

21 s+−
11 /s++

11 +O(e−(Γ1+Γ2)/ε).(7.34)

Thus from (7.32) and (5.34) for s+−
11 ,

s++
12 = −s++

21

s++
11

s++
22

(1 +O(e−κ/ε)),(7.35)

with

0 < κ < min(Γ1,Γ2).(7.36)

Summarizing, we have

S++ =

(
s++

11 −s++
21

s++
11

s++
22

(
1 +O

(
e−κ/ε

))
s++

21 s++
22

)
(7.37)

and

S+− =

(
O
(
e−κ/ε

)
s+−

12

O
(
e−κ/ε

)
O
(
e−(Γ1+Γ2+K)/ε

)) ,(7.38)

where all elements sστjk can be asymptotically computed up to exponentially small
relative corrections using (6.10). We obtain no information on the first column of
S+− except estimate (5.34), where (7.36) necessarily holds. However, if there exists
one or several other dissipative domains for certain indices, it is then possible to get
asymptotic formulas for the estimated terms.

Appendix A. Proof of Proposition 2.1. A direct consequence of the property

H(t) = H#(t) = J−1H∗(t)J(A.1)

is the relation σ(H(t)) = σ(H(t)). Thus if σ(H(0)) ⊂ R, then σ(H(t)) ⊂ R for all
t ∈ R since the analytic eigenvalues are assumed to be distinct and nondegenerate
for all t ∈ R. Let ej(0) be the eigenvalue associated with ϕj(0). Then due to the
property H(0) = H#(0),

(ϕj(0), H(0)ϕk(0))J = ek(0)(ϕj(0), ϕk(0))J = ej(0)(ϕj(0), ϕk(0))J(A.2)

for any j, k = 1, . . . , n. For j = k, we get from the assumption (ϕj(0), ϕj(0))J 6= 0
that ej(0) ∈ R, and from the fact that the eigenvalues of H(0) are distinct,

(ϕj(0), ϕk(0))J = 0, j 6= k.(A.3)

The resulting reality of ej(t) for all t ∈ R and j = 1, . . . , n together with (A.1) yields

Pj(t) = J−1P ∗j (t)J.(A.4)

Hence using the fact that the P ∗j ’s are projectors,

K(t) =

n∑
j=1

Pj
′(t)Pj(t) =

n∑
j=1

(J−1P ∗j (t)J)′J−1P ∗j (t)J = J−1
n∑
j=1

P ∗j
′(t)P ∗j (t)J

= −J−1
n∑
j=1

P ∗j (t)P ∗j
′(t)J = −J−1K∗(t)J.(A.5)
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Let Φ,Ψ ∈ Cn and W (t) be defined by

W ′(t) = K(t)W (t), W (0) = I(A.6)

(see (3.5)). Then we have

(W (t)Φ,W (t)Ψ)′J = 〈W ′(t)Φ|JW (t)Ψ〉+ 〈W (t)Φ|JW ′(t)Ψ〉
= 〈K(t)W (t)Φ|JW (t)Ψ〉+ 〈W (t)Φ|JK(t)W (t)Ψ〉
= 〈W (t)Φ|J(J−1K∗(t)J +K(t))W (t)Ψ〉 ≡ 0.(A.7)

Thus in the indefinite metric, the scalar products of the eigenvectors of H(t), ϕj(t) =
W (t)ϕj(0) (see (3.7)), are constants:

(ϕj(t), ϕk(t))J ≡ (ϕj(0), ϕk(0))J .(A.8)

We can then normalize the ϕj(0) in such a way that

(ϕj(t), ϕk(t))J = (ϕj(0), ϕk(0))J = δjkρj ,(A.9)

with ρj ∈ {+1,−1}. Let ψ(t) and χ(t) be two solutions of (2.1). By an argument
similar to the one above using (A.1), we deduce

(χ(t), ψ(t))J ≡ (χ(0), ψ(0))J .(A.10)

Inserting the decompositions

ψ(t) =

n∑
j=1

cj(t)e
−i
∫ t

0
ej(t

′)dt′/ε
ϕj(t),(A.11)

χ(t) =
n∑
j=1

dj(t)e
−i
∫ t

0
ej(t

′)dt′/ε
ϕj(t)(A.12)

in this last identity yields

n∑
j,k=1

dk(t)cj(t)(ϕk(t), ϕj(t))Je
i
∫ t

0
(ek(t′)−ej(t′))/εdt′ =

n∑
j

dj(t)ρjcj(t)

≡
n∑
j=1

dj(0)ρjcj(0) =
n∑
j=1

dj(±∞)ρjcj(±∞).(A.13)

Since the initial conditions for the coefficients,

cj(−∞) = δjk, dj(−∞) = δjl,(A.14)

imply

cj(+∞) = sjk, dj(+∞) = sjl,(A.15)

introducing the matrix R = diag(ρ1, ρ2, . . . , ρn) ∈Mn(C), we get from (A.13) that

R = S∗RS,(A.16)

which is equivalent to the assertion S−1 = RS∗R.
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Appendix B. Proof of Lemma 7.1. Let G = G∗ = G−1 be given in block
structure by

G =

(
I O
O −I

)
∈M2m(C)(B.1)

and H(t) be given by (7.13) with U(t) = U(t) = U∗(t). Since

GH(t)G = −H(t), H(t) = H(t) ,(B.2)

and the eigenvalues of H(t) are real, it is readily verified that

GP±j (t)G = P∓j (t), P±j (t) = P±j (t), j = 1, . . . ,m.(B.3)

Hence

K(t) =

m∑
j=1
τ=±

P τj
′(t)P τj (t) = K(t) = GK(t)G,(B.4)

from which it follows that the solution W (t) of

W ′(t) = K(t)W (t), W (0) = I(B.5)

satisfies

W (t) = W (t) = GW (t)G.(B.6)

Since the matrix of potentials U(0) is real symmetric, its eigenvectors uj(0) may be
chosen real so that we can assume that

ϕ±j (0) =

(
uj(0)

±kj(0)uj(0)

)
∈ R2m.(B.7)

Thus it follows from the above that

ϕ±j (t) = W (t)ϕ±j (0) ∈ R2m, ∀t ∈ R,(B.8)

and satisfies

Gϕ±j (t) = GW (t)GGϕ±j (0) = W (t)Gϕ±j (0) = ϕ∓j (t).(B.9)

Finally, the main consequence of (B.2) is that if ψ(t) is a solution of

iεψ′(t) = H(t)ψ(t),(B.10)

then ϕ(t) = Gψ(t) is another solution, as is easily verified. Thus we can write with
(7.21), (B.8), and (B.9) that

ϕ(t) =

m∑
j=1

d+
j (t)ϕ+

j (t)e
−i
∫ t

0
kj(t

′)dt′/ε
+

m∑
j=1

d−j (t)ϕ−j (t)e
i
∫ t

0
kj(t

′)dt′/ε

=
m∑
j=1

c+j (t)ϕ−j (t)e
i
∫ t

0
kj(t

′)dt′/ε
+

m∑
j=1

c−j (t)ϕ+
j (t)e

−i
∫ t

0
kj(t

′)dt′/ε
,(B.11)
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i.e.,

d+
j (t) = c−j (t),

d−j (t) = c+j (t), ∀j = 1, . . . ,m, ∀t ∈ R.(B.12)

Finally, using the definition (7.23) and the above property for t = ±∞, we get for any
d±(−∞) ∈ Cm that

(B.13)(
d+(+∞)
d−(+∞)

)
=

(
S++ S+−
S−+ S−−

)(
d+(−∞)
d−(−∞)

)
=

(
S−− S−+

S+− S++

)(
d+(−∞)
d−(−∞)

)
,

from which the result follows.
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de Paris Nord, Paris, 1994.
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Abstract. A classical theorem of Nehari relates the singularities of Legendre series expansions
in Cz with those of associated Taylor’s series in Ct. The generalization of Nehari’s theorem is known
for Legendre series in Cz1×z2 . In this paper, function theoretic methods develop the analogous
relationships between the singularities of series expanded as triple products of Legendre polynomials
in Cz1×z2×z3 and those of associated analytic functions in Ct. The singularities of these generalized
Legendre series are determined by certain elliptic curves. Moreover, these series satisfy a system
of hyperbolic partial differential equations (PDEs) in C3 that are connected to Bochner’s study of
Poisson processes in R2.

Key words. Legendre series, singularities, function-theoretic methods
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1. Introduction. There is a classical theorem of Szego [15] that relates the sin-
gularities of a real zonal harmonic series with the singularities of an analytic function
of a single complex variable. Szego’s theorem was extended to Legendre series in
the complex plane by Nehari [14]. Both theorems relied on the argument used by
Hadamard [10] in his multiplication of singularities theorem. Subsequently, Gilbert
[7, 8] generalized the Hadamard argument by developing the “envelope method” and
used this procedure to study the singularities of harmonic functions in R3 as well
as the singularities of solutions of many classes of elliptic partial differential equa-
tions (PDEs). One of the distinct features of the theory is its utility in transforming
information about the properties of singularities of analytic functions into the corre-
sponding theorems on the structure of singularities of the solutions. Notable theorems
concerning the location and type of the singularities of analytic functions are found in
the work of Taylor, Mandelbrojt, and Fabry (see [6, 10]). Examples of their function
theoretic extensions are found in the references (see Bergman [4], Begehr and Gilbert
[2, 3] and Kracht and Kreyszig [11]).

The Nehari theorem was framed in the setting of hyperbolic PDEs by McCoy
[12, 13], who considered analytic functions F (z1, z2) that are expanded in series of
products of ultraspherical polynomials in the complex space C2 := Cz1 × Cz2 . The
singularities of these series were shown to lie on a certain quadratic curve embedded in
C2. This curve is defined in relation to the singularities of F (z1, z2) and a unique an-
alytic function f(t) of one complex variable known as the “associate.” The hyperbolic
equation under discussion was used by Bochner [5] to characterize symmetric Poisson
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processes on the square. We find a generalization of Nehari’s theorem to C3 that can
be interpreted as an extension of Bochner’s Poisson process equation.

The aim of this study is to extend Nehari’s theorem to analytic functions

f(z1, z2, z3) =
∞∑
n=0

ωnanPn(z1)Pn(z2)Pn(z3)(1.1a)

of three complex variables (z1, z2, z3) ∈ C3 := Cz1 × Cz2 × Cz3 , where ωn = (n +
1/2) and the Pn(z) are the Legendre polynomials of degree “n.” Our focus is on
the relationship between the singularities of F (z1, z2, z3) and those of the associated
analytic function

f(t) =
∞∑
n=0

ant
n(1.1b)

of the complex variable t ∈ Ct.
We establish that the singularities of F are located on certain elliptic curves in

C3. These curves are determined by means of function theoretic relationships between
the singularities of the function pair {F, f}. The method is to construct reciprocal
integral transforms linking the generalized Legendre series with its associate. Appli-
cation of the Hadamard, end pinch, and envelope methods provides the appropriate
relationships between the singularities of the associated functions.

2. Preliminaries. We begin by establishing that F (x1, x2, x3) and the associate
f(t) are locally analytic. The transforms defining the association will be constructed in
due course. Let f(t) be analytic at the origin. Elementary function theory confirms
that the radius of convergence of the expansion in (1b), and thus the distance to
the first singularity, is ro = lim supn→∞|an|−1/n. We exclude entire functions and
require that r0 <∞. Similarly, consider the expansion in (1a) for the Legendre series
F (x1, x2, x3). The estimate |Pn(x)| ∼ O(1/n1/2) (see [9, p. 68]) verifies that this series
converges in a sphere of radius r0.

The point is to consider the Legendre series F (x1, x2, x3) in the complex domain.
The series is analytically continued to an open set about the origin in Cz1×z2×z3 . Local
analyticity follows by observing that from Darboux’s extension of the Laplace–Heine
formula [16] one finds the asymptotic estimate |Pn(z1)Pn(z2)Pn(z3)| ∼
δn(z1)δn(z2)δn(z3) on the domain Eδ(z1) × Eδ(z2) × Eδ(z3). This domain is formed
by the tensor product of the ellipses Eδ(zj) = {zj ∈ Czj : |zj − 1| + |zj + 1| < δ(zj)}
for 1 ≤ j ≤ 3 under the assumption that the max1≤j≤3 δ(zj) is sufficiently small.

The first step is to show that the functions F (z1, z2, z3) and f(t) are associated
by integral operators. The kernel for the ascending operator is defined as

K(t; z1, z2, z3) =
∞∑
n=0

ωnt
nPn(z1)Pn(z2)Pn(z3).(2.1)

Following previous arguments, it is easy to check that the kernel is analytic in a
neighborhood of the origin in C4. It follows from Cauchy’s theorem that

F (z1, z2, z3) = (1/2πi)

∫
Lt

f(t)K(t−1; z1, z2, z3)dt/t.(2.2)

The contour Lt is a simple closed curve that is homologous to the circle γ : |t| =
(σ + ε)−1 modulo the singularities of the integrand, and ε > 0 is sufficiently small.
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The function element F (z1, z2, z3) defined in (3) by contour deformation is analytic
on its domain of association (see Gilbert [8, p. 24]).

The inverse operator is based on the kernel

K∗(t; z1, z2, z3) =
∞∑
n=0

ω2
nt
nPn(z1)Pn(z2)Pn(z3),(2.3)

which is also analytic in a neighborhood of the origin in C4. It follows from the

orthogonality of the Legendre polynomials
∫ +1

−1
Pn(s)Pm(s)ds = ω−1

n δnm that the
inversion of (3) is carried out by the transform

f(t) =

∫
Lz1

∫
Lz2

∫
Lz3

K∗(t; z1, z2, z3)F (z1, z2, z3)dz1dz2dz3,(2.4)

which is formulated here as a function element on its domain of association. The
contours Lz1 , Lz2 , and Lz3 are simple open curves that are homologous to the segment
[−1,+1] modulo the singularities of the integrand. The contours have their end points
fixed at {−1,+1}. The function element f(t) associated with F (z1, z2, z3) by (5) is
analytic on its domain of association. The kernels in (2) and (4) are related in a
simple way as K∗(t; z1, z2, z3) = [t∂t + 1/2]K(t; z1, z2, z3) or, more compactly, as

K∗(t; z1, z2, z3) = t1/2∂t[t
1/2K(t; z1, z2, z3)].(2.5)

3. The integral transforms. The reciprocal integral transforms in (3) and (5)
are now reformulated to suit our analysis. We expand the kernel of the ascending
operator as a symmetric function of the variables z1, z2, and z3. This symmetric
expansion is distinguished by the notation K(t; z1, z2, z3) := Γ(t; z1, z2, z3), where

Γ(t; z1, z2, z3) =

(1/3)
3∑
j=1

Kj(t; z1, z2, z3)

 .(3.1)

The terms in the expansion are

Kj(t; z1, z2, z3) =

∫
Lζ

K(t; 1, zj , ζ)[K(1; z1, z2, z3)]zj=ζdζ(3.2)

for 1 ≤ j ≤ 3. The contour Lt is a simple open curve that is homologous to the
segment [−1,+1] modulo the singularities of the integrand and has its end points
fixed at {−1,+1}. Any one of the kernels Kj taken individually would suffice in the
role of K but taken alone complicates the analysis later on.

The symmetric expansions of the kernels are now converted to closed-form ex-
pressions. Let us examine the first function appearing in the product in the integrand
of (8). This function is put into closed form by appealing to Watson’s integral [17] as
follows:

K(t; 1, zj , ζ) = (1/4πi)

∫
Lτ

J(t; Ω(τ ; zj , ζ))dτ/τ,

J(t; Ω) = (1− t2)/(1− 2tΩ + t2)3/2,(3.3)

Ω(τ ; zj , ζ) = zjζ + (1− z2
j )1/2(1− ζ2)1/2(τ + τ−1)/2
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for 1 ≤ j ≤ 3. The contour Lτ is homologous to the unit circle modulo the singularities
of the integrand.

Turning to the second factor in the integrand in (8), we find that the closed-form
expressions of these functions are determined by Grosjean [9, p. 68] as K(1;x1, x2, x3) =
π−1(1− x2

1 − x2
2 − x2

3 + 2x1x2x3)−1/2 for points in the primary domain. The primary
domain is defined by the points inside and on the cubic surface S : {(x1, x2, x3) :
x2

1 +x2
2 +x2

3− 2x1x2x3 = 1} that are interior to the cube [−1,+1]3. For points in the
cube that are located outside the surface S, the kernel K(1;x1, x2, x3) = 0. When the
kernel is analytically continued to C3, the resulting function element

K(1; z1, z2, z3) = π−1(1− z2
1 − z2

2 − z2
3 + 2z1z2z3)−1/2(3.4)

is understood to originate from the primary domain and the transforms in (8) are
referenced to this element. We remark about the behavior of the series K(1;x1, x2, x3)
along the sides of the cube. The series converges to a well-defined function off the
diagonals x2 = ±x1 and exhibits delta function behavior on the diagonals in the plane
x3 = 1. These points are not contained in the domain of association.

The kernels in (8) are written in closed form by applying (9) as

Kj(t; z1, z2, z3)

= (1/4πi)

∫
Lτ

∫
Lζ

{(1− t2)/(1− 2tΩ(τ ; zj , ζ) + t2)3/2}(3.5)

×[K(1; z1, z2, z3)]zj=ζdζ dτ/τ

for 1 ≤ j ≤ 3. This step converts the kernel in (7) into the closed symmetric expression

Γ(t; z1, z2, z3)

= (1/12πi)
3∑
j=1

{∫
Lτ

∫
Lζ

J(t; Ω(τ ; zj , ζ))[K(1; z1, z2, z3)]zj=ζ

}
dζ dτ/τ.(3.6)

The kernel of the inverse operator is reformulated by a similar procedure. Define

Γ∗(t; z1, z2, z3) =

(1/3)

3∑
j=1

Kj,∗(t; z1, z2, z3)

 ,(3.7)

where the Kj,∗(t; z1, z2, z3) =
∫
Lζ
K∗(t; 1, zj , ζ)[K(1; z1, z2, z3)]zj=ζdζ, and rely on (6)

to write

K∗(t; 1, zj , ζ) = (1/4πi)

∫
Lτ

t1/2∂t[t
1/2J(t; Ω(τ ; zj , ζ))] dτ/τ(3.8)

for 1 ≤ j ≤ 3. The kernel of the inverse operator is now put into closed symmetric
form as

Γ∗(t; z1, z2, z3) = t1/2∂t[t
1/2Γ(t; z1, z2, z3)].(3.9)

The principal branches of the function elements are taken. We note that
Γ(t−1; z1, z2, z3) = −tΓ(t; z1, z2, z3). This observation brings us to the integral trans-
form pair whose kernels are both in closed form and invariant under cyclic permuta-
tions of the variables z1, z2, and z3.
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Theorem 3.1. The T -transforms linking the function elements F and f on their
domains of association are

(16a) F (z1, z2, z3) = T [f ] := (−1/2πi)

∫
Lt

f(t)Γ(t; z1, z2, z3)dt,

(16b) f(t) = T−1[F ] :=

∫
Lz1

∫
Lz2

∫
Lz3

Γ∗(t; z1, z2, z3)F (z1, z2, z3)dz1dz2dz3.

4. The singular manifolds. The function elements in (16) are analytically
continued from their initial domains of definition to larger domains of association
by contour deformation. During the continuation, the singularities in the integrands
move, and the contours are deformed to avoid singularities that approach them along
intersecting trajectories. There may be circumstances under which no further defor-
mation is possible without contact occurring between the contour and the singularity
at a particular point. Such a point is a singularity of the integrand but is not nec-
essarily a singularity of the transformed function element. The object is to extract
the actual singularities of a function element from the set of possible singularities.
An authentic singularity is identified if it corresponds to a singularity of the associ-
ated element under the inverse transform. There are three types of circumstances in
which this event could occur. The corresponding singularities are referred to as the
Hadamard, end pinch, and envelope singularities.

Let us begin the discussion by considering a function element F (z1, z2, z3) whose
associate f(t) has an isolated singularity at the point t = α. The set of possible singu-
larities of F (z1, z2, z3) is expressed as PS[F ] = [SH(f ;α)] ∪ [EP (f ;α)] ∪ [SE(f ;α)],
where the constituent sets are the respective (possible) Hadamard, end pinch, and
envelope singularities. The set of possible singularities PS[F ] := PM(f ;α) is deter-
mined from the integrand of the transform in (16a) as having the parametric form

PM(f ;α) = ∪1≤j≤3{PMj(f ;α) ∩Bj(Z)},(4.17)

where the sets

PMj(f ;α) = {Z : σ − Ω(τ ; zj , ζ) = 0; (τ, ζ) ∈ Lτ × Lζ , $(α, σ) = $(τ, η) = 0}

and

Bj(Z) = {Z : ϕ(Z) = 0; zj = ζ, ζ ∈ Lζ}, 1 ≤ j ≤ 3.

For convenience, we designate Z := (z1, z2, z3) or (Z) := (z1, z2, z3), where the in-
terpretation is clear in context. The auxiliary functions are defined as ϕ(x, y, z) :=
1−x2−y2−z2 +2xyz = (1−y2)(1−z2)− (x−yz)2 and $(x, y) := x2−2xy+1. The
function ϕ is invariant under cyclic permutations of its argument; i.e., ϕ(x, y, z) =
ϕ(y, z, x) = ϕ(z, x, y). The analysis will be facilitated by rewriting the sets

PMj(f ;α) = {Z : ψ(σ, zj , ζ, η) = 0, (τ, ζ) ∈ Lτ × Lζ ;$(α, σ) = $(τ, η) = 0},
1 ≤ j ≤ 3,

where the function ψ(σ, z, ζ, η) := (σ − zζ)2 − (1− z2)(1− ζ2)η2.
The set of Hadamard singularities SH(f ;α) = ∪1≤j≤3SHj(f ;α) corresponding

to the Hadamard singularities SHj(f ;α) contained in the sets PMj(f ;α) ∩Bj(Z) is
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obtained by eliminating the parameter “ζ” from the principal branches of the man-
ifolds. Working with the set Bj(Z) defined in (17) produces roots ζ = ξ±(z2, z3) :=
z2z3 ± (1− z2

2)1/2(1− z2
3)1/2 for the case j = 1. The eliminants of the remaining sets

B2(Z) and B3(Z) are also computed. The end result is that the Hadamard singular-
ities for the ascending operator in (16a) are defined parametrically by the surfaces

PH(f ;α) = M((z1, z2, z3);α) ∪M((z2, z3, z1);α) ∪M((z3, z1, z2);α),(4.18)

where

M((x, y, z);α)={(x, y, z) ∈ C3 :ψ(σ, x, ζ, η) = 0, ζ = ξ±(y, z);$(α, σ) = $(τ, η)=0}.

The next step is to consider the set of possible singularities for the function
element f(t) defined by the descending operator in (16b). Designate this set as
PS[f ] = [SH(F ;Zo)] ∪ [EP (F ;Zo)] ∪ [SE(F ;Z0)], where SH(F ;Zo), EP (F ;Zo),
and SE(F ;Zo) are the respective Hadamard, end pinch, and envelope singularities.
Let the associate F (z1, z2, z3) be singular at Zo = (z1,o, z2,o, z3,o) ∈ B(Z), where
B(Z) = {Z : ϕ(Z) = 0}. By examining the T-transforms and taking advantage of the
role played by the kernel Γ(t;Z) in the integrands, the relevant sets are determined
to be

PM(F ;Zo) = ∪1≤j≤3PMj(F ;Zo),(4.19)

where the sets

PMj(F ;Zo) = {t ∈ C : σ − Ω(τ ; zj ; ζ) = 0; (τ, ζ, Z) ∈ Lτ × Lζ × Lz1 × Lz2 × Lz3 ;

Z0 = (z1,o, z2,o, z3,o) ∈ Bj(Z);$(t, σ) = $(τ, η) = 0}

are defined parametrically for 1 ≤ j ≤ 3.

The set of Hadamard singularities of the function element f(t) is SH(F ;Zo) =
∪1≤j≤3SHj(F ;Zo). The singularities contained in this set are embedded in the set
PM(F ;Zo). By eliminating the parameters, one determines that the singularities of
the descending operator defined in (16b) are

SH(F ;Zo) = M∗(t; (z1,o, z2,o, z3,o))∪M∗(t; (z2,o, z3,o, z1,o))∪M∗(t; (z3,o, z1,o, z2,o)),
(4.20)
where

M∗(t; (x, y, z)) = {t ∈ C : $(t, σ) = $(τ, η) = 0;ψ(σ, x, ζ, η) = 0, ζ = ξ±(y, z)}.

We observe that the preceding arguments are symmetric. Bearing in mind that the
actual singularities determined in the analysis are, in general, subsets of the sets
of Hadamard singularities of the associated function pair {F, f}, we summarize the
results in the following statement.

Theorem 4.1. Let {F, f} be a T -transform associated function element pair.
Then the points Zo and to are the respective Hadamard singularities if and only if
Zo ∈ SH(f ; to) and to ∈ SH(F ;Zo).

It is an easy matter at this point to dispose of the end pinch singularities. These
singularities are distinguished by the fixed points {−1,+1} at the ends of open con-
tours of integration. As end points, they remain fixed during the contour deformation
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and, thus, must be considered in terms of singularities that approach them. The end
pinch singularities of the ascending operator are expressed in parametric form as

EP (f ;α) = ∪1≤j≤3{EPj(f ;α) ∩ EBj(f ;α)}.

The sets of singularities

EPj(f ;α) = {Z;σ − Ω(τ ; zj ,±1) = 0,

∂τ [σ − Ω(τ ; zj ,±1)] = 0, τ ∈ Lτ ;$(α, σ) = $(τ, η) = 0}

are of a “mixed” type since Lτ is a closed contour. The reasoning requires a combi-
nation of end pinch and envelope arguments which leads to the eliminant

EPj(f ;α) = {Z : ϕ(Z) = 0, zj = ±σ; $(z, σ) = 0}.

The sets EBj(Z) = {Z : ϕ(Z) = 0, zj = ζ = ±σ} for 1 ≤ j ≤ 3. Combining these
sets yields the following for 1 ≤ j ≤ 3:

EPj(f ;α) ∩ EBj(f ;α) = {Z : ϕ(Z) = 0, zj = ±σ; $(α, σ) = 0}.(4.21a)

Similarly, the end pinch singularities of the descending operator are

EP (F ;Zo) = ∪1≤j≤3EPj(F ;Zo),

where

EPj(F ;Zo) = {t ∈ C : σ − Ω(τ ; zj ,±1) = ∂τ [σ − Ω(τ ; zj ,±1)] = 0;

τ ∈ Lτ , zj = ±1;Z ∈ EBj(F ;Zo), $(t, σ) = $(τ, η) = 0}

for 1 ≤ j ≤ 3. In the sets EBj(F ;Zo) = {Z : (Z) = (Zo) = (±1,±1,±1); ϕ(Z) = 0}
the minus signs are selected pairwise. The eliminant in this case is

EPj(F ;Zo) = {t ∈ Ct : ϕ(Z) = 0, zj = ±σ and zk = ±1 for zk 6= zj ;$(t, σ) = 0}.
(4.21b)
We state the following result to summarize the analysis leading to (21).

Theorem 4.2. Let {F, f} be a T -transform associated function pair. If f(t)
is singular at the point to, then EP (f ; to) is the set of end pinch singularities of
F = T [f ]. In addition, if F (Z) is singular at Zo : ϕ(Zo) = 0, the set of end pinch
singularities of the element function f = T−1[F ] is EP (F ;Zo).

We now turn to the envelope singularities of the transform pair. The envelope
singularities of the ascending operator are

SE(f ;α) = ∪1≤j≤3{SEj(f ;α) ∩ SE∗j (f ;α)},

where the sets are defined in terms of the auxiliary functions

Φj(σ, τ, Z, ζ) = [σ − Ω(τ ; zj , ζ)][ϕ(z1, z2, z3)|zj=ζ ],

since

SE(f ;α) = {Z : Φj(σ, τ, Z, ζ) = 0, (τ, ζ) ∈ Lτ × Lζ ; $(α, σ) = $(τ, η) = 0}

and

SE∗j (f ;α) = {Z : ∂τΦj(σ, τ, Z, ζ) = ∂ζΦj(σ, τ, Z, ζ) = 0,

(τ, ζ) ∈ Lτ × Lζ ; $(α, σ) = $(τ, η) = 0}, 1 ≤ j ≤ 3.
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We will eliminate the variables from the three systems

Φj(σ, τ, Z, ζ) = 0,(4.22a)

∂τΦj(σ, τ, Z, ζ) = 0,(4.22b)

∂ζΦj(σ, τ, Z, ζ) = 0,(4.22c)

1 ≤ j ≤ 3. Working with (22a,b) and eliminating “τ” give the equations σ −
Ω(τ ; zj ; ζ)|τ=±1 = 0, which lead to the parametric form

SE1,1(f ;α) =
⋃

1≤j≤3

{Z : ϕ(σ, zj , ζ) = 0, ϕ(Z)|zj=ζ = 0; $(α, σ) = 0}(4.23a)

when τ = 1. Solving the equation ϕ(z1, z2, z3) = 0 for the variable “z1” yields
z1 = ξ±(z2, z3) with z1 = ζ as expected. We do not place this into (23a) but leave
(23a) in its parametric form. The other cases are analogous. The choice τ = −1
results in σ = zjζ and ϕ(z1, z2, z3)|zj=ζ = 0 for 1 ≤ j ≤ 3. The remaining cases are
similar, and one eliminates “ζ” in each pair of equations to find that

SE1,2(f ;α) =
⋃

1≤j≤3

{Z : ϕ(Z)|zj→σ/zj = 0, zj 6= 0; $(α, σ) = 0}.(4.23b)

The arrow symbol (→) is read as “replace by.” We combine these results as

SE∗1 (f ;α) = SE1,1(f ;α) ∪ SE1,2(f ;α).

Turning our attention to (22a,c), we find that

∂ζΦj(σ, τ, Z, ζ) = [σ − Ω(τ ; zj ; ζ)]∂ζϕ(Z)|zj=ζ + ∂ζ [σ − Ω(τ ; zj ; ζ)]ϕ(Z)|zj=ζ = 0

for 1 ≤ j ≤ 3. Evaluating the equation ∂ζΦj = 0 under the presumption that
ϕ(Z)|zj=ζ = 0 gives [σ − Ω(τ ; zj ; ζ)](−2ζ + 2zkzl) = 0, where {k, l} ∈ {1, 2, 3}\{j},
k 6= l. The eliminants produce

SE2,1(f ;α) =
⋃

1≤j≤3

{Z : ψ(σ, zj , ζ, η)|ζ→zkzl = 0;

(4.23c) ϕ(zj , zk, zl)|zj→zkzl = 0; $(α, σ) = $(τ, η) = 0},

where the indices {j, k, l} are distinct. On the other hand, proceeding from ∂ζΦj = 0
(under the assumption that σ − Ω(τ ; zj ; ζ) = 0) yields z2

j (1− ζ2) = (1− z2
j )ζ2η2 and

ζ2 = κ(zj , η), where κ(x, η) := x2/(η2 + (1 − η2)x2). The resulting sets are stated
parametrically as

SE2,2(f ;α) =
⋃

1≤j≤3

{Z : σ−Ω(τ ; zj ; ζ) = 0, ζ2 = κ(zj , η); $(α, σ) = $(τ, η) = 0}.

(4.23d)
The other cases involving ∂ζΦj = 0 are part of previous discussions. We define

SE∗2 (f ;α) = SE2,1(f ;α) ∪ SE2,2(f ;α).

In summary, the envelope singularities of F = T [f ] that do not reduce to Hadamard
or end pinch singularities are given by

SE(f ;α) = SE∗1 (f ;α) ∪ SE∗2 (f ;α).
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We consider the singularities for the descending operator f = T−1[F ], focusing
on singularities that were not previously identified as of the Hadamard or end pinch
type. We define the sets

SE(F ;Zo) = ∪1≤j≤3{SEj(F ;Zo) ∩ SE∗j (F ;Zo)},

where

SEj(F ;Zo) = {t ∈ Ct : Φj(σ, τ, Z, ζ) = 0, (τ, ζ, Z) ∈ Lτ × Lζ × Lz1 × Lz2 × Lz3 ;

$(t, σ) = $(τ, η) = 0}

and

SE∗j (F ;Zo) = {t ∈ Ct : ∂τΦj(σ, τ, Z, ζ) = ∂ζΦj(σ, τ, Z, ζ) = ∂zkΦj(σ, τ, Z, ζ) = 0,
1 ≤ k ≤ 3;

(τ, ζ, Z) ∈ Lτ × Lζ × Lz1 × Lz2 × Lz3 ;$(t, σ) = $(τ, η) = 0}

for 1 ≤ j ≤ 3. The relevant systems of equations are

Φj(σ, τ, Z, ζ) = 0,(4.24a)

∂τΦj(σ, τ, Z, ζ) = ∂ζΦj(σ, τ, Z, ζ) = 0,(4.24b)

∂zkΦj(σ, τ, Z, ζ) = 0(4.24c)

for 1 ≤ j, k ≤ 3. The eliminants for (24a,b) are analogous with those for (22), (23).
The results are

SE∗1 [F ;Zo] = SE1,1[F ;Zo] ∪ SE1,2[F ;Zo],

where

SE1,1[F ;Zo] =
⋃

1≤j≤3

{t ∈ Ct : $(t, σ) = 0;ϕ(Zo)|zo,j=ζ = 0, ϕ(σ, zo,j , ζ) = 0, ϕ(Zo) = 0}

and

SE1,2[F ;Zo] =
⋃

1≤j≤3

{t ∈ Ct : $(t, σ) = 0;ϕ(Zo)|zo,j→σ/zo,j = 0, ϕ(Zo) = 0}.

In similar fashion, we find the sets

SE∗2 [F ;Zo] = SE2,1[F ;Zo] ∪ SE2,2[F ;Zo],

where

SE2,1[F ;Zo] =
⋃

1≤j≤3

{t ∈ Ct : $(t, σ) = 0;ψ(σ, zo,j , ζ, η)|ζ=zo,kzo,l = 0,

ϕ(Zo) = 0, $(τ, η) = 0}

and

SE2,2[F ;Zo] =
⋃

1≤j≤3

{t ∈ Ct : $(t, σ) = 0;σ − Ω(τ, zo,j , ζ) = 0,

ζ2 = κ(zo,j , η), ϕ(Zo) = 0, $(τ, η) = 0}.
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By symmetry, the eliminants of (24a,c) are identical with those of (22a,c) in the case
j = k. Let us consider the remaining eliminants in (24c) for j 6= k. One computes
here that ∂zkΦj(σ, τ, Z, ζ) = 0 and finds that

SE∗3 [F ;Zo] =
⋃

1≤j≤3

{t ∈ Ct : $(t, σ) = 0;ψ(σ, zj , ζ, η) = 0,

∂zkϕ|zj=ζ = 0, ∂zlϕ|zj=ζ = 0, ϕ(Zo) = 0, $(τ, η) = 0},

where the indices are taken as distinct. This set has been specified in parametric form
with “ζ” defined implicitly for brevity. By combining the three cases, the envelope
set of the descending operator is thus

SE[F ;Zo] =
⋃

1≤j≤3

SE∗j [F ;Zo].

We summarize our findings as follows.
Theorem 4.3. The set of envelope singularities of the function element F (Z)

represented by the transform F = T [f ] is SE(f ; to), where the associate f(t) is sin-
gular at the point to. The set of envelope singularities of the function element f(t)
represented by the transform f = T−1[F ] is SE(F ;Zo), where the associate F (Z) is
singular at Zo : ϕ(Zo) = 0. Moreover, the point Zo ∈ SE(f ; to) is a true envelope
singularity of F (Z) if and only if to ∈ SE(F ;Zo) is the corresponding singularity of
the function element f(t) determined by f = T−1[F ].

5. Hyperbolic PDEs and Poisson processes. Function theory typically stud-
ies singularities of elliptic PDEs in terms of analytic functions. An interesting prop-
erty of the generalized Legendre series F is that they are solutions of a system of
hyperbolic PDEs in C3 that form an extension of a problem studied by Bochner
[5] in connection with Poisson processes in R2. Bochner views the hyperbolic
equation {∂x1 [σα,β(x1, x2)∂x1 ] − ∂x2 [σα,β(x2, x1)∂x2 ]}F (x1, x2) = 0, σα,β(x1, x2) =
(1− x1)α+1(1 + x1)β+1(1− x2)α(1 + x2)β on the square [−1,+1]2 for parameters α,
β ≥ −1/2, α+β ≥ −1/2. The boundary condition F (x1, 1) = g(x1) is imposed along
a side −1 ≤ x1 ≤ +1.

Consider the system of hyperbolic PDEs

{∂z1 [ρ(z1)∂z1 ]− ∂z2 [ρ(z2)∂z2 ]}F (z1, z2, z3) = 0,

{∂z2 [ρ(z2)∂z2 ]− ∂z3 [ρ(z3)∂z3 ]}F (z1, z2, z3) = 0,

{∂z3 [ρ(z3)∂z3 ]− ∂z1 [ρ(z1)∂z1 ]}F (z1, z2, z3) = 0

for (z1, z2, z3) ∈ C3 with ρ(z) = σ0,0(z, z). In R3 it is easy to use Legendre’s equation
to verify that the series F (x1, x2, x3) is a solution of the system in a neighborhood of
the origin and that it satisfies the boundary conditions of the type F (x1, 1, 1) = g(x1),
−1 ≤ x1 ≤ +1 on the faces of the cube [−1,+1]3. The series F (z1, z2, z3) admits
an analytic continuation to C3 which may be considered in the context of Bochner’s
problem as a process that has been extended to several complex variables. The curves
and surfaces containing the singularities of the solutions may be interpreted as locating
a distribution that creates the process.

Acknowledgement. The author thanks the referee for the constructive com-
mentary.
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Abstract. Trigonometric series expansions of the Jacobian elliptic functions snu, cnu, and dnu,
which are intermediates between the expansions of these functions that are known in the literature,
are derived and discussed. Similar expansions for the functions cdu, sdu, . . . , scu are also derived.
From these new expansions, a number of interesting infinite series can be obtained. (Some examples
are given.) The usage of these new expansions in applications is discussed.
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1. Introduction. In this paper, we consider trigonometric series expansions
of (twelve) Jacobian elliptic functions [3], [4], [5], [12], sn(u, k), cn(u, k), dn(u, k),
cd(u, k), sd(u, k), . . . , and sc(u, k).

We shall start from the expansions of the three “base” functions snu, cnu, and
dnu, giving the pertinent derivations with sufficient details. Then we shall present
the expansions of the other nine functions in question—without derivations but with
an explanation of how these expansions were obtained.

Therefore, let us consider the functions sn(u, k), cn(u, k), and dn(u, k). Each of
these is a function of the complex variable u and the (complex) parameter k (called
modulus) [12, section 22.11]. In the u-plane, each of the functions snu, cnu, and dnu
has poles at points

(1.1) u = 2nK + (2m+ 1)iK ′,

where n = 0,±1,±2, . . . ,m = 0,±1,±2, . . . , and K and K ′ are the complete and the
associated complete elliptic integrals of the first kind [12, section 22.35].

In the literature, the following trigonometric series expansions of sn(u, k), cn(u, k),
and dn(u, k) are known:

sn(u, k) =
2π

kK

∞∑
n=0

qn+ 1
2

1− q2n+1
sin

(2n+ 1)πu

2K
,(1.2)

cn(u, k) =
2π

kK

∞∑
n=0

qn+ 1
2

1 + q2n+1
cos

(2n+ 1)πu

2K
,(1.3)

dn(u, k) =
π

2K
+

2π

K

∞∑
n=0

qn+1

1 + q2n+2
cos

(n+ 1)πu

K
,(1.4)

and

sn(u, k) =
π

2kK

+∞∑
j=−∞

cosec
π

2K
[u− (2j − 1)iK ′],(1.5)

∗Received by the editors September 5, 1995; accepted for publication (in revised form) February
14, 1996.
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cn(u, k) =
πi

2kK

+∞∑
j=−∞

(−1)j cosec
π

2K
[u− (2j − 1)iK ′],(1.6)

dn(u, k) =
πi

2K
lim
m→∞

m∑
j=−m

(−1)j cot
π

2K
[u− (2j − 1)iK ′](1.7)

[12, section 22.6], [3, p. 260], [4, sections 8.7 and 8.8].
Here

q = exp(πiτ), τ =
iK ′

K
,(1.8)

and Imτ > 0 so that

|q| = exp(−πImτ) < 1(1.9)

[12, sections 21.1 and 21.6].
Each of the expansions (1.2)–(1.4) is valid in the strip∣∣∣Im( u

K

)∣∣∣ < Im

(
iK ′

K

)
= Imτ(1.10)

of the u-plane, and each of the expansions (1.5)–(1.7) is valid in the entire finite u-
plane, with the poles of snu, cnu, or dnu, respectively, deleted [12, section 22.6], [3,
p. 260], [4, sections 8.7 and 8.8].

In this paper, we obtain the following series expansions of sn(u, k), cn(u, k), and
dn(u, k):

sn(u, k) =
π

2kK

m∑
j=−m+1

cosec
π

2K
[u− (2j − 1)iK ′](1.11)

+
2πqm+ 1

2

kK

∞∑
n=0

q(2m+1)n

1− q2n+1
sin

(2n+ 1)πu

2K
,

cn(u, k) =
πi

2kK

m∑
j=−m+1

(−1)jcosec
π

2K
[u− (2j − 1)iK ′](1.12)

+ (−1)m
2πqm+ 1

2

kK

∞∑
n=0

q(2m+1)n

1 + q2n+1
cos

(2n+ 1)πu

2K
,

dn(u, k) =
π

2K
+

πi

2K

m∑
j=−m+1

(−1)j
{

cot
π

2K
[u− (2j − 1)iK ′]− iα(j)

}
(1.13)

+ (−1)m
2πq2m+1

K

∞∑
n=0

q(2m+1)n

1 + q2n+2
cos

(n+ 1)πu

K
,

where m = 1, 2, 3, . . . , and

α(j) =

{
−1 if j ≤ 0,
+1 if j > 0.

(1.14)

Each of the expansions (1.11)–(1.13) is valid (and can be used) in the strip∣∣∣Im( u
K

)∣∣∣ < Im

[
(2m+ 1)iK ′

K

]
(1.15)

= Im[(2m+ 1)τ ],



EXPANSIONS OF JACOBIAN ELLIPTIC FUNCTIONS 717

with the poles of snu, cnu, or dnu, respectively, located within that strip deleted.
Strip (1.15) is (2m+1) times wider than strip (1.10) where expansions (1.2)–(1.4) are
valid, but, of course, it is “more narrow” than the entire finite u-plane where (with
the exception of the poles of snu, cnu, or dnu, respectively) expansions (1.5)–(1.7)
are valid.

Expansions (1.11)–(1.13) (obtained in this paper) can be viewed as intermediates
between the known expansions (1.2)–(1.4) (on one hand) and expansions (1.5)–(1.7)
(on the other hand), and they provide a link between these two sets of expansions
known in the literature.

Because of the factors q2mn, the infinite series expansions (1.11)–(1.13) should
converge in strip (1.10) more rapidly (and more rapidly the larger m is) than the
infinite series of (1.2)–(1.4), respectively. At the same time, the structure of the
general terms of the infinite series of (1.11)–(1.13) is as simple as the structure of the
general terms of the series (1.2)–(1.4).

Derivations and further discussion of expansions (1.11)–(1.13) follow.

2. Derivation of expansions (1.11) and (1.12). For each of the expansions
(1.11)–(1.13), two different methods of obtaining each expansion can be used.

Namely, with regard to expansion (1.11) (for the sake of definiteness), one way
to obtain it is to start from expansion (1.5) of sn(u, k), to break the infinite sum of
(1.5) into two parts,

m∑
j=−m+1

and

 −m∑
j=−∞

+
∞∑

j=m+1

 ,(2.1)

and then to represent the second part as the sine series in strip (1.15).
Another way to find (1.11) is to start from expansion (1.2) of sn(u, k), to derive

(1.11) for u in strip (1.10) first, and then to use analytic continuation to prove that
(1.11) is indeed valid in strip (1.15).

In this paper, we shall use the first method to obtain (1.11) and (1.12) and the
second method to obtain (1.13).

Therefore, let us write (1.5) as

sn(u, k) =
π

2kK

m∑
j=−m+1

cosec
π

2K
[u− (2j − 1)iK ′] +Rs,(2.2)

where

Rs =
π

2kK

 −m∑
j=−∞

+
∞∑

j=m+1

 cosec
π

2K
[u− (2j − 1)iK ′](2.3)

and m = 1, 2, 3, . . . .
The expression for Rs may be written as

Rs =
π

2kK

∞∑
j=m+1

f (j)
sn (v)

(
v =

u

K

)
,(2.4)

where

f (j)
sn (v) = cosec

π

2
[v − (2j − 1)τ ] + cosec

π

2
[v + (2j − 1)τ ](2.5)
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= 4 cos
(2j − 1)πτ

2

sin
(πv

2

)
cos(2j − 1)πτ − cosπv

(2.6)

=
2(1 + q2j−1)

qj−
1
2

sin
(πv

2

)
cos(2j − 1)πτ − cosπv

(2.7)

=
4qj−

1
2 (1 + q2j−1) sin

(πv
2

)
1− 2q2j−1 cosπv + q4j−2

.(2.8)

The following expansion is cited (and used) in [3, p. 261]:

(1 + a) sinw

1− 2a cos 2w + a2
=
∞∑
n=0

an sin(2n+ 1)w.(2.9)

Conditions on a and w for (2.9) to be valid are not indicated in [3], however. Let a
and w in (2.9) be complex. By D’Alembert’s test, one sees that the infinite series on
the right-hand side of (2.9) is absolutely convergent if

|a|e2|Imw| < 1,(2.10)

and it is divergent if

|a|e2|Imw| > 1.(2.11)

Expansion (2.9) is valid if condition (2.10) is satisfied (and it is not valid if (2.11)
is satisfied).

Using (2.9)–(2.11), we find that

(1 + q2j−1) sin
(πv

2

)
1− 2q2j−1 cosπv + q4j−2

=

∞∑
n=0

q(2j−1)n sin
(2n+ 1)πv

2
,(2.12)

and this is true if

|Imv| < (2j − 1) Imτ(2.13)

and false if

|Imv| > (2j − 1) Imτ.(2.14)

From (2.4)–(2.8) and (2.12), we get

Rs =
2πqm+ 1

2

kK

∞∑
n=0

q(2m+1)n

1− q2n+1
sin

(2n+ 1)πu

2K
(2.15)

(m = 1, 2, 3, . . .) for

|Imv| < (2m+ 1) Imτ.(2.16)

In the process of obtaining (2.15), we changed the order of summation with respect
to j and n in infinite sums. The validity of that change can be proved by the usual
methods (see [1, section 8.23]).
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From (2.2) and (2.15), expansion (1.11) immediately follows.
The derivation of expansion (1.12) for cn(u, k) is similar, only instead of Rs we

use

Rc =
πi

2kK

 −m∑
j=−∞

+
∞∑

j=m+1

 (−1)jcosec
π

2K
[u− (2j − 1)iK ′](2.17)

=
πi

2kK

∞∑
j=m+1

(−1)jf (j)
cn (v)(2.18)

(m = 1, 2, 3, . . .), where

f (j)
cn (v) = cosec

π

2
[v − (2j − 1)τ ]− cosec

π

2
[v + (2j − 1)τ ](2.19)

= 4 sin
(2j − 1)πτ

2

cos
(πv

2

)
cos(2j − 1)πτ − cosπv

(2.20)

=
2i(1− q2j−1)

qj−
1
2

cos
(πv

2

)
cos(2j − 1)πτ − cosπv

(2.21)

=
4iqj−

1
2 (1− q2j−1) cos

(πv
2

)
1− 2q2j−1 cosπv + q4j−2

,(2.22)

and instead of (2.9) we use the expansion

(1− a) cosw

1− 2a cos 2w + a2
=
∞∑
n=0

an cos(2n+ 1)w(2.23)

(which one can easily obtain from (2.9) by replacing a by −a and w by w + (π/2),
respectively).

Continuing in this way, we find that

Rc = (−1)m
2πqm+ 1

2

kK

∞∑
n=0

q(2m+1)n

1 + q2n+1
cos

(2n+ 1)πu

2K
(2.24)

and finally obtain expansion (1.12) for u in strip (1.15).
In addition to Rs and Rc, below we shall also use (in section 4) the notation

Rd = (−1)m
2πq2m+1

K

∞∑
n=0

q(2m+1)n

1 + q2n+2
cos

(n+ 1)πu

K
(2.25)

(m = 1, 2, 3, . . .) for the term with the infinite series in n of the right-hand side of
(1.13).

3. Derivation of expansion (1.13). As mentioned in the previous section,
here we shall use a different approach. Namely, we start from expansion (1.4) and
write it as

dn(u, k) =
π

2K
+

2π

K

∞∑
n=0

qn+1

1 + q2n+2
cos(n+ 1)πv(3.1)

+ F
(m)
dn (v)− F (m)

dn (v),
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with

F
(m)
dn (v) =

πi

2K

m∑
j=−m+1

(−1)j cot
π

2
[v − (2j − 1)τ ](3.2)

(m = 1, 2, 3, . . .).

The expression for F
(m)
dn can be rewritten as

F
(m)
dn (v) =

πi

2K

m∑
j=1

(−1)jf
(j)
dn (v),(3.3)

where

f
(j)
dn (v) = cot

π

2
[v − (2j − 1)τ ]− cot

π

2
[v + (2j − 1)τ ](3.4)

= 2 sin[(2j − 1)πτ ]
1

cos(2j − 1)πτ − cosπv
(3.5)

=
i(1− q4j−2)

q2j−1

1

cos(2j − 1)πτ − cosπv
(3.6)

=
2i(1− q4j−2)

1− 2q2j−1 cosπv + q4j−2
.(3.7)

Multiplying (2.9) by (1−a) sinw and (2.23) by (1+a) cosw and adding the results,
we obtain

(1− a2)

1− 2a cos 2w + a2
= 1 + 2

∞∑
n=1

an cos 2nw,(3.8)

which is valid under condition (2.10) (and is not valid if (2.11) is satisfied).
From (3.8), it follows that

1− q4j−2

1− 2q2j−1 cosπv + q4j−2
= 1 + 2

∞∑
n=1

q(2j−1)n cosnπv(3.9)

(j = 1, 2, 3, . . .), and this is true under condition (2.13) (and not true if (2.14) is
satisfied).

From (3.3), (3.4)–(3.7), and (3.9), we get

K

π
F

(m)
dn (v) = E(m,n = 0) + 2

∞∑
n=1

E(m,n) cosnπv(3.10)

(m = 1, 2, 3, . . .), where

E(m,n) =

m∑
j=1

(−1)j−1q(2j−1)n(3.11)

(n = 0, 1, 2, . . .), and the result (3.10) is certainly valid for v(= u/K) in strip (1.10).
From (3.11), we obtain

E(m,n) = qn
1− (−1)mq2nm

1 + q2n
(3.12)
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(m = 1, 2, 3, . . . , n = 0, 1, 2, . . .). In particular,

E(m,n = 0) =
1− (−1)m

2
(3.13)

(m = 1, 2, 3, . . .).
Equation (3.10) can now be rewritten as

F
(m)
dn (v) =

π

2K
[1− (−1)m] +

2π

K

∞∑
n=0

qn+1(3.14)

· 1− (−1)mq(2n+2)m

1 + q2n+2
cos(n+ 1)πv

(m = 1, 2, 3, . . . , v in strip (1.10)).

We now substitute for the first F
(m)
dn of (3.1) its expression (3.2) and for the second

F
(m)
dn its expression (3.14) to get

dn(u, k) = (−1)m
π

2K
+

πi

2K

m∑
j=−m+1

(−1)j(3.15)

· cot
π

2K
[u− (2j − 1)iK ′] + (−1)m

2πq2m+1

K

·
∞∑
n=0

q(2m+1)n

1 + q2n+2
cos

(n+ 1)πu

K

(m = 1, 2, 3, . . .) for u in strip (1.10).
Taking into account the fact that

(−1)m = 1 + 2
m∑
j=1

(−1)j =
m∑

j=−m+1

(−1)jα(j) + 1(3.16)

(m = 1, 2, 3, . . .), one can now rewrite (3.15) in the form of (1.13) for u in strip (1.10).
Finally, to prove that (1.13) is valid in strip (1.15), one can use analytic continuation.

4. Estimates for n-series in (1.11)–(1.13). In (1.11), the n-series is Rs (see
(1.11) and (2.15)). For u in strip (1.15), we can write

Im
( u
K

)
= γ Im[(2m+ 1)τ ],(4.1)

where −1 < γ < +1 and m = 1, 2, 3, . . . . For u in this strip, we obtain∣∣∣∣sin (2n+ 1)πu

2K

∣∣∣∣ ≤ |q|−(2m+1)(2n+1)|γ|/2(4.2)

and then

|Rs| ≤
2π

|kK|
|q|(m+ 1

2 )(1−|γ|)

1− |q|
1

1− |q|(2m+1)(1−|γ|)(4.3)

(m = 1, 2, 3, . . .).



722 D. S. TSELNIK

Similarly, for the n-series of (1.12), which is Rc (see (1.12) and (2.24)), we find
the same estimate (4.3) in strip (1.15).

Also, in strip (1.15),∣∣∣∣cos
(n+ 1)πu

K

∣∣∣∣ ≤ |q|−(2m+1)(n+1)|γ|,(4.4)

from which we obtain the estimate for Rd (see (2.25)):

|Rd| ≤
2π

|K|
|q|(2m+1)(1−|γ|)

1− |q|2
1

1− |q|(2m+1)(1−|γ|)(4.5)

(m = 1, 2, 3, . . .) in strip (1.15).

If instead of (4.2), we use the estimate∣∣∣∣sin (2n+ 1)πu

2K

∣∣∣∣ ≤ 1

2
[|q|−(2m+1)(2n+1)γ/2 + |q|(2m+1)(2n+1)γ/2],(4.6)

then instead of (4.3), the following bound for |Rs| is obtained:

|Rs| ≤
π

|kK|
|q|(m+ 1

2 )(1−|γ|)

1− |q|(4.7)

· 1

1− |q|(2m+1)(1−|γ|)

{
1 + |q|(2m+1)|γ| 1− |q|(2m+1)(1−|γ|)

1− |q|(2m+1)(1+|γ|)

}
,

and this bound is true for |Rc| as well.

Also, if instead of (4.4), we use the estimate∣∣∣∣cos
(n+ 1)πu

K

∣∣∣∣ ≤ 1

2
[|q|−(2m+1)(n+1)γ + |q|(2m+1)(n+1)γ ],(4.8)

then instead of (4.5), the following bound for |Rd| is found:

|Rd| ≤
π

|K|
|q|(2m+1)(1−|γ|)

1− |q|2(4.9)

· 1

1− |q|(2m+1)(1−|γ|)

{
1 + |q|(4m+2)|γ| 1− |q|(2m+1)(1−|γ|)

1− |q|(2m+1)(1+|γ|)

}
.

5. Obtaining series expansions (1.5)–(1.7) from equations (1.11)–(1.13).
From (4.3), it follows that |Rs| → 0 as m → ∞. Accordingly, the limiting form of
(1.11) as m→∞ is (1.5) with the sum written as

lim
m→∞

m∑
j=−m+1

(5.1)

(and also, of course, (1.5) is known to be true with the sum written as it is written
in (1.5)).

Similarly, (1.6) with the sum in it written as in (5.1) is the limiting form of (1.12)
as m→∞.
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The bound (4.3) (or the bound (4.7)) for |Rs| and |Rc| can be looked upon as an
upper bound for the absolute values of the remainders of the approximations

sn(u, k) ' π

2kK

m∑
j=−m+1

cosec
π

2K
[u− (2j − 1)iK ′](5.2)

and

cn(u, k) ' πi

2kK

m∑
j=−m+1

(−1)jcosec
π

2K
[u− (2j − 1)iK ′](5.3)

in strip (1.15); these approximations can be viewed as being obtained by truncating
the infinite series of (1.5) and (1.6) (in the manner indicated by the extreme values
of j in the sums of (5.2) and (5.3)).

Now taking into account (4.5), we find the following expansion as the limiting
form of (1.13) as m→∞:

dn(u, k) =
π

2K
+

πi

2K
lim
m→∞

m∑
j=−m+1

(−1)j
{

cot
π

2K
[u− (2j − 1)iK ′]− iα(j)

}
(5.4)

(|u| <∞, poles of dnu deleted).
This expansion looks different from (1.7) but is equivalent to it. Indeed, for any

fixed u of (5.4),

lim
m→+∞

cot
π

2K
[u+ (2m+ 1)πiK ′] = −i,(5.5)

and by (5.5), equation (5.4) can be reduced to (1.7).

6. Other forms of expansions (1.11)–(1.13). Here are alternative forms of
expansions (1.11)–(1.13):

sn(u, k) =
2πq1/2

kK

m∑
j=1

qj−1(1 + q2j−1) sin
πu

2K

1− 2q2j−1 cos
(πu
K

)
+ q4j−2

(6.1)

+
2πqm+ 1

2

kK

∞∑
n=0

q(2m+1)n

1− q2n+1
sin

(2n+ 1)πu

2K
,

sn(u, k) =
πq1/2

kK

m∑
j=1

1 + q2j−1

qj
sin πu

2K

cosh

[
(2j − 1)πK ′

K

]
− cos

(πu
K

)(6.2)

+
2π

kK
qm+ 1

2

∞∑
n=0

q(2m+1)n

1− q2n+1
sin

(2n+ 1)πu

2K
,

cn(u, k) =
2πq1/2

kK

m∑
j=1

(−1)j−1
qj−1(1− q2j−1) cos

πu

2K

1− 2q2j−1 cos
(πu
K

)
+ q4j−2

(6.3)

+ (−1)m
2πqm+ 1

2

kK

∞∑
n=0

q(2m+1)n

1 + q2n+1
cos

(2n+ 1)πu

2K
,
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cn(u, k) =
πq1/2

kK

m∑
j=1

(−1)j−1 1− q2j−1

qj

cos
πu

2K

cosh

[
(2j − 1)πK ′

K

]
− cos

(πu
K

)(6.4)

+ (−1)m
2πqm+ 1

2

kK

∞∑
n=0

q(2m+1)n

1 + q2n+1
cos

(2n+ 1)πu

2K
,

dn(u, k) = (−1)m
π

2K
+
π

K

m∑
j=1

(−1)j−1 1− q4j−2

1− 2q2j−1 cos
(πu
K

)
+ q4j−2

(6.5)

+ (−1)m
2π

K
q2m+1

∞∑
n=0

q(2m+1)n

1 + q2n+2
cos

(n+ 1)πu

K
,

dn(u, k) = (−1)m
π

2K
+

π

2K

m∑
j=1

(−1)j−1 1− q4j−2

q2j−1

1

cosh

[
(2j − 1)πK ′

K

]
− cos

πu

K

(6.6)

+ (−1)m
2πq2m+1

K

∞∑
n=0

q(2m+1)n

1 + q2n+2
cos

(n+ 1)πu

K
,

dn(u, k) =
π

2K
+

2π

K

m∑
j=1

(−1)j−1q2j−1
cos

πu

K
− q2j−1

1− 2q2j−1 cos
πu

K
+ q4j−2

(6.7)

+ (−1)m
2π

K
q2m+1

∞∑
n=0

q(2m+1)n

1 + q2n+2
cos

(n+ 1)πu

K
,

and

dn(u, k) =
π

2K
+
π

K

m∑
j=1

(−1)j−1
cos

πu

K
− q2j−1

cosh
(2j − 1)πK ′

K
− cos

πu

K

(6.8)

+ (−1)m
2πq2m+1

K

∞∑
n=0

q(2m+1)n

1 + q2n+2
cos

(n+ 1)πu

K
.

One or another expansion for the same function (sn, cn, or dn) may be preferable
to use in certain cases. For example, if τ is purely imaginary (the usual case in
applications of elliptic functions in physics and engineering [5]), then K and K ′ are
real, and expansions (6.1) or (6.2) may be more convenient to use than (1.11) for u
real.

At m =∞, expansions (6.1)–(6.4) and (6.7) and (6.8) yield

sn(u, k) =
2πq1/2

kK

∞∑
j=1

qj−1(1 + q2j−1) sin
πu

2K

1− 2q2j−1 cos
(πu
K

)
+ q4j−2

,(6.9)

sn(u, k) =
πq1/2

kK

∞∑
j=1

1 + q2j−1

qj

sin
πu

2K

cosh

[
(2j − 1)πK ′

K

]
− cos

(πu
K

) ,(6.10)
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cn(u, k) =
2πq1/2

kK

∞∑
j=1

(−1)j−1
qj−1(1− q2j−1) cos

πu

2K

1− 2q2j−1 cos
(πu
K

)
+ q4j−2

,(6.11)

cn(u, k) =
πq1/2

kK

∞∑
j=1

(−1)j−1 1− q2j−1

qj

cos
πu

2K

cosh

[
(2j − 1)πK ′

K

]
− cos

(πu
K

) ,(6.12)

dn(u, k) =
π

2K
+

2π

K

∞∑
j=1

(−1)j−1q2j−1
cos

πu

K
− q2j−1

1− 2q2j−1 cos
πu

K
+ q4j−2

,(6.13)

and

dn(u, k) =
π

2K
+
π

K

∞∑
j=1

(−1)j−1
cos

πu

K
− q2j−1

cosh
(2j − 1)πK ′

K
− cos

πu

K

,(6.14)

respectively (|u| < ∞, poles of sn(u, k), cn(u, k), and dn(u, k), respectively, are
deleted).

7. Sums of some infinite series. By putting such specific values of u as u = 0,
K/2,K, . . . or u = iK ′/2, iK ′, . . . into the expansions derived above we can obtain
results for sums of interesting infinite series. As examples, we cite here the following
two results:

∞∑
n=0

(−1)E(n/2) q
n+m+2nm

1− q2n+1
=

kK

π[2q(1 + k′)]1/2
−

m∑
j=1

qj−1(1 + q2j−1)

1 + q4j−2
,(7.1)

∞∑
n=1

q(2m+1)n

1 + q2n
= (−1)m

(
K

2π
− 1

4

)
− (−1)m

m∑
j=1

(−1)j−1 q2j−1

1− q2j−1
,(7.2)

where m = 1, 2, 3, . . . and E(x) denotes the integral part of the real number x.
This results (7.1) and (7.2) are obtained if one puts u = K/2 in (6.1) and u = 0

in (6.5), respectively.

8. On the use of trigonometric series expansions of snu, cnu, and dnu
in evaluating integrals. In applications, the importance of the trigonometric series
expansions of snu, cnu, and dnu is that they can often be used for evaluating integrals
of these functions multiplied by another function, like the integral

J =

∫ K

0

sin
πu

K
sn(u, k) du(8.1)

or similar integrals. Namely, by using trigonometric series expansions of snu, cnu, and
dnu, one can often represent the integrals in question as infinite series, or asymptotic
expressions for these integrals (say, corresponding to k small) can be found.

Using the example of the integral in (8.1), we shall now explain how the use of
different expansions of sn(u, k) may be advantageous. Namely, if we use the expansion
(1.2) in (8.1), we get

J = 8q1/2k−1
∞∑
n=0

(−1)n+1

(2n− 1)(2n+ 3)

qn

1− q2n+1
.(8.2)
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If, on the other hand, we use the expansion (6.2) of sn(u, k) in (8.1), then we get

J =

m∑
j=1

Jj + 8qm+ 1
2 k−1

∞∑
n=0

(−1)n+1

(2n− 1)(2n+ 3)

q(2m+1)n

1− q2n+1
,(8.3)

where the sum in j (from j = 1 to j = m) is the result of integration of the term with
the sum in j of (6.2) (multiplied by sin(πu/K)).

The concrete expressions for Jj are of no importance for the sake of our discussion,
and therefore they are not presented here. What is important is that because of the
presence of the factors q(2m+1)n, the infinite series (in n) of (8.3) is more rapidly
convergent than the infinite series of (8.2) (even at m = 1). Thus using expansion
(6.2) for sn(u, k) instead of (1.2) in (8.1), one can obtain a more rapidly convergent
series for J .

Of course, if one has already obtained an infinite series representation for some
integral, it is possible to try to increase the rapidity of convergence of that series.
However, in applications one often wants to (or can) obtain not an entire infinite
series expansion but only an asymptotic formula expression (say, corresponding to
small k) for an integral. In such cases, the use of a more rapidly convergent series
expansion for snu, cnu, and dnu (like (1.11)–(1.13) and (6.1)–(6.8)) is very expedient.
Also, the simple structure of the series in n of (1.11)–(1.13) and (6.1)–(6.8) allows for
convenient evaluation of the remainder (of the asymptotic formula obtained).

In more complicated situations, if one needs to solve an integral equation with
its kernel expressed in terms of sn, cn, or dn, the use of the series expansions (1.11)–
(1.13) and (6.1)–(6.8) with their rapidly convergent series in n can be of advantage
as well.

9. Expansions of cdu, sdu, . . . , scu similar to expansions of snu, cnu,
and dnu (1.11)–(1.13). They are as follows:

cd(u, k) =
π

2kK

m∑
j=−m+1

sec
π

2K
[u− (2j − 1)iK ′](9.1)

+
2πqm+ 1

2

kK

∞∑
n=0

(−1)n
q(2m+1)n

1− q2n+1
cos

(2n+ 1)πu

2K
,

sd(u, k) = − πi

2kk′K

m∑
j=−m+1

(−1)j sec
π

2K
[u− (2j − 1)iK ′](9.2)

+ (−1)m
2πqm+ 1

2

kk′K

∞∑
n=0

(−1)n
q(2m+1)n

1 + q2n+1
sin

(2n+ 1)πu

2K
,

nd(u, k) =
π

2k′K
+

πi

2k′K

m∑
j=−m+1

(−1)j+1
{

tan
π

2K
[u− (2j − 1)iK ′] + iα(j)

}
(9.3)

+ (−1)m
2πq2m+1

k′K

∞∑
n=0

(−1)n+1 q
(2m+1)n

1 + q2n+2
cos

(n+ 1)πu

K
,

ns(u, k) =
π

2K

m∑
j=−m

cosec
π

2K
(u− 2jiK ′)(9.4)

+
2π

K

∞∑
n=0

q(2n+1)(m+1)

1− q2n+1
sin

(2n+ 1)πu

2K
,
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dc(u, k) =
π

2K

m∑
j=−m

sec
π

2K
(u− 2jiK ′)(9.5)

+
2π

K

∞∑
n=0

(−1)n
q(2n+1)(m+1)

1− q2n+1
cos

(2n+ 1)πu

2K
,

ds(u, k) =
π

2K

m∑
j=−m

(−1)jcosec
π

2K
(u− 2jiK ′)(9.6)

+ (−1)m+1 2π

K

∞∑
n=0

q(2n+1)(m+1)

1 + q2n+1
sin

(2n+ 1)πu

2K
,

nc(u, k) =
π

2k′K

m∑
j=−m

(−1)j sec
π

2K
(u− 2jiK ′)(9.7)

+ (−1)m+1 2π

k′K

∞∑
n=0

(−1)n
q(2n+1)(m+1)

1 + q2n+1
cos

(2n+ 1)πu

2K
,

cs(u, k) =
π

2K

m∑
j=−m

(−1)j cot
π

2K
(u− 2jiK ′)(9.8)

+ (−1)m+1 2π

K

∞∑
n=1

q2n(m+1)

1 + q2n
sin

nπu

K
,

sc(u, k) =
π

2k′K

m∑
j=−m

(−1)j tan
π

2K
(u− 2jiK ′)(9.9)

+ (−1)m
2π

k′K

∞∑
n=1

(−1)n
q2n(m+1)

1 + q2n
sin

nπu

K
.

In (9.1)–(9.3), m = 1, 2, 3, . . . , and these expansions are valid in strip (1.15) (with
m = 1, 2, 3, . . .). In (9.4)–(9.9), m = 0, 1, 2, . . . , and these are valid in the strip∣∣∣Im( u

K

)∣∣∣ < Im[(2m+ 2)τ ](9.10)

(with m = 0, 1, 2, . . .).
Equations (9.1), (9.2), and (9.3) are obtained by replacing u by u+K in (1.11),

(1.12), and (1.13), respectively. Equations (9.4), (9.6), and (9.8) are obtained from
the trigonometric series expansions of ns(u, k), ds(u, k), and cs(u, k), respectively,
given in [12, section 22.61] by a method similar to how (1.13) was obtained from (1.4)

in section 3 above. Instead of F
(m)
dn (v) (see equation (3.2) above), however, we use

F (m)
ns (v) =

π

2K

m∑
j=1

[
cosec

π

2
(v − 2jτ) + cosec

π

2
(v + 2jτ)

]
,(9.11)

F
(m)
ds (v) =

π

2K

m∑
j=1

(−1)j
[
cosec

π

2
(v − 2jτ) + cosec

π

2
(v + 2jτ)

]
,(9.12)

and

F (m)
cs (v) =

π

2K

m∑
j=1

(−1)j
[
cot

π

2
(v − 2jτ) + cot

π

2
(v + 2jτ)

]
(9.13)



728 D. S. TSELNIK

(m = 1, 2, 3, . . .) to derive (9.4), (9.6), and (9.8), respectively.
Finally, one obtains equations (9.5), (9.7), and (9.9) by replacing u by u + K in

(9.4), (9.6), and (9.8), respectively.

10. Expansions in asymetric strips. Here we shall give pertinent explana-
tions using the example of sn(u, k).

In the v = u/K-plane, the function sn(u, k) has poles at points

v = 2n+ (2m+ 1)τ, n = 0,±1,±2, . . . , m = 0,±1,±2, . . . ,(10.1)

(see (1.1)), and all of these poles are located on the horizontal lines

Imv = Im[(2m+ 1)τ ], m = 0,±1,±2, . . . ,(10.2)

in the v-plane.
Now expansion (1.2) (known in the literature) and expansion (1.11) of sn(u, k)

(derived in this paper) are valid in the strips

|Imv| < Imτ(10.3)

and

|Imv| < Im[(2m+ 1)τ ], m = 1, 2, 3, . . . ,(10.4)

respectively, and each of these strips is seen to be symmetric with respect to the
Rev-axis in the v-plane.

However, using the set of expansions derived in this paper, one can easily obtain
expansions of sn(u, k) valid in asymmetric (with respect to the Rev-axis in the v-
plane) strips as well. Namely, all the strips between the (horizontal) lines (10.2) of
poles of sn(u, k) in the v-plane belong to one of the following categories:

Im[(2s− 1)τ ] < Imv < Im[(2s+ 1)τ ],(10.5)

where s = 0,±1,±2, . . . , or

Im[(2s− 2m− 1)τ ] < Imv < Im[(2s+ 2m+ 1)τ ],(10.6)

where s = 0,±1,±2, . . . and m = 1, 2, 3, . . . , or

Im[(2s− 2m+ 1)τ ] < Imv < Im[(2s+ 2m+ 1)τ ],(10.7)

where s = 0,±1,±2, . . . and m = 1, 2, 3, . . . .
To obtain the expansion of sn(u, k) valid in strip (10.5), we use [12, section 22.34]

sn(u, k) = sn(u− 2siK′, k)(10.8)

for s = 0,±1,±2, . . . . Using (1.2), we find that

sn(u, k) =
2π

kK

∞∑
n=0

qn+ 1
2

1− q2n+1
sin

(2n+ 1)π(u− 2siK ′)

2K
(10.9)

in strip (10.5). Similarly, using (1.11), we find that

sn(u, k) =
π

2kK

m∑
j=−m+1

cosec
π

2K
[u− (2j − 1)iK ′ − 2siK ′](10.10)

+
2πqm+ 1

2

kK

∞∑
n=0

q(2m+1)n

1− q2n+1
sin

(2n+ 1)π(u− 2siK ′)

2K

for v in strip (10.6).
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Finally, using (see [2, equation 122.24])

sn(u, k) = k−1dc[u−K − (2s+ 1)iK ′, k](10.11)

for s = 0,±1,±2, . . . and (9.5), we obtain

sn(u, k) =
π

2kK

m−1∑
j=−m+1

cosec
π

2K
[u− 2jiK ′ − (2s+ 1)iK ′](10.12)

+
2π

kK

∞∑
n=0

q(2n+1)m

1− q2n+1
sin

(2n+ 1)π[u− (2s+ 1)iK ′]

2K

in strip (10.7).

11. Expansions involving powers of q ′. In practical applications of elliptic
functions to problems of physics and engineering, τ is usually purely imaginary and
0 < q < 1. Expansions involving powers of q (such as (1.2)–(1.4)) are used in appli-
cations only when q � 1. Otherwise, expansions involving powers of the parameter
q′, where [12, section 21.51]

q′ = eπiτ
′
, τ ′ = −1

τ
=
iK

K ′
,(11.1)

are used: when q → 1, q′ → 0.
Expansions involving powers of q′ can be obtained (in the general case—not nec-

essarily for purely imaginary τ) from the expansions involving powers of q by the use
of Jacobi’s imaginary transformation [12, section 22.4]. For example, we have [12,
section 22.4]

sn(u, k) = −isc(iu, k′),(11.2)

and using (9.9) in (11.2), we obtain

sn(u, k) =
π

2kK ′

m∑
j=−m

(−1)j tanh
π

2K ′
(u− 2jK)(11.3)

+ (−1)m
2π

kK ′

∞∑
n=1

(−1)n
(q′)2n(m+1)

1 + (q′)2n
sinh

nπu

K ′

for u in the strip ∣∣∣∣Im( iuK ′
)∣∣∣∣ < Im[(2m+ 2)τ ′](11.4)

with m = 0, 1, 2, . . . , etc.

12. Concluding remarks and acknowledgments. In October 1993, this au-
thor submitted a paper entitled “New trigonometric expansions of Jacobian Elliptic
Functions snu, cnu, dnu” to SIAM J. Math. Anal. That paper (which was the first
version of this one) contained, in particular, results given by equations (1.11)–(1.15),
(3.2), (3.3), (3.6), (3.7), (3.14) (written for ξ = Rev instead of v), (3.15), (5.4), (6.1)–
(6.8), (7.1), and (7.2) of this paper, as well as a number of other results.
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The paper was originally reviewed by one referee and then (in a revised version
entitled “On trigonometric series expansions of Jacobian elliptic functions snu, cnu,
dnu”) by two referees. The referees made valuable comments, for which the author
is grateful. The present paper is a revised and expanded version of this previous
submission. The referees’ comments were taken into account, some material from the
first version was deleted, and new material was added. As a result, this paper is twice
as long as the original submission.

This paper is based on simple ideas, which—as is often the case with simple
ideas—work rather well and give good, usable results. Similar ideas worked out with
respect to expansions for meromorphic functions and expansions for the solutions
of the functional equations of the second kind (in particular, the Fredholm integral
equation) are conveyed in this author’s papers [8], [9], [10], and [11]. Also, in the
abstract [6],1 expansions for the logarithmic derivatives of the ϑ1−4(. . .) functions (a
development similar to the one set forth in the present paper) are described.

The results (1.11)–(1.15), (5.4), and (6.2) of this paper are given (without deriva-
tion) and some other results of this paper are mentioned in the abstract [7].

The present paper was reviewed by a referee who has read it extremely thor-
oughly. The referee checked a large number of the formulas of the paper and also
suggested numerous stylistic improvements. The author is very grateful to this
referee.
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Abstract. Optimization of sup-norm-type performance functions over the space of H∞ func-
tions is an area of extensive research. In electrical engineering, it is central to the subject of H∞

design, while in several complex variables, it is often required to produce analytic discs with valuable
properties.

It has been known for many years that an H∞-type optimum is frequency independent (flat).
In this paper, we study simultaneous (Pareto) optimization of several competing performances
Γ1, . . . ,Γl.

We find under strong assumptions on the performance functions that if we are optimizing over N
functions (f1, . . . , fN ) in H∞ and have l performance measures with l ≤ N , then at a nondegenerate
Pareto optimum (f∗1 , . . . , f

∗
N ), every performance is flat.

Besides flatness, there are other gradient–alignment conditions which must hold at an optimum.
The article presents these and thus gives the precise first-derivative test for a natural class of H∞

Pareto optima.
Such optimality conditions are valuable for assessing how iterations in a computer run are pro-

gressing. Also, in the traditional case, optimality conditions have been the base of highly sucessful
computer algorithms; see [J. W. Helton, O. Merino, and T. Walker, Indiana U. Math. J., 42 (1993),
pp. 839–874].

Key words. H∞ control, frequency response methods, analytic discs

AMS subject classification. 93C80

PII. S0036141095293086

1. Introduction. This paper analyzes a problem in which one optimizes objec-
tive functions over the space H∞N of vector-valued functions f = (f1, . . . , fN ) defined
on the unit circle, T, where each coordinate function fj belongs to L∞(T) and extends
to be analytic on the entire unit disk.

The objectives that we optimize are described in terms of nonnegative continuous
functions Γ defined on T × CN . Given positive functions Γj(e

iθ, z) ∈ C1(T,CN ),
j = 1, . . . , l, and a function f ∈ H∞N , we define the l performances

γj(f) := sup
θ∈T

Γj(e
iθ, f), j = 1, . . . , l.

The goals of this paper are best illustrated by restricting our study to the case of
two performance functions Γ1 and Γ2, even though our results hold for l-performance
functions.

Definition. A function f∗ ∈ H∞N is called a Pareto optimum for Γ1 and Γ2 if
for each f ∈ H∞N one of the following two inequalities holds:

γ1(f) ≥ γ1(f∗) or γ2(f) ≥ γ2(f∗).
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The book of Boyd and Barratt [BB] gives a good discussion of Pareto optimality.

1.1. Degenerate versus nondegenerate Pareto optima. A function f∗ can
be a Pareto optimum for Γ1 and Γ2 in two basic ways.

Degenerate optima. The first case is where f∗ can optimize Γ1, that is,

γ1(f∗ + h) ≥ γ1(f∗) ∀h ∈ H∞N , h 6= 0,

in which case Γ2 is irrelevant. Similarily, f∗ can optimize Γ2, and then Γ1 is irrelevant.
This case has been seriously studied, and the main optimality result is stated in
Theorem 1.1 below.

Nondegenerate optima. The second case is when both Γ1 and Γ2 are relevant. In
this case, there is a pair of analytic functions h1 and h2 such that

γ1(f∗ + h1) < γ1(f∗),

γ2(f∗ + h2) < γ2(f∗).

In other words, we can improve each performance separately by adding h1 or h2 to
f∗, but we cannot improve both performances at the same time.

The case of nondegenerate optima is the subject of this paper.
Example for N = 2.

Γ1(eiθ, z) = |ψ1(eiθ)− z1|2,
Γ2(eiθ, z) = |ψ2(eiθ)− z2|2,

where ψj are rational. In this case, the problem is separable into two completely
independent one-dimensional single-performance problems. Therefore, there exists no
nondegenerate Pareto optimum for Γ1 and Γ2. An example of a degenerate Pareto
optimum would be any pair of functions f = (f1, f2) such that either f1 or f2 is an
optimum for Γ1 alone or Γ2 alone, respectively.

If, on the other hand, we consider the problem with

Γ̃1(eiθ, z) = |ψ1(eiθ)− z1|2,
Γ̃2(eiθ, z) = |ψ2(eiθ)− z1 − z2|2,

then the problem cannot be separated into two independent single-performance prob-
lems, and for generic ψ1 and ψ2, almost all Pareto optima are nondegenerate.

1.2. A characterization of Pareto optima. The main result of this paper is
that for a special class of Γj ’s ,namely the ones that are the norms of certain rational
functions, a nondegenerate local pareto optimum f∗ ∈ H∞N for N > 1 satisfies

Γ1(eiθ, f∗(eiθ)) = const.1

and

Γ2(eiθ, f∗(eiθ)) = const.2

for all θ. The striking fact is that both performances are flat. See Theorem 2.1 for the
precise statement of this result in the general case of l-performance functions

Note that if N = 1 then both performances are almost never flat. Also, we give a
result that indicates that there is a large class of Γj ’s for which flatness will not hold.

An earlier instance of the flatness condition (Theorem 2.1(I)) for Pareto optima
was discovered by Young (see [PY] for proofs). It applies to jointly minimizing the
first, second, third, etc. singular values of matrix-valued functions, which is quite a
different context from the one in this paper.
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given
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Fig. 1. For a given plant, we want to find the best designable part, represented by f .

1.3. Engineering motivation. This type of problem is central to frequency-
domain-system design problems, where stability is a key constraint. In particular, it
is important to the area of H∞ control [H], [Fr]. The basic physical idea is simple.
Recall that a linear-time-invariant system has a frequency-response function F defined
on the imaginary axis and that the system is stable if F has no poles in the closed
right half-plane (RHP). The behavior of the system when excited with a pure sine
wave of frequency ω is determined by F (iω). The following often occurs in a design
procedure. We are required to build a system S, but part of the system is given (we
are stuck with it) and part of the system is designable (denote its frequency-response
function by f); see Figure 1. The performance of the system S at frequency ω is
a function Γ(ω, f(iω)) which depends on ω and on one’s choice of the designable
subsystem f . Let us adopt the convention that large Γ is bad while small Γ is good.
Then in a worst-case “broadband” design, we consider the worst performance over all
frequencies

sup
ω

Γ(ω, f(iω))

and try to minimize it over all admissible f . If our main constraint is that the
designable subsystem f must be stable, then the design problem becomes the problem
of finding a Pareto optimum with one Γ after transforming the RHP to the unit
disk. When N > 1, these problems usually pose serious difficulties since traditional
graphical trial and error methods are inadequate.

A number of authors (Mayne, Polak, and Salucidean; Fan and Tits; Streit; Boyd;
Daleh; Pearson; Doyle, Glover, and Packard; Helton, Merino, and Walker; and Sideris)
have written computer programs to search for an optimal f∗ with certain kinds of Γ;
see, e.g., [BB], [D], [FKTW], [HMW], [MNPW], [Si], and [St].

1.4. The classical case: One performance function. If we restrict our at-
tention to the degenerate Pareto optimum, then we end up with a classical case of
optimizing a single-performance function.

Now we state an earlier result for a single-performance function which this paper
extends. Let Γ(eiθ, z) be continuous nonnegative function. We are trying to find
f∗ ∈ H∞N which minimizes the following quantity:

sup
θ∈R

Γ(eiθ, f∗(eiθ)).
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Theorem 1.1 (see [H1]). Let Γ be of class C3 and f∗ ∈ H∞N ∩C(T) be such that
(∂Γ/∂z)(eiθ, f∗(eiθ)) never equals 0 on T. If f∗ is a local minimizer, then

(I) the function Γ(·, f∗(·)) is a constant on T and
(II) there exist functions F ∈ H1

N and λ : T → R+ measurable and positive
almost everywhere on T such that

λ(eiθ)
∂Γ

∂z
(eiθ, f∗(eiθ)) = eiθF (eiθ) a.e. on T.

When one adds a condition (III) asserting that Γ is convex in some directions,
then one obtains a necessary and sufficient condition [HM1]. Indeed, [HM1] is the best
reference for this result. Theorem 1.1 is extremely useful in that conditions (I) and
(II) are a basis for computer diagnostics and software developed by Helton, Merino,
and Walker; see [HMW].

1.5. Smooth performances versus multiple performances. In engineering
applications, a single-performance function Γ can be used to incorporate several per-
formance criteria. In particular, a Pareto optimum f∗ for performance functions
Γ1, . . . ,Γl can be viewed as a solution to the optimization problem with only one
performance function defined by

Γ̃(eiθ, z) := max

{
Γ1(eiθ, z)

γ1(f∗)
, . . . ,

Γl(e
iθ, z)

γl(f∗)

}
.(1)

Namely, it is easy to check that f∗ is a Pareto optimum for Γ1, . . . ,Γl if it is an
optimum for Γ̃. The main disadvantage of introducing Γ̃ is that it is almost never
differentiable, even though the Γj ’s are. As a consequence, the results proved for a
single-performance-function optimization, reproduced in the theorem above, cannot
be applied to Γ̃.

1.6. Outline of the paper. This paper has the following structure. In section
2, we state and prove the main result of this paper. In section 3, we give two auxiliary
results on uniqueness and existence of the Pareto optimum. In section 4, we reproduce
the proofs of several lemmas which were proved by Trepreau in [T] and which have
not been published. Section 4 is completely independent of the rest of the paper.
In section 5, we discuss the connection between the M-OPT problem which had its
origin in engineering mathematics and the analytic-disc techniques used in the popular
several-complex-variables problem of extending a function defined on a manifold M
in CN to a function analytic in a neighborhood of a given point on M .

2. First-order conditions. In this section, we give a precise statement of our
results in the general case of l-performance functions.

Definition. A function f∗ ∈ H∞N is called a local Pareto optimum for Γ1, . . . ,Γl
if there exists ε > 0 such that

for all f ∈ H∞N and ‖f − f∗‖ < ε, there exists j, γj(f) ≥ γj(f∗).

For l = 1, this definition means that f∗ minimizes supθ Γ(eiθ, f(eiθ)).

2.1. Main results. We introduce the notation

∂Γ

∂z
=


∂

∂z1
Γ1 · · · ∂

∂zN
Γ1

· · · · · · · · ·
∂

∂z1
Γl · · ·

∂

∂zN
Γl

 .(2)
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Denote the unit disc in C by ∆.
We will impose the following assumption on performance functions.
Assumption 1. Suppose N ≥ l and suppose Γj = |Pj(eiθ, z)/Qj(eiθ, z)|2, where

Pj and Qj are holomorphic polynomials in z with coefficients which are rational func-
tions in eiθ. We assume, in addition, that the coefficients do not have poles on T.

We will consider a candidate for Pareto optimum f∗ for which the following
assumption holds.

Assumption 2. The function f∗ ∈ H∞N ∩ Cα, α > 1/2, with performances
γ∗1 , . . . , γ

∗
l satisfies the following condition:

There exists an analytic direction hj ∈ H∞N ∩ Cα, α > 1/2, that improves all
performances except for γ∗j . Namely, there exist C > 0 and t0 > 0 such that for every
t < t0,

sup
θ

Γk(eiθ, f∗(eiθ) + thj(e
iθ))− sup

θ
Γk(eiθ, f∗(eiθ)) < −Ct for k = 1, . . . , l, k 6= j.

Assumption 2 means that f∗ is a nondegenerate Pareto optimum as discussed
earlier, i.e., all l performances Γ1, . . .Γl play an active role. If not all of them matter,
we have a smaller l.

Now we state the main result of this paper.
Theorem 2.1. Suppose the performance functions Γj satisfy Assumption 1. Sup-

pose that f∗ ∈ H∞N ∩ Cα is a local Pareto optimum that satisfies Assumption 2.

Suppose further that
∂Γj
∂z (eiθ, f∗(eiθ)) ∈ Cα with α > 1/2 and that

rank
∂Γ(eiθ, f∗(eiθ))

∂z
= l(3)

for every eiθ ∈ T.
Then the following hold:
(I) Flatness:

Γj(e
iθ, f∗(eiθ)) = const., j = 1, . . . , l.

(II) Gradient alignment: There exists a row-vector-valued function λ ∈ Cαl (T,R),
λ 6≡ 0, with nonnegative entries, such that

λ(eiθ)
∂Γ

∂z
(eiθ, f∗(eiθ)) = eiθF, F ∈ H2

N .

Here ∂Γ
∂z (eiθ, f∗(eiθ)) denotes the l×N derivative matrix (2) evaluated at z = f(eiθ).

Remark. We will, in fact, show that for (II) to hold, it is enough to assume only
that f∗ is an optimum such that f∗ ∈ Cα with α > 1/2 and the rank condition (3)
holds. In other words, Assumptions 1 and 2 are not needed for (II).

2.2. The classical Riemann–Hilbert problem. The main step in the proof
of the flatness condition is solving the following version of Riemann–Hilbert problem:

Given an l×N matrix-valued function A ∈ Cα(T) with invertible values, given a
closed interval I ⊂ T, I 6= T, find h ∈ H∞N such that

(Re(Ah))1> 0 for eiθ ∈ I,
(Re(Ah))j > 0 for all eiθ, j = 2, . . . , l.

(4)

Here (·)j stands for taking the jth entry of a vector. (Later the matrix A will be
taken to be equal to ∂Γ

∂z (eiθ, f∗(eiθ))).
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(4) is, in fact, a problem about the range of the Riemann–Hilbert map

w −→ 2Re (Aw).

Questions about the range of the Riemann–Hilbert map arise in several aspects.
For example, the gradient-alignment condition (Theorem 2.1(II)) will be shown to be
equivalent to the fact that the range of the derivative map

w −→ 2Re

(
∂Γ(eiθ, f∗(eiθ))

∂z
w

)
does not contain strictly positive functions, i.e., that all performances cannot be
improved to first order at the same time.

Questions about the range of the Riemann–Hilbert map also arise in the analytic-
disc techniques in one theoretical complex-variables problem; see section 6 for more
details. See [Ve] as a standard reference on the theory of the Riemann–Hilbert prob-
lem.

In this paper, we give conditions on A which insure that problem (4) always has
a solution.

To state our main condition, we need the following definition.
Definition. A function u(eiθ) ∈ L∞(T,C) has a pseudomeromorphic continua-

tion inside ∆ if there exists a function ũ, meromorphic in ∆ and with finitely many
poles in ∆, such that

lim
r→1

ũ(reiθ) = u(eiθ) a.e. T.

Theorem 2.2. Suppose that l ≤ N . Suppose that an l×N matrix-valued function
A ∈ Cα(T,C), α > 1/2, takes values of rank l on T. If

(i) the entries of A have pseudomeromorphic continuation inside ∆
or, more generally,

(ii) the matrix A can be written as DÃ, where D is an invertible diagonal matrix

function and Ã has a pseudomeromorphic continuation inside ∆,
then problem (4) has a solution h.

3. Proofs.

3.1. Proof of the flatness condition (Theorem 2.1(I)). First, we observe
that every Γj has a Taylor expansion

Γj(e
iθ, z + tw) = Γj(e

iθ, z) + t2Re

(
∂Γj
∂z

(eiθ, z) · w
)

+O(t2).(5)

Now suppose that f∗ ∈ H∞N ∩ Cα is a minimizer which produces performances
γ∗1 , . . . , γ

∗
l and that the performance function Γ1(eiθ, f∗(eiθ)) is not constant. Then

we can find ε0 > 0 and I ⊂ T so that T \ I is an open, nonempty interval and

Γ1(eiθ, f∗(eiθ))|T\I ≤ γ∗1 − ε0 = sup
θ

Γ1(eiθ, f∗(eiθ))− ε0.(6)

We first want to find a vector-valued function w ∈ H∞N ∩ Cα that satisfies
∂Γ1

∂z1
(eiθ, f∗(eiθ)) · · · ∂Γ1

∂zN
(eiθ, f∗(eiθ))

· · · · · · · · ·
∂Γl
∂z1

(eiθ, f∗(eiθ)) · · · ∂Γl
∂zN

(eiθ, f∗(eiθ))


 w1

· · ·
wN

 =


ϕ
0
· · ·
0

 ,(7)
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where ϕ is an arbitrary function that never equals 0 on I.
Recall that Γj(e

iθ, z) = (Pj/Qj)(Pj/Qj), where Pj(e
iθ, z) and Q(eiθ, z) are holo-

morphic polynomials in z with rational coefficients depending on eiθ. The derivative
is given by

∂Γj
∂zk

(eiθ, f∗)

=

∂Pj
∂zk

(eiθ, f∗)Qj(e
iθ, f∗)− Pj(eiθ, f∗)

∂Qj
∂zk

(eiθ, f∗)

[Qj(eiθ, f∗)]2
Pj(eiθ, f∗)Qj(eiθ, f∗)

−1
.

We introduce the notation

Ψj(e
iθ) := Pj(eiθ, f∗(eiθ))

−1
Qj(eiθ, f∗(eiθ))[Qj(e

iθ, f∗(eiθ))]2.

Note that Pj 6= 0 because ∂Γ
∂z has maximal rank. Then

∂Γj
∂zk

(eiθ, f∗(eiθ))Ψj(e
iθ) can be

extended meromorphically inside the unit disc. By Assumption 1, the meromorphic
functions

∂Γj
∂zk

(z, f∗(z))Ψj(z) do not have poles on the boundary of the unit disc or

accumulating to the boundary. Let β(z) be the finite Blaschke product such that

β(z)
∂Γj
∂zk

(z, f∗(z))Ψj(z) is holomorphic in the unit disc for j = 1, . . . , l and k = 1, . . . N .

Multiply both sides of (7) on the left by the l × l diagonal matrix D, which
has the diagonal entries Ψ1(eiθ), . . . ,Ψl(e

iθ). Note that each Ψj(e
iθ) does not vanish

anywhere on T.
By our assumptions, the matrix D ∂Γ

∂z has rank l everywhere. Since it is also of
class Cα with α > 1/2, by Proposition 5.1, there exists the N ×N constant matrix H
such that the first l columns of the productD ∂Γ

∂zH are linearly independent everywhere
on T.

Denote by B the the first l columns of the holomorphic matrix D ∂Γ
∂zHβ. Let B̃

be an l × l holomorphic matrix-valued function such that

BB̃ = (detB)Il×l.

Then the vector 
w1

w2

· · ·
wN

 = βH

(
B̃
0

)
1
0
· · ·
0

(8)

satisfies (7) with ϕ(eiθ) 6= 0 for all θ. Here ( B̃0 ) is an N × l matrix with the last N − l
rows equal to zero.

Since ϕ is nonzero on I, its argument argϕ|I is well defined. Extend ϕ|I to the
whole T in such a way that the extension ϕ̃ has winding number zero. Let h be a
holomorphic function such that argh = −argϕ̃. Then hϕ|I is real valued and positive,
and therefore the vector −hw has the property that

2Re

(
∂

∂z
Γ1(eiθ, f∗(eiθ)) · [−hw]

)
< −ε1, eiθ ∈ I.

Choose ε2 small enough so that

2Re

(
∂

∂z
Γ1(eiθ, f∗(eiθ)) · [−ε2hw]

)
≤ ε0/2, eiθ ∈ T \ I.
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Then there exist positive constants C and t0 such that for any t ≤ t0, the following
holds:

sup
θ

[
Γ1(eiθ, f∗(eiθ))− t2Re

(
∂

∂z
Γ1(eiθ, f∗(eiθ))hw

)]
− sup

θ
Γ1(eiθ, f∗(eiθ)) < −Ct,

2Re

(
∂

∂z
Γj(f

∗)hw

)
= 0, j = 2, . . . , l.

In other words, we have produced the analytic direction −hw that “improves” the
performance γ1 and leaves the performances γ2, . . . , γl “unchanged” up to the first
order.

By Assumption 2, there exists a direction v ∈ H∞N ∩ Cα that “improves” the
performances γ2, . . . , γl:

sup
θ

Γj(e
iθ, f∗(eiθ) + tv(eiθ))− sup

θ
Γj(e

iθ, f∗(eiθ)) < −C ′t, j = 2, . . . , l.

Now consider w̃ = −hw + εv for ε small enough. Then the analytic direction w̃
“improves” all Γj ’s. Therefore, by (5), for small t, the function f∗ + tw̃ has better
performances:

γj(f
∗ + tw̃) < γj(f

∗), j = 1, . . . , l.

We have reached a contradiction.
Proof of Theorem 2.2. The proof is a line-by-line repetition of a part of the proof

of Theorem 2.1(I).

3.2. Counterexample. Now we give some indications that we need Assumption
1 on Γ’s for flatness to hold. The flatness result, if it holds, would imply that if
Γ2(eiθ, f(eiθ)), . . . ,Γl(e

iθ, f(eiθ)) are constants and Γ1(eiθ, f(eiθ)) satisfies (6), then
we can find an analytic vector h such that

Re
(
∂Γ1

∂z (eiθ, f(eiθ)) · h
)
> 0 for eiθ ∈ I,

Re(
∂Γj
∂z (eiθ, f(eiθ)) · h)> 0 for all eiθ, j = 2, . . . , l.

Considering the question of existence of such an h in a little more general setting
leads to problem (4).

Proposition 3.2 below shows that there exists an A such that problem (4) is not
solvable. While we have not done so, we suspect that one can construct a simple A
for which (4) is not solvable and which can be written as ∂Γ

∂z (eiθ, f∗(eiθ)) for some
Γj ’s and f∗.

We start with the following lemma which gives a characterization of the derivative
map (see [BRT] and [T]).

Lemma 3.1. Assume N ≥ l and suppose that A is an l×N complex matrix-valued
function on T of class Cα with 1/2 < α < 1 and which has maximal rank ` at every
point on T. Consider the following Riemann–Hilbert operator:

F : H2
N −→ L2

l (T,R), F(w) = 2Re(Aw).

Then (rangeF)⊥ ⊂ L2(T,R) consists of all such real-valued `-vectors g ∈ L2 so
that

Atg ∈ zH2
N .(9)
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Proof. Suppose that g ∈ L2 belongs to (rangeF)⊥. Then∫
g · ReAw = 0 ∀w ∈ H2.(10)

Since this is true for iw, we have∫
g ·Aw = 0 ∀w ∈ H2.(11)

Therefore, (A
>
g, w) = 0, where (·, ·) is the inner product in L2(T,C). Then (9)

follows.
Remark. If we denote the restriction of F to H2

N ∩Cα by Fα, then the continuity
of F implies that

(rangeFα)⊥ = (rangeF)⊥.(12)

Proposition 3.2 below states that problem (4) cannot be solved for every A.
Proposition 3.2. Suppose that N = l = 2. Given any closed I ⊂ T with

I 6= T, there exists A such that for any v ∈ Cα(I) with α > 1/2, v > 0, on I and
any ψ ∈ Cα(T) with ψ > 0, there exists no solution h ∈ H∞2 ∩ Cα to the following
Riemann–Hilbert problem:

2Re(Ah) =

(
ϕ
ψ

)
, ϕ|I = v.

Proof. Take g0 = (p(eiθ), 1) with p = 0 on T\I and p > 0 on int(I). Then
(g0, (ϕ,ψ))L2 > 0 for any ψ > 0 and any ϕ with ϕ|int(I) > 0.

Now we take

A =

(
eiθ 0

−p(eiθ)eiθ eiθ

)
.

Obviously, g0A ∈ zH2, and therefore g0 belongs to (rangeF)⊥.

3.3. Proof of Theorem 2.1(II). We first need the following theorem.
Theorem 3.3. Suppose that a subspace R ⊂ Cα ⊂ L2

l (T,R) has the property
that its complement (R)⊥ is finite dimensional and a subset of Cαl . Suppose also that
its closure in the L2 topology R satisfies R ∩ Cα = R. If R does not contain vector
functions with every component strictly positive, then there exists a function λ 6≡ 0 in
(R)⊥ with every component positive (but not necessarily strictly positive).

The proof requires the following.
Lemma 3.4. If the vectors v1, . . . , vm satisfy

{x : ∃j, 1 ≤ j ≤ m, x · vj > 0} = Rn\{0},

then the set

hull(v1, . . . , vm) := {t1v1 + · · ·+ tmvm : tj ≥ 0}

is the whole of Rn

Proof. Abbreviate hull(v1, . . . , vm) by V . Suppose that V 6= Rn. Take any point
x0 which is not in V . Then there exists a plane {x : x · ξ = r} which separates x0 and
V , i.e., x0 · ξ > r and x · ξ < r for every x ∈ V .



758 J. WILLIAM HELTON AND ANDREI E. VITYAEV

Since V is a cone, the latter implies that x · ξ ≤ 0 for every x ∈ V . In particular,
it means that

vj · ξ ≤ 0, j = 1, . . . ,m.

We have reached a contradiction.
Proof of Theorem 3.3. Suppose that the functions g1, . . . , gn form a basis of (R)⊥.

We want to prove that there exists a linear combination a1g1(ζ) + · · · + angn(ζ) in
(R)⊥ that is positive on all of T. Here aj ∈ R. Denote the n × l matrix with rows
g1(ζ), . . . , gn(ζ) by g(ζ). We claim that it is enough to show the inequality

inf
a∈Rn,‖a‖=1

max
ζ∈T

atg(ζ) ≤ 0.(13)

Here we use the notation

max
ζ∈T

(b1(ζ), . . . , bl(ζ)) = max(max
ζ∈T

b1(ζ), . . . ,max
ζ∈T

bl(ζ)).

Note that we do not take the absolute values of functions.
The quantity maxζ∈T a

tg(ζ) depends continuously on a, which varies over a com-
pact set in Rn. Therefore, if (13) holds, then there exists a0 ∈ Rn such that

max
ζ∈T

at0g(ζ) ≤ 0.

Hence all components of the vector function −at0g(ζ) are positive and the claim follows.
Now we use a dual extension argument. This uses the fact that for any function

µ ∈ Cαl (T),

max
ζ∈T

µ(ζ) = sup
u∈B+

l

∫
µ(ζ) · u(ζ)dζ,

where we use the notation B+
l = {u ∈ Cαl (T,R) : ‖u‖L1 = 1, uj(ζ) > 0, j = 1, . . . , l}.

Therefore, we need to prove the inequality

inf
a∈Rn,‖a‖=1

sup
u∈B+

l

∫
(atg(ζ)) · u(ζ)dζ ≤ 0.(14)

Given any u ∈ B+
l , we define the vector c(u) ∈ Rn as follows:

c(u) :=

(∫
g1 · u, . . . ,

∫
gn · u

)
.

Lemma 3.5. The set {x : ∃u ∈ B+
l , x · c(u) > 0} is not the whole of Rn \ {0}.

Proof. Suppose the contrary: {x : ∃u ∈ B+
l , x · c(u) > 0} = Rn \ {0}. Since, in

fact, we have an open covering of the unit sphere Sn−1, which is compact, there exist
u1, . . . , um such that {x : ∃j, 1 ≤ j ≤ m, x · c(uj) > 0} = Rn \ {0}. Then by Lemma
3.4, the convex hull hull(c(u1), . . . , c(um)) = Rn.

Therefore, there exists a positive, nontrivial linear combination of c(uj)’s which
is zero:

b ∈ Rm, b 6= 0, bj ≥ 0,
∑

bjc(uj) = 0.
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We consider ũ(ζ) =
∑
bjuj(ζ). Then ũ(ζ) ∈ Cα would be a vector function with

every component strictly positive. However, on the other hand,∫
gũ =

∫ ∑
bj(guj) =

∑
bjc(uj) = 0,

which implies that ũ ∈ R ∩ Cα = R , i.e., we have reached a contradiction.
Now we continue with the proof of Theorem 3.3. Take a point a0 not in {x : ∃u ∈

B+
l , x · c(u) > 0} with ‖a0‖ = 1. Then∫

(at0g(ζ)) · u(ζ)dζ = at0

∫
g(ζ)u(ζ)dζ = at0c(u) ≤ 0 ∀u ∈ B+

l ,

and therefore inequality (14) holds.
Now we continue with the proof of Theorem 2.1(II). Since f∗ is an optimum, there

is no strictly positive function in the range of the derivative map

Fα : H2
N ∩ Cα → Cα, Fα(w)(ζ) = 2Re

(
∂Γ(ζ, f∗(ζ))

∂z
w(ζ)

)
.

We observe that Lemma 5.5 and (12) imply that (rangeFα)⊥ is a finite-dimensional
subset of Cα. We claim that rangeFα ∩ Cα = rangeFα. To show the claim, we first
note that rangeF , where F is defined as in Lemma 3.1, is closed in L2. There-
fore, rangeFα = rangeF . The Cα-hypoellipticity of F (see Lemma 5.5) implies that
rangeF ∩ Cα = rangeFα, and the claim follows.

The argument above shows that we can apply Theorem 3.3 with R = rangeFα.
Therefore, there is a vector-valued function λ in (rangeF)⊥ with each component
positive. By Lemma 3.1, λ must satisfy (9), which implies Theorem 2.1(II).

4. Additional results. In this section, we state the results on uniqueness and
existence of the M-OPT problem which are, in fact, easy corollaries of the results
proved in [HMar], [HM1], and [V].

4.1. Uniqueness. Consider the sublevel sets

Sjθ(γ) := {z ∈ CN : Γj(e
iθ, z) ≤ γ}.

Theorem 4.1. Suppose that the performance functions Γ1, . . . ,Γl satisfy As-
sumption 1. Suppose that the sublevel sets Sjθ(γj) are strictly convex for every j =
1, . . . , l, every θ ∈ T, and every γj.

Assume that the real numbers γ∗1 , . . . , γ
∗
l have the property that for every function

f with performances γ1(f), . . . , γl(f) satisfying γj(f) ≤ γ∗j , Assumption 2 holds and

the matrix ∂Γ(eiθ, f(eiθ))/∂z has rank l.
Then if f∗ ∈ H∞N ∩ Cα with α > 1/2 is a Pareto optimum with performances

sup
θ

Γj(e
iθ, f∗(eiθ)) = γj(f

∗),

this Pareto optimum is unique, namely, there is no other function f ∈ H∞N ∩ Cα,
α > 1/2, with the property that γj(f) = γj(f

∗) for all j = 1, . . . , l.
Proof. Suppose that such an f does exist. Then

f(eiθ) ∈ ∂S1
θ (γ∗1 ) ∩ · · · ∩ ∂Slθ(γ∗l ) ∀eiθ ∈ T(15)
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by the flatness result. Here γ∗j = γj(f
∗). Since (15) is true for f∗ as well, the function

h = 1/2f + 1/2f∗ has the property that

h(eiθ) ∈ S1
θ (γ∗1 ) ∩ · · · ∩ S lθ(γ∗l ) ∀eiθ ∈ T.

Strict convexity implies that there exists θ0 satisfying

h(eiθ0) ∈ intS1
θ0(γ∗1 ) ∩ · · · ∩ intSlθ0(γ∗l ).(16)

If the performance functions evaluated at h are flat (i.e., the flatness result (Theorem
2.1(I)) holds for h), then (16) should hold for every θ, and therefore f∗ is not an
optimum. If the performance functions of h are not flat, then by Theorem 2.1, they
all can be improved simultaneously, and therefore f∗ is not an optimum in this case
either.

4.2. Existence. The following theorem was proved in [HMar].
Theorem 4.2. Suppose that Γ(eiθ, z) is a positive continuous function and sup-

pose that the sublevel sets of Γ satisfy ∂Sθ(γ) = {z ∈ CN : Γ(eiθ, z) = γ}. Suppose
further that the sublevel sets Sθ(γ) are uniformly bounded and polynomially convex.
Suppose that fn ∈ H∞N satisfy limn ‖Γ(eiθ, fn(eiθ))‖∞ = γ. Let f be a normal limit
of fn. Then ‖Γ(eiθ, f(eiθ))‖∞ ≤ γ.

As a corollary, we can state the following existence result.
Theorem 4.3. Suppose that Γj , j = 1, . . . , l, are positive C1 functions. Suppose

that the sublevel sets satisfy ∂Sjθ(γ) = {z ∈ CN : Γj(e
iθ, z) = γ} for j = 1, . . . , l and

for every γ and θ. Suppose further that the sets S1
θ (γ) ∩ · · · ∩ S lθ(γ) are uniformly

bounded and polynomially convex for every γ.
Then there exists a Pareto optimum for Γ1, . . . ,Γl.
Remark. Note that we do not impose Assumption 1 in this theorem. In particular,

the flatness property of the optimum needs not hold.
Proof. First, we reduce the problem to the case of one performance function by

introducing

Γ̃(eiθ, z) := max
(
Γ1(eiθ, z), . . . ,Γl(e

iθ, z)
)
.

We start with an initial guess f1 ≡ 1. We then make further guesses, fn’s,
improving Γ̃ if possible. Since the S̃θ(γ)’s are uniformly bounded, the set {fn} is uni-
formly bounded in H∞N and therefore has a subsequence, converging locally uniformly
in the open unit disc to some limit f . Applying Theorem 4.2, we conclude that f is
an optimum for Γ̃ with supθ Γ̃(eiθ, f(eiθ)) = γ.

5. Technical lemmas. In this section, we reproduce the proofs of several lem-
mas that were proved by Trepreau and which have not been published. They can all
be found in the preprint [T]. Lemma 5.5 is very close to the results proved in [BG].

Proposition 5.1. Suppose that A ∈ Cα(T) with α > 1/2 is an l × N matrix-
valued function of maximum rank l at every point on T. Then there exists an N ×N
constant complex matrix H such that the first l columns of AH are linearly indepen-
dent at every point on T.

To prove this proposition, we will need the following lemma, in which the role of
the assumption α > 1/2 becomes clear.

Lemma 5.2. Given u(x) ∈ Cα([0, 1],C) with α > 1/2, the range of u has zero
Lebesgue measure in C.
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Proof. Divide the interval [0,1] into n equal parts by points j/n, j = 0, . . . , n.
Then the range of u can be covered by the n discs of radius C(1/n)α centered at
u(j/n), j = 0, 1, . . . , n, where C is the Hölder constant of u. The total measure of
these discs does not exceed

nπ(C(1/n)α)2 = C2πn1−2α.

Since α > 1/2, this quantity tends to zero as n approaches infinity.
To prove Proposition 5.1, we begin by proving a special case.
Lemma 5.3. Let a ∈ Cα(T,C) , α > 1/2, be the N -vector such that a 6= 0

anywhere on T. Then there exists β ∈ CN such that a(eiθ) · β vanishes nowhere on
T.

Proof. We will prove the statement for any open subset I of T by induction on
N . (We will assume that a is of class Cα uniformly on I.) Since the case where N = 1
is trivial, we assume that the lemma holds for N − 1. Let Z ⊂ I be the zero set of
aN and Z0 ⊂ I be an open neighborhood of Z on which (a1, . . . , aN−1) 6= 0. By the
induction hypothesis, there exists (β1, . . . , βN−1) such that a1β1 + · · · + aN−1βN−1

does not vanish on Z0. Also, the function (a1β1 + · · ·+ aN−1βN−1)/aN ∈ Cα(I \ Z)
cannot be onto C by Lemma 5.4 below. (Note that σ/aN is bounded on I \ Z0.)

Therefore, we can find a number −βN that is not in the range of σ/aN , and so
a1β1 + · · ·+ aN−1βN−1 + aNβN vanishes nowhere on I.

Lemma 5.4. Let σ := a1β1 + · · ·+aN−1βN−1. The range of the function σ/aN ∈
Cα(Z0 \ Z) is not the whole of C.

Proof. Note that Z0 \ Z is a countable union of open intervals (tj , tj+1). We will
show that the range of each of the restrictions σ/aN ∈ Cα((tj , tj+1)) is of measure
zero in C. Note that σ 6= 0 on Z0 and aN can vanish only at the endpoints tj . If it
vanishes at tj , then it satisfies

|aN (t)− 0| ≤ c|t− tj |α,(17)

which implies

|σ(t)/aN (t)| ≥ c′|t− tj |−α.(18)

Divide C into the annuli Lk = {z : k ≤ |z| ≤ k + 1}.
Away from points where aN vanishes, we use the fact that both σ and aN are

of class Cα uniformly on Z \ Z0 to conclude that the restriction of the range of
(σ/aN ) |(tj ,tj+1) onto Lk is a curve which is uniformly Cα. In the neighborhood
of points where aN vanishes, we use estimate (18) to reach the same conclusion.
Therefore, the range of (σ/aN ) |(tj ,tj+1) has zero measure in C by Lemma 5.2.

Proof of Proposition 5.1. We write A = (A1, . . . , AN ), where the Aj ’s are the
columns of A. For p = 1, . . . , l, we denote the vector formed by the first p components
of Aj by Apj . By induction on p, we will show that there exists an invertible constant
matrix H such that the matrix ((AH)p1, . . . , (AH)pp) has rank p at every point.

Since A has rank l at every point, (A1
1, . . . , A

1
N ) has rank 1 and by Lemma 5.3

there exists 〈β1, . . . , βN 〉 such that β1A
1
1 + · · · + βNA

1
N does not vanish. Let H1 be

an invertible matrix with the first column 〈β1, . . . , βN 〉t. Then (AH1)1
1 has rank 1

everywhere.
Now we assume that the claim is true for p. Replacing A by AHp, we can assume

that (Ap1, . . . , A
p
p) has rank p everywhere. This implies that at every point on T, one

of the determinants

dj = det(Ap+1
1 , . . . , Ap+1

p , Ap+1
j ), j = p+ 1, . . . , N,(19)
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is nonzero. By Lemma 5.3, we can find βj , j = p + 1, . . . , N , such that dp+1βp+1 +

· · ·+ dNβN is nonzero on T. Let H̃ be a (N − p)× (N − p) invertible matrix whose
first column is βp+1, . . . , βN and set

Hp+1 =

(
Ip×p 0

0 H̃

)
(20)

to obtain an N -dimensional matrix. Then the matrix whose columns are (AHp+1)p+1
1 ,

. . . , (AHp+1)p+1
p+1 has the determinant equal to

det

Ap+1
1 , . . . , Ap+1

p ,
N∑

j=p+1

βjA
p+1
j

 = dp+1βp+1 + · · ·+ dNβN

and therefore has rank p+ 1 everywhere.
Here is one more technical lemma that we used in the proofs.
Lemma 5.5. Let the map

FA : H2
N → L2

l (T,R)

be defined by FA(w) = 2Re(Aw), where the l×N matrix A ∈ Cα has rank l everywhere
on T. Then we have

(rangeFA)⊥ ⊂ Cα(T,R).(21)

Proof. First, we prove (21) for the case where N = l. We will use the following
result.

Theorem 5.6 (see [Ve]). Suppose that A is a square l× l matrix-valued function
on T with invertible values such that A ∈ Cα(T). Then there exists a holomorphic
matrix-valued function S ∈ Cα(T) such that S−1 ∈ H2

l×l and such that

A
−1
A = S

−1
DS.(22)

Here D is the diagonal matrix with entries eik1θ, . . . , eikNθ, where kj are the integers.
Vekua proved a slightly stronger result in his book [Ve, section 13, p. 97] by

constructing the fundamental matrix of solutions for the Hilbert problem. However,
he did not state his result in the form above since the Gohberg–Krein factorization,
in which form the result is presented here, was discovered much later. The reduction
is easy and can be found in, for example, [G].

To prove (21), consider the real-linear map

G : q ∈ L2(T,R)→ q + iH(q) = w → Re(Aw) ∈ L2(T,R).(23)

Here H is the Hilbert transform with any particular fixed choice of normalization.
Suppose that u ∈ L2 belongs to (rangeFA)⊥. Then u ∈ kerG⊥, where G⊥ is the

operator adjoint to G in L2(T,R), i.e.,

G⊥(u) = ReAtu+H(ImAtu).(24)

Note that rangeG may be smaller than rangeFA because of the normalization of H.
Therefore, u ∈ L2(T,R) satisfies the following equation:

ReAtu+H(ImAtu) = 0.(25)
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Let us introduce the holomorphic function ψ ∈ H2
N :

ψ := ImAtu+ iH(ImAtu).(26)

Then (25) and (26) imply that

ReAtu = −Imψ, ImAtu = Reψ.(27)

Therefore, we have

Atu = ReAtu+ iImAtu = −Imψ + iReψ = iψ,(28)

A
t
u = ReAtu− iImAtu = −Imψ − iReψ = −iψ,(29)

which can be rewritten as

u = (At)−1iψ,(30)

u = −(A
t
)−1iψ,(31)

which implies

(At)−1iψ = −(A
t
)−1iψ.(32)

Thus ψ is a solution of the following Riemann–Hilbert problem:

Re((At)−1ψ) = 0.(33)

By the results of Vekua, ψ ∈ Cα(T). Then (30) implies that the same is true for u.
Inclusion (21) is proved for N = l.

For the case where N > l, we multiply the l × N matrix A by the N × N
holomorphic matrix H from Proposition 5.1. Then we consider the operator FA,l
defined by the first l columns of AH. Thus we have

(rangeFA)⊥ ⊂ (rangeFA,l)⊥ ⊂ Cα(T,R).

6. Connection with the analytic-disc technique used in the problem of
extending Cauchy–Riemann functions. We discuss some connections between
the M-OPT problem and the analytic-disc techniques used for studying the theoretical
several-complex-variables problem of extending a function defined on a manifold M
in CN to a function analytic in a neighborhood of a given point on M .

6.1. Attached analytic discs correspond to the flatness condition of
M-OPT. First, we give some definitions. A smooth manifold M = {z ∈ CN :
ρ1(z) = · · · = ρl(z) = 1} is called generic if its defining functions ρ1, . . . , ρl satisfy
∂ρ1∧· · ·∧∂ρl 6= 0, where ∂ρj are defined as in (2). We say that a continuous function
u on M is a CR function if it is annihilated by all tangential antiholomorphic vector
fields: ∑

j

aj
∂

∂zj
u = 0 if

∑
j

aj
∂

∂zj
ρk = 0 ∀k.

We study the question of local extendibility of CR functions onM holomorphically
to some neighborhood of a given point p on M . The basic theorem for the analytic-disc
method is the approximation theorem by Baouendi and Treves.
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Theorem 6.1 (see [BT]). Suppose that M is a generic manifold, p is a point on
M , and u is a CR function on M ∩ Ω, where Ω is a neighborhood of p. Then there
exists Ω′ ⊂ Ω, a smaller neighborhood of p, such that u is a (uniform on M ∩Ω′) limit
of holomorphic polynomials.

It follows from the maximum-modulus theorem that if we can fill some neighbor-
hood of p with the interiors of analytic discs f attached to M (i.e., the boundary
f(∂∆) ⊂ M), then the function u can be extended holomorphically to (a part of)
that neighborhood.

The construction of analytic discs attached to a manifold was the main tool used
by many authors to prove the extendibility results; see [Tu1], [Tu2], and [BRT] as well
as [Bog] and the references therein.

The main result of this paper on flatness (Theorem 2.1(I)), when stated geo-
metrically, is an assertion about attached analytic discs. Namely, the flatness con-
dition proved in [HM1] means that the optimal analytic disc f∗ is attached to a
loop of hypersurfaces Mθ = {Γ(eiθ, z) = c} in CN . The flatness condition proved
in this paper says that f∗ is attached to a loop of generic manifolds in CN , namely
Mθ = {Γj(eiθ, z) = cj , j = 1, . . . , l}.

6.2. The notion of defect versus the gradient-alignment condition. Since
CR functions analytically continue to the set that is the union of “small” analytic discs
attached to M , it is clear that this set is important. With this in mind, we let RM
denote the subset of CN which is swept out by analytic discs attached to M . Be aware
that not every CR function on M extends to RM since the “small”-disc requirement
has been dropped. Basic information about extension is provided by the notion of
defect.

Definition. Given an analytic disc f attached to a manifold M = {z ∈ CN :
ρ1(z) = · · · = ρl(z) = 0}, we define the defect deff of the disc f as the real dimension
of the space {

λ ∈ Cαl (T,R) : λ(eiθ)
∂ρ(f(eiθ))

∂z
∈ H2

N

}
.

It can be shown (see, e.g., [BRT]) that for any p on M , there exists ε(p) such that
if ‖f‖Cα < ε(p) then the defect is an integer between 1 and l.

The notion of defect was introduced for small discs by Tumanov in [Tu1]. The
definition that we give was first introduced in [BRT]. The advantage of the latter is
that it makes sense for any disc (not just small discs).

It was proved by Tumanov that if for any ε > 0 there exists an analytic disc
f ∈ H∞N ∩ C1,α of defect zero and such that ‖f(eiθ) − p‖C1,α < ε, then the interiors
of small analytic discs attached to M sweep out a wedge with edge M near p, and
therefore any CR function on M extends to that wedge.

With a given disc f attached to M with f(0) = q, we associate an M-OPT
problem:

Find h ∈ H∞N , which is a Pareto optimum for l-performance functions Γq1, . . . ,Γql
defined by

Γqj(e
iθ, z) = ρj(e

iθz + q), j = 1, . . . , l.(34)

Note that

∂Γq(e
iθ, h(eiθ))

∂z
= eiθ

∂ρ(f(eiθ))

∂z
.
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Then the condition that f is of defect zero is equivalent to

λ(eiθ)
∂Γ(eiθ, f(eiθ))

∂z
∈/eiθH2

N ∀λ ∈ Cαl (T,R),(35)

which means that Theorem 2.1(II) is violated.

In other words, if disc f is of defect zero, then it cannot be a Pareto optimum for
Γq1, . . . ,Γql, where q = f(0).

We use this observation to prove the following proposition, which shows that we
can fill out an open set in CN with discs attached to a hypersurface and close to a
disc f of defect zero. Similar results of Tumanov require f to be small.

Proposition 6.2. Suppose that the disc f ∈ H∞N ∩ Cα is attached to a smooth
hypersurface M = {z ∈ CN : ρ(z) = 1}. Suppose that the defect of f is equal to zero.
Then the set {g(0) : g ∈ H∞N , g(∂∆) ⊂M} contains a neighborhood of f(0) in CN .

Note that we use H∞ discs rather than H∞ ∩ Cα discs to fill a neighborhood in
CN .

A similar result for the special case where M is a generic manifold of real codi-
mension N can be found in [G]. The theorem in [G] is stated in terms of factorization

indices of the matrix ∂ρ(f)
∂z , but it can be restated as above.

Proof of Proposition 6.2. We can assume that ρ(f(0)) > 1. Consider the perfor-
mance function Γ given by (34). Then (35) implies that Theorem 2.1(II) is violated
and the quantity

γ(q) = inf
h∈H∞

sup
θ

Γq(e
iθ, h(eiθ))

is less than 1.

We need the following lemma.

Lemma 6.3. The function q → γ(q) is continuous on CN .

Proof. For any given ε, take δ > 0 such that

‖h1 − h2‖∞ ≤ δ =⇒
∥∥ρ(h1(eiθ))− ρ(h2(eiθ))

∥∥
∞ ≤ ε.

Then by the definition of γ(q), the inequality ‖q− q̃‖ < δ implies γ(q̃) ≥ γ(q)− ε. At
the same time, it implies γ(q) ≥ γ(q̃)− ε. Therefore, ‖γ(q̃)− γ(q)‖ ≤ ε.

Note that the function q → f∗q , where f∗q is the optimum for Γq, needs not be
continuous.

Now we continue with the proof of Proposition 6.2. By Lemma 6.3, there exists U ,
an open neighborhood of q in CN , such that γ(q̃) < 1 for all q̃ ∈ U . Take a point q̃ ∈ U .
Let g ∈ H∞N be a solution to the OPT problem with Γ

q̃
. Then ρ(eiθg(eiθ) + q̃) < 1

for every θ. Denote by Ω the connected component of the set

{z ∈ ∆ : ρ(g(z)) > 1}

containing zero. Construct Ω∗, the set containing Ω, according to the following pro-
cedure. Take a point ξ ∈ ∆ \ Ω. If there exists a closed Jordan curve in Ω which
encircles ξ, then we set ξ ∈ Ω∗. If there is no such curve, we set ξ ∈/Ω∗. Then Ω∗ is
an open simply connected region such that ∂Ω∗ ⊂ ∂Ω, and therefore g|∂Ω∗ ≡ 0.

Let Ψ : Ω → ∆ be the Riemann map such that Ψ(0) = 0. Then g ◦ Ψ−1 is the
analytic disc which is attached to M and which passes through q̃.
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6.3. Manifolds of analytic discs. Motivated by the successful application
mentioned above, the set of analytic discs attached to a manifold was studied in
general. It was shown in [BRT] that the set of analytic discs, infinitely close to a
point, forms an infinite-dimensional manifold. Namely, it was shown that the deriva-
tive map

F : H∞N ∩ Cα → Cα(T,R), F(w) = 2Re

(
∂ρ(f(eiθ))

∂z
w

)
(36)

is onto Cα(T,R) for f close to a constant disc. Then application of the local-
submersion theorem shows that we have a manifold.

In [F], [T], and [O], the restriction on the size of the disc f was removed and it
was shown that under certain conditions the map (36) is onto.

In the engineering setup, if the set of discs close to f∗ forms a manifold, then f∗

is not an optimum. More precisely, suppose we are given a disc f∗ attached to a loop
of manifolds Mθ = {Γ(eiθ, z) = c}. Then if the map (36) is onto, then there exists a
holomorphic direction h such that

2Re

(
∂Γ

∂z
h

)
< 0,

and therefore γ(f∗+ th) < γ(f∗) for small t, which means that f∗ is not an optimum.
The following proposition shows how the defect is connected with the “manifold

question” discussed above.
Proposition 6.4 (see [BRT] and [T]). Suppose that the disc f ∈ H∞N ∩ Cα is

attached to a smooth manifold M = {z ∈ CN : ρ1(z) = · · · = ρl(z) = 0}. Let E be
the set of discs passing through point f(0), i.e., E = {g ∈ H∞N ∩ Cα : g(0) = f(0)}.
If the defect of f is equal to zero, then the derivative map

F0 : TfE → Cα(T,R), F0(h) = 2Re

(
∂ρ(f)

∂z
h

)
is onto. Here TfE denotes the tangent space to E at f , i.e., TfE = {h ∈ H∞N ∩ Cα :
h(0) = 0}.

The proof of Proposition 6.4 is a line-by-line repetition of the proof of Lemma
3.1.

One can easily verify that Proposition 6.4 implies that the set of discs attached
to M and passing through f(0) forms a Banach manifold near f .

Acknowledgment. The authors would like to thank M. S. Baouendi for showing
us Trepreau’s preprint [T] and for several useful discussions.
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VOLUME-PRESERVING MEAN CURVATURE FLOW AS A LIMIT
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Abstract. We study the asymptotic behavior of radially symmetric solutions of the nonlocal
equation

εϕt − ε∆ϕ+
1

ε
W ′(ϕ)− λε(t) = 0

in a bounded spherically symmetric domain Ω ⊂ Rn, where λε(t) = 1
ε

∫
Ω− W ′(ϕ) dx, with a Neumann

boundary condition. The analysis is based on “energy methods” combined with some a priori es-
timates, the latter being used to approximate the solution by the first two terms of an asymptotic
expansion. We only need to assume that the initial data as well as their energy are bounded. We
show that, in the limit as ε → 0, the interfaces move by a nonlocal mean curvature flow, which
preserves mass. As a by-product of our analysis, we obtain an L2 estimate on the “Lagrange multi-
plier” λε(t), which holds in the nonradial case as well. In addition, we show rigorously (in general
geometry) that the nonlocal Ginzburg–Landau equation and the Cahn–Hilliard equation occur as
special degenerate limits of a viscous Cahn–Hilliard equation.

Key words. nonlocal mean curvature flow, nonlocal Allen–Cahn equation

AMS subject classifications. 35B25, 35K57

PII. S0036141094279279

1. Introduction. We consider the nonlocal reaction-diffusion equation recently
introduced by Rubinstein and Sternberg [RS],

εϕt − ε4ϕ+
1

ε
W ′(ϕ)− λε(t) = 0,(1.1)

λε(t) =
1

ε

∫
Ω

−W ′(ϕ) dx

in a bounded domain Ω ⊂ Rn, n ≥ 2, with Neumann boundary condition

∂ϕ

∂n

∣∣∣∣
∂Ω×[0,T ]

= 0.(1.2)

The potential W is a bistable potential, that is, W ≥ 0 and it vanishes exactly at two
points. The typical bistable potential is given by

W (ϕ) =
1

2
(1− ϕ2)2,(1.3)

and we will present our results for this specific potential. However, we point out that
our results can be extended to the more general case.
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An important property of this flow is that its mass is preserved, that is,

∂t

∫
Ω

ϕ(x, t)dx = 0.(1.4)

Rubinstein and Sternberg [RS] introduced the nonlocal equation (1.1) as a simpler
alternative to the classical Cahn–Hilliard equation [CH]

εϕt = ∆

(
−ε∆ϕ+

1

ε
W ′(ϕ)

)
,(1.5)

to model phase separation after quenching (rapid cooling) of homogeneous binary
systems such as glasses and polymers. The function ϕ represents the difference in
concentration of the two species of the binary mixture and hence is a conserved
quantity. Using multiple-time-scale asymptotic expansions to study the behavior of
the solution to (1.1)–(1.2), Rubinstein and Sternberg [RS] formally obtained that the
domain Ω is divided in regions where ϕ is close to the local minima of W . Moreover,
the interfaces {Γi} dividing these regions evolve (in the limit ε → 0) with normal
velocity

Vi = κi −
∑ 1∑

|Γj |

∫
Γj

κj ,

where κi is the sum of principal curvatures of Γi and |Γi| is its perimeter. This is
a nonlocal volume-preserving mean curvature flow. We propose to use an energy-
type method to rigorously justify this picture in a certain radially symmetric setting.
More specifically, we assume that Ω is a ball in Rn and that ϕ is radial with several
“transition” spheres. Equation (1.1) is already written in the time scale for which
the above nonlocal mean curvature flow occurs in times of order 1. However, by
rescaling, we see that this problem corresponds to the singular perturbation problem
ϕτ − ε2∆ϕ+W ′(ϕ)− ελ = 0.

Next, we shall compare the two equations (1.1) and (1.5), as well as their respec-
tive asymptotic limiting flows. The Cahn–Hilliard equation is the gradient flow in the
dual norm of some suitable subspace of H1,2(Ω) (cf. [F]) for the functional

Eε[ϕ] =

∫
Ω

ε

2
|∇ϕ|2 +

1

ε
W (ϕ) dx,(1.6)

while the nonlocal equation (1.1) is the gradient flow in L2(Ω) for the same functional
(1.6) against the mass constraint (1.4). The associated (time-independent) minimiza-
tion problem, that is, the problem of minimizing (1.6) with a mass constraint, has
been studied by Luckhaus and Modica [LM]. They rigorously obtained the first-order
expansion in ε of the associated Lagrange multiplier. In this context, we can loosely
interpret the nonlocal term λ = λε(t) in (1.1) as a Lagrange multiplier. In fact, be-
cause of the Neumann boundary condition (1.2), the expression for λε(t) is exactly
what is needed for the gradient flow of Eε[ϕ] to conserve mass.

The asymptotic behavior of the solutions to (1.1) and (1.5) are very different.
The formal analysis of Pego [P] suggests that the asymptotic behavior of (1.5) is
given by the so-called Mullins–Sekerka problem [MS] (sometimes called the Hele–
Shaw problem):

∆u = 0 in Ω\Γ, u = −κ on Γ,

[
∂u

∂n

]
Γ

= −V,
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where Γ is the interface, κ is the sum of its principal curvatures, and V is its normal
velocity. This has recently been proved by Stoth [S2] in the radial case in Rn, n ≤
3. Alikakos, Bates, and Chen [ABC] have a convergence result in general domains,
assuming that the limit flow is smooth and with particular initial and boundary
conditions.

Both limiting flows are nonlocal and some existence results are known for each
of them. Indeed, Gage [Ga] (for curves) and Huisken [H] have proved that a convex
manifold evolving by volume-constrained mean curvature flow eventually becomes a
sphere with the prescribed area. Also, there are simple examples which show that
nonconvex curves may develop singularities in finite time (see, e.g., [RS]). For the
Mullins–Sekerka problem, Chen [C] has proved a weak, local-in-time existence result
for general smooth initial curves and a global existence result for curves which are
small perturbations of a circle.

The most striking difference between the two limiting geometric flows is the effect
of small spheres. Indeed, in the radial case, we can easily calculate the respective
evolution laws for the interfaces explicitly. In the three-dimensional case, assuming
that there are two interfaces r2(t) < r1(t), the nonlocal problem is given by (cf. (6.25))

ṙ1 = 2

(
− 1

r1
+
r1 − r2

r2
1 + r2

2

)
, ṙ2 = 2

(
− 1

r2
− r1 − r2

r2
1 + r2

2

)
,(1.7)

while the Mullins–Sekerka problem is given by

ṙ1r
2
1 = ṙ2r

2
2, ṙ1 =

−2

r2
1

r1 + r2

r1 − r2
.(1.8)

Therefore, as r2 approaches 0, it is clear that ṙ1 approaches 0 in (1.7), while it ap-
proaches −2

r21
in (1.8). However, once the smallest sphere has disappeared, ṙ1 must be 0

since mass must be preserved. This means that the flow for r1 in the Mullins–Sekerka
model is strongly affected by asymptotically small spheres. In fact, Rubinstein and
Sternberg [RS] used a multiple scattering expansion known as the point-interaction
approximation method to suggest that the Mullins–Sekerka problem is not the appro-
priate approximation of the Cahn–Hilliard equation when there are asymptotically
small spheres.

There is an interesting connection between equations (1.1) and (1.5). Indeed, Ru-
binstein and Sternberg [RS] observed that equations (1.1) and (1.5) arise by formally
taking different parameter limits (α → 0 and ν → 0, respectively) in the viscous
Cahn–Hilliard equation αϕt = ∆(W ′(ϕ) − β∆ϕ + νϕt). This equation was intro-
duced by Novick-Cohen [NC] in order to include viscous effects in the Cahn–Hilliard
model. We prove these convergence results rigorously in section 7. This suggests that
by taking an appropriate choice of the parameter limit in the viscous Cahn–Hilliard
equation, one should recover a different limit flow with possibly better properties.

We note that the singular limit of (1.1) provides a notion of a weak solution for the
nonlocal mean curvature flow. However, there is no uniqueness theorem in general:
different sequences of ε’s might produce different limits. The same approach has been
used to define a model for mean curvature flow (cf. [BK2], [DS1], and [DS2]) using
the Allen–Cahn equation [AC]. In that case, Evans, Soner, and Souganidis [ESS] have
shown that this model coincides with the notion of motion by mean curvature flow in
the sense of viscosity solutions (cf. [CGG] and [ES]).

We prove the convergence of the nonlocal equation (1.1) to volume-preserving
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mean curvature flow in a radially symmetric setting. We assume that for ϕ = ϕε,

‖ϕ(·, 0)‖∞ ≤ C0,

Eε[ϕ](0) ≤ C0,∣∣∣∣∫
Ω

ϕ(x, 0) dx

∣∣∣∣ < |Ω| − ω(1.9)

for some positive constants C0 and ω. The second assumption means that the initial
data must have a “transition-layer structure,” i.e., ϕε ≈ ±1. The third condition
ensures that there exists at least one interface. The case of general initial data is much
harder; we refer to Soner [So] for the equivalent problem for the Allen–Cahn equation.
Our method is an energy-type method similar to the methods developed by Bronsard
and Kohn [BK1], [BK2] in order to study the singular limit of the Allen–Cahn equation
and the methods developed by Stoth [S1], [S2] in order to study the singular limit of
the phase-field model and the Cahn–Hilliard equation. The new feature here is the
nonlocal nature of the equation, which does not allow for a comparison principle, and
there does not seem to be a monotonicity formula.

We now describe the method in more detail. We first use BV bounds (Proposition
2.1) to obtain the existence of an L1 limit v for a subsequence of ϕε (Remark 2.4), and
then we restrict our discussion to this subsequence. In addition, we show a uniform
L2 estimate on the Lagrange multiplier (Proposition 2.3), which implies the existence
of a weak limit λ0 for an appropriate subsequence. Next, we establish a monotone L1

limit E0 for Eε[ϕε] (Corollary 2.5) which is used to define time intervals on which the
variation of Eε[ϕε] is uniformly small (Lemma 2.6). These results are not restricted
to the radially symmetric case.

The next step is the foundation of our approach. We show that away from the
origin and except at finitely many time points, ϕε is close to the stationary-wave
solution associated with the equation ∂tu − 4u + W ′(u) = 0. In the typical case
where W is given by (1.3), the stationary-wave solution is tanh. More precisely, we
obtain a locally uniform-in-time bound on || − ε2|ϕ′ε|2 + 2W (ϕε)||L∞(R0,1) which is
valid except at finitely many time points (Proposition 3.2). Since W (ϕε) is bounded
away from 0 in the transition region of ϕε, this means that |ϕ′ε| is strictly bounded
away from 0 in that region. Therefore, using the implicit function theorem, the level
sets of ϕε are given by Hölder-1

2 graphs r = riε(t) (see (4.4)) that converge to some
limits r = r̄i(t) (see (4.5)). The task is to find the evolution equation satisfied by
r = r̄i(t).

We present the idea of the method for the ith interface r̄ = r̄i and its approxima-
tion rε = riε. Let z = r−rε

ε be a rescaling and Φ(z, t) = ϕ(r, t). The equation for Φ
becomes

ε∂tΦ− ṙεΦ′ −
1

ε
Φ′′ − n− 1

εz + rε
Φ′ +

1

ε
W ′(Φ)− λε = 0.

We multiply it by Φ′ζ, where ζ is a smooth time-dependent test function, and in order
to localize around rε, we integrate over (− 1√

ε
, 1√

ε
) and over (t1, t2). This gives∫∫

ζ

[
εΦtΦ

′ − ṙε(Φ′)2 − n− 1

εz + rε
(Φ′)2 − λεΦ′

]
dz dt

=

∫
ζ

1

ε

[
1

2
(Φ′)2 −W (Φ)

] 1√
ε

− 1√
ε

dt.
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Now if Φ(z) were the expected stationary-wave solution±tanh(z) =: Φ0(z), this would
lead to the following equation for the limit r̄:

−c0
∫
ζ

[
˙̄r +

(n− 1)

r̄

]
dt = 2

∫
ζν(r̄)λ0 dt,

where c0 =
∫ 1

−1

√
2W (ϕ) dϕ is the constant surface tension and ν is the direction of the

jump. Thus all interfaces r̄i evolve according to −c0( ˙̄ri + n−1
r̄i ) = 2νiλ0 (Proposition

6.3). However, using the mass-conservation property, we can calculate λ0 explicitly in
terms of r̄i (Proposition 6.5), thereby deducing the equation for the limiting interface.

This formal derivation was done assuming that Φ = Φ0 around each interface.
Section 5 is devoted to establishing H1,2 and H1,∞ bounds on the difference between
Φ and Φ0 (Corollary 5.9). We need a bound of order ε

1
2 +s for some positive s in order

to replace Φ by Φ0 in the above equation. As expected for this type of problem, this
means that we have to prove these estimates for a higher-order expansion. It turns
out that in our case a second-order expansion is sufficient (Proposition 5.5). The main
observation used in the proof is that the linearization of the nonlinear operator around
the stationary wave defines a strictly elliptic operator (see Berger and Fraenkel [BF]
and Proposition 5.6).

We put everything together in section 6, where we rigorously derive the equation
for the limiting interfaces. There are several difficulties to overcome. The most
serious one is that we cannot exclude a priori the possibility that several ε-interfaces riε
converge to the same limiting interface as ε→ 0, thereby giving rise to “multiplicities”
higher than 1. There are two cases to distinguish. Either an odd number of ε-interfaces
form a single limit interface, and this corresponds to a “true” interface, i.e., a jump
of the limit v and ν = ±1, or an even number of ε-interfaces form a single limit
interface, and this corresponds to a “phantom” interface, i.e., ν = 0. The latter
correspond to interfaces separating the same phase. We prove that true interfaces
evolve by the nonlocal flow and that their multiplicity is 1. Furthermore, we show
that phantom interfaces evolve by mean curvature flow, but we do not characterize
their multiplicity (Theorem 6.6). We point out that we do not establish the existence
of phantom interfaces but only derive their law of motion. For the radial Allen–Cahn
equation, it is possible to construct initial data that produce phantom interfaces in
the limit (cf. [BS]), whereas for the Cahn–Hilliard equation, no phantom interfaces
occur (cf. [S2]). Making use of the properties of nonlocal flow, we also show that all
interfaces decrease and that at most two true interfaces can meet or nucleate at a given
time point (Theorem 6.6). In fact, there are examples where two interfaces collide
and disappear in the interior of the domain (Example 6.8). It is not clear whether
they continue as a phantom interface or completely disappear. Their presence does
not have an impact on the limit flow, but it accounts for an energy loss in the limit
(Remark 6.9).

In the case where n = 2, we note that as long as there are an even number of
interfaces, the nonlocal flow is simply mean curvature flow. In other words, the mean
curvature flow preserves area in that case.

Our estimates of section 5 are strong enough to prove a formula for the limit energy
E0 that counts both true and phantom interfaces together with their multiplicities.
From this it follows that there cannot be any nucleation in the interior if there is no
nucleation at the origin. However, we cannot rule this out after the first geometric
singularity of the nonlocal flow (see Remark 6.9).
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Finally, we note that when n = 1, the evolution of the interfaces is expected to
be exponentially slow in ε. This can easily be proven using the energy method of
[BK1] combined with the result of Grant [G]. This exponentially slow motion has
already been rigorously proven for the Cahn–Hilliard equation (cf. [ABF], [BH], [G],
and [BX]).

2. Energy estimates. In this section, we derive all of the energy estimates
necessary for the subsequent sections. We assume that ϕε is a solution to (1.1) with
the boundary data (1.2), that the domain Ω ⊂ Rn is bounded with a Lipschitz
boundary, and that for some C0 > 0 and some ω > 0 independent of ε,

Eε[ϕε(·, 0)] ≤ C0,(2.1)

sup
x∈Ω

|ϕε(x, 0)| ≤ C0 and |Ω| −
∣∣∣∣∫

Ω

ϕε(x, 0) dx

∣∣∣∣ ≥ ω.(2.2)

Throughout this paper, C will denote positive constants, that depend only on the
space dimension n, the size |Ω|, and the final time T as well as on C0 and ω. We show
that the energy

Eε[ϕ] =

∫
Ω

ε

2
|∇ϕ|2 +

1

ε
W (ϕ) dx

is a Lyapunov functional for (1.1)–(1.2), and we use this fact to obtain appropriate
BV bounds as well as some “weak” Hölder estimates on ϕε. Next, we derive an L2

bound of the Lagrange multiplier. We then produce an L1 limit of the solution ϕε and
a weak L2 limit of the Lagrange multiplier λε. In addition, we use the fact that Eε[ϕ]
is a monotone function to show that it is weakly compact in BV(0, T ) and compact
in L1(0, T ). Finally, we use the monotonicity of the energy to construct positive time
intervals, where the variation of the energy is uniformly small in ε.

Proposition 2.1 (energy estimates). Let ϕ := ϕε be a solution to (1.1) with
boundary condition (1.2) and suppose that the initial data satisfy (2.1). Let g be
defined via g′(s) :=

√
2W (s) with g(0) := 0, and let 0 ≤ s < τ ≤ T . Then the

following statements hold:

ε

∫ τ

s

∫
Ω

|∂tϕ|2 dx dt+ Eε[ϕ](τ)− Eε[ϕ](s) = 0,(2.3)

sup
t∈[0,T ]

∫
Ω

|∇g(ϕ)| dx ≤ sup
t∈[0,T ]

Eε[ϕ](t) ≤ C (energy bound),(2.4) ∫ τ

s

∫
Ω

|∂tg(ϕ)| dx dt ≤ C
√
τ − s.(2.5)

Proof. First, multiplying equation (1.1) by ∂tϕ and integrating in x, it follows
that

ε

∫
Ω

|∂tϕ|2 dx− ε
∫

Ω

∂tϕ∆ϕdx+
1

ε

∫
Ω

∂tW (ϕ) dx− λε(t)
∫

Ω

∂tϕdx = 0.

Using the mass-conservation property (1.5) and integrating by parts, this reduces to

ε

∫
Ω

|∂tϕ|2 dx+

∫
Ω

∂t

[
ε

2
|∇ϕ|2 +

1

ε
W (ϕ)

]
dx = 0.
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Equation (2.3) follows from the definition of Eε in (1.6) and integration in time from
s to τ .

Next, we obtain the BV estimates (2.4) and (2.5). These estimates are not new
(see, for example, [M] and [BK1] or [BK2]), but we include them for the sake of
completeness. Using the definition of g, we have (cf. [M])∫

Ω

|∇g(ϕ)| dx =

∫
Ω

√
2W (ϕ)|∇ϕ| dx ≤ Eε[ϕ](t).

Inequality (2.4) now follows from (2.3) and the initial bound on the energy (2.1).
Moreover, we obtain the “weak” Hölder estimate (cf. [BK2])∫ τ

s

∫
Ω

|∂tg(ϕ)| dx dt ≤
(∫ τ

s

∫
Ω

1

ε
W (ϕ) dx dt

) 1
2
(∫ τ

s

∫
Ω

ε|∂tϕ|2 dx dt
) 1

2

≤ C
√
τ − s.

This completes the proof of Proposition 2.1.
In particular, it follows that the functional Eε is a Lyapunov functional for (1.1)–

(1.2). From this fact follows the existence of a limit for ϕε and an a priori bound on
the Lagrange multiplier λε(t)

∫
Ω
−W ′(ϕ) dx.

Corollary 2.2. Under the same hypothesis as in Proposition 2.1, the following
results hold:

ϕ ∈ L∞(0, T, L4(Ω)),(2.6)

sup
t
λε(t) ≤

C√
ε
,(2.7)

sup
t,x
|ϕ(t, x)| ≤ C

√
ε+ sup

x
|ϕ(x, 0)|+ 1.(2.8)

Proof. Statement (2.6) is a direct consequence of Proposition 2.1. Inequality (2.7)
follows from (2.6) since

sup
t
λε = sup

t

1

ε

∫
Ω

−2(ϕ3 − ϕ) dx ≤ sup
t

C

ε

(∫
Ω

ϕ2 dx

) 1
2
(∫

Ω

W (ϕ) dx

) 1
2

≤ C√
ε
.

Estimate (2.8) is a consequence of the maximum principle and (2.7).
Proposition 2.3 (estimate on the Lagrange multiplier). Let ϕ = ϕε be as in

Proposition 2.1 and assume in addition that ϕε satisfies (2.2). Then for λε as in (1.1),∫ T

0

|λε(t)|2 dt ≤ C.

Proof. We multiply the differential equation (1.1) by ∇ϕ · ζ, where ζ is a smooth
function with values in Rn. If ζ · n = 0 on ∂Ω, we find that

ε

∫
Ω

∂tϕ ζ · ∇ϕdx+ ε

∫
Ω

∂jϕ∂iζj∂iϕdx−
∫

Ω

(
ε

2
|∇ϕ|2 +

1

ε
W (ϕ)

)
divζ dx

= −λε
∫

Ω

ϕdivζ dx.
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We extend ϕ by reflection to some neighborhood of Ω, and we choose a smooth
Dirac sequence ψδ. We define ξ = ξδε to be the solution of

−∆ξ = ϕ(t, ·) ∗ ψδ −
∫

Ω

− ϕ(t, ·) ∗ ψδ in Ω,

− ∂ξ
∂n

= 0 on ∂Ω,∫
Ω

− ξ = 0.

Elliptic regularity theory and (2.8) give

||ξ||C2,α(Ω) ≤ ||ϕ(t, ·) ∗ ψδ −
∫

Ω

− ϕ(t, ·) ∗ ψδ||C0,α(Ω) ≤ C(δ)||ϕ(·, t)||L∞(Ω) ≤ C(δ).

We now set ζ := ∇ξ. The energy bound (2.4) and the L∞ bound (2.8) then imply

|λε(t)|
∣∣∣∣∫

Ω

ϕ(ϕ ∗ ψδ −
∫

Ω

− ϕ ∗ ψδ) dx
∣∣∣∣ (t) ≤ C (ε ∫

Ω

|∂tϕ|2 dx
) 1

2

(t) + C(δ).

However, using the conservation-of-mass property (1.4) and the energy bound (2.4),
we obtain∣∣∣∣ ∫

Ω

ϕ

(
ϕ ∗ ψδ −

∫
Ω

− ϕ ∗ ψδ
)
dx

∣∣∣∣(t)
= |Ω|+

∫
Ω

(ϕ2(x, t)− 1) dx−
∫

Ω

(ϕ− ϕ ∗ ψδ)ϕ(x, t) dx

−
(
∫

Ω
ϕ(x, t) dx)2

|Ω| +

∫
Ω
ϕ(x, t) dx

|Ω|

∫
Ω

(ϕ− ϕ ∗ ψδ)(x, t) dx

≥ 1

|Ω|

(
|Ω|2 −

(∫
Ω

ϕ(x, 0) dx

)2)
− C

(∫
Ω

W (ϕ)(x, t) dx

) 1
2

− C
∫

Ω

|ϕ− ϕ ∗ ψδ|(x, t) dx

≥ 2ω − C
√
ε− C sup

|h|≤δ

∫
Ω

|ϕ(x+ h, t)− ϕ(x, t)| dx.

We now use the following result from [S2]: the energy bound (2.4) implies that
sup|h|≤δ

∫
Ω
|ϕ(x+ h, t)− ϕ(x, t)| dx ≤ C

√
δ. Thus we eventually obtain

(2ω − C
√
δ − C

√
ε)|λε(t)| ≤ C

(
ε

∫
Ω

|∂tϕ|2 dx
) 1

2

(t) + C(δ).

Taking the square of this expression, integration in time and (2.3) then yield the
desired assertion.

Remark 2.4. The energy estimates imply weak compactness for the sequence
g(ϕε) in BV (Ω × (0, T )), so we can choose a subsequence g(ϕε)

∗−⇀
ε→0

g(v) in BV .

This in turn implies that for some subsequence ϕε → v in L1(Ω× (0, T )), since g−1

exists and ϕε ∈ L∞(0, T ;L4(Ω)). In addition, v = ±1 almost everywhere and it is
“weakly” Hölder continuous∫

Ω

|v(x, τ)− v(x, s)| dx ≤ C
√
τ − s for T ≥ τ ≥ s ≥ 0.
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This Hölder continuity of v in L1 is due to Bronsard and Kohn [BK2]. Here it is a
consequence of (2.5) since this estimate carries over to the limit by lower semiconti-
nuity. In addition, we will assume that the initial data ϕε(·, 0) converge in L1(Ω) to
v(·, 0).

Next, due to the bound on the Lagrange multiplier, we may select a further
subsequence such that λε converges to λ0 weakly in L2(0, T ).

Henceforth, we will consider only this subsequence, and we will still denote it by
ϕε, λε. In what follows, we will select still other subsequences of this one, but this
does not have an impact on v and λ0.

Another important consequence of Proposition 2.1 is that Eε[ϕ](·) is monotone
decreasing in t and hence weakly compact in BV (0, T ).

Corollary 2.5. Let ϕε be as in Proposition 2.1. Then Eε[ϕε](·) is weakly
compact in BV(0, T ). Therefore, for an appropriate subsequence of ε’s, there exists a
function E0(·) such that

Eε[ϕε](·) −→ E0(·) in L1(0, T ) and almost everywhere,(2.9)

∂tEε[ϕε](·)
∗−⇀ ∂tE0(·),

where the weak ∗ convergence is in [C0(0, T )]′.
Proof. By (2.4), Eε[ϕε] is clearly uniformly bounded in L1(0, T ). Moreover,

identity (2.3) implies that Eε[ϕε] is monotone decreasing and thus uniformly bounded
in BV (0, T ) by assumption (2.1) on the initial data. Thus we may select a subsequence
of ε’s as claimed.

The results of Modica [M], Modica and Mortola [MM], and Sternberg [S] show
that Eε Γ-converges to a functional E∗, which is defined on BV functions by

E∗[v] = c0

∫
Ω

|∇v| dx,(2.10)

where c0 :=
∫ 1

−1

√
2W (ϕ) dϕ. In particular, it is easy to see that for almost all t

lim inf
ε→0

Eε[ϕε](t) ≥ E∗[v](t).(2.11)

From Corollary 2.5, we cannot conclude that E0 is E∗[v], but we know that for almost
all t, we have E0(t) ≥ E∗[v](t).

In Corollary 2.5, we have shown that for almost all t,

Eε[ϕε](t)→ E0(t).

We define for any η > 0 a set N(η) ⊂ [0, T ] as the set of all jump points of E0 with
height at least η:

N(η) :=

{
t | ess inf

s<t
E0(s)− ess sup

s>t
E0(s) ≥ η

}
.(2.12)

Then for any η > 0, the set N(η) is finite since E0 is monotone decreasing in an L1

sense:

E0(t) ≥ E0(s) for almost every s ≥ t.(2.13)

In fact, since Eε[ϕε](t) ≤ C by (2.4), it follows that

#N(η) ≤ C

η
.(2.14)
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For t0 > 0, we define Tε(η, t0) > 0 by

ε

∫ t0+Tε(η,t0)

(t0−Tε(η,t0))+

∫
Ω

(∂tϕε)
2 dx dt = η.(2.15)

The following lemma is very important to our approach. It is based on the fact that
E0 is monotone decreasing. It basically says that given any t0 /∈ N(η), we can find
an open interval (t0 − T0(η, t0), t0 + T0(η, t0)) on which the variation of the energy
Eε[ϕε](·) is uniformly small in ε.

Lemma 2.6. Let ϕ = ϕε be as in Proposition 2.1. Let 0 < t0 /∈ N(η), where N(η)
is given by (2.12), and let Tε(η, t0) be as in (2.15). Then there exists T0(η, t0) > 0
such that

Tε(η, t0) > T0(η, t0), for ε ≤ ε0(η, t0).

In particular,

Eε[ϕε](t0 − T0)+ − Eε[ϕε](t0 + T0) ≤ η.

Proof. Suppose to the contrary that Tε → 0 for some subsequence. Then using
(2.3) and the monotonicity of Eε[ϕε], we have for almost any τ > 0 that

0 < η = lim
ε→0

ε

∫ t0+Tε(η,t0)

t0−Tε(η,t0)

∫
Ω

(∂tϕ)2 dx dt

= lim
ε→0

(Eε[ϕ](t0 − Tε(η, t0))− Eε[ϕ](t0 + Tε(η, t0)))

≤ lim
ε→0

(Eε[ϕ](t0 − τ)− Eε[ϕ](t0 + τ))

= E0(t0 − τ)− E0(t0 + τ).

Thus by the choice of t0,

0 < η ≤ ess inf
s<t0

E0(s)− ess sup
s>t0

E0(s) < η.

3. A first approximation. The subsequent sections will be restricted to radi-
ally symmetric solutions; without loss of generality, we will assume that Ω is the unit
disk in Rn, n ≥ 2.

In radial coordinates r = |x|, the evolution for ϕ = ϕε(r, t) becomes

ε∂tϕ− εϕrr −
ε(n− 1)

r
ϕr +

1

ε
W ′(ϕ)− λε(t) = 0,(3.1)

ϕ(r, 0) = ϕ0
ε(r),

where as explained in the introduction, we choose W (ϕ) = 1
2 (1 − ϕ2)2. Moreover,

since we consider the case of a Neumann boundary condition and since ϕ is smooth,

ϕ′(1, t) = 0 and ϕ′(0, t) = 0.(3.2)

Thus mass is preserved. We assume the following conditions on the initial data. There
exist some C0 > 0 and some ω > 0 such that for all ε,

‖ϕ0
ε‖L∞(0,1) ≤ C0,(3.3)
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Eε[ϕ
0
ε] ≤ C0,(3.4)

and ∣∣∣∣∫
Ω

ϕ0
ε dx

∣∣∣∣ < |Ω| − ω.(3.5)

The following proposition is essential to the approach used in this paper. It is used
to show that, away from the origin, the solution ϕε is a priori close to the function
±q( ξε ), where q solves

qξξ = W ′(q) with q(−∞) = −1, q(∞) = 1, q(0) = 0.

In other words, the solution ϕε is close to the one-dimensional stationary-wave solution
±q(ξ) associated with the equation ut = uξξ −W ′(u), as is predicted by the formal
asymptotic expansions of Rubinstein and Sternberg (cf. [RS]). For the existence and
properties of the stationary-wave solution q, we refer to Aronson and Weinberger [AW]
and Fife and McLeod [FM]. When W (ϕ) = 1

2 (1− ϕ2)2, this stationary wave is given
by q(ξ) = tanh(ξ).

Proposition 3.1. Let ϕ = ϕε and ϕ0
ε satisfy (3.1)–(3.5). Let 0 < R0 < 1 and

t1 > t2. Then for any t2 < t < t1,∥∥∥∥−ε2

2
|ϕ′|2 +W (ϕ)

∥∥∥∥
L∞(R0,1)

(t)

≤ C(R0)

(
√
ε+

(
ε

∫ t1

t2

∫
Ω

ϕ2
t dx dt

) 1
2

+

(
ε3

∫
Ω

ϕ2
t (x, t2) dx

) 1
2

)
.

Proof. First, we note that ||ϕ||L∞(Ω×(0,T )) ≤ C by assumption (3.3) and Corollary
2.2. Therefore, multiplying (3.1) by εϕ′, integrating over (η, ρ) ⊂ (R0, 1), using the
fact that the energy is bounded (cf. (2.4)), and using the bound on λε(·) (cf. (2.8)),
it follows that∣∣∣∣−ε2

2
|ϕ′(ρ, t)|2 +W (ϕ(ρ, t))

∣∣∣∣(3.6)

=

∣∣∣∣− ε2

2
|ϕ′(η, t)|2 +W (ϕ(η, t))− ε2

∫ ρ

η

ϕtϕ
′ dr

+ 2ε2

∫ ρ

η

1

r
|ϕ′|2 dr + ελε(t)(ϕ(ρ, t)− ϕ(η, t))

∣∣∣∣
≤ ε2

2
|ϕ′(η, t)|2 +W (ϕ(η, t)) + 2ε|λε(t)| ||ϕ||L∞(Ω×(0,T ))

+
ε2

Rn−1
0

(∫ ρ

η

(ϕt)
n−1rn−1 dr

) 1
2
(∫ ρ

η

|ϕ′|2rn−1 dr

) 1
2

+
2ε2

Rn0

∫ ρ

η

|ϕ′|2rn−1 dr

≤ ε2

2
|ϕ′(η, t)|2 +W (ϕ(η, t)) + C

ε
3
2

Rn−1
0

(∫ 1

R0

(ϕt)
2rn−1 dr

) 1
2

+ C
ε

Rn0
+ C
√
ε.

Next, integrating in η over (R0, 1) and again using the bound on the energy (2.4),
we find for t0 ≤ t ≤ t1 that∣∣∣∣−ε2

2
|ϕ′(ρ, t)|2 +W (ϕ(ρ, t))

∣∣∣∣ ≤ C(R0)

(
√
ε+

(
ε3

∫
Ω

(ϕt(x, t))
2 dx

) 1
2

)
.(3.7)
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Thus we are left with estimating the last term in (3.7). For this we follow Stoth [S1]
and consider the equation satisfied by ∂tϕ on Ω× (t2, t1):

ε∂ttϕ− ε∆∂tϕ+
1

ε
W ′′(ϕ)∂tϕ− ∂tλε = 0.

We multiply this by ε∂tϕ and integrate over Ω× (t2, τ) for τ < t1 to obtain∫ τ

t2

∫
Ω

ε2ϕtt ϕt dx dt−
∫ τ

t2

∫
Ω

ε2ϕt∆ϕt dx dt

= −
∫ τ

t2

∫
Ω

W ′′(ϕ)(ϕt)
2 dx dt+

∫ τ

t2

ε∂tλε

∫
Ω

ϕt dx dt = −
∫ τ

t2

∫
Ω

W ′′(ϕ)(ϕt)
2 dx dt,

by the mass-conservation property (1.4). Next, we integrate by parts and use the
boundary condition (3.2) and the fact that W ′′(ϕ) = 2(3ϕ2 − 1) is bounded:∫

Ω

ε2

2
|ϕt(x, τ)|2 dx+

∫ τ

t2

∫
Ω

ε2|∇ϕt|2 dx dt

≤
∫

Ω

ε2

2
|ϕt(x, t2)|2 dx+ C

∫ τ

t2

∫
Ω

(ϕt(x, t))
2 dx dt.

The proposition now follows from (3.7).
Now according to Lemma 2.6, we can choose T0 small enough such that

ε

∫ t0+T0

t0−T0

∫
Ω

(ϕt)
2 dx dt

is as small as desired if t0 /∈ N(η). This means that, away from the origin, the solution
ϕε is as close as we want to the stationary wave q in (t0 − T0, t0 + T0). This is the
content of the following important consequence of Proposition 3.1 and Lemma 2.6.

Proposition 3.2 (first approximation). Let ϕ = ϕε and ϕ0
ε satisfy (3.1)–(3.5).

Let 0 < R0 < 1 and δ > 0. Then there exists η = η(δ,R0) such that for any
0 6= t0 /∈ N(η), there exists T0 = T0(δ,R0, t0) > 0 and ε0 = ε0(δ,R0, t0) > 0 such that

sup
t0−T0≤t≤t0+T0

∥∥∥∥−ε2

2
|ϕ′|2 +W (ϕ)

∥∥∥∥
L∞(R0,1)

≤ δ2 for ε ≤ ε0.

We then rename N(η(δ,R0)) as N(δ,R0).

Proof. Define η via
√
η = δ2

2C(R0) , with C(R0) as in Proposition 3.1, and choose

T0 = T0(δ,R0, t0) to be as in Lemma 2.6. Then we use Proposition 3.1 with t1 = t0+T0

and the mean value over t2 ∈ (t0 − T0, t0 − T0

2 ) to obtain for t0 − T0

2 ≤ t ≤ t0 + T0,∥∥∥∥−ε2

2
|ϕ′(·, t)|2 +W (ϕ(·, t))

∥∥∥∥
L∞(R0,1)

≤ C(R0)

√ε+

(
ε

∫ t0+T0

t0−T0

∫
Ω

ϕ2
t dx dt

) 1
2

+

(
ε3

∫
Ω

ϕ2
t (x, t2) dx

) 1
2


≤ C(R0)

√ε+

(
ε

∫ t0+T0

t0−T0

∫
Ω

ϕ2
t dx dt

) 1
2

+

(
ε3 2

T0

∫ t0−T0
2

t0−T0

∫
Ω

ϕ2
t (x, t2) dx dt2

) 1
2


≤ C(R0)

(√
ε+

δ2

2C(R0)
+ ε

√
2

T0

)
≤ δ2
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for ε ≤ ε0(δ,R0, t0). We then rename T0

2 as T0.
Remark 3.3. If t0 = 0, then the same result as Proposition 3.2 holds with

(−T0, T0) substituted by [0, T0). A condition for this is that ε3
∫

Ω
∂tϕ

2
ε(x, 0) dx → 0,

which by equation (1.1) is equivalent to the condition ε3
∫

Ω
(4ϕε− 1

ε2W
′(ϕε))

2(x, 0) dx→
0. This proposition is crucial to our approach. It has two important consequences.
The first is that we can define the interfaces of ϕε by showing that the level sets of
ϕε are graphs. This is done in section 4. The second consequence is an even better
approximation of ϕε by the stationary-wave solution associated to (1.1), namely, we
obtain a second-order approximation for ϕε. This will be shown in section 5. Finally,
this approximation will be used to take the weak limit of equation (3.1) to obtain the
desired limiting equation in section 6.

We conclude this section with a final estimate, which gives control over the surface
area that vanishes at the origin.

Proposition 3.4. We have the additional estimate∫ T

0

∫ 1

0

|g(ϕε)
′|rn−2 dr dt ≤

∫ T

0

∫ 1

0

(
ε

2
|ϕ′ε|2 +

1

ε
W (ϕε)

)
rn−2 dr dt ≤ C.(3.8)

Proof. We multiply the nonlocal equation (3.1) by (−rn−1ϕ′ε) and integrate over
(0, s). This yields

ε

∫ s

0

ϕ′′εϕ
′
εr
n−1dr + (n− 1)ε

∫ s

0

ϕ′ε
2
rn−2dr − 1

ε

∫ s

0

W ′(ϕε)ϕ
′
εr
n−1dr

= −λε
∫ s

0

ϕ′εr
n−1dr + ε

∫ s

0

∂tϕεϕ
′
εr
n−1dr.

Hence

n− 1

2
ε

∫ s

0

ϕ′ε
2
rn−2dr +

n− 1

ε

∫ s

0

W (ϕε)r
n−2dr

≤
(
ε

2
|ϕ′ε|2(s) +

1

ε
W (ϕε)(s) + 2|λε| ||ϕε||L∞

)
sn−1

+ ε

∫ s

0

|∂tϕεϕ′ε| rn−1dr.

Now the left-hand side at s = 1
2 is bounded by the mean value of the right-hand

side taken over s ∈ ( 1
2 , 1). Therefore, the energy estimate (2.4), the L∞ bound (2.6),

and the bound on the Lagrange multiplier (2.3) give∫ T

0

∫ 1/2

0

(
ε

2
|ϕ′ε|2 +

1

ε
W (ϕε)

)
rn−2 dr dt ≤ C.

This establishes the result since in the interval (1
2 , 1), there is nothing to prove.

4. Definition of the interfaces of ϕε and of the limit v. In this section, we
present the definition and properties of the interfaces of ϕε and of v. The definition
of the interfaces is based on the fact that Proposition 3.2 implies a lower bound on
|ϕ′ε| such that we can apply the implicit function theorem. Indeed, let

δ2 <
1

8
and 0 < Q < tanh

[
1

2
− tanh−1 1√

3

]
be such that W (Q) ≥ 1

4
.(4.1)
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We will study the level sets of ϕε of value less than Q. This precise choice of Q
is important in the ellipticity proposition (Proposition 6.4) and in the following.

According to Proposition 3.2, ε
2

2 |ϕ′ε|2 ≥
1
8 in the subset of (R0, 1)×(t0−T0, t0+T0)

defined by |ϕε| ≤ Q since in this set W (ϕε) ≥ 1
4 . This means that ϕε must be

monotone in r on each connected component of this set.
We assume that ϕ = ϕε satisfies (3.1)–(3.5), and for any R0 > 0, we define

AR0
:=

⋃
t0 /∈N(δ,R0)

(t0 − T0(δ,R0, t0), t0 + T0(δ,R0, t0)),(4.2)

where δ is a fixed constant to be chosen later. We remark that by definition AR0

is open and that its complement has at most finitely many points, all of them in
N(δ,R0). We choose an increasing sequence of open sets D = Dm with

⋃
Dm = AR0 .

The setD and henceD can be covered by finitely many of the (t0−T0(δ,R0, t0), t0+
T0(δ,R0, t0))’s that were used to define AR0

. Thus on D, Proposition 3.2 implies that

sup
D
‖ − ε2|ϕ′|2 + 2W (ϕ)‖L∞(R0,1) ≤ 2δ2

for all ε ≤ ε0(δ,R0, D).
We now consider the “ε problem” in the strip (R0, 1)×D.
Let Q be as in (4.1). Then on {|ϕε| ≤ Q} ∩ (R0, 1) × D, we have ε2|ϕ′ε|2 ≥ 1

4 .
Thus for any −Q < a < Q, the set {ϕε(r, t) = a}∩ (R0, 1)×D consists of a collection
of graphs riε(·, a).

Moreover, by the implicit function theorem, the following identities hold:

∂tϕε(r
i
ε(t, a), t) + ∂tr

i
ε(t, a)∂rϕε(r

i
ε(t, a), t) = 0,

∂ar
i
ε(t, a)∂rϕε(r

i
ε(t, a), t) = 1.

Using the coarea formula, this implies an H1,2 estimate on riε. Indeed,∫
{|ϕε(·,t)|<Q,r>R0}

|∂tϕε(r, t)|2
|ϕ′ε(r, t)|

dr =

∫ Q

−Q

∫
{ϕε(·,t)=a,r>R0}

|∂tϕε(r, t)|2
|ϕ′ε(r, t)|2

dH0 da

=

∫ Q

−Q

∑
i

|∂triε(t, a)|2 da.

Thus ∫
D

∫ Q

−Q

∑
i

|∂triε(t, a)|2 da dt ≤ ε√
δ

∫
D

∫ 1

R0

|∂tϕε(r, t)|2 dr dt

≤ C(R0, δ).

Thus we may choose aε ∈ (−Q,Q) such that (for some bigger C(R0, δ))∫
D

∑
i

|∂triε(t, aε)|2 dt ≤ C(R0, δ).

This in turn implies that the graphs riε(·, aε) are Hölder-1
2 by embedding.

We define the interfaces of the ε problem by

riε(t) := riε(t, aε).(4.3)
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We note that none of these interfaces hits the fixed boundary ∂Ω because on the fixed
boundary ϕ′ε = 0 and thus by Proposition 3.2, the values of ϕε have to be close to ±1.
However, on the interfaces, the values of ϕε are given by aε and hence are uniformly
away from ±1. Thus all of the interfaces exist as long as they do not hit r = R0. This
allows us to introduce the ordering

riε : Iiε ⊂ D −→ (R0, 1) for i = 1, . . .,Mε(4.4)

with riε > ri+1
ε and riε = R0 on ∂Iiε ∩D. In addition sign(ϕε(t, 1)− aε) is fixed in D.

Proposition 4.1. The number Mε of graphs riε(t) is finite and bounded inde-
pendently of D.

Proof. By definition, ϕε(r
i
ε(t), t) = aε and therefore there exist points ciε(t) such

that

riε(t) < ciε(t) < ri+1
ε (t)

with the property that ϕ′ε(c
i
ε(t), t) = 0. Now the estimates given by Proposition 3.2

imply

W (ϕε(c
i
ε(t), t)) ≤ δ2,

and ϕε(c
i
ε(t), t) have opposite signs for consecutive i’s. Consequently,

|g(ϕε(c
i+1
ε (t), t))− g(ϕε(c

i
ε(t), t))| = |g(ϕε(c

i+1
ε (t), t))|+ |g(ϕε(c

i
ε(t), t))| ≥ C(δ) > 0.

Thus

C(δ)Mε ≤
Mε∑
i=1

|g(ϕε(c
i+1
ε (t), t))− g(ϕε(c

i
ε(t), t))|

≤
Mε∑
i=1

∣∣∣∣ ∫ ci+1
ε (t)

ciε(t)

g(ϕε)
′ dr

∣∣∣∣ ≤ C(R0),

by the energy estimate (2.4). Thus Mε is uniformly bounded.
As a result of this proposition, for a subsequence of ε’s (depending on R0), the

number Mε =: M0 must be constant, and for i = 1, . . .,M0, there exist

r̄i : IiR0
⊂ AR0

→ (R0, 1] such that riε −→ r̄i(4.5)

weakly in H1,2
loc (IiR0

) and locally uniformly.
In view of this, we define for any R0 > 0 the set of limit interfaces

ΓR0 := {(t̄0, r̄0) | t̄0 ∈ AR0 and r̄0 = r̄i(t̄0) for some i = 1, . . .,M0}.(4.6)

This set ΓR0 contains the free boundary ∂{v = −1}, but it may contain more.
Next, we study the “ε problem” locally around any (t̄0, r̄0) ∈ ΓR0 .
Let m0 be given by the property that at time t̄0, there are exactly m0 graphs riε

which converge to r̄0, i.e.,

riε(t̄0)→ r̄0, k ≤ i ≤ m0 + k − 1.(4.7)

Since all the riε are uniformly Hölder-1
2 , there exists a box

B := (t̄1, t̄2)× (a, b)
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Fig. 1.

around (t̄0, r̄0) that contains exactly m0 graphs, all of them defined over the entire
interval (t̄1, t̄2). In addition, these graphs in B are O(1) away from all other graphs.
(See Figure 1.)

In conclusion, by putting together all of the above results, we have the following.
PROPOSITION/DEFINITION 4.2 (the local geometry). For all (t̄0, r̄0) ∈ ΓR0

with
r̄0 6= 1, there exist natural numbers m0 and k and a number ν ∈ {−1, 0,+1}, a box
B = (t̄1, t̄2)× (a, b) ⊂ D× (R0, 1), and η > 0 such that for ε ≤ ε0(t̄0, r̄0), the following
hold:

(1) {ϕ = aε} ∩ B consists of m0 graphs riε over (t̄1, t̄2), which are uniformly
Hölder- 1

2 and with derivatives uniformly in L2, and riε > ri+1
ε .

(2) At t̄0, exactly m0 interfaces converge to r̄0.
(3) riε → r̄i uniformly and ∂tr

i
ε −⇀ ∂tr̄

i weakly in L2(t̄1, t̄2) for k ≤ i ≤ m0+k−1.
(4) r̄i(t̄0) = r̄0 for k ≤ i ≤ m0 + k − 1.
(5) a−η > R0 and the sets {(t̄1, t̄2)× (a−η, a]}∩{ϕε = aε} and {(t̄1, t̄2)× [b, b+

η)} ∩ {ϕε = aε} are empty.
(6)

ν =

+1 if ϕε(t̄0, a) < aε and ϕε(t̄0, b) > aε,
−1 if ϕε(t̄0, a) > aε and ϕε(t̄0, b) < aε,
0 otherwise.

If r̄0 = 1, then B = (t̄1, t̄2) × (a, b) ⊂/ D × (R0, 1), but if we continue ϕε by its
boundary values, the above definitions remain meaningful.

Due to the symmetry of the argument, later we will explicitly describe only the case
where ϕε(t̄0, b) > aε such that ν is either +1 or 0. The case where ν = 0 corresponds
to the case where the limit v has a “phantom” interface at which v “jumps” from 1
to 1 or −1 to −1, whereas the case where ν 6= 0 corresponds to true interfaces of v.

5. A rigorous first-order expansion. Once again, throughout this section, we
assume that ϕε satisfies (3.1)–(3.5) such that the analysis of the preceding sections is
valid.
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We now have well-defined interfaces. We propose to study the solution near each
interface. Our final goal is to pass to the limit in equation (3.1) around each interface.
For this we will need a very good approximation of the solution ϕε in H1,∞. This
section is devoted to obtaining this approximation. The idea is to show that the
asymptotic expansion is rigorous up to second order, at least in a weak sense. We
will show this using appropriate H1,2 error estimates. However, we will not prove
an approximation of ϕε everywhere in Ω as in [S1]. Instead, with the use of a cutoff
function, we only consider the approximation of ϕε locally around the interfaces.

In this section, we restrict our discussion to the box B defined in Proposition 4.2.
We assume for simplicity of presentation that k = 1. First, we introduce a stretched
variable around the largest interface r1

ε(t) in the box B. Let

z :=
|x| − r1

ε(t)

ε
(5.1)

such that z ∈ (
−r1ε(t)
ε ,

1−r1ε(t)
ε ). Henceforth, we shall use capital letters for functions

defined in the stretched variables and lower-case letters for functions written in the
original variables so that, for example,

Φε(z, t) := ϕε(r, t).(5.2)

Moreover, the index ε will be dropped whenever it does not affect the clarity of the
text. Then for η as in Proposition 4.2, the rescaling (5.1) maps the collection of points

a− η < a < rm0
ε < · · · < r2

ε < r1
ε < b < b+ η(5.3)

onto

z−ε −
η

ε
< z−ε < zm0

ε < · · · < z2
ε < z1

ε (= 0) < z+
ε < z+

ε +
η

ε
.(5.4)

(See Figure 2.)
Now motivated by the formal analysis of [RS], we make the ansatz that Φε is well

approximated near z = 0 by

Θε(z, t) := Φε0(z, t) + εΦε1(z, t) for z ∈
(
z−ε −

η

ε
, z+
ε +

η

ε

)
.(5.5)

The zeroth-order term Φε0(z, t) is given by

Φε0(z, t) :=

m0∑
i=1

Ξεi (z, t) tanh((−1)i+1[z − ziε(t)] + µε)︸ ︷︷ ︸
=:Φε0i(z,t)

,(5.6)

where µε = tanh−1aε and Ξi is a partition of unity. More precisely, for 2 ≤ i ≤ m0−1,

the function Ξi has support in ( z
i+1+zi

2 − 1, z
i+zi−1

2 + 1), while Ξ1 has support in

( z
2

2 − 1,∞) and Ξm0
has support in (−∞, zm0+zm0−1

2 + 1). Moreover, Ξ′i has support

in two disjoint intervals, each of length 2, given typically by (z
i+zi+1

2 −1, z
i+zi+1

2 + 1).
(See Figure 2.)

Remark 5.1. We later prove that |zi−zi−1| is uniformly larger than 2 (cf. Lemma
5.8) as a consequence of the first approximation proposition (Proposition 3.2), so the
above partition of unity is meaningful.
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Fig. 2.

The first-order term is given by

Φε1(z, t) :=

m0∑
i=0

Ξεi (z, t)Φ
ε
1i(z, t),(5.7)

where Φ1i = Φε1i(z, t) solves{
−Φ′′1i +W ′′(Φ0i)Φ1i − λε(t) = 0 in (−∞, ziε) ∪ (ziε,∞),

Φ1i (ziε) = 0,
(5.8)

and W ′′(Φ) = 2(3Φ2 − 1). We note that equation (5.8) is the equation satisfied by
the first-order term in the asymptotic expansion of [RS].

Remark 5.2. We do not impose that the differential equation for Φ1i be satisfied at
z = ziε in order to ensure that the solution remains uniformly bounded over the entire
real axis (cf. Lemma 5.7). We refer to the work of Niethammer [N], who determined
the expansion of the Lagrange multiplier for the radial, stationary problem with mass
constraint by the condition that the equation be satisfied in the whole of R.

Remark 5.3. The approximation depends on the direction of the jump. Here we
give the definition for the case as selected in Proposition 4.2. If to the contrary the
jump direction were the opposite, the tanh would have to be substituted by −tanh.

Remark 5.4. In the formal inner expansion, one also expands λε(t) = λ0(t) +
ελ1(t) + · · · (see [RS]). Here we do not do this since we are interested only in the
zeroth-order term. The lowest-order term will be determined later by the mass-
conservation property.

The rest of this section is devoted to proving that (5.5) is indeed a good approx-
imation to Φε. To this end, let

Ψε(z, t) := Φε(z, t)−Θε(z, t) for t̄1 ≤ t ≤ t̄2.(5.9)

Proposition 5.5 (first-order approximation). Let ξε be a cutoff function with

ξε(z, t) =

{
1 in (−ε−α + zm0

ε (t), ε−α),

0 in R\(−ε−β + zm0
ε (t), ε−β)

(5.10)

for 1
2 < α < β < 1 so that

supp ξ(·, t) ⊂
(
z−ε −

η

ε
, z+
ε +

η

ε

)
.
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Then for Ψ given by (5.9), we have the following estimates:∫ t̄2

t̄1

∫
(−∞,zm0

ε )∪(0,∞)

(|Ψ′|2 + |Ψ|2)ξ2 dz dt ≤ Cε2β ,(5.11)

∫ t̄2

t̄1

∫ 0

z
m0
ε

(|Ψ′|2 + |Ψ|2) dz dt→ 0,(5.12)

where C depends on the data and the local box B.
The rest of this section is devoted to the proof of this proposition. We first find

the equation satisfied by Ψε. Using the definition (5.1) for Φε and equation (3.1), we

find (if z ≤ 1−r1ε
ε )

−Φ′′ +W ′(Φ)− ελε(t) = −ε2∂tϕ(εz + riε(t), t) +
2ε

εz + r1
ε(t)

Φ′

=: Fε(t, z).(5.13)

We define Fε(t, z) by W ′(ϕε(t, 1))− ελε(t) for z >
1−r1ε
ε .

The equation for Θε is more complicated because of the extra terms that come
from the partition of unity. To simplify the presentation, we let Θi := Φ0i + εΦ1i.
Then we have

−Θ′′ +W ′(Θ)− ελε(t) = Hε(z, t),(5.14)

where

Hε(z, t) := ε2
m0∑
i=1

Ξi (6Φ0iΦ
2
1i + 2εΦ3

1i)

(5.15)

+

m0−1∑
i=1

[Θi+1 −Θi]
(
Ξ′′i + 2ΞiΞi+1{(1 + Ξi)Θ

2
i + (Ξi − 2)Θ2

i+1 + (1− 2Ξi)ΘiΘi+1}
)

+ 2

m0−1∑
i=1

[Θi+1 −Θi]
′
Ξ′i.

This formula comes from a linearization of W ′(Φ) = −2Φ(1 − Φ2) around Φ0. We
note that this sum is only taken over two integers at a time because of the definition
of Ξi. Also, as we will see later, the last two sums are of small order (cf. (5.25) and
(5.26)).

Therefore, combining (5.13) and (5.14), the equation for the difference is

−Ψ′′ +W
′′
(Θ)Ψ = −2(3ΘΨ2 + Ψ3) + Fε(z, t)−Hε(z, t),(5.16)

and it holds in (
z−ε −

η

ε
, z+
ε +

η

ε

)
\{z1

ε , . . ., z
m0
ε }(5.17)

with boundary values

Ψε(ziε, t) = 0 for i = 1, . . .,m0.(5.18)
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Next, as in [S1], we follow an idea of Berger and Fraenkel and show that in some
sense equation (5.16) for Ψ is uniformly strictly elliptic.

Proposition 5.6 (ellipticity). There exist ζ1 > 0 and ζ2 > 0 such that for
t̄1 < t < t̄2,∫

(−Ψ′′ +W
′′
(Θ)Ψ)Ψ ξ2 dz ≥ ζ1

∫
|Ψ′|2ξ2 dz + ζ2

∫
|Ψ|2ξ2 dz − 2

ζ1

∫
|Ψ|2|ξ′|2 dz,

where integration is either over (−ε−β + zm0 , zm0), (0, ε−β), or (zm0 , 0).
This proposition is very similar to the proof of Proposition 8 in [S1] and we include

its proof in the appendix.
We are now left with estimating all of the terms in the right-hand side of (5.16).

For this we find further estimates on Φε−Φε0 and on Φε1. First, we present a bound on
Φε1, which in particular gives the estimate ‖Θε −Φε0‖H1,∞(z−ε − ηε ,z

+
ε + η

ε )×(t̄1,t̄2) ≤ C
√
ε.

Lemma 5.7.

‖Φε1‖H1,∞(z−ε − ηε ,z
+
ε + η

ε )×(t̄1,t̄2) ≤ C |λε(t)| .

The proof follows the same lines as the proof of Lemma 7 in [S1]. The basic tool
is the following representation formula (cf. [BF]):

Φε1i(z + ziε, t) =

(
A(z)

∫ z

0

B +B(z)

∫ ∞
z

A

)
λε(t),

where A(z) := 1− tanh2(z) and B(z) := −A(z)
∫ z

0
1
A2 .

As yet another consequence of Proposition 3.2, we have the following lemma,
which implies that Φ is close to Φ0 in the topology of L∞.

Lemma 5.8. For any δ > 0 there exist e(δ) > 0 and M(δ) > 0 such that∣∣∣∣z1
ε −

1− r1
ε

ε

∣∣∣∣ ≥ e(δ) and |ziε − zi−1
ε | ≥ e(δ) for 2 ≤ i ≤ m0,

‖(ΨεΘε)−‖L∞((z−ε − ηε ,z
+
ε + η

ε )×(t̄1,t̄2)) ≤M(δ),

with M(δ)→ 0 and e(δ)→∞ as δ → 0.
This lemma is easily derived from explicit integration of the ODE (cf. [S1]){

|Φ′(z, t)|2 − 2W (Φ(z, t)) = 2Kε(z, t),

Φ(zεi , t) = aε
(5.19)

in z−ε ≤ z ≤ z+
ε , where ‖Kε‖L∞(z−ε − ηε ,z

+
ε + η

ε )×(t̄1,t̄2) ≤ δ2 by Proposition 3.2.

We are now ready for the proof of the first-order approximation Proposition 5.5.
Proof of Proposition 5.5. Let S be (−ε−β + zm0 , zm0), (0, ε−β), or (zm0 , 0). We

multiply equation (5.16) for Ψ by ξ2Ψ, where ξ is defined by (5.10); then we integrate
in z and t and use Proposition 5.6 to obtain

ζ1

∫ t̄2

t̄1

∫
S

|Ψ′|2ξ2 dz dt+ ζ2

∫ t̄2

t̄1

∫
S

|Ψ|2ξ2 dz dt

≤ 2

ζ2

∫ t̄2

t̄1

∫
S

|Fε|2ξ2 + |Hε|2ξ2 dz dt+
2

ζ1

∫ t̄2

t̄1

∫
S

|Ψ|2|ξ′|2 dz dt

+

(
ζ2
4

+ 6‖(ΨΘ)−‖L∞
)∫ t̄2

t̄1

∫
S

|Ψ|2ξ2 dz dt.(5.20)
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Let M(δ) be given by Lemma 5.8 and choose δ small enough that 6M(δ) ≤ ζ2
4 .

Incorporating this into (5.20) yields

ζ1

∫ t̄2

t̄1

∫
S

|Ψ′|2ξ2 dz dt+
ζ2
2

∫ t̄2

t̄1

∫
S

|Ψ|2ξ2 dz dt

≤ 2

ζ2

∫ t̄2

t̄1

∫
S

(|Fε|2 + |Hε|2)ξ2 dz dt+
2

ζ1

∫ t̄2

t̄1

∫
S

|Ψ|2|ξ′|2 dz dt.(5.21)

Thus we are left with estimating the right-hand side of (5.21). Using the definition of
Fε given by (5.13), the energy bound implies (if r̄0 6= 1)

∫ t̄2

t̄1

∫ ε−β

−ε−β+zm0

|Fε|2 ξ2 dz dt ≤ C(R0)ε2.(5.22)

Moreover, we have the estimate∫ t̄2

t̄1

∫
(−ε−β+zm0 ,zm0 )∪(0,ε−β)

|Hε|2ξ2 dz dt ≤ C(R0)ε3−β ≤ C(R0)ε2β .(5.23)

Indeed, the last two sums in the definition in (5.15) of Hε drop out since in (−ε−β +
zm0 , zm0), the function Ξm0

≡ 1 and Ξi ≡ 0 for 1 ≤ i ≤ m0− 1, while in (0, ε−β), the
functions Ξi ≡ 0 for 2 ≤ i ≤ m0 and Ξ1 ≡ 1. Then (5.23) follows from the fact that
‖Φ0‖∞ ≤ 1, Lemma 5.7, and the L2 and L∞ bounds on λε(t) (cf. Corollary 2.2 and
Proposition 2.3).

In addition, we claim that∫ t̄2

t̄1

∫ 0

zm0

|Hε|2 dz dt→ 0(5.24)

as ε → 0. To prove this, we need a better estimate on |zi+1 − zi| than the one we
obtained in Lemma 5.8. If we go back to formula (3.6) in Proposition 3.1, we can easily
obtain the following bound for almost all t ∈ (t̄1, t̄2) by using the energy estimates
(2.3) and (2.4) and Proposition 4.1 at the small expenditure of an ln(1

ε ) factor:

‖ − ε2(ϕ′(·, t))2 + 2W (ϕ(·, t))‖L∞(R0,1) ≤ C(t, R0)ε ln

(
1

ε

)
.(5.25)

Therefore, in fact, we have for almost all t ∈ (t̄1, t̄2) that

|zi+1 − zi| → ∞ as ε→ 0,

and therefore

|Θi+1 −Θi| → 0 in {ΞiΞi+1 6= 0}.

Since Θi are uniformly bounded, we can now conclude that
∫ t̄2
t̄1

∫
{ΞiΞi+1 6=0} |Θi+1 −

Θi|2 dz dt→ 0 as ε→ 0, and hence (5.24) follows.
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Finally, since |ξ′(z)| ≤ C 1
ε−β−ε−α < Cεβ , the last term can be estimated as

follows:

2

ζ1

∫ t̄2

t̄1

∫ ε−β

−ε−β+zm0

|Ψ|2|ξ′|2 dz dt ≤ Cε2β

∫∫
{ξ 6=0,1}

|Ψ|2 dz dt

≤ Cε2β

∫∫
{ξ 6=0,1}

(|Φ− Φ0|2 + ε2|Φ1|2) dz dt

≤ C ε
2β−1

Rn−1
0

∫ t̄2

t̄1

(∫ b+η

riε(t)

(ϕ(r, t)− 1)2rn−1 dr +

∫ rm0
ε

a+η

(ϕ(r, t) + 1)2rn−1 dr

)
dtCεβ+1,

where we have used the fact that in {(z, t)|ξ(z, t) 6= 0, 1}, the function Φ0 is exponen-
tially close to±1 depending on z > 0 or z < zm0 , while ε2‖Φ1‖2L∞(z−ε − ηε ,z

+
ε + η

ε )×(t̄1,t̄2)
<

Cε. Now using the energy bound (2.4), we obtain

2

ζ1

∫ t̄2

t̄1

∫ ε−β

−ε−β+zm0

|Ψ|2|ξ′|2 dz dt ≤ C(R0)
(
ε2β + εβ+1

)
≤ C(R0)ε2β .(5.26)

This completes the proof for r̄0 < 1. If r̄0 = 1, all of the above arguments are valid
except for those leading to (5.22) and (5.26). If in (5.22) we integrate over (−ε−β +

zm0
ε ,

1−r1ε
ε ), the result is the same. For z >

1−r1ε
ε , we have Fε = W ′(ϕε(t, 1))− ελε(t).

However, with (5.25) and because ϕ′ε(1, t) = 0, we find F 2
ε ≤ C(t)εln(1/ε), and the

remaining integral in (5.22) still converges to zero by Lebesgue’s convergence theorem.
The same reasoning holds for (5.26).

Finally, we conclude with some H1,∞ bounds from this H1,2 bound.
Corollary 5.9. Let J = Jgood(t) := (−ε−α + zm0 , zm0)∪ (0, ε−α) if r̄0 6= 1 and

J = Jgood(t) := (−ε−α + zm0 , zm0) if r̄0 = 1. Then∫ t̄2

t̄1

‖Ψ′ε‖2H1,∞(J) dt ≤ Cε2β ,∫ t̄2

t̄1

‖Ψ′ε‖2H1,∞(0,zm0 ) dt→ 0,∫ t̄2

t̄1

‖Φε(·, t)− Φε0(·, t)‖2H1,2(−ε−α+zm0 ,ε−α) dt→ 0,∫ t̄2

t̄1

‖Φε(·, t)− Φε0(·, t)‖2H1,∞(J) dt ≤ Cε2β ,∫ t̄2

t̄1

‖Φε(·, t)− Φε0(·, t)‖2H1,∞(0,zm0 ) dt→ 0,

where C depends on the data and B.
Proof. The first two results follow from Proposition 5.5 by the Sobolev embedding

theorem in R since Ψ satisfies the differential equation (5.16) and thus Ψ′′ satisfies
the same bounds as Ψ and Ψ′.

The last three results follow from either Proposition 5.5 or the two first results of
this corollary using the by now “familiar” estimates∫ t̄2

t̄1

‖εΦε1(·, t)‖2H1,2(−ε−α,zm0+ε−α) dt ≤ ε2 1

ε

∫ t̄2

t̄1

|λε(t)|2 dt ≤ Cε
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and ∫ t̄2

t̄1

‖εΦε1(·, t)‖2H1,∞(−ε−α,zm0+ε−α) dt ≤ ε2

∫ t̄2

t̄1

|λε(t)|2 dt ≤ Cε2.

6. The limit equation. In this section, we derive the differential equation of
the limiting interface (true or phantom) given by r = r̄i. Therefore, we once again
assume (3.1)–(3.5) for ϕε, and hence the analysis of the preceding sections applies.

Proposition 6.1. Let AR0
be as in (4.2). Then for all (t̄0, r̄0) ∈ ΓR0

as in (4.6),
there exists a box B = (t̄1, t̄2)× (a, b) as in Proposition 4.2 such that (r̄0, t̄0) ∈ B and
such that ΓR0

∩ B consists of m0 = m0(r̄0, t̄0) Hölder- 1
2 graphs r̄i : (t̄1, t̄2) → (a, b)

with r̄i(t̄0) = r̄0 (where i = k, . . .,m0 + k − 1). Moreover, if r̄0 6= 1,

−
m0+k−1∑
i=k

(
˙̄ri +

n− 1

r̄i

)
=

3

2
ν(r̄0, t̄0)λ0 in (t̄1, t̄2),

and ≤ is true in the above if r̄0 = 1.
The constant m0(r̄0, t̄0) can be understood as the “multiplicity” of ΓR0

. We
shall prove that m0 = 1 almost everywhere in {ν 6= 0}, i.e., that the multiplicity of
true interfaces is 1. For this we show later that m0(r̄0, t̄0) 6= 1 in B is equivalent
to ν(r̄0, t̄0)λ0(t̄0) = 0 (cf. Proposition 6.3). Then, using the fact that the mass is
preserved in time, we calculate explicitly λ0 and show that λ0(t̄0) 6= 0 (cf. Proposition
6.5).

Proof of Proposition 6.1. For the simplicity of presentation we assume k = 1. We
first consider the case r̄0 6= 1 and later point out the differences in the other case.

In the z-variable the nonlocal equation (3.1) becomes

ε∂tΦ− ṙ1Φ′ − 1

ε
Φ′′ − n− 1

εz + r1
Φ′ +

1

ε
W ′(Φ)− λε(t) = 0.(6.1)

Let ζ be a smooth time-dependent test function with compact support in (t̄1, t̄2).
First, we multiply equation (6.1) by Φ′ζ and integrate over (−ε−α+zm0 , ε−α)×(t̄1, t̄2),

∫ t̄2

t̄1

∫ ε−α

−ε−α+zm0

ζ(εΦtΦ
′ − ṙ1Φ′

2
) dz dt− 1

ε

∫ t̄2

t̄1

ζ

(
1

2
(Φ′)2 −W (Φ)

)∣∣∣∣ε−α
−ε−α+zm0

dt

(6.2)

=

∫ t̄2

t̄1

∫ ε−α

−ε−α+zm0

(n− 1)ζ

εz + r1
|Φ′|2 dz dt+

∫ t̄2

t̄1

∫ ε−α

−ε−α+zm0

ζλεΦ
′ dz dt.

The main part of this section is the evaluation of the limit of each term in (6.2) as
ε→ 0.

Second term. We claim that∫ t̄2

t̄1

1

ε

(
1

2
(Φ′)2 −W (Φ)

)∣∣∣∣ε−α
−ε−α+zm0

ζ dt
ε→0→ 0.(6.3)

Indeed, the endpoints −ε−α + zm0 and ε−α are in Jgood, so we can apply Corollary

5.9 and replace Φ by Φ0 since
∫ t̄2
t̄1
‖Φ − Φ0‖2H1,∞(J) dt ≤ Cε2β and 2β − 1 > 0.

The claim in (6.3) now follows since Φ0(−ε−α + zm0 , t) = tanh(±ε−α + µε) and
Φ0(ε−α, t) = tanh(ε−α + µε).
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Third term. We claim that

(n− 1)

∫ t̄2

t̄1

∫ ε−α

−ε−α+zm0

ζ
1

εz + r1
ε

|Φ′|2 dz dt ε→0→ 4

3
(n− 1)

∫ t̄2

t̄1

ζ

m0∑
i=1

1

r̄i
dt.(6.4)

To prove this, we first replace Φ by Φ0. We can do this since | 1
εz+r1ε

| ≤ 1
R0

and

since by the approximation proposition (Proposition 5.5), Φ′ is well approximated by
Φ′0.

Therefore, we only have to consider the limit of the integral∫ t̄2

t̄1

∫ ε−α

−ε−α+zm0

ζ
1

εz + r1
ε

|Φ′0|2 dz dt.(6.5)

To find this limit, we divide the interval of integration in subintervals each of which
contain one interface:

(−ε−α + zm0 , ε−α) = Cm0
∪
m0−1⋃
i=2

Ci ∪ C1 ∪
m0⋃
i=1

Bi(6.6)

:=

(
−ε−α + zm0 ,

zm0 + zm0−1

2
− 1

)
∪
m0−1⋃
i=2

(
zi+1 + zi

2
+ 1,

zi + zi−1

2
− 1

)

∪
(
z2 + z1

2
+ 1, ε−α

)
∪

m0⋃
i=1

{Ξi 6= 0, 1}.

The set {Ξi 6= 0, 1} is of length 4, we have the estimate | 1
εz+r1ε

| ≤ 1
R0

, and we know

that ‖Φ′0(z)‖L∞({Ξi 6=0,1})
ε→0→ 0 almost everywhere since by (5.25), |zi+1 − zi| ε→0→ ∞.

Thus the integral over Bi gives 0 in the limit.
We note that by the definition in (5.6) of Φ0, we have Φ0(z+zi) = tanh((−1)i+1z+

µε) for z ∈ Ci − zi; therefore, we claim that

m0∑
i=1

∫ t̄2

t̄1

∫
Ci−zi

ζ

εz + riε
Φ′0

2
(z + zi) dz dt

ε→0→
m0∑
i=1

∫ t̄2

t̄1

ζ

r̄i

∫ ∞
−∞

(1− tanh2(z))2 dz dt =
4

3

∫ t̄2

t̄1

ζ

m0∑
i=1

1

r̄i
dt(6.7)

since riε → r̄i uniformly (cf. Proposition 4.2) and since 1−tanh2 decays exponentially.
Last term. We claim that∫ t̄2

t̄1

∫ ε−α

−ε−α+zm0

ζ λεΦ
′ dz dt

ε→0→ 2ν

∫ t̄2

t̄1

ζ λ0 dt,(6.8)

where ν was introduced in Proposition 4.2 and λ0 was introduced in Remark 2.4.
Indeed, integrating by parts yields∫ t̄2

t̄1

∫ ε−α

−ε−α+zm0

ζ λεΦ
′ dz dt =

∫ t̄2

t̄1

ζ λε Φ|ε
−α

−ε−α+zm0 dt.
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However,

Φ(ε−α, t) and Φ(−εa + zm0 , t) −→ ±1

by the approximation proposition (Proposition 5.5), and since λε −⇀ λ0 in L2, the
claim in (6.8) is immediate. Note that we allow for ν = {−1, 0, 1}.

First term. We claim that∫ t̄2

t̄1

∫ ε−α

−ε−α+zm0

ζ(εΦtΦ
′ − ṙ1Φ′

2
) dz dt

ε→0→ −
∫ t̄2

t̄1

4

3
ζ

m0∑
i=1

∂tr̄
i dt.(6.9)

This proof is similar to the convergence of the fourth term. The fourth term splits
into two distinctly different parts:∫ t̄2

t̄1

∫ ε−α

−ε−α+zm0

ζΦ′(εΦt − ṙ1Φ′) dz dt

=

∫ t̄2

t̄1

∫ ε−α

−ε−α+zm0

εζΦ′Φt dz dt−
∫ t̄2

t̄1

∫ ε−α

−ε−α+zm0

ζṙ1Φ′
2
dz dt.(6.10)

The last term should describe the dynamics in the limit, whereas the first term will
vanish. This is the rigorous verification of the traveling-wave structure of the solution.
We claim that∫ t̄2

t̄1

∫ ε−α

−ε−α+zm0

ζṙ1Φ′
2
dz dt

=

m0∑
i=1

∫ t̄2

t̄1

∫
[Ci∪Bi]−zi

ζṙi(Φ′(z + zi, t))2 dz dt
ε→0→

∫ t̄2

t̄1

4

3
ζ

m0∑
i=1

∂tr̄
i dt.(6.11)

We know from Proposition 4.2 that ∂tr
i −⇀ ∂tr̄

i weakly in L2(t̄1, t̄2). Therefore,
(6.11) is true if we show that∫

[Ci∪Bi]−zi
(Φ′(z + zi, t))2 dz −→ 4

3
strongly in L2(t̄1, t̄2).(6.12)

This amounts to showing that we can replace Φ by Φ0 in (6.11) since
∫∞
−∞(Φ′0)2 dz =∫∞

−∞(1− tanh2(z))2 dz = 4
3 , but this follows from Corollary 5.9 and the energy bound.

Next, we claim that∫ t̄2

t̄1

∫ ε−α

−ε−α+zm0

εζΦ′Φt dz dt

=

m0∑
i=1

∫ t̄2

t̄1

∫
[Ci∪Bi]−zi

εζΦ′(z + zi, t)Φt(z + zi, t) dz dt
ε→0→ 0.(6.13)

First, as usual, we replace Φ′ by Φ′0. This time this is possible because

ε

(∫
(Φt)

2 dz dt

) 1
2

≤ C,(6.14)
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while
∫

(Φ′ − Φ′0)2 dz dt −→ 0 by Corollary 5.9. In order to show estimate (6.14), we
proceed as in [S1] and prove the following a priori estimate on ∂tΦ:∫

|Φt|2 dz dt ≤ 2

∫
|Φt −

ṙ1

ε
Φ′|2 dz dt+

2

ε2

∫
|ṙ1|2|Φ′|2 dz dt

≤ 2

εRn−1
0

∫ T

0

∫
Ω

|∂tϕ(x, t)|2 dx dt+
2

εRn−1
0

→
t∈(0,T )

sup

∫
Ω

|∇ϕ(x, t)|2 dx
∫ T

0

|ṙ1|2 dt ≤ C(R0)

ε2
.

Therefore, we may substitute Φ′ by Φ′0 in (6.13) and only have to show that

ε

m0∑
i=1

∫ t̄2

t̄1

∫
[Ci∪Bi]−zi

ζΦtΦ
′
0(z + zi, t) dz dt

ε→0→ 0.(6.15)

Since in Bi we know that Φ′0
ε→0→ 0 pointwise, using (6.14), we obtain∣∣∣∣∣

∫ t̄2

t̄1

∫
Bi−zi

εζΦtΦ
′
0(z + zi, t)

∣∣∣∣∣ dz dt ≤ C +

∫ t̄2

t̄1

∫
Bi

(Φ′0)2 dz dt
ε→0→ 0.

Now we note the essential fact that in Ci−zi we have Φ0(z+zi) = tanh((−1)i+1z+µε),
so ∂tΦ

′
0 = 0. Therefore, we obtain

ε

m0∑
i=1

∫ t̄2

t̄1

∫
Ci−zi

ζΦtΦ
′
0(z + zi, t) dz dt = −ε

m0∑
i=1

∫ t̄2

t̄1

∫
Bi−zi

∂tζΦΦ′0(z + zi, t) dz dt

− ε
m0∑
i=1

∫ t̄2

t̄1

ζΦΦ′0| zi+1+zi

2 +1

ṙi+1 − ṙi
2ε

dt+ ε

m0∑
i=1

∫ t̄2

t̄1

ζΦΦ′0| zi−1+zi

2 −1

ṙi−1 − ṙi
2ε

dt.

Since Φ′0(· + zi) ∈ L1(R) and since Φ is bounded, the first sum converges to 0 with
ε. For the second and third terms, we use the fact that ṙi converge weakly in L2 and

the fact that Φ′0( z
i+1+zi

2 − 1)
ε→0→ 0 pointwise and thus in L2. This finishes the proof

of (6.15) and hence of (6.9).
If r̄0 = 1, the only difference in our strategy is that we integrate (6.1) over

(−ε−α + zm0 ,min(ε−α,
1−r1ε
ε )). Then everything remains the same, only (6.3) must

be changed into

lim
ε→0

∫ t̄2

t̄1

1

ε

(
1

2
(Φ′)2 −W (Φ)

)∣∣∣∣min(ε−α,
1−r1ε
ε )

−ε−α+zm0

ζ dt ≤ 0.

In summary, we have evaluated the limit of each term in (6.2). Therefore, using
equation (6.2) and the limit of each term given by (6.3), (6.4), (6.8), and (6.9), we
have shown that in the limit as ε→ 0, we obtain the equation

−
∫ t̄2

t̄1

4

3
ζ

m0∑
i=1

(
˙̄ri +

n− 1

r̄i

)
dt = 2ν

∫ t̄2

t̄1

ζλ0 dt,(6.16)

or the inequality with ≤ if r̄0 was in the fixed boundary of the domain. This limit
was obtained in the box B defined in Proposition 4.2.
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The next lemma is essential in studying the issue of multiplicities.
Lemma 6.2. Let (t̄0, r̄0) be as in Proposition 6.1. Then if ν(t̄0, r̄0) 6= 0 and

r̄0 6= 1,

−
(

˙̄rk +
n− 1

r̄k

)
≥ 3

2
ν(r̄0, t̄0)λ0 ≥ −

(
˙̄rm0+k−1 +

n− 1

r̄m0+k−1

)
in (t̄1, t̄2),(6.17)

and if r̄0 = 1, then the second of the above inequalities holds.
Proof. We again assume that k = 1. Without loss of generality, assume that

ν = 1. Now, instead of integrating (6.2) over (−ε−α + zm0 , ε−α), we integrate only
over the last branch of Φ. More precisely, let cε(t) be the first negative point where

Φ′(·, t) vanishes. We note that in the same way that we proved that |zi+1− zi| ε→0→ ∞
(cf. 5.25), we can show that cε(t)

ε→0→ −∞ pointwise. We integrate (6.2) over (cε, ε
−α)

and use the same arguments as before to obtain the limit as ε → 0. This gives an
inequality for ˙̄r1 similar to (6.16). We only point out the main differences with the
previous case. The claim in (6.3) is replaced by

lim
ε→0

∫ t̄2

t̄1

ζ
1

ε

(
1

2
(Φ′)2 −W (Φ)

)∣∣∣∣ε−α
cε

dt =

∫ t̄2

t̄1

ζ lim
ε→0

1

ε
W (Φ(cε)) dt,

and the proof is the same as before since Φ′(cε(t), t) = 0.
The claim in (6.4) is replaced by

(n− 1)

∫ t̄2

t̄1

∫ cε

−ε−α
ζ

1

εz + r1
|Φ′|2 dz dt ε→0→ 4

3
(n− 1)

∫ t̄2

t̄1

ζ
1

r̄1
dt,

and the proof is similar to that above since cε
ε→0→ −∞.

The claim (6.8) is replaced by∫ t̄2

t̄1

∫ cε

−ε−α
ζλεΦ

′ dz dt
ε→0→ 2

∫ t̄2

t̄1

ζλ0 dt.

The proof must be modified slightly since we only know that Φ(cε, t)→ −1 pointwise
and thus in L2. However, this is enough to pass to the limit.

The claim (6.9) is replaced by∫ t̄2

t̄1

∫ ε−α

cε

ζ(εΦtΦ
′ − ṙ1Φ′

2
) dz dt

ε→0→ −
∫ t̄2

t̄1

4

3
ζ∂tr̄

1 dt,

and the proof is the same.
Thus, in the limit, we find that

−
∫ t̄2

t̄1

4

3
ζ

(
˙̄r1 +

n− 1

r̄1

)
dt−

∫ t̄2

t̄1

ζ lim
ε→0

1

ε
W (Φ(cε)) dt = 2

∫ t̄2

t̄1

ζλ0 dt.

Similarly, we can integrate (6.2) over (−ε−α + zm0 , dε), where dε is the first

point to the right of zm0 for which Φ′ vanishes. Since Φ0(−ε−α + zm0)
ε→0→ −1 and

Φ0(dε)
ε→0→ 1, this yields

−
∫ t̄2

t̄1

4

3
ζ

(
˙̄rm0 +

n− 1

r̄m0

)
dt+

∫ t̄2

t̄1

ζ lim
ε→0

1

ε
W (Φ(dε)) dt = 2

∫ t̄2

t̄1

ζλ0 dt
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in the limit. Since W ≥ 0, we conclude for ζ ≥ 0 that

−
∫ t̄2

t̄1

4

3
ζ

(
˙̄r1 +

n− 1

r̄1

)
dt ≥ 2

∫ t̄2

t̄1

ζλ0 dt,

−
∫ t̄2

t̄1

4

3
ζ

(
˙̄rm0 +

n− 1

r̄m0

)
dt ≤ 2

∫ t̄2

t̄1

ζλ0 dt.

This proves the lemma.
Proposition 6.3 (evolution equation). Let AR0

be as in (4.2). Then the in-
terfaces r̄ = r̄i defined in (4.5) evolve in their domain of existence IiR0

∩ {r̄i < 1}
according to

−
(

˙̄r +
n− 1

r̄

)
=

3

2
ν(·, r̄)λ0.(6.18)

In addition, for almost all (t̄0, r̄0) ∈ ΓR0
with r̄0 < 1,

either ν(t̄0, r̄0)λ0(t̄0) = 0 or m0(t̄0, r̄0) = 1.(6.19)

Proof. Define for any M0 ≥ k ≥ j ≥ 1 the set (formally setting r̄0 = +∞ and
r̄M0+1 = −∞)

I := {t̄0 ∈ AR0
| r̄j−1 > r̄j = · · · = r̄k > r̄k+1 at t̄0}.

There exist only finitely many j and k as above, and any t has to be in one of the
corresponding I’s. Therefore, if we prove the claim in I, this proves the proposition.

For any t̄0 ∈ I and r̄0 := r̄j(t̄0),

m0(t̄0, r̄0) = k − j + 1 and ν(t̄0, r̄0) = ±1 if m0 is odd.

Note that almost everywhere in I,

˙̄rj = · · · = ˙̄rk,

and thus Proposition 6.1 implies that almost everywhere in I (if r̄j < 1),

−m0

(
˙̄rj +

n− 1

r̄j

)
= −

k∑
i=j

(
˙̄ri +

n− 1

r̄i

)
=

3

2
ν(·, r̄j)λ0.(6.20)

If m0 is even, then ν = 0 almost everywhere in I and thus the differential equation
(6.18) is immediate.

If m0 is odd, then Lemma 6.2 applies, giving

−
(

˙̄rj +
n− 1

r̄j

)
≥ 3

2
ν(·, r̄j)λ0 ≥ −

(
˙̄rk +

n− 1

r̄k

)
in I.

However, since both sides agree, the differential equation (6.18) is satisfied.
Finally, subtracting the differential equation (6.18) from (6.20) implies

(1−m0)

(
˙̄rj +

n− 1

r̄j

)
= 0.
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Thus either m0 = 1 or ˙̄rj + n−1
r̄j = 0, the latter in turn implying that λ0 = 0. This

completes the proof.
Now we have to identify the limit Lagrange multiplier λ0. To determine λ0 in

terms of the interfaces of v, we use the mass-conservation property of nonlocal flow,
namely

∂t

∫
Ω

ϕε(x, t) dx = 0 and hence ∂t

∫
Ω

v(x, t) dx = 0.

Since these are nonlocal quantities, we have to remove the constraint r > R0 > 0.
Definition 6.4. In (4.5) we defined interfaces

r̄i : IiR0
⊂ AR0 → (R0, 1] for i = 1, . . .,M0

with the property that r̄i ≥ r̄i+1 and r̄i = R0 on ∂IiR0
∩ AR0 . These interfaces are

locally Hölder- 1
2 .

For a sequence R0 → 0, we now define

A :=
⋂

R0→0

AR0
.(6.21)

Then since this is a countable intersection, the complement of A has at most countably
many points. In addition, we define Ii :=

⋃
R0→0 I

i
R0

and

Ri : Ii −→ (0, 1] for i = 1, . . .(6.22)

by Ri(t) := r̄i(t) if t ∈ IiR0
. Then, in particular, IiR0

∩A = {t ∈ A | Ri(t) > R0}.
This definition is reasonable since on the intersections of IiR0

’s with different

R0, the corresponding r̄i’s agree. For any R0, the r̄i’s were constructed (see section
4) by selecting subsequences, and using a diagonal sequence, we may assume that
the subsequence does not depend on R0. Thus the limit graphs r̄i coincide in the
intersections of the sets AR0

× (R0, 1].
We note that by definition, m0(t̄0, r̄0) = #{i | Ri(t̄0) = r̄0} and ν0(t̄0, r̄0) = 0 if

m0 is even.
Proposition 6.5 (the Lagrange multiplier). In the set A, the limit Lagrange

multiplier is given by

λ0 = −2

3

(n− 1)
∑
ν(Ri)(Ri)n−2∑

|ν(Ri)|(Ri)n−1
,

where summation is over all interfaces of radii strictly less than 1. If the space di-
mension is strictly larger than 2, then λ0 6= 0. If the space dimension is equal to 2,
then λ0 6= 0 in case of an odd number of interfaces and identically zero in case of an
even number of interfaces.

Proof. Since ϕε → v in L1 and v = ±1 almost everywhere, the same is true for

χε :=
ϕε − aε
|ϕε − aε|

.

By construction, for t ∈ AR0 , the function χε(t, ·) has discontinuities at riε(t) in [R0, 1)
for i = 1, . . .,M0 (formally setting riε(t) = R0 if riε(t) is not defined). Thus for t ∈ AR0
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and ε→ 0,∫
|x|>R0

v dx←−
∫
|x|>R0

χε dx = ± 1

n

{
2

M0∑
i=1

(−1)i+1(riε)
n + (−1)M0+1(R0)n − 1

}

−→ ± 1

n

{
2

M0∑
i=1

(−1)i+1(r̄i)n + (−1)M0+1(R0)n − 1

}
,

where we formally set r̄i(t) = R0 if t /∈ IiR0
. Differentiating the resulting identity

yields

∂t

∫
|x|>R0

v dx = ±2

M0∑
i=1

(−1)i+1(r̄i)n−1 ˙̄ri for t ∈ AR0 .

This can be rewritten as

∂t

∫
|x|>R0

v dx =

{
±2

M0∑
i=1

(−1)i+1(r̄i)n−1 ˙̄ri

}
χ+ µR0

,(6.23)

where χ is the characteristic function of A and µR0
is a measure with support in

(0, T )\A.
Since v ∈ BV ((0, T ) × Ω), we know that

∫
|x|>R0

v dx ∈ BV (0, T ) uniformly

bounded with respect to R0 and thus, since
∫
|x|>R0

v dx→
∫

Ω
v dx,

∂t

∫
|x|>R0

v dx
∗−⇀ 0 = ∂t

∫
Ω

v dx in [C0(0, T )]′.(6.24)

We now use the differential equation (6.18) to calculate the limit of the sum in
(6.23):

M0∑
i=1

(−1)i+1(r̄i)n−1 ˙̄ri

= −3

2
λ0

M2(t)∑
i=M1(t)

(−1)i+1ν(r̄i)(r̄i)n−1 − (n− 1)

M2(t)∑
i=M1(t)

(−1)i+1(r̄i)n−2,

where M2(t) := #{i | r̄i(t) > R0} and M1(t) is the first index such that the corre-
sponding interface is less than 1.

We assume without loss of generality that v is positive near ∂Ω. Then we remark
that if ν(r̄i) 6= 0, then (−1)i+1 = −ν(r̄i) because for any i with ν(r̄i) = 0, an even
number of interfaces collide. In the second sum, we may substitute (−1)i+1 with
−ν(r̄i) because either they agree or (r̄i)n−2 is added up an even number of times with
alternating signs. Thus

M0∑
i=1

(−1)i+1(r̄i)n−1 ˙̄ri

= −3

2
λ0

M2(t)∑
i=M1(t)

|ν(r̄i)|(r̄i)n−1 − (n− 1)

M2(t)∑
i=M1(t)

ν(r̄i)(r̄i)n−2.
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We now want to pass to the limit R0 → 0. This is possible thanks to the following
bounds. Since the jumps of v are exactly given by the interfaces Ri, with ν(Ri) 6= 0,
we have the formula

sup
(0,T )

∫
Ω

|∇v| = sup
A
ωn

∞∑
i=1

|ν(Ri)|(Ri)n−1 ≤ C.

For the second sum, we apply Proposition 3.4. By lower semicontinuity, estimate
(3.12) carries over to the limit g(v) = 4

3v and thus∫ T

0

∫ 1

0

|v′|rn−2 dr dt =

∫
A

∞∑
i=1

|ν(Ri)|(Ri)n−2 dt ≤ C.

Thus we know that for almost any t ∈ A, all of the sums converge absolutely as R0 →
0, and by the monotone convergence theorem, this convergence (after multiplication
with χ as in (6.23)) is in L1(0, T ):{ M0∑

i=1

(−1)i+1(r̄i)n−1 ˙̄ri
}
χ

R0→0→

−3

2
λ0

∞∑
i=M1(t)

|ν(Ri)|(Ri)n−1 − (n− 1)
∞∑

i=M1(t)

ν(Ri)(Ri)n−2

χ.

This together with (6.23) and (6.24) implies

µR0

∗−⇀ µ = 0

and

3

2
λ0

∞∑
i=M1(t)

|ν(Ri)|(Ri)n−1 + (n− 1)
∞∑

i=M1(t)

ν(Ri)(Ri)n−2 = 0

almost everywhere in A.
We now summarize the results of this section in the following theorem.
Theorem 6.6 (the limit equation). Suppose that ϕε is a smooth, radial solution

of (1.1) with boundary condition (1.2) which satisfies (2.1) and (2.2). Then for the
limit v of this sequence (cf. Remark 2.4), the free boundary Γ := ∂{v = −1} is given
by a collection of continuous graphs

ri : [ti, Ti] −→ [0, 1]

with the following conditions:
(1) 0 < ri < 1 in (ti, Ti).
(2) ri is locally Lipschitz continuous in {ri > 0} ∩ [ti, Ti].
(3) ṙi ≤ 0 almost everywhere in (ti, Ti).
(4) ti = 0, ri(ti) = 1, or ti = tj for some j 6= i and ri(ti) = rj(tj).
(5) Ti = T , ri(Ti) = 0, or Ti = Tj for some j 6= i and ri(Ti) = rj(Tj).
(6) Two different graphs ri and rj agree at most at finitely many points.
(7) The direction of jump νi(t) := ν(t, ri(t)) = ±1 is constant for t ∈ (ti, Ti)

and—if the space dimension is larger than 2 or if the space dimension is 2 and the
total number of interfaces is odd—then the multiplicity satisfies m0(t, ri(t)) = 1.
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(8) ri satisfies the nonlocal differential equation

−4

3

(
ṙi +

n− 1

ri

)
= 2νiλ0 in (ti, Ti).(6.25)

(9) In (8) above, the Lagrange multiplier λ0 is given by

λ0 = −(n− 1)
2

3

∑
νi(ri)n−2∑
(ri)n−1

and changes sign exactly at times ti with ri(ti) = 1.
The graphs ri correspond (up to renumbering) one to one to the true interfaces

Rj given by (6.22). If the initial data have only finitely many true interfaces, than
the number of true interfaces is finite at any given time. There might exist phantom
interfaces which all evolve by mean curvature.

Proof. By Proposition 6.3, we know that in IiR0
the evolution equation is satisfied,

and by Proposition 6.5, we have a formula for the Lagrange multiplier. Combining
both propositions, we see

Ṙi ≤ 0⇐⇒
∑
j

ν(Rj)ν(Ri)Ri(Rj)n−2 ≤
∑
j

|ν(Rj)|(Rj)n−1,(6.26)

where summation is over all interfaces of radii less than 1. However, if k is the smallest
index such that the corresponding interface has radius less than 1 and nonzero ν, then∑

j

ν(Rj)ν(Ri)Ri(Rj)n−2 ≤
{
|ν(Ri)|Ri(Rk)n−2 if i ≤ k,
0 otherwise

≤ (Rk)n−1 ≤
∑
j

|ν(Rj)|(Rj)n−1.
(6.27)

This proves that Ṙi ≤ 0 in IiR0
for any R0 > 0.

Since mass is conserved, the denominator in the formula for λ0 is bounded from
below, and since the nominator is an alternating sum, λ0 is uniformly bounded.

The sign of λ0 is given by the sign of the first nonvanishing ν(Rj) that corresponds
to some Rj < 1. Thus the sign of λ0 changes only if some Rj with ν(Rj) 6= 0 emerges
from the fixed boundary. Since the number of interfaces larger than any R0 is finite
this may only occur at finitely many points.

Now suppose t ∈ AR0
for some R0. Fix Rj(t) and Rk(t) with j < k and assume

that there exists for both (Rj(t), t) and (Rk(t), t) a neighborhood such that in these
neighborhoods, ν(Rj) = νj and ν(Rk) = νk are constant and nonzero. Thus by the
differential equation (6.18),

Ṙj − Ṙk =
n− 1

Rk
− n− 1

Rj
+

3

2
λ0(νk − νj)(6.28)

>
3

2
λ0(νk − νj),

and hence the distance between Rj and Rk increases if λ0(νk − νj) ≥ 0. This is true
in particular if νk = νj .

In the case where the dimension of the space n ≥ 3, we know from (6.19) and
Proposition 6.5 that for almost every t ∈ AR0

, the condition ν(t, Rj(t)) 6= 0 implies
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m0 = 1. By the definition of m0, this implies that for almost all t and all points
(Rj(t), t) with Rj(t) > R0 and ν(t, Rj(t)) 6= 0, there exists a box B such that the set
ΓR0
∩ B consists exactly of the corresponding Rj . Thus observation (6.28) implies

that the distance between all interfaces Rk and Rj increases if they have the same
normal, and hence such interfaces can never meet. As a consequence, we find that if
two Rj and Rk with a nonvanishing normal meet at some point t, then νj − νk is in
either the set {2, 0} or the set {0,−2} in a whole neighborhood of the meeting point
and consequently does not change sign. Thus (6.28) shows that either Ṙj− Ṙk ≥ 0 or
Ṙj−Ṙk ≤ 0 in any one-sided neighborhood of the meeting point because the sign of λ0

changes at most at finitely many times and n−1
Rk
− n−1

Rj is Lipschitz continuous in the
neighborhood. Thus there are exactly three possibilities for geometric singularities in
AR0

: (i) two true interfaces meet and then form a single phantom interface; (ii) two
interfaces nucleate out of a single phantom interface; or (iii) two true interfaces meet
and immediately separate again. Phenomenon (iii) occurs only if λ0 changes sign at
that time point. Of course, phantom interfaces cannot meet each other because they
move by mean curvature. Moreover, they can only meet any of the true interfaces
where the latter cease to exist because otherwise the density m0 would be larger than
1 on a true interface.

Similar arguments apply for n = 2. Indeed, in that case, the Lagrange multiplier
locally either has a fixed sign or is identically zero. In the first case, the same analysis
as above applies because the density m0 of interfaces with nonvanishing normal is 1
again. In the second case, all the interfaces move by mean curvature and cannot meet
anyway.

The limit v satisfies the weak Hölder-continuity estimate in Remark 2.11. For
true interfaces, it implies that at the points of N(R0) (see (2.12) and Proposition 3.2
for the definition), only one of the following behaviors of the graphs Rj is possible.

At most two true interfaces can meet or nucleate at a point t ∈ N(R0). Two
meeting true interfaces can only nucleate into two true interfaces across t ∈ N(R0)
if λ0 changes sign at this time point, and this can only happen if a true interface
nucleates from the fixed boundary.

Any true interface that does not meet with another one at times in N(R0) con-
tinues as a single true interface across this time point.

When there exists a continuation, it has to be of class Hölder-1
2 and thus the

differential equation is satisfied across that point.

These arguments allow us to conclude that the free boundary ∂{v = −1} consists
of a collection of graphs that have properties (1)–(10).

Thus the proof of Theorem 6.6 is complete.

Remark 6.7. The evolution equation is the radial version of the expected limiting
nonlocal geometric problem

Vi − ki = − 1∑
j |Γj |

∑
j

∫
Γj

kj ds,

where Vi is the normal velocity and ki is the sum of the principal curvatures of the
interface Γi.

Note that in the right-hand side of (6.25), we sum only over interfacesRi such that
ν(Ri) 6= 0. These interfaces represent exactly the free boundary of v. If ν(Ri) = 0,
these phantom interfaces are not seen by the limit v and they correspond to collapsing
ε-interfaces. They do not have an impact on the evolution of the other interfaces.
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Example 6.8. Colliding interfaces are generic to the nonlocal flow. Indeed, if two
interfaces are sufficiently close to each other initially, sufficiently close with respect to
their distance to the others and to their own size, then they have to meet before the
smaller of them has time to shrink to 0.

Let n = 3 and assume that there are three initial interfaces. Then their evolution,
as long as they all exist, is governed by

−
(
Ṙi +

n− 1

Ri

)
= −(−1)i+1(n− 1)µ0,

where

µ0 =
R1 −R2 +R3

(R1)2 + (R2)2 + (R3)2
.

Therefore

Ṙ3 ≥ −n− 1

R3

and thus (R3)2(t) ≥ −2(n− 1)t+ (R3)2(0). Thus R3 cannot disappear at the origin
as long as t ≤ tmax = 1

2(n−1) (R3)2(0).

Since mass is preserved, the largest interface is bounded below by some number
Rmin, which is such that the mass of a ball of radius Rmin equals the initial mass:

(Rmin)3 =
(
(R1)3 − (R2)3 + (R3)3

)
(0).

Since all interfaces are decreasing, this implies the following bound for µ0:

µ0 ≥
Rmin −R2(0)

((R1)2 + (R2)2 + (R3)2) (0)
.

Subtracting the equation for the second and third interface results in

Ṙ2 − Ṙ3 =
n− 1

R3
− n− 1

R2
− 2(n− 1)µ0 ≤ −2(n− 1)µ0.

Now suppose the interfaces R2 and R3 do not meet before R3 vanishes. Then we can
integrate the above inequality, use the bound for µ0, and evaluate the result at tmax

to find

0 ≤ (R2 −R3)(tmax) ≤ − Rmin −R2(0)

((R1)2 + (R2)2 + (R3)2) (0)
+ (R2 −R3)2(0).

If (R2 −R3)2(0) is small, then Rmin is approximately R1(0) and it is clearly possible
to choose initial data for R1 that contradicts the above inequality. Thus R2 and R3

have to meet before the smaller one has time to disappear. After the meeting point,
the evolution becomes stationary and R1 = Rmin.

Remark 6.9. Our estimates of section 5 are strong enough to prove that

E0(t) =
4

3

∑
(Ri(t))n−1,

which contains contributions from all interfaces, both true and phantom. Thus jumps
in the energy (which are responsible for the set of bad time points in the complement
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of A) correspond to either jumps in interfaces or jumps in multiplicity, the latter
only possible for phantom interfaces. If we impose the condition that initially only
finitely many and only true interfaces exist, then by the maximum principle for the
ε-equation, no interfaces can nucleate from the origin as long as the smallest of the
initial interfaces has not yet disappeared. Thus up to that time, only true interfaces
exist and consequently have density 1 and are continuous.

Since the energy E∗[v] of the limit (see (2.10) for the definition) counts only the
true interfaces, we may identify any loss of energy in the limit as the appearance of
phantom interfaces.

7. The viscous Cahn–Hilliard equation. Here we consider the viscous Cahn–
Hilliard equation in ΩT := Ω× (0, T ) as introduced by Novick-Cohen [NC]:

α∂tϕ − 4u = 0,(7.1)

u = −ε4ϕ +
1

ε
W ′(ϕ) + ν∂tϕ.(7.2)

Imposing Neumann-zero boundary conditions for both u and ϕ and applying the usual
techniques, one obtains the equations

1

α

∫
Ω

|∇u|2 dx + ∂tEε(ϕ) + ν

∫
Ω

|∂tϕ|2 dx = 0(7.3)

and ∫
Ω

∂tϕ dx = 0 and

∫
Ω

−u dx =
1

ε

∫
Ω

−W ′(ϕ) dx.(7.4)

We shall show briefly how the viscous Cahn–Hilliard equation (7.1)–(7.2) relates
both to the Cahn–Hilliard and the nonlocal Allen–Cahn equation.

Let us first consider the limit ν → 0, keeping all of the other parameters fixed.
Formally, the limit problem is the standard Cahn–Hilliard equation. If the initial
energy is uniformly bounded in ν, this can be shown rigorously. First, we note that
estimate (7.3) immediately gives weak compactness in L2(ΩT ) for ∇ϕ and a bound of
ϕ in L4(ΩT ). However, since the equation is nonlinear, it is important to have strong
compactness in L1(ΩT ) for ϕ. To this end, we note that equation (7.1) implies

α||∂tϕ||L2(H−1,2) = ||∇u||L2(ΩT ) ≤ Eε(ϕ)(0)(7.5)

and thus (with Eε(ϕ)(0) ≤ C)

α||ϕ(·, · − h)− ϕ||L2(H−1,2) ≤ C · h.(7.6)

Now interpolating between L2(H−1,2) and L2(H1,2) yields

||ϕ(·, ·+ h) − ϕ||L1(ΩT ) ≤ Ch
1
2 .(7.7)

This implies strong compactness for ϕ in L1(ΩT ).
Of course the estimate for ∇u in (7.3) together with the bound of its mean value

in (7.4) imply weak compactness in L2(ΩT ) for both u and ∇u. This convergence
is strong enough to pass to the limit ν → 0 in the viscous Cahn–Hilliard equation
(7.1)–(7.2).
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If the limit α→ 0 is considered, the limit problem will be the nonlocal equation.
To see this, assume once again that the energy is uniformly bounded in α. Then
estimate (7.3) yields the L1 compactness of the order parameter ϕ immediately, and
the weak L2(ΩT ) compactness of u and ∇u is again obtained from (7.3) and the
mean-value condition (7.4). This compactness allows us to pass to the limit in (7.1)
and (7.2). The limit of (7.1) gives 4u = 0 for the limit, and thus u is a constant, but
then (7.4) yields the correct formula for u and we find the nonlocal equation in the
limit.

Thus we see that both the nonlocal equation and the Cahn–Hilliard equation
occur as special degenerate limits of the viscous Cahn–Hilliard equation.

Appendix. Ellipticity of the linearized Allen–Cahn equation. Here we
give the proof of the ellipticity proposition (Proposition 5.6).

Proof of Proposition 5.6. Let S be one of the sets of integration as in Proposition
5.6. We start by integrating by parts the left-hand side of the claimed estimate
(denoted (LHS)). This results in

(LHS) =

∫
S

(−Ψ′′ + W ′′(Θ)Ψ)Ψξ2 dz

=

∫
S

(
|Ψ′|2 + W ′′(Θ)Ψ2

)
ξ2 dz + 2

∫
S

Ψ′Ψξ′ξ dz.(A.1)

Here we should point out that Ψ is not necessarily smooth at z = ziε, but since Ψ
vanishes at these points, the integration by parts is nevertheless valid. Now we note
that W ′′(Θ) = 2(3Θ2−1), and in the set where this function is strictly positive, there
is nothing to prove. A careful study of Θ will show that the measure of the set where
W ′′ is not strictly positive is small enough that the integral of Ψ2 over this set can
still be controlled by the integral of Ψ′

2
.

Thus we introduce for any a > 0 the set

Iε := {W ′′(Θ) < 2a} ∩ (−ε−β + zmεε , ε−β).(A.2)

We want to estimate the diameter of any connected component of Iε. By the defini-
tions in (5.5) and (5.6)

Θ(z) =
∑
i

Ξi(z)tanh((−1)i(z − ziε) + µε) + εΦε1(z)

with

||Φ1||L∞(−ε−β+zmεε ,ε−β) ≤ C||λε|| ≤
C√
ε

uniformly in time

by Corollary 2.2 and Lemma 5.7.
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Since W ′′(Θ) < 2a ⇔ |Θ| <
√

a+1
3 , we thus find that

Iε ⊂
{∑

i

Ξi|tanh((−1)i(z − ziε) + µε)| ≤
√
a+ 1

3
+ Cε

}

⊂
⋃
i

{
|tanh((−1)i(z − ziε) + µε)| ≤

√
a+ 1

3
+ Cε

}

⊂
⋃
i

{
|z − ziε| ≤ tanh−1

(√
a+ 1

3
+ Cε

)
+ |µε|

}
=:

⋃
i

Ii.(A.3)

We return to (A.1). We continue to estimate as follows:

(LHS) ≥
∫
S

|Ψ′|2ξ2 dz + 2a

∫
S

Ψ2ξ2 dz

− (2 + 2a)

∫
Iε

Ψ2ξ2 dz + 2

∫
S

Ψ′Ψξ′ξ dz.(A.4)

However, using Ψ(ziε) = 0 gives∫
Iε

Ψ2ξ2 dz =
∑
i

∫
Ii\Ii−1

ξ2Ψ2 dz

=
∑
i

∫
Ii\Ii−1

ξ2

(∫ z

ziε

Ψ′

)2

dz

≤
∑
i

∫
Ii\Ii−1

|Ψ′|2 1

2
|Ii|

≤
(

tanh−1

(√
a+ 1

3
+ Cε

)
+ tanh−1Q

)∫
S

|Ψ′|2ξ2 dz(A.5)

by (A.3) and since |µε| = |tanh−1aε| ≤ tanh−1Q. Note in addition that by construc-
tion

⋃
Ii ⊂ {ξ = 1}. We enter this into (A.4) and continue to estimate:

(LHS) ≥
(

1 − (2 + 2a)

(
tanh−1

(√
a+ 1

3
+ Cε

)
+ tanh−1Q

))
︸ ︷︷ ︸

=:c0(a,ε)

∫
S

|Ψ′|2ξ2 dz

+ 2a

∫
S

Ψ2ξ2 dz + 2

∫
S

Ψ′Ψξ′ξ dz.(A.6)

The number c0 turns out to be positive if ε = 0 and a = 0 by the choice of Q in (4.1),
and thus there exist positive ε0 and a0 such that

0 < c0(ε0, a0) < c0(ε, a0)

for all ε < ε0.
This proves the proposition with ζ1 = 1

2c0(ε0, a0) and ζ2 = 2a0 if we still use the
Hölder estimate for

∫
Ψ′Ψξ′ξ.
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Abstract. In the spirit of the recent work of Ames, Payne, and Schaefer [SIAM J. Math.
Anal., 24 (1993), pp. 97–116], the decay of flow in a porous medium through a semi-infinite pipe is
investigated. The analysis presented in this paper is based on the Brinkman–Forchheimer model.
In establishing decay estimate and bounds for the total weighted energy, the nonlinear term in the
model equation leads to difficulties which were not encountered in the paper cited above.

Key words. Brinkman–Forchheimer flow, decay estimates
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1. Introduction. In a recent paper [1], Ames et al. investigated the time-
dependent Stokes flow of an incompressible viscous fluid in a semiinfinite cylindrical
pipe. An exponential decay of a weighted energy expression was derived if the net flow
through the finite end of the pipe is assumed to be zero for each t. Modeled on their
work, we consider an analogous problem for flow in a porous medium based on a time-
dependent nonlinear equation, namely the Brinkman–Forchheimer equation. While
non-Darcy models in porous media have been increasingly discussed in the recent
engineering literature, the related mathematical analysis for some problems based on
these models is much less developed. In this paper, we shall study the spatial decay
estimates for the Brinkman–Forchheimer flow.

Although the techniques used in the present study basically follow the suggestions
in [1], the work reported here is not a trivial extension. Since the Stokes equation is
a linear equation, the interesting feature of this paper is the extension of the analysis
of decay estimates to a time-dependent nonlinear problem of pipe flow. An impor-
tant point of our analysis is to ensure that the estimates depend only on the known
data, i.e., the physical parameters, the initial and boundary data, and the geometry
of the domain. The presence of the nonlinear term makes the problem considerably
more complicated and new techniques must be developed to handle these difficulties.
We obtain the bound by two steps. First, we compare the energy of the solution to
the Brinkman–Forchheimer problem with the energy of the solution to the linearized
Brinkman problem. We then show how to determine bounds on the energy of the
linearized problem and the total energy bound to the nonlinear problem in a manner
which depends only on the data. Our motivation comes from the earlier work of Hor-
gan and Wheeler [10] and Ames and Payne [2] in studying decay estimates of steady
pipe flow. The basic idea is originally due to Payne [14] in his investigation of the
uniqueness criteria for steady-state solutions of the Navier–Stokes equation. Spatial
decay estimates for similar flow in a planar region have been studied in [16]. This
analysis depended heavily on the use of a stream function which could be obtained
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through the elimination of the pressure. This trick is not possible in the present case
of pipe flow and the interest here is to extend the analysis of the decay estimates
without recourse to these methods.

For investigations of the spatial decay of solutions of elliptic and parabolic equa-
tions, see, e.g., [3, 4, 5, 6, 7, 9, 12] and the references cited therein.

In the next section, we formulate the initial-boundary value problem, which de-
scribes pipe flow in a porous medium. We derive a second-order differential inequality
for the energy expression in section 3. A method for finding bounds on the estimates
for both the nonlinear problem and corresponding linear problem is given in section 4.
For comparison, we discuss the decay results for Darcy pipe flow in the last section.

2. Formulation of the problem. We begin this section by first introducing
the model to be used in this paper. Most of the studies in porous media carried out
to date have been based on the Darcy law, which is an empirical law for creeping flow
through an infinitely extended uniform medium. However, researchers now generally
recognize that non-Darcian effects are quite important for certain applications. For a
discussion of generalized non-Darcy models, see Vafai and Tien [17], Hsu and Chen
[11], and Prasad and Kladias [15]. Despite a difference of opinions as to what is the
most appropriate form for modeling flow in porous media, the Brinkman–Forchheimer
equation has wide acceptance in the porous media literature. The time-dependent
momentum equation describing flow in a porous medium may be written as [13]

ρfca
∂u

∂t
= −∇pf + µeff∇2u− µf

k
u− Fρfφ

k
1
2

|u|u,(2.1)

where ρf is the density of the fluid, ca is the acceleration coefficient, pf is the intrinsic
fluid pressure, u is the Darcy velocity, µf is the viscosity, µeff is the effective viscosity,
k is the permeability, F is the Forchheimer coefficient, φ is the porosity, and |u| =√
u2

1 + u2
2 + u2

3.
After scaling, the nondimensional form of (2.1) is

ut = ∆u− J1u− J2|u|u−∇p,(2.2)

where ∆ is the three-dimensional Laplacian and J1 and J2 are two physical param-
eters, the first being the coefficient of the Darcy velocity and the second being the
coefficient of inertial drag for flow in a porous medium.

Let R denote the interior of a semiinfinite cylindrical pipe of an arbitrary, smooth
cross-section with generator parallel to the x3-axis. The end (entrance) of the pipe in
the x3 = 0 plane is denoted by D0 and comprises part of the boundary ∂R of R.

We let

Rz = {(x1, x2, x3) | (x1, x2) ∈ D0, x3 > z ≥ 0}

denote the subdomain of R for which x3 > z and let

Dz = {(x1, x2, x3) | (x1, x2) ∈ D0, x3 = z}

denote the part of ∂Rz in the plane x3 = z ≥ 0.
The initial-boundary value problem that we consider here is

ui,t = ∆ui − J1ui − J2|u|ui − p,i in R× (0,∞),(2.3)
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ui,i = 0 in R̄× (0,∞),(2.4)

ui = 0 on ∂R\D0 × (0,∞),(2.5)

ui = fi(x1, x2, t) in D̄0 × (0,∞),(2.6)

ui = 0 in R× {0},(2.7)

ui, ui,j , ui,t, p = o(x−1
3 ) uniformly in x1, x2, t as x3 →∞.(2.8)

Here the comma (partial differentiation) and repeated index (summation) con-
ventions are used. In this work, Latin subscripts range over 1, 2, 3 while Greek
subscripts range over 1, 2 unless otherwise noted. We assume that the velocity field
ui(x1, x2, x3, t) for i = 1, 2, 3 and the pressure p(x1, x2, x3, t) are classical solu-
tions of (2.3)–(2.8) and the prescribed functions (entrance profile) fi are continuously

differentiable and vanish on ∂D0 × [0, ∞). The notation |u| represents (uiui)
1
2 .

We note that in the special case when J1 = 0 and J2 = 0 (flow in a clear fluid),
the problem (2.3)–(2.8) is reduced to that considered in [1].

We define a weighted energy integral for the solution ui of (2.3)–(2.8) by (no
summation on τ)

E(z, t) =

∫ t

0

∫
Rz

(ξ − z)[J1uiui + ui,jui,j + kui,τui,τ ] dxdτ,(2.9)

with k a parameter to be chosen later, and note that

∂E

∂z
= −

∫ t

0

∫
Rz

[J1uiui + ui,jui,j + kui,τui,τ ] dxdτ,(2.10)

∂2E

∂z2
=

∫ t

0

∫
Dz

[J1uiui + ui,jui,j + kui,τui,τ ] dAdτ.(2.11)

Our task is to obtain a second-order differential inequality for E from which we
can deduce an exponential decay estimate.

We remark here that from the point of view of the mathematics, it is not neces-
sary to include the lower-order term of the velocity (the first term in the integrand
of integral (2.9)) in the weighted energy because the integral of this term can be con-
trolled by the integral of the spatial derivative term using the Poincaré inequality (see
(A.1) in the appendix). However, the parameter J1 is a relatively large number for
most porous media occurring in nature (whereas it is small for a sparse material with
many pores), particularly in the limiting case of Darcy’s law. Thus the square of the
L2 norm of ui is the only kinetic energy term (see section 5) and we would like to
retain this term in our weighted energy.

3. Energy estimation. We now begin to derive the desired differential inequal-
ity for E from which the decay results will follow.

On multiplying (2.3) by (ξ− z)ui and k(ξ− z)ui,t, integrating over Rz, and using
the boundary conditions for ui, it can be shown that

E(z, t) =−
∫ t

0

∫
Rz

uiui,3 dxdτ −
∫ t

0

∫
Rz

(ξ − z)ui[ui,τ + J2|u|ui + p,i] dxdτ

+ k

∫ t

0

∫
Rz

(ξ − z)ui,τ [∆ui − J1ui − J2|u|ui − p,i] dxdτ.
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Integrating by parts again, using (2.4) and the initial-boundary condition, and drop-
ping five terms which are negative, we have

E(z, t) ≤ −
∫ t

0

∫
Rz

uiui,3 dxdτ − k
∫ t

0

∫
Rz

ui,τui,3 dxdτ

+

∫ t

0

∫
Rz

u3p dxdτ + k

∫ t

0

∫
Rz

u3,τp dxdτ

= I1 + I2 + I3 + I4.(3.1)

Estimates of the first two integral terms can easily be obtained by use of the Schwarz,
Poincaré, and arithmetic mean–geometric mean (AG) inequalities

I1 ≤
1

2
√
λ1

∫ t

0

∫
Rz

ui,jui,j dxdτ,(3.2)

I2 ≤
1

2
√
λ1

{∫ t

0

∫
Rz

kui,τui,τ dxdτ +

∫ t

0

∫
Rz

ui,3ui,3 dxdτ

}
.(3.3)

In (3.3), we have selected k = 1/λ1. Thus we have shown that

I1, I2 ≤
1

2
√
λ1

(
− ∂E

∂z

)
.(3.4)

We now bound I3 using the method of [1]. We first note that for any z∗ > 0, by
(2.4) and (2.5),∫

Dz

u3 dA =

∫
D∗z

u3 dA−
∫ z∗

z

∫
Dξ

u3,3 dAdξ

=

∫
Dz∗

u3 dA+

∫ z∗

z

∫
Dξ

u3,3 dAdξ =

∫
Dz∗

u3 dA,

and thus the area mean value of u3 is the same over each section. Since u3 is assumed
to vanish at infinity, we conclude that this value is zero for all z ≥ 0 and hence requires
that f3 satisfy ∫

D0

f3 dA = 0 for all t ≥ 0.(3.5)

Under this assumption, there exists a vector function (see (A.3) in the appendix) ωα
which satisfies

I3 =

∫ t

0

∫
Rz

ωα,αp dxdτ = −
∫ t

0

∫
Rz

ωαp,α dxdτ

=

∫ t

0

∫
Rz

ωα [uα,τ −∆uα + J1uα + J2|u|uα] dxdτ

=

∫ t

0

∫
Rz

ωαuα,τ dxdτ +

∫ t

0

∫
Rz

ωα,iuα,i dxdτ +

∫ t

0

∫
Dz

ωαuα,3 dAdτ

+ J1

∫ t

0

∫
Rz

ωαuα dxdτ + J2

∫ t

0

∫
Rz

ωα|u|uα dxdτ

= I31 + I32 + I33 + I34 + I35.(3.6)
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The integrals of the auxiliary function ωα can be bounded in terms of u3 by means of
(A.1) and (A.3). We can write

∫ t

0

∫
Rz

ωαωα dxdτ ≤
1

λ1

∫ t

0

∫
Rz

ωα,βωα,β dxdτ

≤ C

λ1

∫ t

0

∫
Rz

(u3)2 dxdτ,(3.7) ∫ t

0

∫
Rz

ωα,3ωα,3 dxdτ ≤
1

λ1

∫ t

0

∫
Rz

ωα,β3ωα,β3 dxdτ

≤ C

λ1

∫ t

0

∫
Rz

(u3,3)2 dxdτ.(3.8)

Using the Schwarz, Poincaré, and weighted AG inequalities, (3.7) and (3.8), we
have the following estimates for the first three integrals (see [1]):

I31 + I32 + I33 ≤
1

2

√
C

λ1

{
k

∫ t

0

∫
Rz

uα,τuα,τ dxdτ +

∫ t

0

∫
Rz

u3,βu3,β dxdτ

}
+

1

2

√
C

λ1

∫ t

0

∫
Rz

ui,jui,j dxdτ

+

√
C

2λ1

{∫ t

0

∫
Dz

uα,3uα,3 dxdτ +

∫ t

0

∫
Dz

u3,βu3,β dxdτ

}
.(3.9)

For the fourth term on the right side of (3.6), we have

I34 = J1

∫ t

0

∫
Rz

ωαuα dxdτ

≤ J1

(∫ t

0

∫
Rz

ωαωα dxdτ

) 1
2
(∫ t

0

∫
Rz

uαuα dxdτ

) 1
2

≤ J1

√
C

λ1

(∫ t

0

∫
Rz

(u3)2 dxdτ

) 1
2
(∫ t

0

∫
Rz

uαuα dxdτ

) 1
2

≤ J1

2

√
C

λ1

∫ t

0

∫
Rz

uiui dxdτ.(3.10)

Now we need to estimate the last integral, I35:

I35 = J2

∫ t

0

∫
Rz

wα|u|uα dxdτ

≤ J2

(∫ t

0

∫
Rz

ωαωα dxdτ

) 1
2
(∫ t

0

∫
Rz

(uiui)
2 dxdτ

) 1
2

.(3.11)

By means of the Hölder inequality and the Sobolev inequality ((A.5) in the appendix)
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with w = (uiui)
1
2 and Ω̄ = 4Ω, we deduce that∫ t

0

∫
Rz

(uiui)
2 dxdτ

≤
∫ t

0

(∫
Rz

(uiui)
3
2 dx

) 2
3
(∫

Rz

(uiui)
3 dx

) 1
3

dτ

≤ max
0≤τ≤t

(∫
Rz

(uiui)
3
2 (τ) dx

) 2
3
∫ t

0

(∫
Rz

(uiui)
3 dx

) 1
3

dτ

≤ Ω
1
3 max

0≤τ≤t

(∫
Rz

(uiui)
3
2 (τ) dx

) 2
3
∫ t

0

∫
Rz

ui,jui,j dxdτ.(3.12)

We point out here that to apply (A.5), we have extended ui as an even function across
x3 = z. In fact, let w̃ be an even extension of w about x3 = z, defined by

w̃(x1, x2, x3, t) =

{
w(x1, x2, x3, t) if x3 ≥ z,
w(x1, x2, 2z − x3, t) if x3 < z.

The Sobolev inequality ((A.5)) provides that∫ ∞
−∞

∫
Dξ

w̃6 dAdξ ≤ Ω̄

(∫ ∞
−∞

∫
Dξ

w̃, jw̃, j dAdξ

)3

.

Using the substitution, we have∫ ∞
−∞

∫
Dξ

w̃6 dAdξ = 2

∫ ∞
z

∫
Dξ

w6 dAdξ = 2

∫
Rz

w6 dx.∫ ∞
−∞

∫
Dξ

w̃, jw̃, j dAdξ = 2

∫
Rz

w, jw, j dx.

Replacing w = (uiui)
1
2 and further using the Schwarz inequality, we thus deduce that∫

Rz

(uiui)
3 dx ≤ Ω

(∫
Rz

ui,jui,jdx

)3

,

which justifies the last step of (3.2) in using the Sobolev inequality with Ω̄ = 4Ω.
Substituting the estimate of (3.12) into (3.11) and employing (3.7) and (A.1), we
conclude that

I35 ≤
J2Ω

1
6C

1
2

λ1
max

0≤τ≤t

(∫
Rz

(uiui)
3
2 (τ) dx

) 1
3
∫ t

0

∫
Rz

ui,jui,j dxdτ.(3.13)

Finally, summarizing all of the results in (3.9), (3.10), and (3.13), we obtain

I3 ≤
{√

C

λ1
+
J2Ω

1
6C

1
2

λ1
max

0≤τ≤t

(∫
Rz

(uiui)
3
2 (τ) dx

) 1
3
}(
− ∂E

∂z

)
+

√
C

2λ1

∂2E

∂z2
.(3.14)

We now turn to bounding I4 in terms of ∂E/∂z and ∂2E/∂z2. Following the ideas
in [1], we accomplish this with the aid of two auxiliary functions.
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Let ϕ be a solution of the boundary value problem

∆ϕ = u3,t in Rz,
∂ϕ

∂n
= 0 on ∂Rz.(3.15)

Since

∫
Rz

u3,t dx =

∫ ∞
z

∫
Dξ

u3,tdAdξ = 0

and u3,t → 0 as x3 → ∞, there exists a solution ϕ which together with its spatial
derivatives vanishes as x3 →∞. By means of ϕ, we can write

I4 = k

∫ t

0

∫
Rz

p∆ϕdxdτ = −k
∫ t

0

∫
Rz

ϕ,ip,i dxdτ

= k

∫ t

0

∫
Rz

ϕ,i
[
ui,τ − (ui,j − uj,i),j + J1ui + J2|u|ui

]
dxdτ

= k

∫ t

0

∫
Rz

ϕ,iui,τ dxdτ + k

∫ t

0

∫
Dz

ϕ,α(uα,3 − u3,α) dAdτ

− k
∫ t

0

∫ ∞
z

∫
∂Dξ

ϕ,i(ui,j − uj,i)nj dsdξdτ

+ kJ1

∫ t

0

∫
Rz

ϕ,iui dxdτ + kJ2

∫ t

0

∫
Rz

ϕ,i|u|ui dxdτ,

and by Schwarz’s inequality, we have

I4 ≤k
(∫ t

0

∫
Rz

ϕ,iϕ,i dxdτ

) 1
2
(∫ t

0

∫
Rz

ui,τui,τ dxdτ

) 1
2

(3.16)

+ k

(∫ t

0

∫
Dz

ϕ,αϕ,α dAdτ

) 1
2
(∫ t

0

∫
Dz

(uα,3 − u3,α)(uα,3 − u3,α) dAdτ

) 1
2

+ k

(∫ t

0

∫ ∞
z

∫
∂Dξ

|gradsϕ|2 dsdξdτ
) 1

2
(∫ t

0

∫ ∞
z

∫
∂Dξ

(ui,j − uj,i)ui,j dsdξdτ
) 1

2

+ kJ1

(∫ t

0

∫
Rz

ϕ,iϕ,i dxdτ

) 1
2
(∫ t

0

∫
Rz

uiui dxdτ

) 1
2

+ kJ2

(∫ t

0

∫
Rz

ϕ,iϕ,i dxdτ

) 1
2
(∫ t

0

∫
Rz

(uiui)
2 dxdτ

) 1
2

,

where gradsϕ denotes the tangential component of the gradient of ϕ. The integrals
involving the auxiliary function ϕ can be estimated by using (A.6)–(A.8) in the ap-
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pendix with f = u3,t. Using the weighted AG inequality and (3.12), we deduce that

I4 ≤
(

3
√
λ1 + J

1
2
1 + J2

2
√
λ1µ2

+
2

h2
0

√
λ1

[
1

µ2
+
d2

4

])∫ t

0

∫
Rz

kui,τui,τ dxdτ

+
1

λ1

∫ t

0

∫
Dz

(uα,3 − u3,α)(uα,3 − u3,α) dAdτ

+
h0

4
√
λ1

∫ t

0

∫ ∞
z

∫
Dξ

(ui,j − uj,i)ui,j dsdξdτ +
J

1
2
1

2
√
λ1µ2

∫ t

0

∫
Rz

J1uiui dxdτ

+
J2Ω

1
3

2
√
λ1µ2

max
0≤τ≤t

(∫
Rz

(uiui)
3
2 (τ) dx

) 2
3
∫ t

0

∫
Rz

ui,jui,j dxdτ.(3.17)

In order to estimate the third term on the right side of (3.17), a lateral boundary
integral, we multiply (2.3) by (xk − zδ3k)ui,k and integrate it over Rz:

∫
Rz

(xk − zδ3k)ui,k[(ui,j − uj,i),j − ui,t − J1ui − J2|u|ui − p,i]dx = 0,

where δij is the Kronecker delta symbol. Integration by parts results in

∫
∂Rz

(xk − zδ3k)ui,k(ui,j − uj,i)njds

− 1

2

∫
∂Rz

(xk − zδ3k)ui,k(ui,j − uj,i)nkds

+
1

2

∫
Rz

(ui,j − uj,i)ui,jdx−
∫
Rz

(xk − zδ3k)ui,kui,tdx

+
1

2
J1

∫
Rz

uiuidx+
1

3
J2

∫
Rz

(uiui)
3
2 dx−

∫
∂Rz

(xk − zδ3k)ui,kpnids = 0.(3.18)

Since ui,kni = ui,ink = 0 on ∂Dξ for ξ ≥ 0, we rewrite the last term on the right side
as ∫

∂Rz

(xk − zδ3k)ui,kpnids =

∫
Dz

xαu3,αpdA.

Moreover, the first two integrals on the lateral boundary can be combined so that

∫ ∞
z

∫
∂Dξ

(xk − zδ3k)ui,k(ui,j − uj,i)njdsdξ

− 1

2

∫ ∞
z

∫
∂Dξ

(xk − zδ3k)ui,k(ui,j − uj,i)nkdsdξ

=
1

2

∫ ∞
z

∫
∂Dξ

xαnαui,j(ui,j − uj,i)dsdξ.
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Consequently, (3.18) can be rewritten as

1

2

∫ ∞
z

∫
∂Dξ

xαnαui,j(ui,j − uj,i)dsdξ +
1

2
J1

∫
Rz

uiuidx

+
1

3
J2

∫
Rz

(uiui)
3
2 dx =

∫
Dz

xαuβ,α(uβ,3 − u3,β)dA

− 1

2

∫
Rz

(ui,j − uj,i)ui,jdx+

∫
Rz

(x3 − z)ui,3ui,tdx

+

∫
Rz

xαui,αui,tdx+

∫
Dz

xαu3,αpdA.(3.19)

We define p̄ to be the mean value of p over Dz, i.e.,

p̄ =
1

|Dz|

∫
Dz

pdA,

where |Dz| = |D0| is the measure of Dz. We note that∫
Dz

xαu3,αpdA =

∫
Dz

xαu3,α(p− p̄)dA

since ∫
Dz

xαu3,αpdA = −2

∫
Dz

u3dA = 0.

Using the Schwarz inequality, it follows from (3.19) that

h0

2

∫ ∞
z

∫
∂Dξ

ui,j(ui,j − uj,i)dsdξ +
1

2
J1

∫
Rz

uiuidx+
1

3
J2

∫
Rz

(uiui)
3
2 dx

≤ d
(∫

Dz

uβ,αuβ,α dA

) 1
2
(∫

Dz

(uα,3 − u3,α)(uα,3 − u3,α) dA

) 1
2

+ d

(∫
Rz

ui,αui,α dx

) 1
2
(∫

Rz

ui,tui,t dxd

) 1
2

+

(∫
Rz

(ξ − z)ui,3ui,3 dx
) 1

2
(∫

Rz

(ξ − z)ui,tui,t dx
) 1

2

+ d

(∫
Dz

u3,αu3,α dA

) 1
2
(∫

Dz

(p− p̄)2 dA

) 1
2

,(3.20)

where h0 = min{xαnα} on ∂Dξ and d = diameterD0. To estimate the last integral
on the right side of (3.20), we consider the boundary value problem

∆Ψ = 0 in Rz,
∂Ψ

∂n
= 0 on ∂Dξ,

∂Ψ

∂n
= p− p̄ in Dz,(3.21)

where ξ ≥ z ≥ 0. Since
∫
Dz

(p − p̄)dA = 0, the necessary condition for the existence

of a solution Ψ is satisfied. We choose limz→∞
∫
Dz

ΨdA = 0 such that Ψ is uniquely
determined. Using the auxiliary function Ψ, we observe that∫

Dz

(p− p̄)2 dA =

∫
∂Rz

(p− p̄)∂Ψ

∂n
ds =

∫
Rz

(p− p̄),iΨ,i dx

=

∫
Rz

Ψ,i[(ui,j − uj,i),j − ui,t − J1ui − J2|u|ui]dx.
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Then in a manner similar to the derivation of (3.16), we can write∫
Dz

(p− p̄)2 dA ≤
(∫

Rz

Ψ,iΨ,i dx

) 1
2
(∫

Rz

ui,tui,t dx

) 1
2

+

(∫
Dz

Ψ,αΨ,α dA

) 1
2
(∫

Dz

(uα,3 − u3,α)(uα,3 − u3,α) dA

) 1
2

+

(∫ ∞
z

∫
∂Dξ

|gradsΨ|2 dsdξ
) 1

2
(∫ ∞

z

∫
∂Dξ

(ui,j − uj,i)ui,j dsdξ
) 1

2

+ J1

(∫
Rz

Ψ,iΨ,i dx

) 1
2
(∫

Rz

uiui dx

) 1
2

+ J2

(∫
Rz

Ψ,iΨ,i dx

) 1
2
(∫

Rz

(uiui)
2 dx

) 1
2

.(3.22)

The use of (A.9)–(A.11) in the appendix with g = p − p̄ to bound the integrals
involving the function Ψ results in an estimate for the integral of the function p− p̄.(∫

Dz

(p− p̄)2 dA

) 1
2

≤
(

1
√
µ2

∫
Rz

ui,tui, t dx

) 1
2

+

(∫
Dz

(uα,3 − u3,α)(uα,3 − u3,α) dA

) 1
2

+

(
2

h0

[
d+

1
√
µ2

] ∫ ∞
z

∫
∂Dξ

(ui,j − uj,i)ui,j dsdξ
) 1

2

+ J1

(
1
√
µ2

∫
Rz

uiui dx

) 1
2

+ J2

(
1
√
µ2

∫
Rz

(uiui)
2 dx

) 1
2

.(3.23)

Substituting (3.23) into (3.20) and using the weighted AG inequalities, we have

h0

2

∫ ∞
z

∫
∂Dξ

ui,j(ui,j − uj,i)dsdξ

(3.24)

+
1

2
J1

∫
Rz

uiuidx+
1

3
J2

∫
Rz

(uiui)
3
2 dx

≤ dγ2

2

∫
Rz

ui,αui,α dx+

(
d

2γ2
+

d

2γ4

)∫
Rz

ui,tui,t dx

+
γ3

2

∫
Rz

(ξ − z)ui,3ui,3 dx+
1

2γ3

∫
Rz

(ξ − z)ui,tui,t dx

+

(
dγ5

2
+
d2γ6

h0

[
d+

1
√
µ2

]
+
dγ4 + dγ7J1 + d2γ8J2

2
√
µ2

)
×
∫
Dz

u3,αu3,α dA

+
dγ1

2

∫
Dz

uβ,αuβ,α dA

+

(
d

2γ1
+

d

2γ5

)∫
Dz

(uα,3 − u3,α)(uα,3 − u3,α) dA

+
1

2γ6

∫ ∞
z

∫
∂Dξ

ui,j(ui,j − uj,i)dsdξ +
J1d

2γ7

∫
Rz

uiuidx+
J2

2γ8

∫
Rz

(uiui)
2dx.
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We recall that k = 1/λ1 and choose

γ1 = γ5 =
d
√
λ1

2
, γ2 = γ4 =

√
2λ1, γ3 =

√
λ1,

γ6 =
2

h0
, γ7 =

1√
2λ1

, γ8 =
1√
λ1

.

Integrating (3.24) with respect to τ, we thus have

h0

4

∫ t

0

∫ ∞
z

∫
∂Rz

ui,j(ui,j − uj,i)dsdξdτ

≤
√
λ1

2
E +

√
λ1

[
d
√

2

2
+
J2Ω

1
3

2
max

0≤τ≤t

(∫
Rz

(uiui)
3
2 dx

) 2
3
](
− ∂E

∂z

)
+

2√
λ1

∫ t

0

∫
Dz

(uα,3 − u3,α)(uα,3 − u3,α) dAdτ

+
d2
√
λ1

4

∫ t

0

∫
Dz

uβ,αuβ,α dAdτ +
r1√
λ1

∫ t

0

∫
Dz

u3,αu3,α dAdτ,(3.25)

where

r1 =
d
√
λ1

2

(
d
√
λ1

2
+

4d

h2
0

[
d+

1
√
µ2

]
+

√
2λ1√
µ2

+
J1√

2λ1µ2
+

dJ2√
λ1µ2

)
.(3.26)

Now we return to (3.17) and use (3.25) to obtain

I4 ≤
1

2
E + r2

(
− ∂E

∂z

)
+
d2

4

∫ t

0

∫
Dz

uβ,αuβ,α dAdτ

+
3

λ1
(1 + η)

∫ t

0

∫
Dz

uα,3uα,3 dAdτ

+
3

λ1

(
1 +

1

η
+
r1

3

)∫ t

0

∫
Dz

u3,αu3,α dAdτ,(3.27)

where

r2 =
3
√
λ1 + J

1
2
1 + J2

2
√
λ1µ2

+
2

h2
0

√
λ1

[
1

µ2
+
d2

4

]
+
d
√

2

2

+

(
J2Ω

1
3

2
+

J2Ω
1
3

2
√
λ1µ2

)
max

0≤τ≤t

(∫
Rz

(uiui)
3
2 (τ) dx

) 2
3

.(3.28)

We choose η to be the positive root of the quadratic equation η2 − (r1/3)η − 1 = 0
so that the coefficients of the last two integrals of the right side of (3.27) are equal.
Consequently, we can rewrite (3.27) as

I4 ≤
1

2
E + r2

(
− ∂E

∂z

)
+ r3

∂2E

∂z2
,(3.29)

where

r3 = max

{
d2

4
,

3

λ1
(1 + η)

}
.
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Combining all of the results in (3.4), (3.14), and (3.29), we arrive at the second-
order differential inequality

E ≤ K1
∂2E

∂z2
−K2

∂E

∂z
,(3.30)

where

K1 =

√
C

λ1
+ 2r3,

K2 = 2

(
1 +
√
C√

λ1

)
+

3
√
λ1 + J

1
2
1 + J2√

λ1µ2
+

4

h2
0

√
λ1

[
1

µ2
+
d2

4

]
+ d
√

2

+
2J2Ω

1
6C

1
2

λ1
max

0≤τ≤t

(∫
Rz

(uiui)
3
2 (τ) dx

) 1
3

+

(
J2Ω

1
3 +

J2Ω
1
3

√
λ1µ2

)
max

0≤τ≤t

(∫
Rz

(uiui)
3
2 (τ) dx

) 2
3

.(3.31)

We may rewrite (3.30) as

∂

∂z

{
e−k1z

(
∂E

∂z
+ k2E

)}
≥ 0,(3.32)

where

k1 =
K2

2K1
+

1

2

√
K2

2

K2
1

+
4

K1
, k2 = − K2

2K1
+

1

2

√
K2

2

K2
1

+
4

K1
.

Integration of (3.32) from z to ∞ leads to

∂E

∂z
+ k2E ≤ 0,

and hence

E(z, t) ≤ E(0, t)e−k2z.(3.33)

Direct calculation shows that

∂k2

∂K1
=

1

2

1

K2

(
K2

1

K2
2

+
4

K2

)− 1
2
(
−
(
K2

1

K2
2

+
4

K2

) 1
2

+
K1

K2

)
< 0(3.34)

and

∂k2

∂K2
=

1

2

K1

K2
2

(
K2

1

K2
2

+
4

K2

)− 1
2
((

K2
1

K2
2

+
4

K2

) 1
2

−
(
K1

K2
+

2

K1

))
< 0.(3.35)

Thus we find that

∂k2

∂J1
=

∂k2

∂K1

∂K1

∂J1
+
∂k2

∂K2

∂K2

∂J1
< 0,

∂k2

∂J2
=

∂k2

∂K1

∂K1

∂J2
+
∂k2

∂K2

∂K2

∂J2
< 0.(3.36)

Therefore, the decay rate k2 is a decreasing function of J1 and J2. In the physical
sense, this suggests that when Stokes flow is compared to flow in a porous medium,
the presence of the porous material as well as the inclusion of the inertial drag force
each reduces the spatial decay rate of the end effects.
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4. Determination of the bounds. As indicated in the previous section, the
definition of the constant K2 involves the quantity max0≤τ≤t

∫
Rz

(uiui)
3
2 dx. One of

the important aspects in our analysis is that we would like our estimate to depend
only on the known data, which for the present problem are the physical parameters
J1 and J2, the boundary data, and the geometry of the domain. We therefore need
to find a bound for the expression max0≤τ≤t

∫
R

(uiui)
3
2 dx as well as for the total

weighted energy E (0, t). Modeled on the analysis used by Ames and Payne [2] in their
investigation of decay estimates for the solution of the steady Navier–Stokes equation,
we shall consider the solution of the linearized problem, namely the Brinkman flow

wi,t = ∆wi − J1wi − q,i in R× (0,∞),(4.1)

wi,i = 0 in R̄× (0,∞),(4.2)

wi = ui on ∂R× (0,∞),(4.3)

wi = 0 in R× {0},(4.4)

wi, wi,j , wi,t, q = o(x−1
3 ) uniformly in x1, x2, t as x3 →∞.(4.5)

In what follows, we first compare the solution ui of problem (2.3)–(2.8), the
Brinkman–Forchheimer flow, with the solutionwi of problem (4.1)–(4.5), the Brinkman
flow. Next, we explain how one can bound the integrals containing the solution wi
and its derivatives in section 4.2.

4.1. Bound for max0≤τ≤t
∫
R

(uiui)
3
2 dx. To relate the solution ui of system

(2.3)–(2.8) to the solution wi of system (4.1)–(4.5), we define vi = ui−wi and s = p−q.
Then the initial-boundary problem governing the differential field is

vi,t = ∆vi − J1vi − J2|u|ui − s,i in R× (0,∞),(4.6)

vi,i = 0 in R̄× (0,∞),(4.7)

vi = 0 on ∂R× (0,∞),(4.8)

vi = 0 in R× {0},(4.9)

vi, vi,j , vi,t, s = o(x−1
3 ) uniformly in x1, x2, t as x3 →∞.(4.10)

On integration by parts and dropping one term which is negative, we first note
for any 0 ≤ t1 ≤ t that

0 ≤
∫ t1

0

∫
R

vi,τvi,τ dxdτ

≤
∫ t1

0

∫
R

vi,τ [∆vi − J1vi − J2|u|ui − s,i] dxdτ

≤ −1

2

∫ t1

0

∫
R

(vi,jvi,j),τ dxdτ − J2

∫ t1

0

∫
R

vi,τ |u|ui dxdτ

≤ −1

2

∫ t1

0

∫
R

(vi,jvi,j),τ dxdτ − J2

∫ t1

0

∫
R

|u|ui(ui,τ − wi,τ ) dxdτ.(4.11)

This yields that

1

2

∫ t1

0

∫
R

(vi,jvi,j),τ dxdτ + J2

∫ t1

0

∫
R

|u|uiui,τ dxdτ +

∫ t1

0

∫
R

vi,τvi,τ dxdτ

≤ J2

∫ t1

0

∫
R

|u|uiwi,τ dxdτ.(4.12)
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For the above inequality, we integrate two terms on the left side with respect to τ and
use the initial condition (4.9) and then apply the Schwarz inequality to the integral
on the right side. It is then true for any 0 ≤ t1 ≤ t that

1

2

∫
R

vi,jvi,j(t1) dx+
1

3
J2

∫
R

(uiui)
3
2 (t1)dx+

∫ t1

0

∫
R

vi,τvi,τ dxdτ

≤ J2

(∫ t

0

∫
R

wi,τwi,τ dxdτ

) 1
2
(∫ t

0

∫
R

(uiui)
2 dxdτ

) 1
2

.(4.13)

We recall the result in (3.12) which provides that∫ t

0

∫
R

(uiui)
2 dxdτ

≤ Ω
1
3

(
max

0≤τ≤t

∫
R

(uiui)
3
2 (τ) dx

) 2
3
∫ t

0

∫
R

ui,jui,j dxdτ.(4.14)

We conclude immediately from (4.13) and (4.14) that(
max

0≤τ≤t

∫
R

(uiui)
3
2 (τ) dx

) 2
3

≤ 3Ω
1
6

(∫ t

0

∫
R

wi,τwi,τ dxdτ

) 1
2
(∫ t

0

∫
R

ui,jui,j dxdτ

) 1
2

.(4.15)

Using (4.15), we have that the term max0≤τ≤t
∫
R

(uiui)
3
2 (τ) dx can be bounded if

the two integrals on the right side of (4.15) are bounded. We shall discuss the bounds

of the integral
∫ t

0

∫
R
wi,τwi,τ dxdτ in section 4.2. For the integral

∫ t
0

∫
R
ui,jui,j dxdτ,

we want to show that it can be bounded by two integrals of the solution wi.
On integration by parts and dropping three negative terms, we observe that∫ t

0

∫
R

vi,jvi,j dxdτ = −
∫ t

0

∫
R

vivi,jj dxdτ

= −
∫ t

0

∫
R

vi[v,τ + J1vi + J2|u|ui + s,i] dxdτ

≤ −J2

∫ t

0

∫
R

|u|vi(vi + wi) dxdτ

≤ J2

4

∫ t

0

∫
R

|u|wiwi dxdτ

≤ J2

4

∫ t

0

(∫
R

(uiui)
3
2 dx

) 1
3
(∫

R

(wiwi)
3
2 dx

) 2
3

dτ

≤ J2

4
max

0≤τ≤t

(∫
R

(uiui)
3
2 dx

) 1
3
{∫ t

0

(∫
R

(wiwi)
3
2 dx

) 2
3

dτ

}
.(4.16)

Setting w = (wiwi)
1
2 in (A.4), we apply the Sobolev inequality to obtain that∫

R

(wiwi)
2 dx =

∫ ∞
0

∫
Dξ

(wiwi)
2 dAdξ

≤ 1

2

∫ ∞
0

[ ∫
Dξ

wiwi dA

][ ∫
Dξ

wi,βwi,β dA

]
dξ.(4.17)
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The divergence theorem and boundary conditions for wi on ∂Dz yield, for each ξ in
z ≤ ξ <∞, ∫

Dξ

wiwi dA = −2

∫ ∞
z

∫
Dξ

wiwi,ξ dAdξ

≤ 2

(∫
Rz

wiwi dx

) 1
2
(∫

Rz

wi,3wi,3 dx

) 1
2

≤ 2

(∫
R

wiwi dx

) 1
2
(∫

R

wi,3wi,3 dx

) 1
2

.(4.18)

Using (4.17), (4.18), and (A.1), we obtain∫
R

(wiwi)
2 dx ≤

(∫
R

wiwi dx

) 1
2
(∫

R

wi,jwi,j dx

) 3
2

≤ 1√
λ1

(∫
R

wi,jwi,j dx

)2

.(4.19)

Furthermore, we have[ ∫
R

(wiwi)
3
2 dx

] 2
3

≤
[(∫

R

(wiwi) dx

) 1
2
(∫

R

(wiwi)
2 dx

) 1
2
] 2

3

≤ 1√
λ1

∫
R

wi,jwi,j dx.(4.20)

Substituting (4.15) and (4.20) in (4.16), we thus obtain∫ t

0

∫
R

vi,jvi,j dxdτ

≤ J2

4λ1
1
2

(
max

0≤τ≤t

∫
R

(uiui)
3
2 dx

) 1
3

∫ t

0

∫
R

wi,jwi,j dxdτ(4.21)

≤ 3
1
2 Ω

1
12 J2

4λ1
1
2

(∫ t

0

∫
R

wi,jwi,j dxdτ

)(∫ t

0

∫
R

wi,τwi,τ dxdτ

) 1
4

×
(∫ t

0

∫
R

ui,jui,j dxdτ

) 1
4

.

Note that ∫ t

0

∫
R

ui,jui,j dxdτ ≤ 2

∫ t

0

∫
R

vi,jvi,j dxdτ + 2

∫ t

0

∫
R

wi,jwi,j dxdτ,(4.22)

and then one has∫ t

0

∫
R

ui,jui,j dxdτ ≤ F
([∫ t

0

∫
R

wi,jwi,j dxdτ

]
,

[ ∫ t

0

∫
R

wi,τwi,τ dxdτ

])
,(4.23)

where F is a computable function. In fact, this can be seen from the following
arguments. Let A =

∫ t
0

∫
R
wi,jwi,j dxdτ, B =

∫ t
0

∫
R
wi,τwi,τ dxdτ, and Y =

∫ t
0

∫
R

ui,jui,j dxdτ. From (4.21) and (4.22), it follows that

Y ≤ ΓAB
1
4Y

1
4 + 2A,(4.24)
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where Γ = 31/2Ω1/12J2/2λ
1/2
1 . Without loss of generality, we can assume that Y > 1;

otherwise F (a, b) = 1. With this assumption, it is easy to see that

Y ≤ ΓAB
1
4Y

1
2 + 2A.(4.25)

Solving inequality (4.25), we have

Y ≤ 1

4

(
ΓAB

1
4 +

√
Γ2A2B

1
2 + 8A

)2

,

which proves that (4.23) holds provided that F (A,B) = max{1, (1/4)(ΓAB
1
4 +√

Γ2A2B
1
2 + 8A)2}.

From (4.13)–(4.15), it also follows that

∫ t

0

∫
R

vi,τvi,τ dxdτ ≤ J2

√
3Ω

1
4

(∫ t

0

∫
R

wi,τwi,τ dxdτ

) 3
4
(∫ t

0

∫
R

ui,jui,j dxdτ

) 3
4

,

and then by using the elementary inequality 1
2a

2 − b2 ≤ (a− b)2, it follows that

∫ t

0

∫
R

ui,τui,τ dxdτ ≤ 2
√

3J2Ω
1
4

(∫ t

0

∫
R

wi,τwi,τ dxdτ

) 3
4
(∫ t

0

∫
R

ui,jui,j dxdτ

) 3
4

+ 2

∫ t

0

∫
R

wi,τwi,τ dxdτ.(4.26)

Inequality (4.26) together with (4.23) indicates that the integral
∫ t

0

∫
R
ui,τui,τ dxdτ is

also bounded by the integrals
∫ t

0

∫
R
wi,jwi,j dxdτ and

∫ t
0

∫
R
wi,τwi,τ dxdτ.

Although the above arguments are similar to those used in [2] to compare the
solution of the nonlinear equation with the solution of the linearized equation, the
conclusions reached here do not require restrictions because of the above argument.
In studying the Navier–Stokes pipe flow, conditions were imposed by Ames and Payne
[2] in order to bound the energy expression, which effectively said that the decay is
ensured only for flows with sufficiently large viscosity coefficients (or small Reynolds’
number) and for flows whose data are suitably restricted.

4.2. Bounds for the Brinkman flow. In this section, we focus on finding the
bounds for the two integrals

∫ t
0

∫
R
wi,jwi,jv dxdτ and

∫ t
0

∫
R
wi,τwi,τ dxdτ in terms of

the physical parameters, boundary data, and geometry of the domain. We use E1,
∂E1/∂z, and ∂2E1/∂z

2 to denote the weighted energy integral and its first and second
derivatives for the solution wi of system (4.1)–(4.5). They are defined in the same
manner as in (2.9)–(2.11), replacing ui by wi. For simplicity, we shall not determine
the desired bound explicitly but indicate only how the bounds can be found from
the known quantities. Here we let εi denote positive constants which may be chosen
arbitrarily small and ci denote computable constants that may depend on εi.

Since the solution wi and the solution ui have the same initial and boundary data,
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on integration by parts, we observe that∫ t

0

∫
R

wi,jwi,j dxdτ = −
∫ t

0

∫
D0

wiwi,3 dAdτ −
∫ t

0

∫
R

wiwi,jj dxdτ

= −
∫ t

0

∫
D0

wiwi,3 dAdτ −
∫ t

0

∫
R

wi
(
wi,τ + J1wi + q,i

)
dxdτ

≤ −J1

∫ t

0

∫
R

wiwi dxdτ −
∫ t

0

∫
D0

f3fα,α dAdτ

−
∫ t

0

∫
D0

f3q dAdτ −
∫ t

0

∫
D0

fαwα,3 dAdτ(4.27)

and ∫ t

0

∫
R

wi,τwi,τ dxdτ =

∫ t

0

∫
R

wi,τ
(
wi,jj − J1wi − q,i

)
dxdτ

≤ −
∫ t

0

∫
D0

fi,τwi,3 dAdτ +

∫ t

0

∫
D0

f3,τq dAdτ

=

∫ t

0

∫
D0

f3,τfα,α dAdτ −
∫ t

0

∫
D0

fα,τwα,3 dAdτ

+

∫ t

0

∫
D0

f3,τq dAdτ.(4.28)

Thus (4.27) and (4.28) imply that

−∂E1

∂z
(0, t) =

∫ t

0

∫
R

(
J1wiwi + wi,jwi,j + kwi,τwi,τ

)
dxdτ

≤ data + ε1

∫ t

0

∫
D0

wα,3wα,3 dAdτ + ε2

∫ t

0

∫
D0

(q − q̄)2 dAdτ,(4.29)

where q̄ = (1/|D0|)
∫
D0
q dA is the mean value of q over D0 and “data” refers to

constants involving only the given data and parameters. Since equation (4.1) is the
linearized equation of (2.3), all of the derivations in the previous sections can be
obtained simply by letting J2 = 0. This means that we could write

E1(0, t) ≤ c1
∂2E1

∂z2
(0, t)− c2

∂E1

∂z
(0, t).(4.30)

Moreover, direct calculation shows that

∂2E1

∂z2
(0, t) ≤ data +

∫ t

0

∫
D0

wα,3wα,3 dAdτ.(4.31)

Using (3.22) and (3.23), we can derive in the same manner that∫ t

0

∫
D0

(q − q̄)2 dAdτ ≤ data + c3

∫ t

0

∫
D0

wα,3wα,3 dAdτ

− c4
∂E1

∂z
(0, t) + c5E1(0, t).(4.32)
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To establish a bound for the term
∫ t

0

∫
D0
wα,3wα,3 dAdτ, we consider the identity∫ t

0

∫
R

wi,3
[
(wi,j − wj,i) ,j − J1wi − q,i − wi,τ

]
dxdτ = 0.

On integration by parts, we are led to

−
∫ t

0

∫
D0

wi,3(wi,3 − w3,i) dAdτ +
1

2

∫ t

0

∫
D0

wi,j(wi,j − wj,i) dAdτ

− J1

∫ t

0

∫
R

wiwi,3 dxdτ +

∫ t

0

∫
D0

w3,3q dAdτ −
∫ t

0

∫
R

wi,3wi,τ dxdτ = 0.

Since w3,3 = −fα,α on D0, we can deduce from this identity that∫ t

0

∫
D0

wα,3wα,3 dAdτ ≤ data + ε3

∫ t

0

∫
D0

(q − q̄)2 dAdτ − c6
∂E1

∂z
(0, t).(4.33)

From (4.32) and (4.33), it follows that

(1− c3ε3)

∫ t

0

∫
D0

wα,3wα,3 dAdτ ≤ data− c4ε3
∂E1

∂z
(0, t) + c5ε3E1(0, t)(4.34)

and

(1− c3ε3)

∫ t

0

∫
D0

(q − q̄)2 dAdτ ≤ data− (c4 + c3c6)
∂E1

∂z
(0, t) + c5E1(0, t).(4.35)

Using (4.31) and (4.34), we can rewrite (4.30) as

1− c3ε3 − c1c5ε3
1− c3ε3

E1(0, t) ≤ data−
(
c2 +

c1c4ε3
1− c1ε3

)
∂E1

∂z
(0, t).(4.36)

With an appropriate choice for ε3, we have

E1(0, t) ≤ data− c7
∂E1

∂z
(0, t),

and we then derive from (4.34) and (4.35) that∫ t

0

∫
D0

wα,3wα,3 dAdτ ≤ data− c8
∂E1

∂z
(0, t),(4.37) ∫ t

0

∫
D0

(q − q̄)2 dAdτ ≤ data− c9
∂E1

∂z
(0, t).(4.38)

Substituting (4.37) and (4.38) into (4.29) and choosing ε1 and ε2 appropriately, we
conclude that

−∂E1

∂z
(0, t) ≤ data,(4.39)

which concludes the derivation.
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4.3. Bounds for E(0, t). In light of the results above, the quantity

max0≤τ≤t
∫
R

(uiui)
3
2 can be bounded by the known data, so the constants in (3.31)

depend only on these data. Following the same arguments used in [1, section 6] or
the discussions given in section 4.2, we are able to conclude that the total weighted
energy E(0, t) has an upper bound in terms of the physical parameters, the boundary
data, and the geometry of domain.

5. The estimates for Darcy flow. For comparison, we discuss the limiting
case when J1 is very large. It is believed that the flow is governed by Darcy’s law
if the porous medium is dense. In other words, in the limiting case when J1 is very
large, the term involving the time derivative, the Brinkman term, and the Fochheimer
term can be ignored so that the model equation has a simple form.

We assume ui and p are solutions of the following boundary value problem:

J1ui = −pi in R,(5.1)

ui,i = 0 in R̄,(5.2)

uini = 0 on ∂R\D0,(5.3)

u3 = f(x1, x2) in D̄0,(5.4)

ui, p = o(x−1
3 ) uniformly in x1, x2 as x3 →∞.(5.5)

Define a weighted energy integral for the solution ui of (5.1)–(5.5) by

E(z) =

∫
Rz

J1

(
ξ − z

)
uiui dx,(5.6)

and so

∂E

∂z
= −J1

∫
Rz

uiuidx,(5.7)

Using (5.1), we rewrite E as

E(z) = −
∫
Rz

(
ξ − z)uip,i dx =

∫
Rz

u3p dx.(5.8)

Following the same techniques used in dealing with I3 in section 3 (see (3.6)), we can
estimate the integral on the right side of (5.8) in terms of the auxiliary vector function
ωα (see (A.3)):∫

Rz

u3p dx =

∫
Rz

ωα,αp dx = −
∫
Rz

ωαp,α dx

=

∫
Rz

J1ωαuα dx

≤ J1

(∫
Rz

ωαωα dx

) 1
2
(∫

Rz

uαuα dxdτ

) 1
2

≤ J1

√
C

λ1

(∫
Rz

(u3)2 dx

) 1
2
(∫

Rz

uαuα dx

) 1
2

≤ J1

√
C

2
√
λ1

∫
Rz

uiui dx.(5.9)
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From (5.8) and (5.9), it follows that

E(z) ≤
√
C

2
√
λ1

(
− ∂E

∂z

)
for z ≥ 0(5.10)

and hence

E(z) ≤ E(0, t)e
−
√
C

2
√
λ1
z
.(5.11)

Using the same techniques as in section 4, we can find the total energy bound explicitly.
In fact, we observe that∫

R

J1uiui dx = −
∫
R

uip,i dx =

∫
D0

u3p dA

≤
(∫

D0

f2 dA

) 1
2
(∫

D0

(p− p̄)2 dA

) 1
2

,(5.12)

where p̄ =
∫
D0
p dA. In a manner similar to the derivation of (3.23), we have

(∫
D0

(
p− p̄)2 dA

) 1
2

≤ J1

(∫
R

uiui dx

) 1
2

.(5.13)

Combining (5.12) and (5.13), we obtain∫
R

J1uiui dx ≤
√
J1

∫
D0

f2 dA.(5.14)

Using (5.10) and (5.14), a bound for the total weighted energy in terms of the physical
parameter J1, the boundary data f and the first eigenvalue λ1 can be given by

E(0) ≤
√
J1C

2
√
λ1

∫
D0

f2 dA.(5.15)

Appendix. Auxiliary inequalities and functions. Here we record some
standard inequalities and the properties of two auxiliary functions that we need in
order to establish our estimates in the previous sections.

Let S be a plane domain with boundary ∂S.
1. If w = 0 on ∂S, then we have the Poincaré inequality

λ1

∫
S

w2 dA ≤
∫
S

w,αw,α dA,(A.1)

where λ1 is the smallest positive eigenvalue of

∆φ+ λφ = 0 in S, φ = 0 on ∂S.

2. If ∂w/∂n = 0 on ∂S and
∫
S
w dA = 0, then the Wirtinger inequality has the

form

µ2

∫
S

w2 dA ≤
∫
S

w,αw,α dA,(A.2)
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where µ2 is the smallest positive eigenvalue of

∆φ+ µφ = 0 in S,
∂φ

∂n
= 0 on ∂S,

∫
S

φdA = 0.

3. If g is a continuously differentiable function on S̄ and
∫
S
g dA = 0, then there

exists a vector function wα such that

wα,α = g in S, wα = 0 on ∂S

and a positive constant C depending on the geometry of S such that∫
S

wα,βwα,β dA ≤ C
∫
S

(wα,α)2 dA.(A.3)

The implication above asserts the existence of a vector function wα which is, in fact,
not unique. We require only the existence of such a vector function in our derivation
and not an explicit solution. We refer the reader to [2] for a brief discussion concerning
the constant C and to [8] for an explicit upper bound for the optimal C when S is a
star-shaped domain.

4. We shall make use of two Sobolev inequalities that hold for any sufficiently
smooth function w with compact support in either R2 or R3:∫ ∫ ∞

−∞
w4dA ≤ 1

2

(∫ ∫ ∞
−∞

w2 dA

)(∫ ∫ ∞
−∞

w,αw,α dA

)
,(A.4) ∫ ∫ ∫ ∞

−∞
w6dx ≤ Ω̄

(∫ ∫ ∫ ∞
−∞

w,jw,j dx

)3

.(A.5)

The best constant in (A.5) has been computed to have the value Ω̄ = (1/27)(2/π)4.
(A.1)–(A.3) are recorded in [1] and (A.4)–(A.5) are listed in [2].

In the following, we also record some properties for the two auxiliary functions
which we used in section 3. These functions are exactly the same as ones used in [1]
and the derivation of their properties follows from ideas in [1] (see [1, Lemmas 1-3
and 5-7]).

Let Rz and Dz be the notations introduced in section 2. Suppose that ϕ and Ψ
are the solutions of problems (P1) and (P2), respectively.

∆ϕ = f in Rz,
∂ϕ

∂n
= 0 on ∂Rz,∫

Rz

f dx = 0, f → 0 as x3 →∞.
(P1)


∆Ψ = 0 in Rz,

∂Ψ

∂n
= 0 on ∂Dξ, ξ ≥ z > 0,

∂Ψ

∂n
= g in Dz with

∫
Dz

g dA = 0.

(P2)

We have the following estimates for the functions ϕ and Ψ, respectively:∫
Rz

ϕ,iϕ,i dx ≤
1

µ2

∫
Rz

f2 dx,(A.6) ∫
Dz

ϕ,αϕ,α dx ≤
2
√
µ2

∫
Rz

f2 dx.(A.7)
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If, in addition, Dz is star-shaped with respect to a point (origin) in Dz, then∫ ∞
z

∫
∂Dξ

|gradsϕ| dsdξ ≤
2

h0

[
1

µ2
+
d2

4

] ∫
Rz

f2 dx,(A.8)

where d is the diameter of D0 and h0 = minxαnα on ∂Dξ. The notation gradsϕ
denotes the tangential component of gradient of ϕ.

Similarly, ∫
Dz

Ψ,αΨ,α dA =

∫
Dz

g2 dA,(A.9) ∫
Rz

Ψ,iΨ,i dx ≤
1
√
µ2

∫
Dz

g2 dA,(A.10)

and if Dz is star-shaped with a point (origin) in Dz, then∫ ∞
z

∫
∂Dξ

|gradsΨ| dsdξ ≤
2

h0

[
d+

1
√
µ2

] ∫
Dz

g2 dAr.(A.11)
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Abstract. The existence of self-similar solutions of the Riemann problem for a modified Broad-
well model is established. Regularity estimates at the singular points of the problem are obtained.
The passing of the fluid-dynamic limit is justified, which yields the Riemann problem for a system
of conservation laws.

Key words. Broadwell model, Riemann problem, fluid-dynamic limits, kinetic theory
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1. Introduction. In this paper, we study the Riemann problem of the Broadwell
model and its fluid-dynamic limits. The Broadwell model, proposed by Broadwell [B],
is a system of equations

(1.1)

∂f1
∂t

+
∂f1
∂x

=
1

ε
(f2

3 − f1f2),

∂f2
∂t
− ∂f2

∂x
=

1

ε
(f2

3 − f1f2),

∂f3
∂t

=
1

2ε
(f1f2 − f2

3 )

that provides a simple statistical description of a gas of interacting particles. Here
the functions f1 and f2 are the densities of particles moving in positive and negative
x-directions, respectively, and f3 is the density of particles moving in each of the
positive or negative of y- or z-directions. The mean free path ε is the measure of
average distance between successive collisions. An important feature of this system
of equations is its asymptotic equivalence in small mean free path ε to the Euler of
compressible fluid dynamics

(1.2)
ρt + (ρu)x = 0,

(ρu)t + (ρg(u))x = 0,

where

(1.3)

ρ = (f1 + f2 + 4(f1f2)1/2),

m = ρu = f1 − f2,

g(u) =
1

3
[2(1 + 3u2)1/2 − 1].
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The justification of passing the fluid-dynamic limit in Boltzmann equation or
some models of Boltzmann equation has been studied by several authors. The reader is
referred to Cercignani [Ce] for a survey of the literature of the Boltzmann equation and
to Platkowski and Illner [PI] for results on discrete models of kinetic theory. Recently,
Bardos, Golse, and Levermore [BGL] proved the validity of the fluid-dynamic limit of
the Boltzmann equation to the incompressible Navier–Stokes equations under some
hypothesis. For the Broadwell model, Caflisch and Papanicolaou [CP] and Caflisch
[Ca] showed that a given smooth solution of the limit equation can be approximated
by a solution of the Broadwell model when ε is small. For solutions with shocks of
the Broadwell model, there are studies on the stability in time for traveling waves
[CL], [KM] and rarefaction waves [Ma]. Xin [X] proved that a given piecewise smooth
solution with noninteracting shocks of the limit fluid equations can be approximated
by solutions of the Broadwell model as ε → 0+. Recently, Liu and Xin [LX] studied
the boundary-layer problems for the Broadwell model and revealed some interesting
phenomena. They found that there exist boundary layers in the Broadwell model due
to purely kinetic effects that cannot be detected by Chapman–Enskog expansion on
the viscous level. They classified the boundary layers as compressive and expansive
and showed that expansive boundary layers are stable while compressive boundary
layers are stable before they leave the boundary. They also obtained the optimal rate
of convergence in the L∞-norm of kinetic solutions to fluid-dynamic solution in terms
of ε if the interior fluid flow is smooth. Many of above-mentioned works belong to the
approximation program, meaning that an admissible solution of the limit equation,
which is a system of conservation laws, is used to construct solutions of the Broadwell
model and is intended as a method to solve the Broadwell model. Another approach
is to construct solutions of the limit conservation laws as the limit of solutions of
the Broadwell model. Recently, Slemrod and Tzavaras [ST], [T] studied the self-
similar fluid-dynamic limits of a modified Riemann problem of (1.1) with Maxwellian
Riemann data. Work done by Chen and Liu [ChL] and Chen et al. [CLL] on relaxation
also sheds light on this subject.

In an attempt to gain insight in the latter direction, Slemrod and Tzavaras [ST]
studied the self-similar dynamic-limit approach. For Maxwellian Riemann data

(1.4a) f(x, 0) =

{
f+, x > 0,
f−, x < 0,

(1.4b) Q(f+) = 0, Q(f−) = 0, f1±, f2±, f3± > 0,

where

(1.4c) Q(f) = f2
3 − f1f2,

the solutions of the limit equation (1.2) are expected to be self-similar functions of
ξ = x/t. Motivated by this reasoning, they considered the modified Broadwell system

(1.5)

∂f1
∂t

+
∂f1
∂x

=
1

εt
(f2

3 − f1f2),

∂f2
∂t
− ∂f2

∂x
=

1

εt
(f2

3 − f1f2),

∂f3
∂t

=
1

2εt
(f1f2 − f2

3 ).
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By making the ansatz f(x, t) = f(x/t) in (1.4) and (1.5), the Riemann problem
(1.4)–(1.5) becomes a singular boundary-value problem:

(1.6)

(1− ξ)f ′1 =
Q(f)

ε
,

−(1 + ξ)f ′2 =
Q(f)

ε
,

ξf ′3 =
Q(f)

2ε
,

f(−1) = f−, f(+1) = f+,

Q(f+) = 0, Q(f−) = 0, f1±, f2±, f3± > 0,

for ξ ∈ [−1, 1]. They proved that the total variations of solutions of (1.6) are bounded
uniformly in ε, and hence there is a sequence {f εn}, εn → 0+, such that f εn → f
almost everywhere, where f is a weak solution of the Riemann problem (1.2), (1.4).
However, the existence of solutions of (1.6) was proved only in the case where f1− <
f1+, f2− > f2+, and f3− = f3+. Under these assumptions on the initial data, the limit
solution will be continuous and hence precludes the case where shocks are present.

In this paper, we shall prove the existence of a positive continuous solution of (1.6)
and hence (1.4)–(1.5) with no restrictions attached. We also prove some regularity
estimates for solutions of (1.6). The precise statement of these results is as follows.

Theorem 1.1. There exists a positive continuous solution of (1.6). Moreover,
any positive solution f(ξ) of (1.6) satisfies the following estimates:

(1.7a) f1(ξ)− f1+ = O(1)(1− ξ)
f2+
ε for ξnearξ = 1,

(1.7b) f2(ξ)− f2− = O(1)(ξ + 1)
f1−
ε forξ near ξ = −1,

and

(1.7c) f3(ξ)− f3(0) = O(1)|ξ|
min(f3−,f3(0),f3+)

ε for ξ near ξ = 0,

(1.7d) Q(f(ξ)) = O(1)(ξ + 1)
f1−
ε (1− ξ)

f2+
ε |ξ|

min(f3−,f3(0),f3+)

ε .

Combining Theorem 1.1 with the results from [ST], we prove the following.
Corollary 1.2. For any Maxwellian Riemann data (1.4), there is a solution

of (1.4)–(1.5) f ε(x/t). Further, there is a sequence of solutions of (1.4)–(1.5), {f εn},
εn → 0+, such that f εn converges almost everywhere to a weak solution of the limit
equations (1.2) and (1.4).

Remark. It is interesting to see that for system (1.1), the discontinuity at x = 0
at initial time will propagate along x/t = ±1 and x = 0, which are characteristics of
(1.1), while for the modified system (1.5), there is no discontinuity at these locations.
In fact, the discontinuities of (1.1) at x/t = ±1 and x = 0 are not intrinsic in the
sense that in the limit ε → 0+, there is no shock at x/t = ±1 due to the stability
condition, and there may not be a shock at x = 0 in the limit system (1.2).

We organize this paper as follows. In section 2, we recall some results from [ST]
and state the main results of this paper. In section 3, we prove that (1.6) has a
continuous positive solution. The method we use is a kind of shooting argument.
Finally, we prove that for some sequence {εn}, εn → 0+ as n → ∞, the solutions of
(1.6), f εn , converge almost everywhere to a weak solution of (1.2), (1.4).
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2. Preliminaries. We see that there are three singular points, ξ = ±1, 0, in
the boundary-value problem (1.6). At ξ = ±1, two components of f are continuous.
Thus the other component must also be continuous due to the boundary condition.
Therefore, in what follows, we define the solutions of (1.6) to be weak solutions of
(1.6) which are continuous on [−1, 0) ∪ (0, 1].

We recall some results on (1.6) obtained in [ST].
Lemma 2.1. Let f = (f1, f2, f3) be a continuous solution of (1.6). Then
(i) Q(f(ξ)) does not change sign on the intervals (−1, 0) or (0, 1),
(ii) Q(f(−1)) = Q(f(0)) = Q(f(+1)) = 0, and
(iii) f1, f2, and f3 are uniformly bounded from above and below by positive con-

stants and of uniformly bounded total variation on [−1, 1]. These bounds are indepen-
dent of ε > 0.

In fact, assertion (i) of Lemma 2.1 does not require the continuity of f . For our
later use, we revise it as follows.

Lemma 2.2. Let f be a solution of (1.6). Then Q(f(ξ)) does not change sign
on the interval (−1, 0) and (0, 1). Furthermore, each component of f is monotone on
each interval (−1, 0) and (0, 1).

Proof. A straightforward calculation based on (3.1) shows that

(2.1)
dQ

dξ
=

1

ε

(
f1(ξ)

ξ + 1
+
f2(ξ)

ξ − 1
+
f3(ξ)

ξ

)
Q(ξ),

from which the assertion follows.

3. Existence of solutions of (1.6). In this section, when we refer to solutions
of a system of ordinary differential equations, we always mean continuous solutions
unless otherwise indicated. We intend to prove the existence of (1.6) by a kind of
shooting argument. For this purpose, we consider the trajectories of

(3.1)

(1− ξ)f ′1 =
Q(f)

ε
,

−(ξ + 1)f ′2 =
Q(f)

ε
,

ξf ′3 =
Q(f)

2ε
, ξ ∈ (−1, 1),

issued from

(3.2) (f1−, f2−, f3−) at ξ = −1

and

(3.3) (f1+, f2+, f3+) at ξ = +1,

respectively, where f3± = (f1±f2±)1/2. It is clear that (3.1) has three singular points,
ξ = −1, 0,+1. We first need some regularity results of trajectories of (3.1) near these
points.

Lemma 3.1.

(i) Let f be a bounded solution of (3.1) and (3.2) on [−1, 0). Then

(3.4a)

Q = C(1 + ξ)
f1−
ε (1− ξ)

f2+
ε |ξ|

min(f3−,f3(0−))

ε

× exp

[
1

ε

∫ ξ

−1

(
f1(ζ)− f1−

ζ + 1
+
f2(ζ)− f2+

ζ − 1
+
f3(ζ)−min(f3−, f3(0−)

ζ

)
dζ

]
.
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In fact, the numbers f1, f2+, and min(f3−, f3(0−)) in (3.4a) can be replaced by any
other numbers.

(ii) Let f be a bounded solution of (3.1) and (3.2) on (0, 1]. Then
(3.4b)

Q = C(1 + ξ)
f1−
ε (1− ξ)

f2+
ε |ξ|

max(f3+,f3(0+))

ε

× exp

[
1

ε

∫ ξ

1

(
f1(ζ)− f1−

ζ + 1
+
f2(ζ)− f2+

ζ − 1
+
f3(ζ)−max(f3+, f3(0+)

ζ

)
dζ

]
.

In fact, the numbers f1−, f2+, and max(f3+, f3(0+)) in (3.4b) can be replaced by any
other numbers.

(iii) Let f be a bounded solution of (3.1) and (3.2) on [−1, 0). Then

(3.5a) Q ≤ O(1)|ξ|
min(f3−,f3(0−))

ε .

(iv) Let f be a bounded solution of (3.1) and (3.3) on (0, 1]. Then

(3.5b) Q ≤ O(1)|ξ|
max(f3+,f3(0+))

ε .

Proof. (i) Since f3 is bounded and monotone on each of the intervals [−1, 0) and
(0, 1], the one-sided limits f3(0±) are well defined and finite. Equation (3.4a) can be
obtained from (2.1) as follows:
(3.6)

Q(f(ε)) = Q

(
f

(
−1

2

))
× exp

[
1

ε

∫ ξ

− 1
2

(
f1(ζ)

ζ + 1
+
f2(ζ)

ζ − 1
+
f3(ζ)

ζ

)
dζ

]
= Q

(
f

(
−1

2

))
(ξ + 1)

f1−
ε (1− ξ)

f2+
ε |ξ|

min(f3−,f3(0−)

ε

× exp

[
1

ε

∫ ξ

−1
2

(
f1(ζ)− f1−

ζ + 1
+
f2(ζ)− f2+

ζ − 1
+
f3(ζ)−min(f3−, f3(0−))

ζ

)
dζ

]
= C(1 + ξ)

f1−
ε (1− ξ)

f2+
ε |ξ|

min(f3−,f3(0−))

ε

× exp

[
1

ε

∫ ξ

−1

(
f1(ζ)− f1−

ζ + 1
+
f2(ζ)− f2+

ζ − 1
+
f3(ζ)−min(f3−, f3(0−))

ζ

)
dζ

]
.

The proof of (ii) is similar.
(iii) If Q ≥ 0 on [−1, 0), then f2 and f3 are decreasing and

f ′1 =
Q

ε(1− ξ) ≤
f2
3

ε(1− ξ) ≤
f2
3−

ε(1− ξ) ,

and hence the integral in (3.4a) is either negative or bounded. Thus we have the
estimate

Q ≤ O(1)|ξ|
min(f3−,f3(0−))

ε .

If Q < 0 on [−1, 0), then f1 is decreasing and f2 is increasing; hence f1(ξ) < f1−
and f2(ξ > f2− for ξ ∈ [−1, 0). A variation of (3.4a) states that

Q = C(1 + ξ)
f1−
ε (1− ξ)

f2−
ε |ξ|

min(f3−,f3(0−))

ε

× exp

[
1

ε

∫ ξ

−1

(
f1(ζ)− f1−

ζ + 1
+
f2(ζ)− f2−

ζ − 1
+
f3(ζ)−min(f3−, f3(0−)

ζ

)
dζ

]
.
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Since every term of the integrand is negative, we also have

Q = O(1)|ξ|
min(f3−,f3(0−))

ε .

We can prove (iv) similarly.
Now we need some existence results for the trajectories of (3.1) and (3.2) and

those of (3.1) and (3.3). For definiteness, we consider (3.1) and (3.2). The other part
can be handled similarly. In view of Lemma 3.1, we let

(3.7) P (ξ) :=
Q(f(ξ))

(1 + ξ)
f1−
ε

.

Under this transformation, the initial-value problem (3.1)–(3.2) becomes a regular
problem:

(3.8)

f ′1 =
(1 + ξ)

f1−
ε P

ε(1− ξ) ,

f ′2 =
−(1 + ξ)

f1−
ε −1P

ε
,

P ′ =
P (ξ)

ε

(
1

1 + ξ

∫ ξ

−1

(1 + s)
f1−
ε

(1− s)ε P (s)ds

+
f2
ξ − 1

+
f3− +

∫ ξ
−1

1
2εs (1 + s)

f1−
ε P (s)ds

ξ

)
with initial conditions

(3.9) f1(−1) = f1−, f2(−1) = f2−, P (−1) = P−.

Lemma 3.2. The system of equations (3.8)–(3.9) is equivalent to (3.1)–(3.2).
Proof. It is clear that (3.1) implies (3.8). To see that (3.8) implies (3.1), we let

(3.10)

Q = (1 + ξ)
f1−
ε P (ξ),

f3 := f3− +

∫ ξ

−1

Q

εs
ds.

A straightforward calculation based on (3.8) yields (3.1) and

dQ

dξ
=

1

ε

(
f1
ξ + 1

+
f2
ξ − 1

+
f3
ξ

)
Q

= −f1f ′2 − f2f ′1 + (f2
3 )′

=
d

dξ
(f2

3 − f1f2),

which implies

(3.11)
Q = f2

2 − f1f2 + f2
3 (−1)− f1(−1)f2(−1)

= f2
3 − f1f2.

The following lemma indicates how f(ξ, P−) can be extended to [−1, 0].
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Lemma 3.3. For any f1− > 0, f2− > 0, and P− = (Q(f(ξ))/(1 + ξ)
f1−
ε )
∣∣
ξ=−1

,

problem (3.8)–(3.9) has a unique solution on [−1, ξ0) for some ξ0 ∈ (−1, 0].
Proof. System (3.8)–(3.9) is an initial-value problem for systems of regular differ-

ential integral equations to which the standard contraction-mapping argument applies,
and hence we have the assertion.

For convenience, we shall denote the trajectory of (3.1)–(3.2) that satisfies (3.18)
by

f(ξ; f1−, f2−, P−)

or by f(ξ;P−) when no confusion will arise.
Lemma 3.4. Let f1− > 0 and f2− > 0.
(i) If P− ≤ 0, then problem (3.8)–(3.9) has a unique solution on [−1, 0].
(ii) For P− > 0, the solution of (3.8)–(3.9) exists on [−1, 0] if and only if f2(ξ) > 0

on [−1, 0) ∩ (domain of f).
(iii) If the solution of (3.1)–(3.2) exists on [−1, 0], then f is positive on [−1, 0),

i.e., all of the components of f are positive on [−1, 0).
Proof. From the structure of (3.1), we can see that ifQ(f(ξ)) is bounded on [−1, 0]

in supremum norm, then f(ξ) is bounded in [−1, ξ1] for any ξ1 ∈ (−1, 0). Then by
the standard argument of continuation of contraction mapping, the existence and
uniqueness result of Lemma 3.3 can be extended to [−1, 0).

(i) In the case where P− ≤ 0, we have similarly to (3.4a) that
(3.12)

Q(f(ξ)) = P−(1 + ξ)
f1−
ε (1− ξ)

f2−
ε |ξ|

f3−
ε

× exp

[
1

ε

∫ ξ

−1

(
f1(ζ)− f1−

ζ + 1
+
f2(ζ)− f2−

ζ − 1
+
f3(ζ)− f3−

ζ

)
dζ

]
< 0.

Then equation (3.1) implies that

(3.13)

f1(ζ) < f1− = f1(−1),

f2(ζ) > f2− = f2(−1),

f3(ζ) > f3−

for ζ ∈ (−1, 0] and therefore

|Q(f(ξ))| ≤ |P−|(1 + ξ)
f1−
ε (1− ξ)

f2−
ε |ξ|

f3−
ε .

Hence f is bounded in [−1, 0], and thus the solution of (3.8)–(3.9) exists on (−1, 0).
Further, because of (3.13), the existence can be extended to [−1, 0].

(ii) In the case where P− > 0, we can derive from (3.12) that Q(f(ξ)) > 0 on
[−1, 0]. Then (3.1) shows that

f1(ξ) > f1− > 0,

f2(ξ) < f2−,

f3(ξ) < f3−

for ξ ∈ (−1, 0) ∩ (domain of existence of f). If f2(ξ) > 0 for ξ ∈ (−1, 0), then

f3− > f3(ξ) > 0, ξ ∈ (−1, 0),
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because otherwise equation (3.1)3 shows that at ξ0, the infimum of points at which
f3(ξ) = 0,

f ′3(ξ0) =
−f1(ξ0)f2(ξ0)

εξ0
> 0,

which cannot be true at ξ0. Thus we have

(3.14) 0 < Q(f(ξ)) < f2
3 (ξ) < f2

3−.

Conversely, if f2(ξ0) < 0 for some ξ0 ∈ (−1, 0), then

f ′2(ξ) =
Q(f)

ξ
<
−f1(ξ0)f2(ξ0)

ξ
< 0,

where we have used the monotonicity of f1 and f2 on (−1, 0). It can be seen that
f2(ξ)→ −∞ and hence Q(f(ξ))→∞ as ξ approaches 0−. Then the assertion in (ii)
follows.

(iii) We first claim that f1(ξ) > 0 on [−1, 0). Indeed, otherwise, there would
be a point ξ0 ∈ [−1, 0) such that f1(ξ0) = 0 and f1(ξ) > 0 for ξ ∈ [−1, ξ0). Then
we have f ′1(ξ0) ≤ 0. On the other hand, however, equation (3.1)1 implies that 0 ≤
(1 − ξ0)f ′1(ξ0) = Q(f(ξ0)) = f2

3 (ξ0) ≥ 0. From (3.4a), we see that Q(f(ξ) remains
positive or negative or 0 on (−1, 0), which in our case says that Q ≡ 0 on (−1, 0).
This implies that f1 ≡ f1− on (−1, 0), which is a contradiction.

When P− ≤ 0, our assertion holds in view of (3.13).
When P− > 0, assertion (ii) says that f2(ξ) > 0 on [−1, 0). Further, the proof of

(ii) indicates that if f2(ξ) > 0 on [−1, 0), then so does f3. This completes the proof
of (iii).

Theorem 3.5. For any f1− > 0 and f2− > 0, there is P0, 0 < P0 < ∞, such
that problem (3.8)–(3.9) has a unique solution on [−1, 0] for P− ∈ (−∞, P0] and

(3.15) f2(0; f1−, f2−, P0) = 0 .

Furthermore, the solution f(ξ, P−) is positive on [−1, 0) for all P− ∈ (−∞, P0].
Proof. From Lemma 3.4(i), we see that problem (3.8)–(3.9) has a unique solution

on [−1, 0] for all P− ≤ 0.
Suppose (3.8)–(3.9) has a solution for some P̄− > 0. We claim that (3.8)–(3.9)

has a solution for all P− ∈ (−∞, P̄−]. To this end, without loss of generality, we
consider only P̄− > P− > 0. Let

f̄(ξ) := f(ξ; f1−, f2−, P̄−),

f(ξ) := f(ξ; f1−, f2−, P−) .

We claim that

(3.16) Q(f̄(ξ)) > Q(f(ξ))

for all ξ ∈ (−1, 0) if f(ξ) exists. To see this, we recall that

P̄ (−1) =
Q(f(ξ))

(1 + ξ)
f1−
ε

∣∣∣∣
ξ=−1

= P̄− > P− = P (−1) =
Q(f(ξ))

(1 + ξ)
f1−
ε

∣∣∣∣
ξ=−1

.
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Then there is a ξ0 ∈ (−1, 0] such that for ξ ∈ (−1, ξ0), the solutions P̄ (ξ) and P (ξ)
to (3.8)–(3.9), with P̄ (−1) = P̄− and P (−1) = P−, respectively, satisfy

P̄ (ξ) > P (ξ)

and hence

Q(f̄(ξ)) > Q(f(ξ)).

Without loss of generality, we can assume ξ0 to be the maximum of ξ0 in the above
statement. Then

(3.17) Q(f̄(ξ0)) = Q(f(ξ0))

and

(3.18) Q(f̄(ξ)) > Q(f(ξ))

for ξ ∈ (−1, ξ0). From (3.1), we see that

(3.19)

f̄1(ξ) > f(ξ),

f̄2(ξ) < f2(ξ),

f̄3(ξ) < f3(ξ)

for ξ ∈ (−1, ξ0). Using the same technique used to derive (3.4), we obtain

0 = Q(f̄(ξ0))−Q(f(ξ0))

= P̄−(1 + ξ)
f1−
ε exp

[
1

ε

∫ ξ0

−1

(
f̄1(ζ)− f1−

ζ + 1
+
f̄2(ζ)

ζ − 1
+
f̄3(ζ)

ζ

)
dζ

]
− P−(1 + ξ)

f1−
ε exp

[
1

ε

∫ ξ

−1

(
f1(ζ)− f1−

ζ + 1
+
f2(ζ)

ζ − 1
+
f3(ζ)

ζ

)
dζ

]
= Q(f(ξ0))

{
P̄−
P−

exp

[
1

ε

∫ ξ

−1

(
f̄1(ζ)− f1(ζ)

ζ + 1
+
f̄2(ζ)− f2(ζ)

ζ − 1

+
f̄3(ζ)− f3(ζ)

ζ

)
dζ

]
− 1

}
> 0,

where in the last inequality we used (3.19), which is a contradiction. This proves that
if P̄− > P− > 0,

(3.20) 0 < Q(f(ξ)) < Q(f̄(ξ)) .

Then by (3.1) and the assumption that f̄(ξ) is a solution of (3.1)–(3.2) on [−1, 0], we
have

0 ≤ f̄2(ξ) < f2(ξ),

and hence f(ξ, P−) exists in view of Lemma 3.4(ii).
Now we denote

(3.21)
P0 := sup{P̄− ≥ 0; (3.8)–(3.9) has a solution on

[−1, 0] with P− = P̄− on [−1, 0]} ≥ 0.
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Then we have proved that (3.8)–(3.9) has a solution on [−1, 0] with P− ∈ (−∞, P0).
It remains to prove that P0 < +∞ and that f(ξ, f1−, f2−, P0) exists on [−1, 0] and
f2(0, P0) = 0. We claim that

(3.22) lim
P−→P0

f(ξ;P )

exists for all ξ ∈ [−1, 0] and is the solution f(ξ, f1−, f2−, P0). To this end, we observe
that P0 ≥ 0. If −1 ≤ P ≤ 0, then the proof of Lemma 3.4(i) states that f(ξ) is
bounded on [−1, 0]. If P0 > P > 0, then by (3.19) we have

(3.23) 0 ≤ Q(f(ξ;P−)) < f2
3 (ξ;P−) < f2

3−,

and hence f1(ξ; f1−, f2−, P−) is bounded uniformly in P−, and so are f2 and f3 since

(3.24)
0 < f2(ξ;P−) < f2−,

0 < f3(ξ;P−) < f3−.

Also, f1, f2, and f3 are monotone in ξ on [−1, 0] and hence have total variation
bounded independently of P ∈ [−1, P0), and hence (3.22) exists. The conclusion that
the limit is the solution f(ξ; f1−, f2−, P0) is obvious from the integral form of (3.8).
We claim that P0 < +∞. Indeed, otherwise, we would have similarly to (3.4) that

Q(f(ξ;P−)) = P−(1 + ξ)
f1−
ε (1− ξ)

f2−
ε |ξ|

f3−
ε

× exp

[
1

ε

∫ ξ

−1

(
f1(ζ)− f1−

ζ + 1
+
f2(ζ)− f2−

ζ − 1
+
f3(ζ)− f3−

ζ

)
dζ

]
> P−(1 + ξ)

f1−
ε (1− ξ)

f2−
ε |ξ|

f3−
ε →∞ as P− → +∞

for ξ ∈ (−1, 0), where we used (3.24) when P− > 0. Then from (3.1)2, we have

(3.25a) f2(ξ;P−) = f2− −
∫ ξ

−1

Q(f(ζ;P−))

ζ + 1
dζ → −∞ as P− → +∞

for ξ ∈ (−1, 0). On the other hand, we have

(3.25b) f2(ξ, P0) ≥ f2(0;P0) = lim
P−→P0

f2(0;P−) ≥ 0

for ξ ∈ [−1, 0]. The contradiction between (3.25a) and (3.25b) proves the claim that
P0 < +∞. Finally, we verify that

f2(0, P0) = 0 .

For contradiction, we assume the contrary, which is, in light of (3.25b), that

(3.26) f2(0;P0) > 0.

Consider f(ξ; f1−, f2−, P−) for any P− close to P0 and P− > P0 ≥ 0. The solution
f(ξ;P−) of (3.8)–(3.9) cannot be defined on [−1, 0], for otherwise the definition of P0,
(3.21), would be violated. Then by Lemma 3.4(ii),

(3.27) f2(ξ0; f1−, f2−, P−) = 0
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for some ξ0 = ξ0(P−) ∈ (−1, 0). Take a sequence of {P−,k}∞k=1 such that P−,k → P0+
and ξk = ξ0(P−,k) → η as k → +∞. For any small τ > 0, by the definition of
η, f(ξ; f1−, f2−, P−,k) exists on [−1,−τ + η]. Since the right-hand side of (3.8) is
continuous and hence its solution is continuous in initial value (3.9), we have

(3.28) |f(−τ + η, P0)− f(−τ + η, P−,k)| → 0 as k →∞.

Since f2(ξ) is decreasing when P− > 0, we infer from (3.26) that

(3.29), f2(−τ + η, f1−, f2−, P0) =: f0 > 0,

and hence

(3.30) f2(−τ + η, P−,k) >
1

2
f0

for large k. Then the mean-value theorem implies that

(3.31)

|f ′2(θ;P−,k)| =
∣∣∣∣f2(ξ0(P−,k), P−,k)− f2(−τ + η, P−,k)

ξ0(P−,k) + τ − η

∣∣∣∣
≥
|0− 1

2f0|
2τ

=
f0
4τ

for some θ ∈ (−τ + η, ξ0(P−,k)) ⊂ (−1, 0). On the other hand, we also have

(3.32)

|f ′2(θ;P−,k)| = Q(f(θ;P−,k))

(θ + 1)ε

<
f2
3 (θ, P−,k)

(θ + 1)ε
<

f2
3−

(θ + 1)ε
<

f2
3−

(1− τ + η)ε
,

where we have used the fact that f2(ξ, P−,k) > 0 and 0 < f3(ξ, P−,k) < f3− for
ξ ∈ (−τ + η, ξ0(P−,k)). Combining (3.31) and (3.32), we obtain a contradiction:

(3.33)
f2
3−

(1− τ + η)ε
>
f0
4τ
,

where τ > 0 can be arbitrarily small. This contradiction proves (3.15).
We shall establish the Lipschitz-continuous dependence on P− of f(ξ, P−). Since

the right-hand side of (3.8) is not Lipschitz continuous at ξ = −1 and 0, we have to
prove it directly.

Lemma 3.6. Suppose f(ξ) = f(ξ; f1−, f2−, P−) and f̄(ξ) = f(ξ; f1−, f2−, P̄−)
exist on [−1, 0] and f2(0−) > 0 f̄2(0−) > 0. Then for all ξ ∈ [−1, 0],

(3.34) |f(ξ; f1−, f2−, P−)− f(ξ; f1−, f2−, P̄−)| ≤ C|P− − P̄−|

for some constant C > 0.
Proof. By the definition in (3.7), we have

P (ξ) = P− exp

[
1

ε

∫ ξ

−1

(
f1(ζ)− f1−

ζ + 1
+
f2(ζ)

ζ − 1
+
f3(ζ)

ζ

)
dζ

]
.
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Consequently,

P̄ (ξ)− P (ξ) =
P (ξ)

P−

{
P̄− exp

[
1

ε

∫ ξ

−1

(
f̄1(ζ)− f1(ζ)

ζ + 1
+
f̄2(ζ)− f2(ζ)

ζ − 1

+
f̄3(ζ)− f3(ζ)

ζ

)
dζ

]
− P−

}
,

where we assumed without loss of generality that P− 6= 0. This leads to
(3.35)

P̄ (ξ)− P (ξ) =
P (ξ)

P−
(P̄− − P−)

+
P (ξ)P̄−
P−

{
exp

[
1

ε

∫ ξ

−1

(
f̄1(ζ)− f1(ζ)

ζ + 1
+
f̄2(ζ)− f2(ζ)

ζ − 1
+
f̄3(ζ)− f3(ζ)

ζ

)
dζ

]
− 1

}
=
P (ξ)

P−
(P̄− − P−)

+
P (ξ)P̄−
P−

{
exp

[
1

ε2

∫ ξ

−1

∫ ζ

−1

(
(1 + s)

f1−
ε

(ζ + 1)(1− s) +
(1 + s)

f1−
ε −1

(ζ − 1)

+
(1 + s)

f1−
2

sζ

)
(P̄ (s)− P (s))dsdζ

]
− 1

}
.

We denote

α =
min(f3−, f3(0−), f̄3(0−))

ε
.

By the structure of (3.1), the assumption that f2(0−) > 0 and f̄2(0−) > 0 implies
that f3(0−) > 0 and f̄3(0−) > 0 and hence that α > 0. Furthermore, from (3.5), we
see that P (ξ)/ξα is bounded. We divide (3.35) by ξα to obtain

(3.36)∣∣∣∣ P̄ (ξ)− P (ξ)

ξα

∣∣∣∣ ≤ |P̄− − P−|∣∣∣∣ P (ξ)

P−ξα

∣∣∣∣
+

∣∣∣∣P (ξ)P̄−
ξαP−

∣∣∣∣{exp

[
1

ε2

∫ ξ

−1

dζ

∫ ζ

−1

( (1+s)f1−

2

(ζ + 1)(1− s)

+
(1 + s)

f1−
ε − 1

1− ζ − (1 + s)
f1−
2

ζ

)
sα−1

∣∣∣∣ P̄ (s)− P (s)

sα

∣∣∣∣ ds]− 1

}
≤ |P̄− − P−|

∣∣∣∣ P (ξ)

ξαP−

∣∣∣∣
+

∣∣∣∣P (ξ)P̄−
ξαP−

∣∣∣∣{ exp

[
M(α)

∫ ξ

−1

max
s∈[−1,ζ]

∣∣∣∣ P̄ (s)− P (s)

sα

∣∣∣∣ dζ]− 1

}
,
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where M(α) is a constant bounded for α > δ > 0. This yields that for ξ ∈ [−1, 0],

(3.37)

max
s∈[−1,ξ]

∣∣∣∣ P̄ (s)− P (s)

sα

∣∣∣∣ ≤ |P− − P̄−| max
s∈[−1,ξ]

∣∣∣∣ P (s)

sαP−

∣∣∣∣
+ max
s∈[−1,ξ]

∣∣∣∣P (s)P̄−
sαP−

∣∣∣∣ exp

(
M

∫ ξ

−1

max
s∈[−1,ζ]

∣∣∣∣ P̄ (s)− P (s)

sα

∣∣∣∣ dζ)
×
∫ ξ

−1

max
s∈[−1,ζ]

∣∣∣∣ P̄ (s)− P (s)

sα

∣∣∣∣ dζ
≤ A+B

∫ ξ

−1

max
s∈[−1,ζ]

∣∣∣∣ P̄ (s)− P (s)

sα

∣∣∣∣ dζ.
Applying Gronwall’s inequality to the above expression, we obtain

max
s∈[−1,ξ]

∣∣∣∣ P̄ (s)− P (s)

sα

∣∣∣∣ ≤ |P̄− − P−|A exp[B(ξ + 1)]

for ξ ∈ (−1, 0]. Then the assertion follows from (3.8), (3.7), and (3.1).
Corollary 3.7. Let P0 be as in Theorem 3.5. Then f(0, f1−, f2−, P−) is Lips-

chitz continuous in P− for P− ∈ (−∞, P0 − δ] for any δ > 0.
We see from the last theorem that

(3.38)
{

(f1(0; f1−, f2−, P−), f2(0; f1−, f2−, P−)) : P− ∈ (−∞, P0)
}

=: C−(f1−, f2−)

is a continuous curve in the first quadrant of the (f1, f2)-plane for each fixed (f1−, f2−).
Taking P− = 0, we see that

(3.39) (f1−, f2−) ∈ C−(f1−, f2−).

We study the range of this curve in the following theorem.
Theorem 3.8. Let C−(f1−, f2−) be defined as in (3.36). Then

(3.40) C−(f1−, f2−) ⊂
{

(f1, f2) ∈ R2 : 0 < f1 ≤ f1(0;P0), 0 = f2(0;P0) ≤ f2
}
.

Furthermore,

(3.41) f2(0, P−)→ +∞ as P− → −∞.

Proof. From Lemma 3.4(ii), we see that f2(0;P−) ≥ 0 for P− ∈ (−∞, P0]. The
structure of (3.1) guarantees

f1(0, P−) > 0.

To prove ( 3.40), it suffices to prove that

(3.42) f1(0;P−) ≤ f1(0;P0).

If P− ≤ 0, then Q(f(ξ, P−)) ≤ 0 on (−1, 0). Equation (3.1) then implies that

(3.43) f1(0;P−) ≤ f1− = f1(−1; 0).
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For P− ∈ [0;P0], we recall that Q(f(ξ, P−)) is monotone increasing with respect to
P− > 0; see (3.16). Equation (3.1) then states that f1(0, P−) is increasing with respect
to P− > 0. Thus

(3.44) f1− ≤ f1(0;P−) ≤ f1(0;P0)

for P− ∈ [0, P0]. Inequality (3.42) follows from (3.43) and (3.44).
To prove (3.41), we let

P− < 0

and consider the following application of (3.4).

f2(ξ;P−)− f2− =
−1

ε

∫ ξ

−1

Q(f(ζ))

ζ + 1
dζ

=
−P−
ε

∫ ξ

−1

(1 + ζ1)
f1−
ε −1(1− ζ1)

f2−
ε |ζ1|

f3−
ε

× exp

[
1

ε

∫ ζ1

−1

(
f1(ζ2)− f1−

ζ2 + 1
+
f2(ζ2)− f2−

ζ2 − 1
+
f3(ζ2)− f3−

ζ2

)
dζ2

]
dζ1

=
−P−
ε

∫ ξ

−1

(1 + ζ1)
f1−
ε −1(1− ζ1)

f2−
ε |ζ1|

f3−
ε

× exp

[
1

ε2

∫ ζ1

−1

∫ ζ2

−1

(
1

(1 + ζ2)(1− ζ3)
+

1

(1− ζ2)(1 + ζ3)
+

1

ζ2ζ3

)
Q(f(ζ3))dζ3dζ2

]
.

Invoking (3.13),

Q(f(ζ)) ≥ P−(1 + ξ)
f1−
ε (1− ξ)

f2−
ε |ξ|

f3−
ε

for P− < 0 in the above, we obtain

f2(ξ)− f2− ≥
−P−
ε

∫ ξ

−1

(1 + ζ1)
f1−
ε −1(1− ζ1)

f2−
ε |ζ|

f3−
ε

× exp

[
1

ε2

∫ ζ1

−1

∫ ζ2

−1

(
1

(1 + ζ2)(1− ζ3)
+

1

(1− ζ2)(1 + ζ3)
+

1

ζ2ζ3

)
× P−(1 + ζ3)

f1−
ε (1− ζ3)

f2−
ε |ζ3|

f3−
ε dζ2dζ3

]
dζ1

=
−P−
ε

O(1)

∫ ξ

−1

(1 + ζ1)
f1−
ε −1 exp

{
P−
ε2

∫ ζ1

−1

∫ ζ2

−1

[
O(1)(1 + ζ3)

f1−
ε −1

+
O(1)(1 + ζ3)

f1−
ε

1 + ζ2
+O(1)(1 + ζ3)

f1−
ε

]
dζ2dζ3

}
dζ1

for ξ ∈ [−1,−1/2]. A further calculation of the above yields

(3.45) f2(ξ)− f2− ≥ −P−A(1 + ξ)
f1−
ε exp

[
P−B(1 + ξ)

f1−
ε +1

]
for ξ ∈ [−1,−1/2], where A,B > 0 are constants depending only on f− and ε. For

any N > 0, let P− < −N
ε+f1−
ε . Then (N/−P−)

ε
f1− < 1/N . Choosing

ξ0 = −1 +

(
N

−P−

) ε
f1−

< −1 +
1

N
,
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we have

−P−(1 + ξ0)
f1−
ε = N,

P−(1 + ξ0)
f1−
ε +1 = −N(1 + ξ0) > −N · 1

N
= −1.

Then (3.45) reads

f2(ξ0)− f2− ≥ NA exp(−B).

Since P− < 0, the function f2(ξ;P−) is increasing on [−1, 0], and hence

f2(0;P−)− f2− ≥ NA exp(−B)

if P− < −M
ε+f1−
ε . Thus

lim
P−→−∞

f2(0;P−) =∞.

Now we consider trajectories of (3.1) on [0, 1] with initial condition (3.3). Under
the transformation

(3.46) (ξ, f1, f2, f3) 7→ (−ξ, f2, f1, f3),

problem (3.1), (3.3) becomes the initial-value problem of equation (3.1) with initial
value f(−1) = (f2+, f1+, f3+), which we have already studied. Our previous results
then yield the following theorem.

Theorem 3.9. There is a P0+ > 0 such that the initial-value problem (3.1), (3.3)
has a unique, positive solution f+(ξ;P+) on [0, 1] for any given

P+ =
Q(f(ξ))

(1− ξ)
f2−
ε

∣∣∣∣
ξ=1

, P+ ∈ (−∞, P0+].

Furthermore, we have the following:
(i)

(3.47) f+
1 (0;P0+) = 0.

(ii) f+(0;P+) is continuous with respect to P+ ∈ (−∞, P0+].

(iii)
(3.48a)

C+(f1+, f2+) :=
{

(f+
1 (0;P+), f+

2 (0, ;P+)) ∈ R2 : P+ ∈ (−∞, P0)
}

⊂
{

(f1, f2) ∈ R2 : f1 ≥ f+
1 (0;P0+) = 0, f+

2 (0;P0+) ≥ f2 > 0
}
.

(iv)

(3.48b) lim
P−→−∞

f+
1 (0;P−) = +∞.

Theorem 3.10. Problem (1.6) always has a continuous positive solution.
Proof. For any given f± > 0, the curve C−(f1−, f2−), parametrized as (f1(0;P−),

f2(0;P−)), P− ∈ (−∞, P0], runs from f2(0, P0) = 0 to f2(0;−∞) = +∞ and 0 <
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Fig. 1.

f1(0;P−) ≤ f1(0, P0) while C+(f1+, f2+), parametrized by (f+
1 (0;P+), f+

2 (0;P+)),
P+ ∈ (−∞, P0+), runs from f+

1 (0;P0+) = 0 to f+
1 (0;−∞) = +∞ with 0 < f+

2 (0;P−) ≤
f+
2 (0;P0+). By using the Lipschitz continuity of (f1±(0;P ), f2±(0;P )) obtained in

Corollary 3.7, we can prove that

(3.49) C−(f1−, f2−) ∩ C+(f1+, f2+) 6= ∅,

as shown in Fig. 1.
The proof of (3.49) is given in Lemma 3.11 below. Let

(3.50)

(
f1(0;P−), f2(0;P−)

)
=
(
f+
1 (0;P+), f+

2 (0;P+)
)

∈ C−(f1−, f2−) ∩ C+(f1+, f2+)

for some P− ∈ (−∞, P0], P+ ∈ (−∞, P0+]. Consider the function

(3.51) f(ξ) =

 f(ξ; f1−, f2−, P−) if ξ ∈ [−1, 0],

f+(ξ; f1+, f2+, P+) if ξ ∈ [0, 1],

which is continuous and positive on [−1, 0)∪ (0, 1]. Furthermore, the matching condi-
tion (3.50) says that f1 and f2 are continuous on [−1, 1]. Thus f1 and f2 are bounded
and positive on [−1, 1], and hence so is f3. Since f is positive on [−1, 0) ∪ (0, 1],
Lemma 3.1 (iii) and (iv) imply that the function Q(f(ξ) is continuous at ξ = 0 and
Q|ξ=0 = 0. Then f3(ξ) must be continuous at ξ = 0 as well. Then f defined by (3.51)
satisfies the integral form of equation (3.1) and hence (3.1) itself. Thus f is a positive,
continuous solution of (1.6).

Lemma 3.11.

(3.52) C−(f1−, f2−) ∩ C+(f1+, f2+) 6= ∅.
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Proof. We recall from (3.36), (3.40), and (3.48a) that
(3.53)

C−(f1−, f2−) :=
{

(f1(0; f1−, f2−, P−), f2(0; f1−, f2−, P−)) : P− ∈ (−∞, P0)
}

⊂
{

(f1, f2) ∈ R2 : 0 < f1 ≤ f1(0;P0), 0 = f2(0;P0) ≤ f2
}

and

(3.54)
C+(f1+, f2+) :=

{
(f+

1 (0;P+), f+
2 (0, ;P+)) ∈ R2 : P+ ∈ (−∞, P0)

}
⊂
{

(f1, f2) ∈ R2 : f1 ≥ f+
1 (0;P0+) = 0, f+

2 (0;P0+) ≥ f2 > 0
}
.

By Corollary 3.7, the curves C−(f1−, f2−) and C+(f1+, f2+) are Lipschitz continuous
in P±, respectively. For the curve C−(f1−, f2−), we define the following subsets of
(−∞, P0]:

(3.55) A := ∪
{

(p, q) ⊂ (−∞, P0] : (f!(0; p), f2(0; p)) = (f!(0; q), f2(0; q))
}
,

(3.56) B := (−∞, P0]\A.

We further define

(3.57) t(P ) := P0 +

∫ P

P0

χB(p)dp,

(3.58) P (t) := inf{P : t(P ) = t},

(3.59)
(
f̄1(t), f̄2(t)

)
:=
(
f1(0;P (t)), f2(0;P (t))

)
.

From the definitions in (3.55)–(3.59), we can see that the curve
(
f̄1(t), f̄2(t)

)
cannot

be self-intersecting. Indeed, otherwise, there would be t1 and t2, t1 < t2, such that

(3.60)
(
f̄1(t1), f̄2(t1)

)
=
(
f̄1(t2), f̄2(t2)

)
and hence

(3.61) (P (t1), P (t2)) ⊂ A.

Then we have from (3.57) and (3.61) that

t2 − t1 =

∫ P (t2)

P (t1)

χB(p)dp = 0,

which is a contradiction. We notice from (3.57) that t(P ) is an increasing function of
P and hence P (t) is also an increasing function. We further claim that

(
f̄1(t), f̄2(t)

)
is continuous in t. To prove the claim, we let t0 be any point in the domain of(
f̄1(t), f̄2(t)

)
. Since P (t) is increasing, P (t) → p++ (or p−−) as t → t0+ (or t0−).

This implies that

(3.62) lim
t→t0+

f̄1(t) = lim
t→t0+

f1(0;P (t)) = f1(0; p+)

and

(3.63) lim
t→t0−

f̄1(t) = lim
t→t0−

f1(0;P (t)) = f1(0; p−).
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From the definition in (3.57), we have

t0 = P0 +

∫ p−

P0

χB(y)dy

and

t0 = P0 +

∫ p+

P0

χB(y)dy,

which yield

(3.64)

∫ p+

p−

χB(y)dy = 0.

Consider the open set A ∩ (p−, p+). It is a union of countably many disjoint open
intervals

A ∩ (p−, p+) = ∪∞n=1(pn, qn).

Then (3.64) is equivalent to

(3.65)
∞∑
n=1

(qn − pn) = p+ − p−.

From the definition ofA, it is clear that f1(0; pn) = f1(0; qn). We consider ∪Nn=1(pn, qn)
for large integer N . We assume without loss of generality—rearranging the notation
if necessary—that p1 < q1 < p2 < q2 < · · · < qN . The difference of f1(0; p−) and
f1(0; p+) satisfies
(3.66)
|f1(0; p−)− f1(0; p+)|

=

∣∣∣∣f1(0; p−)−
N∑
n=1

(
f1(0; pn)− f1(qn)

)
− f1(0; p+)

∣∣∣∣
=

∣∣∣∣f1(0; p−)− f1(0; p1) +
N−1∑
n=1

(
f1(0; qn)− f1(0; pn+1)

)
+ f1(0; qN )− f1(0; p+)

∣∣∣∣
≤ O(1)

(
|p1 − p−|+

N−1∑
n=1

|qn − pn+1|+ |p+ − qN |
)

= O(1)

(
p+ − p− −

N∑
n=1

(qn − pn)

)
→ 0 as N →∞,

where we used the Lipschitz continuity of f1 on P and (3.65). This proves the conti-
nuity of f̄1(t). We can prove the continuity of f̄2(t) similarly.

Now we claim that f̄2(t) → ∞ as t → inf(domain of definition of (f̄1, f̄2)). To
this end, it suffices to prove that there is a sequence {Pn} ⊂ B such that Pn → −∞
as n→∞ since f2(0;P )→∞ as P → −∞. Indeed, otherwise, by the definition of B,
there would be a sequence {P̄n} ⊂ A such that P̄n → −∞ as n → ∞ and f2(0; P̄n)
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Fig. 2.

is bounded, which is a contradiction to the fact that f2(0;P ) → ∞ as P → ∞. The
claim is proved.

The domain of definition of (f̄1, f̄2) is the range of t(P ) defined in (3.57), which
is an interval due to the continuity of t(P ). As P runs from P0 to −∞, the function
t(P ) decreases from P0 to inf(domain of definition of (f̄1, f̄2)) and f̄2(t) runs from
0 to ∞. There is at least one point T ∈(domain of definition of (f̄1, f̄2)) such that
f̄2(T ) = 2f2+(0;P0+). Let T be the set of all of these T ’s and T1 ∈ T be such that
minT∈T f̄1(T ) is attained. We define a closed curve

(3.67)

J := {(f̄1, f̄2)(t) : t ∈ [T1, P0]}
∪ {(f1, f2) : f2 = f̄2(T1), −1 ≤ f1 ≤ f̄1(T1)}
∪ {(−1, f2) : 0 ≤ f2 ≤ f̄2(T1)} ∪ {(f1, 0) : −1 ≤ f1 ≤ f1(0;P0)},

which is depicted in Fig. 2.
From the definition in (3.67), the definition of T1, and (3.53), we can see that the

curve J is a simple closed curve. Jordan’s curve theorem then states that the curve
J divides the whole (f1, f2)-plane into two components, an interior component and
an exterior component. The curve C+(f1+, f2+) has a point (0, f+

2 (0;P0+)) inside
the interior component and a point in the exterior component since (f+

1 (0;P ) → ∞
as P → ∞. Thus the curve C+(1+, f2+) must intersect the boundary of the interior
component, which is the curve J . From (3.54), we see that C+(f1+, f2+) can intersect
J only at the {(f̄1, f̄2)(t) : t ∈ [T1, P0]} part of J , which is a portion of the curve
C−(f1−, f2−). Thus we obtain the desired conclusion.

The following corollary justifies the passing of the fluid dynamic limit in (1.5) to
obtain the limit equation (1.2).

Corollary 3.12. For any Maxwellian Riemann data (1.4), there is a solution
of the equation (1.4)–(1.5), f ε(x/t). Further, there is a sequence of solutions of (1.4)–
(1.5), {f εn}, εn → 0+, such that f εn → f(x/t) almost everywhere (x, t) ∈ R × R+,
where f(x/t) is a solution of the limit equation (1.2), (1.4).

Proof. The first assertion is a restatement of Theorem 3.10. In [ST], Slemrod and
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Tzavaras proved that the total variation of solutions of (1.4)–(1.5) bounded uniformly
in ε. Thus there is a sequence of solutions of (1.4)–(1.5), {f εn}, εn → 0+, such that
f εn → f(x/t) almost everywhere (x, t) ∈ R×R+. It is clear that the limit function is
a weak solution of (1.2), (1.4).

With help from Lemma 3.1, we can improve the result of Lemma 2.2 as follows.
Theorem 3.13. Let f be a positive solution of (3.1) with boundary condition

(3.2)–(3.3). Then

(3.68) f1(ξ)− f1+ = O(1)(1− ξ)
f2+
ε for ξ near ξ = 1,

(3.69) f2(ξ)− f2− = O(1)(ξ + 1)
f1−
ε for ξ near ξ = −1,

and

(3.70) f3(ξ)− f3(0) = O(1)|ξ|
min(f3−,f3(0),f3+)

ε for ξ near ξ = 0,

(3.71) Q(fξ)) = O(1)(ξ + 1)
f1−
ε (1− ξ)

f2+
ε |ξ|

min(f3−,f3(0),f3+)

ε .

Proof. From (3.5a, b), we know that

(3.72) Q(f(ξ)) = O(1)|ξ|
min(f3−,f3(0),f3+)

ε .

Then by integrating (3.1)3, we obtain

f3(ξ)− f3(0) =

∫ ξ

0

Q(f(ζ)

εζ
dζ = O(1)|ξ|

min(f3−,f3(0),f3+)

ε ,

which is (3.70).
To prove (3.68), we start with (3.4a),

(3.73)

Q = C(1 + ξ)
f1−
ε (1− ξ)

f2+
ε |ξ|

min(f3−,f3(0−))

ε

× exp

[
1

ε

∫ ξ

−1

(
f1(ζ)− f1−

ζ + 1
+
f2(ζ)− f2+

ζ − 1
+
f3(ζ)−min(f3−, f3(0−)

ζ

)
dζ

]
,

which holds for ξ ∈ [−1, 0). If C ≥ 0 and hence Q ≥ 0 on [−1, 0), then f2 and f3 are
decreasing on [−1, 0), and hence

f ′1 =
Q

ε(1− ξ) ≤
f2
3 (ξ)

ε(1− ξ) ≤
f2
3−
ε
.

Thus all of the terms in the integrand of (3.71) are either negative or finite, which
implies that

(3.74) Q(f(ξ)) = O(1)(1 + ξ)
f1−
ε for ξ ∈ [−1, ).

This together with (3.1)2 yields that

f2(ξ)− f2− =

∫ ξ

−1

−Q(f(ζ))

ε(ζ + 1)
= O(1)(1 + ξ)

f1−
ε ,

which proves (3.68). Similarly, we can prove that

(3.75) Q(f(ξ)) = O(1)(1− ξ)
f2+
ε for ξ ∈ (0, 1]

and thus (3.69). Combining (3.72), (3.74), and (3.75), we obtain (3.71).
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DO NOT DECAY FAST AT INFINITY∗
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Abstract. Let an integer m ≥ 0 be fixed. Let Xm be the space of functions f ∈ C∞(Rn)
that admit an asymptotic expansion f(rβ) ∼

∑∞
k=m ψk(β)/rn+k, r →∞, ψk ∈ C∞(Sn−1), and the

expansion can be differentiated with respect to x = rβ any number of times. In this paper, we derive
a precise characterization of the range of the Radon transform R acting on Xm; that is, we explicitly
describe the space Zm = RXm. The conditions which describe the space Zm are easily verifiable.

Key words. range, Radon transform, moment conditions, asymptotic expansion
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1. Introduction and statement of main result. Consider the Schwartz space
S(Rn) consisting of C∞(Rn) functions that decay with all derivatives faster than any
power of |x|−1 as |x| → ∞. If f ∈ S(Rn), then Rf , the Radon transform of f , is
defined by the formula

(1.1) Rf(α, p) =

∫
Rn
f(x)δ(α · x− p)dx, α ∈ Sn−1, p ∈ R.

Here Sn−1 is the unit sphere in Rn and δ is the one-dimensional delta function. If f
is a distribution, then Rf is defined via duality (Rf, ϕ) = (f,R∗ϕ), where R∗ is the
operator dual to R,

R∗ϕ(x) =

∫
Sn−1

ϕ(α, α · x)dα,

and the test functions ϕ run through a suitable space (see, e.g., [8], [4], and [12]).
Let Sem(Z), Z := Sn−1×R, be the space of C∞(Z) functions g(α, p) that satisfy

the following conditions:
1. g is even: g(α, p) = g(−α,−p), (α, p) ∈ Z;
2. g(α, p) and all of its derivatives with respect to α and p decay faster than any

power of p−1 as p→∞; and
3.

(1.2)

∫ ∞
−∞

g(α, p)pjdp = Pj(α), j = 0, 1, 2, . . . ,

where Pj(x), x ∈ Rn, is a homogeneous polynomial of degree j and Pj(α) is the
restriction of Pj to Sn−1.
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The conditions in (1.2) are known as the “moment conditions.” It was proved
in [3] (see also [2] and [8]) that R : S(Rn) → Sem(Z) is an isomorphism. This
result gives a complete description of the range of R on the space of smooth rapidly
decaying functions. Subsequently, ranges of R on spaces of compactly supported
distributions E ′ and rapidly decaying distributions O′c have been described [5], [6],
[7]. Basically, these results state that the range of R on E ′(Rn)(O′c(Rn)) consists of
g ∈ E ′(Z)(O′c(Z)), which are even and satisfy the moment conditions in (1.2) in a
generalized sense. In case of O′c(Rn), it is necessary to assume in addition that g
is C∞ in the α variable [6]. Range theorems on the space of compactly supported
Hs-functions have been given in [9], [13], [10], and [11]. In this case, functions from
the range of R belong to the corresponding Sobolev space Hs+(n−1)/2(Z), are even
and compactly supported, and satisfy the moment conditions in (1.2).

A preimage under the Radon transform of S(Z) even functions that satisfy none
or finitely many of the conditions in (1.2) was studied in [14]. Suppose that g ∈ S(Z)
and g is even. Among other results, it was proved in [14] that the more moment
conditions that g satisfies, the faster f := R−1g decays at infinity. Moreover, if g does
not satisfy all of the moment conditions, then the decay rate of f is only polynomial.
A related result was obtained in [15], where a partial range theorem for R on functions
which decay only polynomially was proved. In particular, it was proved in [15] that if
g ∈ Cr(Z), r <∞, satisfies finitely many moment conditions and derivatives of g(α, p)
with respect to α decay sufficiently fast as p→∞ (but not necessarily exponentially
fast), then there exists a function f such that Rf = g and the inversion formula
f = (1/2(2π)n−1)Λn−1R∗g holds. Here Λ is the Calderon operator defined by the
equation Λ2 = −∆, where ∆ is the Laplacian.

In this paper, we give a precise characterization of the range of R on a certain
class of C∞ functions that decay only polynomially at infinity. Our main result is the
following.

Theorem. Fix any integer m ≥ 0. Let Xm be the space of functions f ∈ C∞(Rn)
that admit an asymptotic expansion

(1.3) f(rβ) ∼
∞∑
k=m

ψk(β)

rn+k
, r →∞, ψk ∈ C∞(Sn−1),

and the expansion can be differentiated with respect to x = rβ any number of times.
Let Zm be the space of even functions g ∈ C∞(Z) such that

(a) g satisfies the first m moment conditions (1.2), j = 0, 1, . . . ,m− 1, and
(b) g admits an asymptotic expansion

(1.4) g(α, p) ∼
∞∑
k=m

Qk(α) + bk(α)

pk+1
, p→ +∞,

where

(1.5a) bk ∈ C∞(Sn−1), bk(−α) = (−1)k+1 bk(α),

(1.5b) Qk is a homogeneous polynomial of degree k,

and the expansion can be differentiated with respect to p any number of times.
Then RXm = Zm.
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Remark. Expansion (1.3) means that f(rβ)−
∑K−1
k=m ψk(β)r−(n+k) = O(r−(n+K))

as r → +∞ uniformly in β ∈ Sn−1 for each K ≥ m + 1. Expansion (1.4) means

that g(α, p) −
∑K−1
k=m (Qk(α) + bk(α))/pk+1 = O(p−(K+1)) as p → +∞ uniformly in

α ∈ Sn−1 for each K ≥ m+ 1.
We see that the theorem presented is a generalization of the classical range the-

orem because S(Rn) = ∩m≥0Xm and Sem(Z) = ∩m≥0Zm. One can also see that the
conditions on the range of the Radon transform are easily verifiable.

For convenience, we introduce another space of functions. Let Ym be the space
of even functions g ∈ C∞(Z) such that g admits an asymptotic expansion

(1.6) g(α, p) ∼
∞∑
k=m

gk(α, p), p→∞,

and the expansion can be differentiated with respect to p any number of times. In
(1.6), the functions gk ∈ C∞(Z), k ≥ m, are even and satisfy the following assump-
tions:

(1) gk satisfies the first k moment conditions in (1.2), j = 0, 1, . . . , k − 1;
(2) gk can be represented as

gk(α, p) =
Qk(α) + bk(α)

pk+1
, p > 1,

bk ∈C∞(Sn−1), bk(−α) = (−1)k+1bk(α),

(1.7)

where Qk is a homogeneous polynomial of degree k; and
(3) for all K ≥ m, the difference g −

∑K−1
k=m gk satisfies the first K moment

conditions in (1.2), j = 0, 1, . . . ,K − 1.
Proposition. Zm = Ym.
Proof. The inclusion Ym ⊂ Zm is obvious. To prove the inclusion Zm ⊂ Ym,

we have to fix any g ∈ Zm and find functions gk with properties (1)–(3). Let hk ∈
C∞(Z), k ≥ m, be any even functions such that

(1.8a) hk(α, p) =
Qk(α) + bk(α)

pk+1
, p > 1,

(1.8b) hk satisfies the first k moment conditions.

The functions hk can be constructed, for example, as follows:

hk(α, p) = Qk(α)Ak(p) + bk(α)Bk(p),

where Ak, Bk ∈ C∞(R) are chosen so that

Ak(p) = Bk(p) =
1

pk+1
, p > 1;

Ak(−p) = (−1)kAk(p), Bk(−p) = (−1)k+1Bk(p), p ∈ R;

∫ ∞
−∞

Akp
jdp =

∫ ∞
−∞

Bkp
jdp = 0, 0 ≤ j ≤ k − 1.
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Fix any Pk ∈ C∞0 ([−1, 1]) with the properties

(1.9) Pk(−p) = (−1)kPk(p),

∫ ∞
−∞

Pk(p)pjdp =

{
0, j = 0, 1, . . . , k − 1,

1, j = k,

and define

(1.10)

gk(α, p) := hk(α, p) + Pk(p) ·
∫ ∞
−∞

g(α, t)−
k−1∑
j=m

gj(α, t)− hk(α, t)

 tkdt, k ≥ m.

If k = m, the summation on the right-hand side of (1.10) disappears.
Let us check that the functions gk defined in (1.10) have all of the required

properties. Equations (1.4) and (1.8a) ensure that (1.6) is satisfied. Since (1.4) can
be differentiated with respect to p, expansion (1.6) can be differentiated with respect
to p as well. Using (1.10), it is easy to check that gk, k ≥ m, are C∞(Z) and even.
Property (1) follows immediately from (1.8b) and (1.9). Property (2) follows from
(1.8a). Property (3) can be checked by induction.

Let us denote

∆gm := g, ∆gk := g −
k−1∑
k=m

gj , k ≥ m+ 1.

We have to show that ∆gk, k ≥ m, satisfies k moment conditions. If k = m, then
∆gm = g and by assumption (a) of the theorem, ∆gm satisfies m moment conditions.
Now let k > m. Suppose that ∆gk satisfies k moment conditions. We have to show
that ∆gk+1 satisfies k + 1 moment conditions. From the relation ∆gk+1 = ∆gk − gk,
it is obvious that ∆gk+1 satisfies k moment conditions. Let us check the (k + 1)st
moment condition. Using (1.9) and (1.10), which can be rewritten as

gk(α, p) := hk(α, p) + Pk(p) ·
∫ ∞
−∞

(∆gk(α, t)− hk(α, t)) tkdt, k ≥ m,

we get

∫ ∞
−∞

∆gk+1p
kdp =

∫ ∞
−∞

(∆gk − gk)pkdp

=

∫ ∞
−∞

(∆gk − hk)pkdp−
∫ ∞
−∞

Pk(p)pkdp

∫ ∞
−∞

(∆gk − hk)tkdt = 0.

Since the right-hand side of the last equation is a homogenous polynomial of any
degree, the desired assertion is proved.

In view of the proposition, the assertion RXm = Ym is equivalent to the theorem.
In section 2, a proof of the inclusion RXm ⊂ Ym is given. In section 3, we prove the
inclusion Ym ⊂ RXm. Two auxiliary lemmas are proved in section 4.

2. Proof of the inclusion RXm ⊂ Ym. Let m ≥ 0 be fixed. Fix any f ∈ Xm
and show that Rf ∈ Ym. Define g by

(2.1) g(α, p) := Rf(α, p) =

∫ ∞
0

∫
Sn−2

α⊥

f(pα+ tω)dω tn−2dt,
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where Sn−2
α⊥

is the unit sphere in the hyperplane passing through the origin perpen-
dicular to α. Expansion (1.3) ensures that the above integral converges absolutely.
Since derivatives of f decay at least as fast as f , one can differentiate with respect to
p under the integral sign in (2.1) any number of times. Now let us check that g can
be differentiated with respect to α. Fix any α ∈ Sn−1, and let ω ⊥ α. It is sufficient
to check that the function g(

√
1− |ω|2α+ ω, p) can be differentiated with respect to

ω at |ω| = 0. Let us represent x ∈ Rn as follows: x = sα + y, y ⊥ α. Differentiating
the identity

g(
√

1− |ω|2α+ ω, p) =

∫
Rn−1

f

(
p− ω · y√

1− |ω|2
α+ y

)
dy

with respect to ωk, 1 ≤ k ≤ n− 1, and setting |ω| = 0, we get

∂

∂ωk
g(
√

1− |ω|2α+ ω, p)

∣∣∣∣
|ω|=0

= −
∫

Rn−1

yk
∂

∂s
f(sα+ y)

∣∣∣∣
s=p

dy

= −R
[
yk

∂

∂s
f(sα+ y)

]
(α, p).

Since |f(x)| ≤ O(|x|−n), | ∂∂sf(sα+y)| ≤ O((s2+|y|2)−(n+1)/2), and therefore |yk ∂
∂sf(sα+

y)| ≤ O((s2 +|y|2)−n/2), the integrals on the right-hand sides of the last two equations
converge absolutely, and taking the derivative under the integral sign is justified. As
a generalization, we get

Pm(∂ω)g(
√

1− |ω|2α+ ω, p)

∣∣∣∣
|ω|=0

= (−1)mR

[
Pm(y)

∂m

∂sm
f(sα+ y)

]
(α, p),

where Pm(ω) = Pm(ω1, . . . , ωn−1) is a homogeneous polynomial of degree m. By as-
sumption, | ∂m∂sm f(sα+y)| ≤ O((s2 +|y|2)−(n+m)/2), and therefore R

(
Pm(y) ∂

m

∂sm f(sα+

y)
)

is well defined for any m ≥ 0. This shows that g(α, p) is infinitely differentiable
with respect to α. Therefore, g ∈ C∞(Z). Clearly, g is even.

Let fk be any C∞(Rn) function such that fk(rβ) = r−(n+k)ψk(β), r > 1 (see
(1.3)). Denote gk = Rfk. Analogously, we check that gk ∈ C∞(Z) and gk is even.
The functions fk(rβ)rj , j = 0, 1, . . . , k − 1, are absolutely integrable, and therefore
the identity

(2.2)

∫
Rn
f(x)(α · x)jdx =

∫ ∞
−∞

g(α, p)pjdp, j = 0, 1, . . . , k − 1, g = Rf,

which follows from the Fubini theorem, implies that gk satisfies assumption (1) (see
below (1.6)). Representing fk and gk as fk(rβ) =

∑∞
l=0Rkl(r)Yl(β), where Yl is

the spherical harmonic of degree l, Rkl(r) = cklr
−(n+k) for r > 1, and gk(α, p) =∑∞

l=0 Pkl(p)Yl(α), using (1.1) and the Funk–Hecke theorem [12, pp. 18 and 19], we
find for p > 1 that

R
(
Rkl(r)Yl(β)

)
= γnlcklYl(α)

∫ ∞
p

r−(n+k)C
(n−2

2 )

l (p/r)(1− (p/r)2)
n−3

2 rn−2dr

= γnlckl
Yl(α)

pk+1

∫ 1

0

tkC
(n−2

2 )

l (t)(1− t2)
n−3

2 dt

= 0 if k < l and k + l is even,

(2.3)
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where γnl are some nonzero constants. Thus we have verified assumption (2), and
we have showed that the kth term of the expansion for f is transformed into the kth
term of series (1.6).

Let fΣK :=
∑K−1
k=m fk be the sum of the first K − m terms of expansion (1.3).

Define gΣK := RfΣK . Since f(rβ) − fΣK(rβ) = O(r−(n+K)), equation (2.2) implies
that assumption (3) is also verified. Moreover, using (2.1), we get

|g(α, p)− gΣK(α, p)| ≤
∫ ∞

0

∫
Sn−2

α⊥

|f(pα+ tω)− fΣK(pα+ tω)|dω tn−2dt

≤
∫ ∞

0

O

(
(p2 + t2)−

n+K
2

)
tn−2dt = O

(
p−(K+1)

)
.

Therefore, the formal series (1.6), which was obtained by taking the Radon transform
of (1.3) term by term, is, in fact, the asymptotic expansion. Let us show that (1.6) can
be differentiated with respect to p. Let Qs(x) be a homogeneous polynomial of degree
s ≥ 0. By assumption, the expansion f(rβ) ∼

∑∞
k=m fk(rβ) can be differentiated any

number of times with respect to x = rβ. Then Qs(∂x)f(rβ) ∼
∑∞
k=mQs(∂x)fk(rβ).

Taking the Radon transform on both sides and using the identity R(Qs(∂x)f) =
Qs(α)∂spg(α, p), g = Rf (see [14, Lemma 4.3] and [12, equation (2.1.15)]), we get by
the already proved part of the theorem that

Qs(α)∂spg(α, p) ∼
∞∑
k=m

R(Qs(∂x)fk) =
∞∑
k=m

Qs(α)∂spgk(α, p).

In view of the remark following the theorem, this means that

Qs(α)

(
∂spg(α, p)−

K−1∑
k=m

∂spgk(α, p)

)
= O(∂spgK) = O(p−(K+s+1))

uniformly in α. The last equation holds for any homogeneous polynomial Qs. Substi-
tuting two polynomials Qs with disjoint zeros (e.g., Qs(α) = αsi and Qs(α) = αsj , i 6=
j), we see that

∂spg(α, p)−
K−1∑
k=m

∂spgk(α, p) = O(p−(K+s+1))

uniformly in α. Therefore, expansion (1.6) can be differentiated with respect to p.
Thus we have checked that Rf ∈ Ym if f ∈ Xm.

3. Proof of the inclusion Ym ⊂ RXm. Let us show that if g ∈ Ym, then
f = R−1g ∈ Xm. Let F denote the Fourier transform in Rn and F denote the one-
dimensional Fourier transform acting on the p variable. The Fourier slice theorem [12,
p. 15] asserts that Ff = F (Rf) if f ∈ S(Rn). In [14], it was shown that this relation
holds for a much larger class of functions, which includes, in particular, functions
of the type of (1.3) (see Lemma 4.5 in [14]). This yields two convenient formulas:
R = F−1F and R−1 = F−1F . Denote g̃(α, λ) = Fp→λg(α, p). Using the formula for
R−1 and writing F−1 in spherical coordinates, define

(3.1) f(rβ) := F−1Fg =
1

(2π)n

∫
Sn−1

∫ ∞
0

g̃(α, λ)e−irλ(α·β)λn−1dλ dα, g ∈ Ym.
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Let us compute R−1gk, where gk is a term from expansion (1.6). Without loss of
generality, we may assume that gk satisfies the first k moment conditions with the
corresponding homogeneous polynomials being identically equal zero. Indeed, it is
well known (see, e.g., [14, Lemma 7.4] and [12, Exercise 3.1.1 on p. 69]) that there
exists ϕk ∈ C∞0 (Rn), ϕk(x) = 0 for |x| ≥ 1, such that∫ ∞

−∞
(gk(α, p)−Rϕk(α, p))pjdp = 0, j = 0, 1, . . . , k − 1.

Replacing gk by gk−Rϕk in (1.6), we see that all of the assumptions are still satisfied,
and expansion (1.6) remains valid. Let Pkl ∈ C∞(R) be a function such that

(3.2) Pkl(p) = p−(k+1), p > 1; Pkl(p) = −p−(k+1), p < −1;

(3.3)

∫ ∞
−∞

Pkl(p)p
jdp = 0, j = 0, 1, . . . , k − 1.

Using (1.7), we get

(3.4) gk(α, p) =
∑

l≤k, l+k even

aklPkl(p)Yl(α) + ∆gk(α, p),

where the constants akl are determined from the equation
∑
l≤k, l+k even aklYl(α) =

Qk(α). In view of (3.3), the function ∆gk(α, p) has the property

(3.5)

∫ ∞
−∞

∆gk(α, p)pjdp = 0, j = 0, 1, . . . , k − 1,

and in view of (1.7) and (3.2),

(3.6) ∆gk(α, p) = bk(α)p−(k+1), |p| > 1.

Let us now compute R−1(YlPkl) under the assumptions that Pkl is as in (3.2) and
(3.3), l ≤ k, and l + k is even. Denoting P̃kl = FPkl, using equation (3.1) and [12,
equation (14.4.48)], we get

(3.7) fkl(rβ) =
il

(2π)n/2
Yl(β)

∫ ∞
0

λn−1
Jl+n−2

2
(λr)

(λr)
n−2

2

P̃kl(λ)dλ.

Using (3.2), (3.3), and the identity

(3.8) P̃
(s)
kl (λ) =

∂s

∂λs

[
1

(−iλ)j

∫ ∞
−∞

P
(j)
kl (p)eiλpdp

]
,

where j > 0 can be made arbitrarily large, we conclude that
(i) P̃kl ∈ S(R \ 0); that is, P̃kl ∈ C∞(R \ 0) and all derivatives of P̃kl decay faster

than any power of λ−1 as λ→∞;
(ii) P̃kl can be represented as P̃kl(λ) = (−iλ)kρ̃kl(λ), where ρ̃kl ∈ S(R \ 0); and
(iii) ρ̃kl has the following asymptotic representation:

(3.9) ρ̃kl(λ) = bkl lnλ+ b0kl + b1klλ+ · · · , λ→ 0+.
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Equation (3.7) can be written as

fkl(rβ) =
il

(2π)n/2
Yl(β)

r
n−2

2

Ikl(r), Ikl(r) =

∫ ∞
0

λ
n
2 +kρ̃kl(λ)Jl+n−2

2
(λr)dλ.

Using (3.9) and the result on the asymptotics of the Hankel transform [1, pp. 231–
233], we see that the asymptotic expansion of Ikl(r) as r →∞ consists of the terms

ln r

r1+n
2 +k

M

[
Jl+n−2

2
, 1 +

n

2
+ k

]
and r−(1+n

2 +k+j), j ≥ 0,

where M [Jµ, z] denotes the Mellin transform of Jµ evaluated at z. It is well known
that

M [Jµ, z] =
2z−1Γ

(
z+µ

2

)
Γ
(
µ−z+2

2

) ,

and the corresponding strip of analyticity is −µ < Rez < 1.5 [1, p. 414]. According
to [1, Lemma 4.3.2], M [Jµ, z] can be analytically continued into the right half-plane
Rez ≥ 1.5 as a holomorphic function. According to our assumptions, the ratio (l−k)/2
can be only either 0 or a negative integer. Since |Γ(t)| → ∞ as t approaches any
nonpositive integer, we get

M

[
Jl+n−2

2
, 1 +

n

2
+ k

]
= lim
z→1+n

2 +k
M [Jl+n−2

2
, z] = 0, (l − k)/2 = 0,−1,−2, . . . .

Therefore, the term containing ln r in the expansion of Ikl(r) vanishes, and an asymp-
totic expansion of fl(rβ) is of the type of (1.3):

(3.10) fkl(rβ) = Yl(β)

(
c0kl
rn+k

+
c1kl

rn+k+1
+ · · ·

)
.

Let us now compute R−1(∆gk). Denote

(3.11) G(α, p) =

∫ p

−∞

(p− t)k−1

(k − 1)!
∆gk(α, t)dt.

Clearly, G(α, p) ∈ C∞(Z) and ∂kpG(α, p) = ∆gk(α, p). Using (3.5), we get an equiva-
lent expression for G(α, p):

(3.11′) G(α, p) = −
∫ ∞
p

(p− t)k−1

(k − 1)!
∆gk(α, t)dt.

Substituting (3.6) into (3.11) and (3.11′), we find that

(3.12) G(α, p) = cbk(α)p−1, |p| > 1,

for some nonzero constant c. Fourier transforms of ∆gk and G are related by the
equation

(3.13) ∆g̃k(α, λ) = (−iλ)kG̃(α, λ).
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Using an equation analogous to (3.8), equation (3.12) yields that G̃(α, λ) ∈ S(Sn−1×
(R\0)). Moreover, equation (3.12) implies that the asymptotics of G̃(α, λ) as λ→ 0+

equals

G̃(α, λ)
up to a C∞(Z) function

= cbk(α)

∫
|p|≥1

1

p
eiλpdp = 2cbk(α)

∫ ∞
1

sin(λp)

p
dp

= 2cbk(α)

(
π

2
− Si(λ)

)
, λ→ 0+,

(3.14)

where Si ∈ C∞(R) is the integral sine. Defining ∂kλG̃(α, 0) := limλ→0+ ∂kλG̃(α, λ),

k ≥ 0, we get G̃(α, λ) ∈ S(Sn−1× [0,∞)). Substituting (3.13) into (3.1) and applying
Lemma 1 from section 4 to the resulting integral, we conclude that ∆fk := R−1(∆gk)
admits an asymptotic expansion

∆fk(rβ) ∼
∞∑
l=k

∆ψkl(β)

rn+l
, r →∞, ∆ψkl ∈ C∞(Sn−1).

Together with (3.10), this implies that fk := R−1gk admits an asymptotic expansion

(3.15) fk(rβ) ∼
∞∑
l=k

ψkl(β)

rn+l
, r →∞, ψkl ∈ C∞(Sn−1);

hence a formal expansion for f = R−1g is

(3.16) f(rβ) ∼
∞∑
k=m

1

rn+k

( k∑
l=m

ψkl(β)

)
, r →∞.

Thus the kth term from the expansion of g contributes to the kth and the following
terms of the expansion for f , and this expansion is of the type of (1.3). Also, for each
fixed k, only finitely many gj ’s, j = 0, 1, . . . , k, contribute to the term fk, fk(rβ) =
r−(n+k)ψk(β), r →∞, in expansion (1.3).

We have proved that f = R−1g can be formally represented as in (1.3). To see
that this is indeed an asymptotic expansion, we have to show that |f(rβ)−fΣK(rβ)| ≤
cr−(n+K), r →∞, where fΣK = R−1gΣK and gΣK :=

∑K−1
k=m gk. Let M > K > m be

sufficiently large. Then we can write

g(α, p) = gΣK(α, p) +
M−1∑
k=K

gk + ηM (α, p), p→∞.

By what was proved above,

R−1

(M−1∑
k=K

gk

)
= O(r−(n+K)), r →∞.

From the assumptions of the theorem, ηM ∈ C∞(Z), η is even, ηM satisfies the first
M moment conditions, and ηM admits the asymptotic expansion ηM ∼

∑∞
k=M gk.

Therefore, ∂j

∂pj ηM (α, p) = O(p−(M+j+1)), j ≥ 0. Define η̃M (α, λ) := Fp→ληM (α, p).
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Using an equation analogous to (3.8), we have η̃M ∈ S(Sn−1× (R \ 0)). Suppose that
J > 0 is even. Using the identity

(1 + r2)J/2fM (rβ) = F−1
(
(1−∆ξ)

J/2η̃M (α, λ)
)
,

ξ = λα, fM = R−1ηM ,

we see that fM decays sufficiently fast if η̃M is sufficiently smooth at the origin. By
construction, ηM satisfies the first M moment conditions; therefore, η̃M is CM at
the origin. Since M can be made arbitrarily large, fM can be made to decay as fast
as needed. Retaining in the asymptotic expansion of fΣK only the terms of order
≤ O(r−(n+K−1)), we prove the desired assertion.

From (1.6) and (1.7), it follows that g̃(α, λ), which is used in (3.1), has at worst
logarithmic singularity at λ = 0. In a standard fashion, we obtain that g̃(α, λ) ∈
S(Sn−1 × (R \ 0)). Therefore, f ∈ C∞(R).

Let Qs be a homogeneous polynomial of degree s ≥ 0. By assumption, (1.6)
can be differentiated with respect to p. Integrating by parts and using assumptions
(1)–(3), it is easy to verify the inclusion gs(α, p) := Qs(α)∂spg(α, p) ∈ Ym+s. Hence
fs := R−1gs admits an asymptotic expansion of the type of (1.3) with m replaced
by m + s. Therefore, Lemma 2 from section 4 implies that expansion (1.3) can be
differentiated with respect to x = rβ any number of times.

Finally, we have to show that if f is defined by (3.1), then Rf = g and such an f
is unique. We have proved that if f is defined by (3.1), then f is of the type of (1.3).
As in the proof of the inclusion RXm ⊂ Ym, we get that f is absolutely integrable over
any (n − 1)-plane and Rf ∈ C∞(Z). By Lemma 4.5 from [14], F (Rf) = Ff almost
everywhere. Since f := F−1Fg, the equality Rf = g holds almost everywhere. By
continuity, Rf = g everywhere. The uniqueness of f follows easily from the injectivity
of F and F . The theorem is proved.

4. Auxiliary results.
Lemma 1. Let h ∈ S(Sn−1 × [0,+∞)) and fix k ≥ 0. Define

(4.1) f(x) =
1

(2π)n

∫
Sn−1

∫ ∞
0

λkh(α, λ) exp(−iλα · x)dλdα.

Then f admits an asymptotic expansion

(4.2) f(rβ) ∼
∞∑

l=k+1

ψl(β)

rl
, r →∞, ψl ∈ C∞(Sn−1).

Let h(α, p) = Fp→λg(α, λ), where g ∈ S(Z) and g is even. Then clearly h ∈ S(Z)
and f = Rg. In this case, equation (4.2) follows from the results in [14]. Nevertheless,
Lemma 1 is more general because we consider functions g(α, p) which decay only
polynomially as |p| → ∞ (see, e.g., (3.12)). In this case, h(α, p) = Fp→λg(α, λ) is
not smooth across λ = 0 (the one-sided limits of h and its derivatives exist at λ = 0,
however), and hence h 6∈ S(Z).

Proof of Lemma 1. Fix β ∈ Sn−1 and let x = rβ, r > 0. For a function ϕ defined
on Sn−1, we have∫

Sn−1

ϕ(α)dα =

∫ 1

−1

∫
α·β=t

ϕ(α)dα
dt√

1− t2

=

∫ 1

−1

∫
Sn−2

β⊥

ϕ(tβ +
√

1− t2 ω)(1− t2)
n−3

2 dω dt.
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Therefore, equation (4.1) takes the form

(4.3) f(rβ) =

∫ 1

−1

∫ ∞
0

λk(1− t2)
n−3

2 Aβ(λ, t)e−iλtrdλ dt,

where

(4.4) Aβ(λ, t) =
1

(2π)n

∫
ω∈Sn−1

β⊥

h(tβ +
√

1− t2 ω, λ)dω.

Fix any even χ ∈ C∞0 ([−1, 1]) such that χ(t) ≡ 1 for |t| ≤ 0.5, and denote Bβ(λ, t) :=

(1− t2)
n−3

2 Aβ(λ, t)χ(t). Then

f(rβ) =

∫
0.5≤|t|≤1

(1− t2)
n−3

2 (1− χ(t))

∫ ∞
0

λkAβ(λ, t)e−iλtrdλ dt

+

∫ ∞
0

∫ 1

−1

λkBβ(λ, t)e−iλtrdt dλ := I1(rβ) + I2(rβ).

(4.5)

Since h ∈ S(Sn−1 × [0,+∞)), we get that Aβ(λ, t) is S([0,∞)) in the λ variable
and C([−1, 1]) in the t variable. Therefore, integration by parts gives an asymptotic
expansion

(4.6)

∫ ∞
0

λkAβ(λ, t)e−iλtrdλ ∼
∞∑

l=k+1

al(β, t)

rl
, 0.5 ≤ |t| ≤ 1, r →∞,

where

al(β, t) = −(it)−l
∂l−1

∂λl−1

(
λkAβ(λ, t)

)∣∣∣∣
λ=0

, l ≥ k + 1.

Substituting (4.6) into the definition of I1 (see (4.5)) and integrating with respect to
t over 0.5 ≤ |t| ≤ 1, we get

I1(rβ) ∼
∞∑

l=k+1

ψ1l(β)

rl
,

ψ1l(β) =

∫
0.5≤|t|≤1

(1− t2)
n−3

2 (1− χ(t))al(β, t)dt ∈ C∞(Sn−1).

(4.7)

The inclusion ψ1l ∈ C∞(Sn−1) holds because Aβ(λ, t) and all of its derivatives with
respect to λ depend smoothly on β. (According to (4.4), Aβ(λ, t) is the normalized
integral of h ∈ S(Sn−1 × [0,∞)) over the intersection of the plane x · β = t and the
unit sphere.) Integration of the asymptotic expansion with respect to the parameter
t is justified (cf. Theorem 1.7.5 in [1]).

To find the asymptotic expansion of I2(rβ), we transform the integral, denoting
s = λt and changing the order of integration:

(4.8) I2(rβ) =

∫ ∞
−∞

Cβ(s)e−isrds, Cβ(s) :=

∫ ∞
|s|

λk−1Bβ

(
λ,
s

λ

)
dλ.

Differentiating Cβ(s) and using the fact that Bβ(λ, t) ≡ 0 in neighborhoods of t = ±1,

we have C
(m)
β (s) =

∫∞
|s| λ

k−1−mB
(m)
β (λ, s/λ)dλ, where B

(m)
β :=

∂mBβ
∂tm . Clearly, all
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derivatives of Cβ are C∞(R \ 0). Moreover, the derivatives C
(m)
β (s), m ≤ k− 1, exist

and are continuous at s = 0. For m = k,

(4.9) C
(k)
β (s) =

∫ ∞
|s|

B
(k)
β (λ, sλ )

λ
dλ.

The behavior of C
(k)
β (s) as s→ 0 will be obtained later. Integrating by parts k times

in (4.8), we get

(4.10) I2(rβ) =
1

(ir)k

∫ ∞
−∞

C
(k)
β (s)e−isrds.

Fix any ϕ ∈ C∞([0,∞)) such that ϕ(λ) = 1 for 0 ≤ λ ≤ 1/2 and ϕ(λ) = 0 for λ ≥ 1.
Rewrite (4.9) as follows:

C
(k)
β (s) =

∫ ∞
|s|

B
(k)
β (λ, sλ )−B(k)

β (0, sλ )ϕ(λ)

λ
dλ

+

∫ ∞
|s|

B
(k)
β (0, sλ )ϕ(λ)

λ
dλ =: C1(s) + C2(s).

(4.11)

Clearly, C2 ∈ C∞((0,+∞)) and C2(s) = 0 for |s| ≥ 1. Furthermore, for |s| < 1/2,

C2(s) =

∫ 1

1/2

B
(k)
β (0, sλ )

λ
ϕ(λ)dλ+

∫ 1/2

|s|

B
(k)
β (0, sλ )

λ
dλ

= (C∞ − fn) +

∫ 1/2

|s|

B
(k)
β (0, sλ )−B(k)

β (0, 0)

λ
dλ+B

(k)
β (0, 0)

∫ 1/2

|s|

1

λ
dλ

= (C∞ − fn)−B(k)
β (0, 0) ln |s|+

∫ 1

2|s|

B
(k)
β (0, tsgns)−B(k)

β (0, 0)

t
dt

= (C∞ − fn)−B(k)
β (0, 0) ln |s|+

∫ 1

0

B
(k)
β (0, t)−B(k)

β (0, 0)

t
dt[sgns]k,

(4.12)

where we have used the fact that B
(k)
β (0, t) is even if k is even and B

(k)
β (0, t) is odd if

k is odd. Thus C2(s) has the asymptotic expansion of the form

C2(s) ∼ b−2(β) ln |s|+ b−1(β)[sgns]k +
∞∑
l=0

bl(β)sl, s→ 0;

bl ∈ C∞(Sn−1), l ≥ −2.

Furthermore, this expansion can be differentiated with respect to s. Using the result
from [1, pp. 231–233], we get

(4.13)

∫ ∞
−∞

C2(s)e−isrds ∼
∞∑
l=1

cl(β)

rl
, cl ∈ C∞(Sn−1).

Let us denote

B1(λ, t) :=
B

(k)
β (λ, t)−B(k)

β (0, t)ϕ(λ)

λ
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and represent C1(s) as

C1(s) =

∫ ∞
|s|

B1(λ, s/λ)dλ.

Clearly, B1 ∈ C∞([0,∞)×R) and B1(λ, t) with all derivatives decay faster than any
power of λ−1 as λ→∞. Furthermore, B1(λ, t) = 0 in neighborhoods of t = ±1, and

(4.14) C ′1(s) =

∫ ∞
|s|

B
(1)
1 (λ, sλ )

λ
dλ.

From (4.10) and (4.11), we get

(4.15)

∫ ∞
−∞

C
(k)
β (s)e−isrds =

1

ir

∫ ∞
−∞

C ′1(s)e−isrds+

∫ ∞
−∞

C2(s)e−isrds.

Comparing (4.14) with (4.9), we see that the asymptotics of
∫∞
−∞ C ′1(s)e−isrds as

r → ∞ can be obtained analogously to (4.11)–(4.12) with B
(k)
β replaced by B

(1)
1 .

Moreover, this integral is multiplied by 1/(ir) in (4.15). Therefore, the standard
argument that is used for the justification of the integration-by-parts procedure for
obtaining asymptotic expansions of integrals (see, e.g., [1, p. 71]) shows that iterat-
ing the procedure consisting of (4.11)–(4.15), we obtain the asymptotic expansion of
I2(rβ), and this expansion is of the form

(4.16) I2(rβ) ∼
∞∑

l=k+1

ψ2l(β)

rl
, ψ2l ∈ C∞(Sn−1).

Combining (4.5), (4.7), and (4.16) proves Lemma 1.
Lemma 2. Let f ∈ C∞(Rn) be such that for any homogeneous polynomial Qs of

degree s ≥ 0, the function Qs(∂x)f admits the asymptotic expansion

(4.17) Qs(∂x)f(rβ) ∼
∞∑

k=m+s

µk(β)

rk
, r →∞, µk ∈ C∞(Sn−1), x = rβ,

for some m ≥ 1, where µk’s depend on Qs. Then the asymptotic expansion of f can
be differentiated with respect to x any number of times. More precisely, if

(4.18) f(rβ) ∼
∞∑
k=m

ψk(β)

rk
, r →∞, ψk ∈ C∞(Sn−1), x = rβ,

then

(4.19) Qs(∂x)f(rβ) ∼
∞∑
k=m

Qs(∂x)

(
ψk(β)

rk

)
, r →∞, x = rβ.

Proof. Clearly, it is sufficient to prove (4.19) for only s = 1 and Qs(∂x) = ∂x1
.

By assumption,

(4.20) ∂x1f(rβ) ∼
∞∑

k=m+1

µk(β)

rk
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for some µk ∈ C∞(Sn−1). Since f(x)→ 0 as |x| → ∞ (see (4.18)), we have

(4.21) −f(x1, y) =

∫ ∞
x1

∂tf(t, y)dt, x = (x1, y), y ∈ Rn−1,

for any x1 ∈ R and y ∈ Rn−1. Substitute expansion (4.20) into (4.21) and integrate
formally with respect to t to get

∫ ∞
x1

∂tf(t, y)dt ∼
∞∑

k=m+1

∫ ∞
x1

µk
(

te1+y
(t2+|y|2)1/2

)
(t2 + |y|2)k/2

dt

=

∞∑
k=m+1

|y|−k+1

∫ ∞
v

µk
(
qe1+y0

(q2+1)1/2

)
(q2 + 1)k/2

dq,

(4.22)

where e1 is the unit vector along the x1-axis, q = t/|y|, y0 = y/|y|, and v = x1/|y|. In
what follows, we suppose that y0 and v are fixed. Then the right-hand side of (4.22)
has the form of an asymptotic expansion as |y| → ∞. To justify the integration with
respect to t, we have to show that if

η(rβ) := ∂x1
f(rβ)−

K−1∑
k=m+1

µk(β)

rk
= O(r−K),

then
∫∞
x1
η(t, y)dt = O(|y|−K+1). Since η(rβ) = O(r−K), we get |η(rβ)| ≤ cr−K , r ≥

1, for some c > 0. Using this estimate and integrating with respect to t analogously
to (4.22), we obtain the desired assertion.

Using the variables y0 and v, transform (4.18):

(4.23) f(x1, y) ∼
∞∑
k=m

|y|−k
ψk
(
ve1+y0

(v2+1)1/2

)
(v2 + 1)k/2

.

Since the asymptotic expansion—if it exists—is unique, we conclude from (4.21)–
(4.23) by taking |y| → ∞ that

−
ψk
(
ve1+y0

(v2+1)1/2

)
(v2 + 1)k/2

=

∫ ∞
v

µk+1

(
qe1+y0

(q2+1)1/2

)
(q2 + 1)(k+1)/2

dq, k ≥ m, v ∈ R, y0 ∈ Sn−2.

Therefore,

∂

∂v

(ψk( ve1+y0
(v2+1)1/2

)
(v2 + 1)k/2

)
=
µk+1

(
ve1+y0

(v2+1)1/2

)
(v2 + 1)(k+1)/2

, k ≥ m, v ∈ R, y0 ∈ Sn−2.

Multiplying the last equation by |y|−k on both sides, returning to the variables x1

and y, and then denoting rβ = x1e1 + y, we get

∂

∂x1

(
ψk(β)

rk

)
=
µk+1(β)

rk+1
.

Lemma 2 is proved.
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Abstract. This paper is concerned with the existence of positive solutions of the nonlinear
elliptic problem −∆u + a(x)u = u(N+2)/(N−2), a(x) ≥ 0, with Neumann boundary conditions in
a half-space Π⊂ RN , N ≥ 3. The main feature of the problem is a “double” lack of compactness
due to the unboundedness of the domain and the presence of the critical Sobolev exponent. The
solutions are searched using variational methods, although the functional related to the problem does
not satisfy the Palais–Smale compactness condition. We observe that the problem considered has no
solutions if a(x) is a positive constant; conditions on a(x) are given sufficient to guarantee existence
and multiplicity of positive solutions.

Key words. nonlinear elliptic equations, critical Sobolev exponent, positive solutions

AMS subject classifications. 35J65, 35J20

PII. S0036141095295747

1. Introduction and statement of the results. This paper deals with the
following problem: find solutions of finite energy of

(P)


−∆u+ a(x)u = up in RN+ ,

u > 0 in RN+ ,
∂u/∂xN = 0 on ∂RN+ ,

u(x)→ 0 as |x| → +∞,

where p = 2∗ − 1, 2∗ = 2N/(N − 2), N ≥ 3, a(x) ≥ 0, RN+ = {x = (x1, x2, . . . , xN ) ∈
RN : xN > 0}, and ∂RN+ = {x = (x1, x2, . . ., xN−1, 0) ∈ RN}.

If a(x) = 0, (P) has the positive solution

U(x) =
[N(N − 2)](N−2)/4

(1 + |x|2)(N−2)/2
,

and all of the positive solutions can be obtained from this one by translations and
scale changes, namely, they have the form σ−(N−2)/4U((x− y)/

√
σ), σ > 0, y ∈ ∂RN+ .

On the other hand, if a(x) = λ > 0 (λ constant), it is not difficult to realize that
(P) has no solutions. In fact, if u were a solution of (P), its extension to all of RN ,
obtained by reflection, would solve −∆u+λu = u2∗−1 in RN , and this problem has no
nontrivial solutions, which follows from a generalized version of the Pohozaev identity
(see, for instance, [BL] or [BC]).

On the other hand, it has been shown (see [BC], [P]) that the presence of a
nonconstant coefficient a(x) plays an important role in finding finite-energy positive
solutions of the following equation: −∆u+ a(x)u = u2∗−1 in RN .
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In this paper, we consider functions a(x) that satisfy the following assumption:

(1.1)


(i) lim

|x|→+∞
a(x) = a∞ ≥ 0, a∞ ∈ R,

(ii) a(x) ≥ a∞ ∀x ∈ RN+ ,

(iii) a(x)− a∞ ∈ LN/2(RN+ ), |a(x)− a∞|LN/2(RN
+

) 6= 0.

The Hilbert spaces that we obtain as the closure of C∞(RN+ ) with respect to

‖u‖D =

(∫
RN

+

|∇u|2dx
)1/2

, ‖u‖W =

[∫
RN

+

(|∇u|2 + u2)dx

]1/2

are denoted D1,2(RN+ ) and W 1,2(RN+ ), respectively. The results that we obtain can be
stated as follows.

Theorem 1.1. Let a(x) satisfy (1.1) and let a∞ > 0. Then there exists a
positive number A such that if a∞ ∈ (0,A), then (P) admits at least a positive solution
v ∈W 1,2(RN+ ). Furthermore, if the condition

(1.2) |a(x)− a∞|LN/2(RN
+

) < (1− 2−2/N )S

is satisfied, (P) has at least another solution u ∈W 1,2(RN+ ).
Theorem 1.2. Let a(x) satisfy (1.1) and let a∞ = 0. Assume that (1.2) holds,

i.e.,

|a|LN/2(RN
+

) < (1− 2−2/N )S;

then (P) has at least one solution u ∈ D1,2(RN+ ).
Problem (P) has a variational structure, so although the lack of compactness (due

to the unboundedness of RN+ and the presence of the critical Sobolev exponent) gives
rise to some difficulties, the investigation is carried out using variational methods.
The solutions of (P) correspond to the positive functions that are critical points of
the energy functional

(1.3) E(u) =

∫
RN

+

(|∇u|2 + a(x)u2)dx

constrained on the manifold

(1.4) V =

{
u ∈ H :

∫
RN

+

|u|2∗dx = 1

}
,

where H is either W 1,2(RN+ ) or D1,2(RN+ ) according to whether a∞ is positive or equal
to zero.

In both cases, (P) cannot be solved by minimization. In fact, we shall see in
section 2 that E does not achieve its infimum Σ on V . Therefore, the study of the
problem needs more subtle tools, such as minimax theory. Clearly, all of the solutions
whose existence is stated in Theorems 1.1 and 1.2 correspond to positive functions
for which E(u) > Σ. However, it is worth mentioning their different natures. Indeed,
the proofs of these theorems will make clear that the energy of the “first” solution,
v, found in the case a∞ > 0, is very near to Σ and that this solution vanishes when
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a∞ → 0. On the other hand, the solutions u are of high energy, namely, their energy
is bounded from below by a number that is independent of a∞ and strictly larger
than Σ.

Finally, let us point out that an easy scale change shows that to any solution of
(P) with a(x) = a∞+α(x) (α(x) = a(x)−a∞) there corresponds a solution of (P) with
a(x) = λa∞+λα(

√
λx) ∀λ > 0. Thus the condition on the size of lim|x|→+∞ a(x) that

appears in Theorem 1.1 also can be expressed by saying that a∞ can be arbitrarily
large, provided that a(x)− a∞ is a function that is “concentrated” enough. Also, the
claims of Theorems 1.1 and 1.2 hold when RN+ in (P) is replaced by any half-space Π
with the boundary condition ∂u/∂ν = 0, where ν is the outer normal to ∂Π.

This paper is organized as follows: In section 2, some useful facts are recalled,
a nonexistence theorem is proven, the compactness question is discussed, and some
basic estimates are stated. Section 3 contains the proofs of the theorems.

2. Preliminary remarks, some useful facts, and estimates. We begin by
recalling some definitions and known facts.

S denotes the best Sobolev constant, i.e.,

(2.1) S = inf

{∫
RN
|∇u|2dx : u ∈ D1,2(RN ), |u|L2∗ (RN ) = 1

}
.

S is achieved by the function

Ψ1,0(x) = Ū(x)/|Ū |L2∗ (RN ), where Ū =
1

[1 + |x|2]
N−2

2

,

and all of the minimizers for S are the functions

(2.2)
Ψσ,y = σ−

N−2
4 Ψ1,0

(
x− y√
σ

)
=

1

|Ū |L2∗ (RN )

σ(N−2)/4

[σ + |x− y|2]
N−2

2

,

σ ∈ R+\{0}, y ∈ RN ,

obtained from Ψ1,0 by translation and rescaling.
We set

(2.3) Σ = inf

{∫
RN

+

|∇u|2dx : u ∈ D1,2(RN+ ), |u|L2∗ (RN
+

) = 1

}
.

If we consider the definition and properties of S, it is not difficult to verify that

Σ = 2−2/NS,

that Σ is achieved by the function defined ∀x ∈ RN+ by

Ψ̃1,0(x) = 21/2∗Ψ1,0(x),

and that all of the minimizers for Σ are the functions Ψ̃σ,y, σ ∈ R+\{0}, y ∈ ∂RN+ ,
defined by

(2.4) Ψ̃σ,y(x) = σ−
(N−2)

4 Ψ̃1,0

(
x− y√
σ

)
.

We remark that the infima in (2.1) and (2.3) do not change if we restrict our conside-
ration to the functions u that belong to W 1,2(RN ) and W 1,2(RN+ ), respectively.
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Let us prove now a nonexistence result.
Proposition 2.1. Let a satisfy (1.1). Set

(2.5) inf{E(u) : u ∈ V } = Σa.

Then

Σa = Σ

and the minimization problem (2.5) has no solution.
Proof. Since a(x) ≥ 0 in RN+ , obviously Σa ≥ Σ. To show that the equality holds,

let us consider the sequence

Φ 1
n ,0

(x) = χ(|x|)Ψ̃ 1
n ,0

(x),

where χ ∈ C∞([0,+∞)) is a nonincreasing real function such that χ(t) = 1 if t ∈
[0, 1/2] and χ(t) = 0 if t ≥ 1. Well-known computations (see, for example, [BN]) give

(2.6)

∫
RN

+
[|∇Φ 1

n ,0
(x)|2 + a∞Φ2

1
n ,0

(x)]dx

|Φ 1
n ,0

(x)|2
L2∗ (RN

+
)

=

Σ +O
(

1
n

)
, N ≥ 5,

Σ +O
(

1
n | log 1

n |
)
, N = 4,

Σ +O (1/
√
n) , N = 3.

On the other hand, setting α(x) = a(x) − a∞ and Bρ(0) = {x ∈ RN : |x| < ρ}, we
have ∀ρ > 0∫

RN
+

α(x)Φ2
1
n ,0

(x)dx =

∫
RN

+
∩Bρ(0)

α(x)Φ2
1
n ,0

(x)dx+

∫
RN

+
\Bρ(0)

α(x)Φ2
1
n ,0

(x)dx

≤ |Φ 1
n ,0

(x)|2L2∗ (RN
+

) ·
[∫

RN
+
∩Bρ(0)

(α(x))N/2dx

]2/N

+ |α|LN/2(RN
+

)

[∫
RN

+
\Bρ(0)

Φ2∗
1
n ,0

(x)dx

]2/2∗

,

so ∫
RN

+
α(x)Φ2

1
n ,0

(x)dx

|Φ 1
n ,0
|2
L2∗ (RN

+
)

≤
[∫

RN
+
∩Bρ(0)

(α(x))N/2dx

]2/N

+
|α|LN/2(RN

+
)

[∫
RN

+
\Bρ(0)

Φ2∗
1
n ,0

(x)dx
]2/2∗

|Φ 1
n ,0
|2
L2∗ (RN

+
)

.

Now

lim
n→+∞

∫
RN

+
\Bρ(0)

Φ2∗
1
n ,0

(x)dx = 0

and

lim
n→+∞

|Φ 1
n ,0
|L2∗ (RN

+
) = 1.
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Hence ∀ρ > 0,

lim
n→+∞

∫
RN

+
α(x)Φ2

1
n ,0

(x)dx

|Φ 1
n ,0
|2
L2∗ (RN

+
)

≤
[∫

RN
+
∩Bρ(0)

(α(x))N/2dx

]2/N

.

Thus from α ∈ LN/2(RN+ ), we deduce

lim
ρ→0

[∫
RN

+
∩Bρ(0)

(α(x))N/2dx

]2/N

= 0

and then

(2.7) lim
n→+∞

∫
RN

+
α(x)Φ2

1
n ,0

(x)dx

|Φ 1
n ,0
|2
L2∗ (RN

+
)

= 0.

Therefore, equations (2.6) and (2.7) give limn→+∞E(Φ1/n,0(x)/|Φ1/n,0|L2∗ (RN
+

)) = Σ,

as desired.
Let us now assume that the minimization problem (2.5) has a solution u and—

without loss of generality—that u ≥ 0. Let us denote by u∗ and a∗ the extensions by
reflection to all of RN of u and a, respectively. Then∫

RN (|∇u∗|2 + a∗(x)(u∗(x))2)dx

|u∗|2
L2∗ (RN )

= S,

so we have

S ≤
∫

RN |∇u
∗|2dx

|u∗|2
L2∗ (RN )

≤
∫

RN (|∇u∗|2 + a∗(x)(u∗(x))2)dx

|u∗|2
L2∗ (RN )

= S.

The above relation implies that
∫

RN a
∗(x)(u∗(x))2dx = 0 and u∗ = Ψσ,y for some

σ > 0 and y ∈ RN . Thus, using the assumptions on a and the fact that Ψσ,y(x) > 0
∀x ∈ RN , we deduce

0 =

∫
RN

a∗(x)(u∗(x))2dx =

∫
RN

a∗(x)Ψ2
σ,y(x)dx > 0,

which is impossible.
The following lemma states a lower bound for the energy of a sign-changing critical

point u of E on V .
Lemma 2.2 Let a satisfy (1.1). Let u be a critical point of E on V. If E(u) < S,

then the function u does not change sign.
Proof. We argue by contradiction and assume that u = u+ + u−, u+ 6= 0, and

u− 6= 0. By Proposition 2.1,

Σ|u±|2L2∗ (RN
+

) <

∫
RN

+

(|∇u±|2 + a(x)(u±)2)dx

and, since u is a critical point of E on V ,∫
RN

+

[|∇u±|2 + a(x)(u±)2]dx = E(u)

∫
RN

+

|u±|2∗dx.
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Then

|u±|2∗L2∗ (RN
+

) ≥
(

Σ

E(u)

)N/2
,

which, considering that |u|L2∗ (RN
+

) = 1, gives

E(u) ≥ 22/NΣ = S,

which contradicts our assumption.
The following proposition gives useful information about the compactness of E

on V .
Proposition 2.3. Let a satisfy (1.1). Then the pair (E, V ) verifies the Palais–

Smale condition in the energy range (Σ, S), i.e., any sequence {un} such that

(2.8)

{
un ∈ V, gradE|V (un)→ 0 in H∗,

lim
n→+∞

E(un) = c ∈ (Σ, S)

is relatively compact.
Proof. Let un be a sequence of functions that satisfy (2.8). Let us denote by

u∗n and a∗ the functions obtained by un and a extending to all of RN by reflection,
respectively. Then we have u∗n ∈W 1,2(RN ) if a∞ > 0, u∗n ∈ D1,2(RN ) if a∞ = 0, and∣∣∣∣ u∗n21/2∗

∣∣∣∣
L2∗ (RN )

= 1,
1

22/2∗

∫
RN

[|∇u∗n|2 + a∗(x)(u∗n(x))2]dx→ 22/Nc,

∫
RN

[(∇u∗n|∇v) + a∗(x)u∗nv]dx+ (22/Nc+ o(1))

∫
RN
|u∗n|2

∗−2u∗nvdx = o(1)

∀v ∈W 1,2(RN ) (respectively, v ∈ D1,2(RN ) if a∞ = 0).
Since 22/Nc ∈ (S, 22/NS), by Theorem 2.5 and Corollary 2.10 of [BC] and Lemma

1.9 of [P], u∗n is relatively compact, i.e., converges strongly, up to a subsequence, to a
function u∗ that verifies u∗(x1, x2, . . . , xN ) = u∗(x1, x2, . . . ,−xN ), and this yields the
desired result.

Let us denote by π the projection on ∂RN+ , i.e.,

π : RN → ∂RN+ , π(x1, x2, . . . , xN ) = (x1, x2, . . . , xN−1, 0),

and ∀ρ > 0, set

Λρ(y) = {x ∈ RN+ : |π(x)− π(y)| < ρ}.

Let us define the maps β : H → ∂RN+ and γ : H → R by

β(u) =

∫
RN

+

π(x)

1 + |π(x)| |u(x)|2∗dx
/
|u|2∗L2∗ (RN

+
),

γ(u) =

∫
RN

+

∣∣∣∣ π(x)

1 + |π(x)| − β(u)

∣∣∣∣ |u(x)|2∗dx
/
|u|2∗L2∗ (RN

+
).

The following two propositions provide useful estimates.
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Proposition 2.4. Let α(x) ∈ LN/2(RN+ ) be a nonegative function such that
|α|LN/2(RN

+
) 6= 0. Then

(2.9)

inf

{∫
RN

+

[|∇u|2 + α(x)u2]dx : u ∈ D1,2(RN+ ), |u|L2∗ (RN
+

) = 1,

β(u) = 0, γ(u) =
1

3

}
> Σ.

Proof. Clearly,

inf

{∫
RN

+

[|∇u|2 + α(x)u2]dx : u ∈ D1,2(RN+ ), |u|L2∗ (RN
+

) = 1,

β(u) = 0, γ(u) =
1

3

}
≥ Σ.

To prove (2.9), we argue by contradiction and suppose that equality holds in the above
relation. Thus we can find a sequence {un} such that un ∈ D1,2(RN+ ) and

(2.10)

{
(a) |un|L2∗ (RN

+
) = 1, β(un) = 0, γ(un) = 1

3 ,

(b) lim
n→+∞

∫
RN

+
[|∇un|2 + α(x)u2

n)]dx = Σ.

Therefore, since α(x) ≥ 0, from

Σ = lim
n→+∞

∫
RN

+

[|∇un|2 + α(x)u2
n)]dx ≥ lim

n→+∞

∫
RN

+

|∇un|2dx ≥ Σ,

we obtain limn→+∞
∫

RN
+
|∇un|2dx = Σ.

Hence by the uniqueness of the family of functions Ψ̃σ,y (defined in (2.4)) that
realize Σ, we deduce that

un(x) = Ψ̃σn,yn(x) + wn(x) ∀x ∈ RN+ ,

where σn ∈ R+\{0}, yn ∈ ∂RN+ , and {wn} is a sequence that goes strongly to zero in

D1,2(RN+ ) and L2∗(RN+ ).
We claim that, up to subsequences,

(2.11) (a) lim
n→+∞

σn = σ̄ > 0, (b) lim
n→+∞

yn = ȳ ∈ ∂RN+ .

Indeed, once (2.11) is shown to be true, the proof can be achieved quickly. In fact, it
suffices to observe that in this case Ψ̃σn,yn → Ψ̃σ̄,ȳ strongly in D1,2(RN+ ) and L2∗(RN+ ),
so from (2.10)(b) it follows that

Σ = lim
n→+∞

∫
RN

+

[|∇un|2 + α(x)u2
n)]dx = lim

n→+∞

∫
RN

+

[|∇Ψ̃σn,yn(x)|2 + α(x)Ψ̃2
σn,yn(x)]dx

=

∫
RN

+

[|∇Ψ̃σ̄,ȳ|2 + α(x)Ψ̃2
σ̄,ȳ(x)]dx = Σ +

∫
RN

+

α(x)Ψ̃2
σ̄,ȳ(x)dx,

which, because of the assumptions on α and the positivity of Ψ̃σ̄,ȳ, is impossible.
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Let us now prove the claim in (2.11). To prove (2.11)(a), let us first show that {σn}
is bounded. In fact, if for some subsequence (still denoted by σn) limn→+∞ σn = +∞
occurs, then ∀ρ > 0,

lim
n→+∞

∫
Λρ(0)

|un|2
∗
dx = lim

n→+∞

∫
Λρ(0)

∣∣∣Ψ̃σn,yn(x)
∣∣∣2∗ dx

= lim
n→+∞

∫
Λ ρ
σn

(0)

∣∣∣∣Ψ̃1,0

(
x− yn

σn

)∣∣∣∣2∗ dx = 0.

Then if we consider that β(un) = 0, we have ∀ρ > 0

γ(un) =

∫
RN

+

|π(x)|
1 + |π(x)| |un(x)|2∗dx ≥

∫
RN

+
\Λρ(0)

|π(x)|
1 + |π(x)| |un(x)|2∗dx

≥ ρ

1 + ρ

∫
RN

+
\Λρ(0)

|un(x)|2∗dx,

so

lim inf
n→+∞

γ(un) ≥ ρ/(1 + ρ) ∀ρ > 0,

which implies

lim
n→+∞

γ(un) = 1,

which contradicts (2.10)(a).
Thus up to a subsequence, limn→+∞ σn = σ̄ ∈ R+. If σ̄ = 0 occurs, then ∀ρ > 0,

lim
n→+∞

∫
RN

+
\Λρ(yn)

|un|2
∗
dx = lim

n→+∞

∫
RN

+
\Λρ(yn)

∣∣∣Ψ̃σn,yn(x)
∣∣∣2∗ dx

= lim
n→+∞

∫
RN

+
\Λ ρ

σn
( ynσn )

∣∣∣∣Ψ̃1,0

(
x− yn

σn

)∣∣∣∣2∗ dx = 0.

Hence ∀ρ > 0,

|yn|
1 + |yn|

=

∣∣∣∣∣
∫

RN
+

(
yn

1 + |yn|
− π

1 + |π(x)|

)
|un(x)|2∗dx

∣∣∣∣∣
≤
∫

RN
+
\Λρ(yn)

∣∣∣∣ yn
1 + |yn|

− π

1 + |π(x)|

∣∣∣∣ |un(x)|2∗dx

+

∫
Λρ(yn)

∣∣∣∣ yn
1 + |yn|

− π

1 + |π(x)|

∣∣∣∣ |un(x)|2∗dx ≤ ρ+ o(1),

which implies |yn| → 0 as n→ +∞. Now we obtain

lim
n→+∞

γ(un) = lim
n→+∞

∫
RN

+

∣∣∣∣ π(x)

1 + |π(x)| − β(un)

∣∣∣∣ |un(x)|2∗dx

= lim
n→+∞

∫
RN

+

∣∣∣∣ π(x)

1 + |π(x)| −
yn

1 + |yn|

∣∣∣∣ |un(x)|2∗dx = 0,
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which contradicts (2.10)(a). Thus the first part of the claim is proved.
Let us now show that {|yn|} is bounded. We argue by contradiction and suppose

that a subsequence {ym} exists for which limm→+∞ |ym| = +∞. Then ∀ε > 0 and
∀R > 0, ∃m̄ such that ∀m > m̄,

|π(x)− ym| < R ⇒
∣∣∣∣ π(x)

1 + |π(x)| −
ym

1 + |ym|

∣∣∣∣ < ε.

On the other hand, ∀ε > 0, ∃R̄ > 0 such that ∀R > R̄,

(2.12)

∫
RN

+
\ΛR(ym)

|Ψ̃σ̄,ym(x)|2∗dx =

∫
RN

+
\ΛR(0)

|Ψ̃σ̄,0(x)|2∗dx < ε.

Then chose ε > 0 arbitrarily and fix R > 0 so that (2.12) is verified; if m is large
enough, we get∣∣∣∣β(um)− ym

1 + |ym|

∣∣∣∣ ≤ ∫
RN

+

∣∣∣∣ π(x)

1 + |π(x)| −
ym

1 + |ym|

∣∣∣∣ |um(x)|2∗dx

≤
∫

RN
+
\ΛR(ym)

∣∣∣∣ π(x)

1 + |π(x)| −
ym

1 + |ym|

∣∣∣∣ |Ψ̃σ̄,ym(x)|2∗dx

+

∫
ΛR(ym)

∣∣∣∣ π(x)

1 + |π(x)| −
ym

1 + |ym|

∣∣∣∣ |Ψ̃σ̄,ym(x)|2∗dx+ o(1) ≤ 3ε+ o(1).

Thus |β(um)| → 1 as m → +∞, which again contradicts (2.10). Thus (2.11)(b) is
also true, as desired.

Proposition 2.5 Let k > 0, k ∈ R. Then

(2.13)

inf

{∫
RN

+

[|∇u|2 + ku2]dx : u ∈W 1,2(RN+ ), |u|L2∗ (RN
+

) = 1,

β(u) = 0, γ(u) ≥ 1

3

}
> Σ.

Proof. Clearly,

inf

{∫
RN

+

[|∇u|2 + ku2]dx : u ∈W 1,2(RN+ ), |u|L2∗ (RN
+

) = 1, β(u) = 0, γ(u) ≥ 1

3

}
≥ Σ.

Then to prove the proposition, it is sufficient to show that in the above relation the
equality cannot be true. We argue by contradiction, so we suppose that there exists
a sequence {un}, un ∈W 1,2(RN+ ), such that

(2.14)

{
(a) |un|L2∗ (RN

+
) = 1, β(un) = 0, γ(un) ≥ 1

3 ,

(b) lim
n→+∞

∫
RN

+
[|∇un|2 + ku2

n]dx = Σ.

Since k > 0, from

Σ = lim
n→+∞

∫
RN

+

[|∇un|2 + ku2
n]dx ≥ lim

n→+∞

∫
RN

+

|∇un|2dx ≥ Σ,
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we deduce limn→+∞
∫

RN
+
|∇un|2dx = Σ.

Hence by the uniqueness of the family of functions Ψ̃σ,y (defined in (2.4)) that
realize Σ, we deduce that

un(x) = Ψ̃σn,yn(x) + wn(x) ∀x ∈ RN+ ,

where σn ∈ R+\{0}, yn ∈ ∂RN+ , and {wn} is a sequence that goes strongly to zero in

W 1,2(RN+ ) and L2∗(RN+ ).
As in the proof of Proposition 2.4, we need to show that (up to subsequences)

(2.15) (a) lim
n→+∞

σn = σ̄ > 0, σ̄ ∈ R, (b) lim
n→+∞

yn = ȳ ∈ ∂RN+ .

In fact, if the relations in (2.15) hold, the proof can be concluded easily by observing
that Ψ̃σn,yn → Ψ̃σ̄,ȳ strongly inW 1,2(RN+ ) and L2∗(RN+ ), which together with (2.14)(b)
allows us to obtain the following impossible relation:

Σ = lim
n→+∞

∫
RN

+

[|∇un|2 + ku2
n]dx = lim

n→+∞

∫
RN

+

[|∇Ψ̃σn,yn |2 + kΨ̃2
σn,yn ]dx

=

∫
RN

+

[|∇Ψ̃σ̄,ȳ(x)|2 + kΨ̃2
σ̄,ȳ(x)]dx >

∫
RN

+

|∇Ψ̃σ̄,ȳ(x)|2dx = Σ.

To verify (2.15)(a), we first observe that σn must be bounded. In fact, if there were
a subsequence (still denoted by σn) for which limn→+∞ σn = +∞, we would obtain

Σ = lim
n→+∞

∫
RN

+

[|∇un|2 + ku2
n]dx ≥ lim

n→+∞

[∫
RN

+

|∇Ψ̃σn,yn |2 + k

∫
B√σn(yn)

Ψ̃2
σn,yn(x)dx

]

= lim
n→+∞

[∫
RN

+

|∇Ψ̃1,0(x)|2dx+ kσn

∫
B1(0)

Ψ̃2
1,0(x)dx

]
= +∞.

Then up to a subsequence, limn→+∞ σn = σ̄ ∈ R+ and σ̄ > 0 can be deduced
by arguing as in the proof of Proposition 2.4. Analogously, relation (2.15)(b) can
be verified by following the argument used in the proof of Proposition 2.4 to prove
(2.11)(b).

3. Proof of the results. In what follows, we suppose that a(x) verifies (1.1),
and we use the following notations:

ca = inf

{∫
RN

+

[|∇u|2 + a(x)u2]dx : u ∈ V, β(u) = 0, γ(u) =
1

3

}

c∞ = inf

{∫
RN

+

[|∇u|2 + a∞u
2]dx : u ∈ V, β(u) = 0, γ(u) ≥ 1

3

}

ca−a∞ = inf

{∫
RN

+

[|∇u|2 + (a(x)− a∞)u2]dx : u ∈ D1,2(RN+ ),

|u|L2∗ (RN
+

) = 1, β(u) = 0, γ(u) =
1

3

}
.

By virtue of (1.1) and Propositions 2.4 and 2.5, we have

(3.1)

{
(i) a∞ = 0 ⇒ ca−a∞ = ca > Σ, c∞ = Σ,
(ii) a∞ > 0 ⇒ ca ≥ ca−a∞ > Σ, c∞ > Σ.
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We set

(3.2) c̄ = min

{
ca−a∞ + Σ

2
,

Σ + S

2

}
and remark that

Σ < c̄ < S.

We denote by ϕ(x) a function that belongs to W 1,2
0 (B1(0)) and has the following

properties:

(3.3)


ϕ ∈ C∞0 (B1(0)), ϕ(x) > 0 ∀x ∈ B1(0),
ϕ is radially symmetric and |x1| < |x2| ⇒ ϕ(x1) > ϕ(x2),
|ϕ|L2∗ (RN

+
∩B1(0)) = 1,

Σ <
∫

RN
+
∩B1(0)

|∇ϕ|2dx ≡ Σ̄ < c̄.

The existence of such a ϕ follows from the properties of Σ and from (3.2). Moreover, if
a(x) satisfies (1.2), ϕ is supposed to have been chosen in such a way that the condition

(3.4) Σ̄ < S − |a(x)− a∞|LN/2(RN
+

)

is also fulfilled.
For every σ > 0 and y ∈ RN , we set

ϕσ,y(x) =

{
σ−(N−2)/4ϕ

(
x−y√
σ

)
, x ∈ Bσ(y),

0, x /∈ Bσ(y),

and we remark that

|ϕσ,y|L2∗ (RN ) = |ϕσ,y|L2∗ (Bσ(y)) = |ϕ|L2∗ (B1(0)).

Lemma 3.1. Let α(x) ∈ LN/2(RN+ ) be a nonnegative function. Then the following
relations hold:

(3.5)


(a) lim

σ→0
sup

{∫
RN

+
α(x)ϕ2

σ,y(x)dx : y ∈ ∂RN+
}

= 0

(b) lim
σ→+∞

sup
{∫

RN
+
α(x)ϕ2

σ,y(x)dx : y ∈ ∂RN+
}

= 0

(c) lim
r→+∞

sup
{∫

RN
+
α(x)ϕ2

σ,y(x)dx : |y| = r, σ > 0, y ∈ ∂RN+
}

= 0.

Proof. Let y ∈ ∂RN+ be chosen arbitrarily. Then ∀σ > 0,∫
RN

+

α(x)ϕ2
σ,y(x)dx =

∫
RN

+
∩Bσ(y)

α(x)ϕ2
σ,y(x)dx

≤ |α|LN/2(RN
+
∩Bσ(y))|ϕσ,y|2L2∗ (RN

+
∩Bσ(y)) = |α|LN/2(Bσ(y)∩RN

+
),

so

(3.6) sup

{∫
RN

+

α(x)ϕ2
σ,y(x)dx : y ∈ ∂RN+

}
≤ sup

{
|α|LN/2(Bσ(y)∩RN

+
) : y ∈ ∂RN+

}
.
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On the other hand, ∀y ∈ RN , lim
σ→0
|α|LN/2(RN

+
∩Bσ(y)) = 0, so (3.5)(a) follows from

(3.6).

To prove (3.5)(b) let us fix y ∈ ∂RN+ arbitrarily. Then ∀ρ > 0, ∀σ > 0,

∫
RN

+

α(x)ϕ2
σ,y(x)dx

=

∫
RN

+
∩Bρ(0)

α(x)ϕ2
σ,ydx+

∫
RN

+
\Bρ(0)

α(x)ϕ2
σ,y(x)dx

≤ |α|LN/2(Bρ(0)∩RN
+

)|ϕσ,y|2L2∗ (Bρ(0)) + |α|LN/2(RN
+
\Bρ(0))|ϕσ,y|2L2∗ (RN

+
\Bρ(0))

≤ |α|LN/2(RN
+
∩Bρ(0)) sup

y∈∂RN
+

|ϕσ,y|2L2∗ (Bρ(0)) + |α|LN/2(RN
+
\Bρ(0)).

Moreover, ∀y ∈ RN , limσ→+∞ |ϕσ,y|L2∗ (Bρ(0)) = 0, so we get

lim
σ→+∞

sup

{∫
RN

+

α(x)ϕ2
σ,y(x)dx : y ∈ ∂RN+

}
≤ |α|LN/2(RN

+
\Bρ(0)),

and, letting ρ→∞, (3.5)(b) follows.

To verify (3.5)(c), we argue by contradiction, so we assume that there exist a
sequence {yn}, yn ∈ ∂RN+ , and a sequence σn of positive numbers such that

(3.7) lim
n→+∞

∫
RN

+

α(x)ϕ2
σn,yn(x)dx > 0 and |yn| → +∞.

Because (3.5)(a)–(b) pass eventually to a subsequence, we can suppose that limn→+∞ σn
= σ̄. Then |yn| → +∞ and α ∈ LN/2(RN+ ) imply limn→+∞ |α|LN/2(RN

+
∩Bσn (yn)) = 0,

from which we deduce

lim
n→+∞

∫
RN

+

α(x)ϕ2
σn,yn(x)dx ≤ lim

n→+∞

[
|α|LN/2(RN

+
∩Bσn (yn))|ϕσn,yn |2L2∗ (Bσn (yn))

]
= 0,

which contradicts (3.7).

Lemma 3.2. The following relations hold:

(3.8)


(a) lim

σ→0
sup{γ(ϕσ,y) : y ∈ ∂RN+} = 0,

(b) lim
σ+∞

inf{γ(ϕσ,y) : y ∈ ∂RN+ , |y| ≤ r} = 1 ∀r > 0,

(c) (β(ϕσ,y)|y)RN > 0, ∀y ∈ ∂RN+\{0}, ∀σ > 0.

Proof. Let y ∈ ∂RN+ be chosen arbitrarily. For any σ > 0, we have
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0 ≤ γ(ϕσ,y) =

∫
RN

+

∣∣∣∣ π(x)

1 + |π(x)| − β(ϕσ,y)

∣∣∣∣ |ϕσ,y(x)|2∗dx

≤
∫

RN
+
∩Bσ(y)

∣∣∣∣ π(x)

1 + |π(x)| −
y

1 + |y|

∣∣∣∣ |ϕσ,y(x)|2∗dx+

∣∣∣∣ y

1 + |y| − β(ϕσ,y)

∣∣∣∣
≤
∫

RN
+
∩Bσ(y)

|π(x)− y| |ϕσ,y(x)|2∗dx

+

∣∣∣∣∣
∫

RN
+

(
y

1 + |y| −
π(x)

1 + |π(x)|

)
|ϕσ,y(x)|2∗dx

∣∣∣∣∣
≤ σ +

∫
RN

+

∣∣∣∣ y

1 + |y| −
π(x)

1 + |π(x)|

∣∣∣∣ |ϕσ,y(x)|2∗dx ≤ 2σ.

Hence 0 ≤ sup{γ(ϕσ,y) : y ∈ ∂RN+} ≤ 2σ, which letting σ → 0, yields (3.8)(a).
In order to prove (3.8)(b), let us first show that ∀y ∈ ∂RN+ ,

(3.9) lim
σ→+∞

|β(ϕσ,y)| = 0.

Since β(ϕσ,0) = 0 because of symmetry, we have

|β(ϕσ,y)| = |β(ϕσ,y)− β(ϕσ,0)|

=

∣∣∣∣∣
∫

RN
+

π(x)

1 + |π(x)| (ϕ
2∗

σ,y(x)− ϕ2∗

σ,0(x))dx

∣∣∣∣∣
≤
∫

RN
+

|π(x)|
1 + |π(x)| |ϕ

2∗

σ,y(x)− ϕ2∗

σ,0(x)|dx ≤
∫

RN
+

|ϕ2∗

1, yσ
(x)− ϕ2∗

1,0(x)|dx = O

(
1

σ

)
,

which gives (3.9). Now fix r > 0 arbitrarily and let y ∈ ∂RN+ so that |y| ≤ r. For any
σ > 0, we have

γ(ϕσ,y) =

∫
RN

+

∣∣∣∣ π(x)

1 + |π(x)| − β(ϕσ,y)

∣∣∣∣ |ϕσ,y(x)|2∗dx

≤
∫

RN
+

π(x)

1 + |π(x)| |ϕσ,y(x)|2∗dx+ |β(ϕσ,y)| ≤ 1 + |β(ϕσ,y)|,

from which, using (3.9), we deduce

(3.10) lim sup
σ→+∞

inf{γ(ϕσ,y) : y ∈ ∂RN+ , |y| ≤ r} ≤ 1.

Now if

lim inf
σ→+∞

inf{γ(ϕσ,y) : y ∈ ∂RN+ , |y| ≤ r} < 1

holds, there exist a sequence of positive numbers {σn} and a sequence of points {yn},
yn ∈ ∂RN+ , such that

(3.11) lim
n→+∞

γ(ϕσn,yn) < 1, σn −−→
n→+∞

+∞, |yn| ≤ r.
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On the other hand, considering (3.9), we deduce ∀ρ > 0 that

γ(ϕσn,yn) =

∫
RN

+

∣∣∣∣ π(x)

1 + |π(x)| − β(ϕσn,yn)

∣∣∣∣ |ϕσn,yn(x)|2∗dx

≥
∫

RN
+

|π(x)|
1 + |π(x)| |ϕσn,yn(x)|2∗dx− |β(ϕσn,yn)|

≥
∫

RN
+
\Λρ(0)

|π(x)|
1 + |π(x)| |ϕσn,yn(x)|2∗dx− o(1)

≥ ρ

(1 + ρ)

∫
RN

+
\Λρ(0)

|ϕσn,yn(x)|2∗dx− o(1)

≥ ρ

(1 + ρ)

∫
RN

+
\Λ ρ

σn
(0)

|ϕσn,yn(x)|2∗dx− o(1),

which implies that limn→+∞ γ(ϕσn,yn) ≥ ρ/(1 + ρ) ∀ρ > 0, and then

lim
n→+∞

γ(ϕσn,yn) ≥ 1,

which contradicts (3.11). Thus in (3.10), equality must hold, and since the above
argument does not depend on the choice of r, (3.8)(b) is proven.

Finally, let us remark that if 0 /∈ Bσ(y), (3.8)(c) is immediate. On the other hand,
if 0 ∈ Bσ(y), ∀x ∈ Bσ(y) ∩ RN+ such that (π(x)|y) < 0, the point x̄, symmetrical to
−x with respect to ∂RN+ , belongs to Bσ(y)∩RN+ , (π(x̄)|y) > 0, and ϕσ,y(x̄) > ϕσ,y(x).
Thus ∀σ > 0,

(β(ϕσ,y)|y) =

∫
RN

+
∩Bσ(y)

(π(x)|y)

1 + |π(x)| |ϕσ,y(x)|2∗dx > 0,

as desired.
Corollary 3.3. Let a(x) satisfy (1.1). Let ε > 0 be a real number such that

Σ̄ + ε < c̄. Then there exist real numbers r > 0 and σ1, σ2 : 0 < σ1 < 1/3 < σ2 such
that

(3.12) γ(ϕσ1,y) <
1

3
, γ(ϕσ2,y) >

1

3
∀y ∈ ∂RN+ ,

and

(3.13) sup

{∫
RN

+

[|∇ϕσ,y(x)|2 + (a(x)− a∞)ϕ2
σ,y(x)]dx : (y, σ) ∈ ∂K

}
< Σ̄ +

ε

2
,

where

(3.14) K = {(y, σ) ∈ ∂RN+ × R+ : |y| ≤ r, σ ∈ [σ1, σ2]}.

Proof. By (3.8)(a) and (3.5)(a) with (1.1), there exists σ1 ∈ (0, 1/3) such that
γ(ϕσ1,y) < 1/3 ∀y ∈ ∂RN+ and the relation

(3.15)

∫
RN

+

[|∇ϕσ,y(x)|2 + (a(x)− a∞)ϕ2
σ,y(x)]dx < Σ̄ +

ε

2
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holds when σ = σ1 for any y ∈ ∂RN+ . Furthermore, (3.5)(c) with (1.1) allows us to
choose r > 0 such that if |y| = r and y ∈ ∂RN+ , (3.15) is satisfied for all σ > 0.
Lastly, fixing r as chosen before, it is possible by (3.8)(b) and (3.5)(b) with (1.1)
to find σ2 > 1/3 for which γ(ϕσ2,y) > 1/3 for any y ∈ ∂RN+ , |y| ≤ r and relation
(3.15) holds with σ = σ2 for any y ∈ ∂RN+ . Clearly, the set K = {y ∈ ∂RN+ : |y| ≤
r}× [σ1, σ2] with r, σ1, and σ2 characterized as before is the desired set that satisfies
(3.13).

Corollary 3.4. Let a(x) satisfy (1.1) and a∞ > 0. Let ε > 0 be a real number
chosen so that Σ̄ + ε < c̄ and, if (1.2) holds, Σ̄ + ε < S− |a(x)− a∞|LN/2(RN

+
). Let σ1,

σ2, and r be the numbers (that depend on ε) whose existence is stated in Corollary
3.3, and let K denote the set defined in (3.14). Then there exists a real number A > 0
such that if a∞ ∈ (0,A), the relation

(3.16) sup

{∫
RN

+

[|∇ϕσ,y(x)|2 + a(x)ϕ2
σ,y(x)]dx : (y, σ) ∈ ∂K

}
< Σ̄ + ε < c̄

holds, and if (1.2) is true,

(3.17) sup

{∫
RN

+

[|∇ϕσ,y(x)|2 + a(x)ϕ2
σ,y(x)]dx : (y, σ) ∈ K

}
< S

is also verified.
Proof. Since ∀k > 0, ∀y ∈ ∂RN+ ,∫

RN
+

kϕ2
σ,y(x)dx = kσ2|ϕ1,0|2L2(B1(0)),

relation (3.16) follows straightly from (3.13) when a∞ ∈ (0,A) withA = ε(2σ2
2 |ϕ1,0|2L2(B1(0)))

−1.

Analogously, since ∀y ∈ ∂RN+ and ∀σ > 0∫
RN

+

(a(x)− a∞)ϕ2
σ,y(x)dx ≤ |a(x)− a∞|LN/2(RN

+
)|ϕσ,y|2L2∗ (RN

+
) = |a(x)− a∞|LN/2(RN

+
),

when (1.2) is satisfied, (3.17) is true if a∞ ∈ (0,A).
Lemma 3.5. Let K be the set defined in (3.14) with σ1, σ2, and r chosen as in

Corollary 3.3. Then

∃(ȳ, σ̄) ∈ ∂K : β(ϕσ̄,ȳ) = 0, γ(ϕσ̄,ȳ) ≥ 1

3
,

∃(ŷ, σ̂) ∈
◦
K : β(ϕσ̂,ŷ) = 0, γ(ϕσ̂,ŷ) =

1

3
.

Proof. To prove the lemma, define the map ϑ : ∂K → RN−1 × R by

ϑ(y, σ) = (β(ϕσ,y), γ(ϕσ,y));

it is sufficient to show that its restriction to ∂K is homotopically equivalent to the
identity map in RN−1 × R\{(0, 1/3)}.

Therefore, let us consider the homotopy Θ : [0, 1]× ∂K → RN−1 × R,

(3.18) Θ(t, y, σ) = (1− t)(y, σ) + t(β(ϕσ,y), γ(ϕσ,y)).
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Clearly Θ is continuous, Θ(0, y, σ) = (y, σ), Θ(1, y, σ) = ϑ(y, σ), so it remains to show
that

(3.19) (0, 1/3) /∈ Θ(t, ∂K) ∀t ∈ [0, 1]

or, equivalently,

Θ(t, y, σ) 6= (0, 1/3) ∀(y, σ) ∈ ∂K ∀t ∈ [0, 1].

In fact, set ∂K = F1 ∪ F2 ∪ F3 with F1 = {(y, σ) : |y| ≤ r, σ = σ1}, F2 = {(y, σ) :
|y| ≤ r, σ = σ2}, and F3 = {(y, σ) : |y| = r, σ ∈ [σ1, σ2]}. If (y, σ) ∈ F1, by (3.12),
we have ∀t ∈ [0, 1]

(1− t)σ1 + tγ(ϕσ1,y) < (1− t)1

3
+ t

1

3
=

1

3
.

Analogously, if (y, σ) ∈ F2, by (3.12), ∀t ∈ [0, 1],

(1− t)σ2 + tγ(ϕσ2,y) > (1− t)1

3
+ t

1

3
=

1

3
.

If (y, σ) ∈ F3, then |y| = r and 0 < σ1 ≤ σ ≤ σ2, so using (3.8)(c), we obtain
∀t ∈ [0, 1]

((1− t)y + tβ(ϕσ,y)|y) = (1− t)|y|2 + t(β(ϕσ,y)|y) > 0.

Proof of Theorem 1.1. Let A be the positive number whose existence is stated
in Corollary 3.4 and assume that a∞ ∈ (0,A). Let ε > 0 be chosen as in Corollary
3.4. We recall that in this case the space H in which the functional E is defined
is W 1,2(RN+ ), so the constraint is V = {u ∈ W 1,2(RN+ ) : |u|L2∗ (RN

+
) = 1}. In the

following, we use the notation

Ec = {u ∈ V : E(u) < c}, c ∈ R.

We set

c1 = inf

{
E(u) : u ∈ V, β(u) = 0, γ(u) ≥ 1

3

}
,

b1 = sup{E(ϕσ,y) : (y, σ) ∈ ∂K},
b2 = sup{E(ϕσ,y) : (y, σ) ∈ K},

and we recall that at the beginning of the section, we defined the numbers ca, c∞,
and ca−a∞ . By (3.1)(ii), we have Σ < c∞ ≤ c1, Lemma 3.5 gives c1 ≤ E(ϕσ̄,ȳ) ≤ b1,
and b1 < Σ̄ + ε < c̄ < S follows from (3.16) and the definition in (3.2). Furthermore,
by (3.1)(ii) and the definition in (3.2) c̄ < ca, Lemma 3.5 gives ca ≤ E(ϕσ̂,ŷ) ≤ b2,
and if (1.2) holds, b2 < S by (3.17). To summarize,

(3.20) Σ < c1 ≤ b1 < Σ̄ + ε < c̄ < S,

(3.21) c̄ < ca ≤ b2 and b2 < S if (1.2) holds.

First, we prove that the functional E constrained on V has a critical level in the
energy range (Σ, Σ̄ + ε). Let us choose ε̄ > 0 so that Σ < c1 − ε̄ < b1 + ε̄ < Σ̄ + ε and,
arguing by contradiction, suppose that

(3.22) {u ∈ V : c1 − ε̄ ≤ E(u) ≤ b1 + ε̄ , ∇E|V (u) = 0} = ∅.
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By Proposition 2.3 and (3.20), the pair (E, V ) satisfies the Palais–Smale condition in
[c1 − ε̄, b1 + ε̄]. Therefore, using a well-known deformation lemma (see, for instance,
[S]), we find a continuous map η : [0, 1] × V → V , and a positive number ε0 < ε̄ so
that

η(0, u) = u ∀u ∈ V,
η(t, u) = u ∀u ∈ Ec1−ε0 ∪ (V \Eb1+ε0) ∀t ∈ [0, 1],

E ◦ η(t, u) ≤ E(u) ∀t ∈ [0, 1],

η(1, Eb1+ε0)⊂Ec1−ε0 .

We remark that in particular

(3.23) (y, σ) ∈ ∂K ⇒ E(ϕσ,y) < b1 ⇒ E(η(1, ϕσ,y)) < c1 − ε0.

Then let us define ∀t ∈ [0, 1] and ∀(y, σ) ∈ ∂K the map

Γ(t, y, σ) =

{
Θ(2t, y, σ) ∀t ∈ [0, 1/2],
(β ◦ η(2t− 1, ϕσ,y), γ ◦ η(2t− 1, ϕσ,y)) ∀t ∈ [1/2, 1],

where Θ is the map defined in (3.18). Γ is continuous, and (0, 1/3) 6= Γ(t, y, σ) ∀(y, σ) ∈
∂K ∀t ∈ [0, 1/2] as a consequence of (3.19). Moreover, if (y, σ) ∈ ∂K, the inequalities

E(η(2t−1, ϕσ,y)) ≤ E(ϕσ,y) ≤ b1 < c̄ < ca = inf

{
E(u) : u ∈ V, β(u) = 0, γ(u) =

1

3

}
∀t ∈ [1/2, 1] hold. Thus we also have (0, 1/3) 6= Γ(t, y, σ) ∀(y, σ) ∈ ∂K ∀t ∈ [1/2, 1].
Hence (ỹ, σ̃) ∈ ∂K must exist such that

β ◦ η(1, ϕσ̃,ỹ) = 0, γ ◦ η(1, ϕσ̃,ỹ) ≥ 1

3
,

and then

E(η(1, ϕσ̃,ỹ)) ≥ inf{E(u) : u ∈ V, β(u) = 0, γ(u) ≥ 1/3} = c1 > c1 − ε0,

which contradicts (3.23), so (3.22) must be false.
Therefore, the functional E constrained on V must have at least one critical

point v ∈ V such that Σ < E(v) < Σ̄ + ε, and by Lemma 2.2, v does not change sign.
Therefore, because of the symmetry of E, v can be supposed positive.

Let us now assume that (1.2) holds. We shall prove that the functional E con-
strained on V has another critical level in the interval (c̄, S). As before, we argue by
contradiction and suppose that, choosing ε′ > 0 such that c̄ < ca − ε′ < b2 + ε′ < S,

(3.24) {u ∈ V : ca − ε′ ≤ E(u) ≤ b2 + ε′, (∇E|V )(u) = 0} = ∅.

By (3.21) and Proposition 2.3, the pair (E, V ) satisfies the Palais–Smale condition in
(ca− ε′, b2 + ε′). Thus it is again possible to find a continuous map η̃ : [0, 1]× V → V
and a positive number ε1 < ε′ so that

η̃(0, u) = u ∀u ∈ V,
η̃(t, u) = u ∀u ∈ Eca−ε1 ∪ (V \Eb2+ε1) ∀t ∈ [0, 1],

E ◦ η̃(t, u) ≤ E(u) ∀t ∈ [0, 1],

η̃(1, Eb2+ε1)⊂Eca−ε1 .
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We remark that in particular

(3.25) (y, σ) ∈ K ⇒ E(ϕσ,y) ≤ b2 ⇒ E(η̃(1, ϕσ,y)) ≤ ca − ε1.

Now define ∀t ∈ [0, 1] and ∀(y, σ) ∈ K the map

Γ̃(t, y, σ) =

{
Θ(2t, y, σ), t ∈ [0, 1

2 ],
(β ◦ η̃(2t− 1, ϕσ,y), γ ◦ η̃(2t− 1, ϕσ,y)), t ∈ [ 1

2 , 1],

where Θ is the map defined in (3.18).
Γ̃ is continuous and (0, 1/3) 6= Γ̃(t, y, σ) ∀(y, σ) ∈ ∂K and ∀t ∈ [0, 1/2] as a

consequence of (3.19). Moreover, since

(y, σ) ∈ ∂K ⇒ E(ϕσ,y) ≤ Σ̄+ε < c̄ < ca−ε1 ⇒ η̃(2t−1, ϕσ,y) = ϕσ,y ∀t ∈
[

1

2
, 1

]
,

we have ∀t ∈ [1/2, 1], ∀(y, σ) ∈ ∂K

Γ̃(t, y, σ) = Γ̃

(
1

2
, y, σ

)
= Θ(1, y, σ).

Then (0, 1/3) 6= Γ̃(t, y, σ) ∀(y, σ) ∈ ∂K ∀t ∈ [1/2, 1].
Hence a (y∗, σ∗) ∈ K must exist such that

β ◦ η̃(1, ϕσ∗,y∗) = 0, γ ◦ η̃(1, ϕσ∗,y∗) =
1

3
,

and then

E(η̃(1, ϕσ∗,y∗)) ≥ inf

{
E(u) : u ∈ V, β(u) = 0, γ(u) =

1

3

}
= ca > ca − ε1,

which contradicts (3.25), so (3.24) must be false. Therefore, the functional E con-
strained on V has at least one critical point u ∈ V such that c̄ < E(u) < S. Clearly,
u 6= v because E(v) < c̄ < E(u), and using Lemma 2.2, we deduce u > 0, concluding
the proof.

Remark 3.6. If we fix a function α(x) ∈ LN/2(RN+ ), |α|LN/2(RN
+

) 6= 0, and consider

the family of functions aλ(x) = λ + α(x), λ > 0, Theorem 1.1 insures the existence
of a positive solution vλ of (P) if λ is suitably small. Furthermore, by construction,
Σ < E(vλ/|vλ|L2∗ (RN

+
)) < Σ̄ + ε, and since ε can be taken arbitrarily small and Σ̄

taken arbitrarily near to Σ, it is easy to derive limλ→0E(vλ/|vλ|L2∗ (RN
+

)) = Σ.

If in addition α(x) verifies the relation |α|LN/2(RN
+

) < (1 − 2−2/N )S, then for λ

small, (P) has at least another solution uλ, and, denoted by

cα = inf

{∫
RN

+

[|∇u|2 + α(x)u2]dx : u ∈ D1,2(RN+ ), |u|L2∗ (RN
+

) = 1,

β(u) = 0, γ(u) =
1

3

}
,

the relation

lim inf
λ→0

E

(
uλ

|uλ|L2∗ (RN
+

)

)
> c̄ =

cα + Σ

2
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holds.
Proof of Theorem 1.2. Let ε > 0 be chosen in such a way that Σ̄ + ε < c̄ and the

claim of Corollary 3.3 is true. Let ca be defined as in the beginning of the section,
and let us recall that in this case the space H in which the functional E is defined is
D1,2(RN+ ) and the constraint is V = {u ∈ D1,2(RN+ ) : |u|L2∗ (RN

+
) = 1}. If we set

b̂2 = sup{E(ϕσ,y) : (y, σ) ∈ K},

we have by (1.2) that b̂2 < S. Therefore, using (3.1)(i), the definition in (3.2), and
Lemma 3.5, we obtain

Σ < c̄ < ca ≤ E(ϕσ̂,ŷ) ≤ b̂2 < S.

Then arguing exactly as in the second part of the proof of Theorem 1.1, it is possible
to prove the existence of a critical point of E on V which corresponds to a critical
level in the energy range (c̄, S), and then it is positive by Lemma 2.2.
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Abstract. Let L be the binomial operator

L =

(
d

dx

)4

+ q(x)

acting on (0, π) with Dirichlet boundary conditions. We study the associated inverse spectral problem
under the assumptions that q is symmetric, i.e., q(π − x) = q(x).

Our analysis is inspired by the well-known work of Borg for the Sturm–Liouville case. We first
derive the eigenfunction asymptotics by an approach that is different from the ones used in the
second-order case (WKB, etc.). These asymptotics are then used to obtain the local uniqueness of
the inverse problem.

Key words. fourth-order binomial operator, Dirichlet boundary conditions, Green function,
eigenfunction asymptotics, inverse spectral problem

AMS subject classifications. 34B05, 34L20
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1. Introduction. Consider the Dirichlet eigenvalue problem on (0, π):

Lu = u′′′′ + q(x)u = λu, u(0) = u′′(0) = u(π) = u′′(π) = 0(1)

(L is a so-called binomial operator), where q ∈ C[0, π] is symmetric, namely, q(π−x) =
q(x), and without loss of generality,∫ π

0

q(x)dx = 0.(2)

Let λn, n = 1, 2, 3, . . . , be the eigenvalues of (1) (there may be finitely many n’s
such that λn+1 = λn) and φn(x), n = 1, 2, 3, . . . , be the corresponding normalized
eigenfunctions. A classical inverse question here is whether q is uniquely determined
from the spectrum {λn}∞n=1.

For the corresponding second-order (i.e., the Sturm–Liouville) case, there are
many ways to obtain the uniqueness result and, furthermore, reconstruct q. Borg [2]
was the first to obtain a general uniqueness result. (He also reconstructed q by a
successive-approximation procedure.) Soon after, Levinson [14] gave a very short and
elegant uniqueness proof using contour integration and large-|λ| asymptotics. (For
a brief description of Levinson’s idea, also see [10].) The reconstruction of q from a
given spectral function was accomplished by Gelfand and Levitan [7] with the help of
the celebrated (Volterra-type) transformation operator. (See [6] for the adaptation of
the method of Gelfand and Levitan in the case where two spectra are given.) Krein
followed a different approach, where the inverse problem is transformed to a moment
problem. (For a nice exposition of Krein’s method in English, see [13].) Another way
to solve the inverse problem is to first obtain evolution equations for the eigenvalues
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(with respect to the interval) and then after solving these equations recover q via a
trace formula (see [1]), although this method is more popular in the case where q is
periodic and the problem is considered on the full line (see, for example, [4]). For a
survey on analytic methods for solving inverse problems, see [16].

We believe that among the methods mentioned above, the most promising for
(1) is Borg’s original approach. It seems that none of the other methods mentioned
work for (1) despite the facts that trace formulas are still valid (see, for example, [18])
and the Gelfand–Levitan approach works satisfactorily in the case of two unknown
coefficients (see, for example, [9] and [15]). The recent studies of Zachary [23] for
the higher-order inverse-scattering problem and Yurko [20], [21], [22], where certain
higher-order non-self-adjoint binomial inverse problems are solved, suggest that we
should expect uniqueness results.

To apply Borg’s approach, we need (eigenvalue and) eigenfunction asymptotics for
(1). The behavior of the large eigenvalues is known (see, for example, [18]). Our first
task, then (in section 2 below), is to obtain the eigenfunction asymptotics. Notice that
to derive these asymptotics, we had to introduce a new method since the standard
approaches used in the second-order case (WKB, etc.) do not work in the fourth-order
case because in the latter there are always solutions such as exp

(
λ1/4

)
growing; hence

it is difficult to isolate the eigenfunctions, which are bounded in λ. In section 3, we
use the eigenfunction asymptotics to attack the inverse problem. At the end of the
paper, we outline a reconstruction procedure based on a work of Hald (see [11]). We
believe that the analysis presented in this paper extends to other equations, including
higher-dimensional ones; therefore, there are various potential applications (e.g., in
elasticity).

2. The eigenfunction asymptotics. For the eigenvalues of (1), it is established
(see, for example, [18]) that if q ∈ Cr[0, π], where r = 0, 1, 2 or 3, then

λn − n4 = O
(
n−r

)
.(3)

Notice that n4, n = 1, 2, 3, . . . , are the eigenvalues of the unperturbed case, namely,
when q ≡ 0. In this case, the corresponding eigenfunctions are ψn(x) = (2/π)1/2 sinnx.

Our method for computing the asymptotics of the eigenfunctions φn(x) of (1) as
n → ∞ is inspired by an approach that we found in some works of Karpeshina (see,
for example, [12]).

Let G(x, y;λ) be the Green function associated with (1). By definition, G(x, y;λ)
is the integral kernel of the operator (L− λ)−1; therefore, we have the eigenfunction
expansion

G(x, y;λ) =

∞∑
j=1

φj(x)φj(y)

λj − λ
.(4)

Thus G(x, y;λ) is meromorphic in λ with simple poles at the Dirichlet eigenvalues.
In the unperturbed case, the Green function becomes

K(x, y;λ) =


1

2s2

[
sin(sx) sin s(π−y)

s sin(sπ) − sinh(sx) sinh s(π−y)
s sinh(sπ)

]
if x ≤ y,

1
2s2

[
sin(sy) sin s(π−x)

s sin(sπ) − sinh(sy) sinh s(π−x)
s sinh(sπ)

]
if x ≥ y,

(5)

where s = λ1/4. Observe that K(x, y;λ) is a meromorphic function of s4 = λ. Hence
no matter what fourth root we choose for s, the value of K(x, y;λ) is the same.



888 ALAN ELCRAT AND VASSILIS G. PAPANICOLAOU

It is easy to see that G(x, y;λ) is the unique solution (as long as λ 6= λn) of the
integral equation

G(x, y;λ) = K(x, y;λ)−
∫ π

0

K(x, ξ;λ)q(ξ)G(ξ, y;λ)dξ.(6)

By iterating (6), we obtain a formal (perturbation) series for G(x, y;λ), namely,

G(x, y;λ) =
∞∑
m=0

(−1)mGm(x, y;λ),(7)

where

G0(x, y;λ) = K(x, y;λ),

Gm(x, y;λ) =
∫ π

0
K(x, ξ;λ)q(ξ)Gm−1(ξ, y;λ)dξ, m ≥ 1.

(8)

Notice that if m ≥ 1, Gm(x, y;λ) also can be written as

(9)

Gm(x, y;λ) =

∫ π

0

· · ·
∫ π

0

K(x, ξ1;λ)q(ξ1)K(ξ1, ξ2;λ) · · · q(ξm)K(ξm, y;λ)dξ1 · · · dξm.

We need to establish the (absolute and uniform) convergence of the series in (7)
for certain values of λ. (Notice that if this series converges, then it obviously satisfies
(6).) First, we introduce the complex variable s (as in the unperturbed case) so that

λ = s4.

Next, we consider a family of contours in the s-plane as follows:

Cn = {s = σ + iτ : |σ − n| ≤ 1/2 and |τ | = 1, or |σ − n| = 1/2 and |τ | ≤ 1} ,

i.e., Cn is a rectangle of horizontal side 1 and vertical side 2, centered at n.
Proposition 1. If s ∈ Cn and n is large enough so that

δn
def
=

150π ‖q‖∞
(n− 1/2)3

≤ 1

2
,(10)

then the series in (7) converges absolutely and uniformly on [0, π]× [0, π]× Cn.
Proof. First, we notice that if s ∈ Cn, then∣∣∣∣ sin(sx) sin s(π − y)

sin(sπ)

∣∣∣∣ ≤ (eπ + 1

2

)2

< 146,

and for x ≤ y (reminder: σ is the real part of s),∣∣∣∣ sinh(sx) sinh s(π − y)

sinh(sπ)

∣∣∣∣ ≤ eσ(x−y) + 3

2 (1− e−σπ)
< 4.

Therefore, (5) implies that

|K(x, y;λ)| < 150

|s|3
≤ 150

(n− 1/2)3
.



INVERSE PROBLEM OF A FOURTH-ORDER OPERATOR 889

Thus (9) gives

|Gm(x, y;λ)| ≤ 150πδmn ,(11)

and since δn ≤ 1/2, the absolute and uniform convergence of the series in (7) follows
immediately.

We now introduce the contours Γn in the λ-plane that correspond to the Cn’s,
namely,

Γn =
{
λ = s4 : s ∈ Cn

}
.

Notice that the length l (Γn) of Γn satisfies

l (Γn) ≤ cn3,(12)

where c is some (positive) constant.
If n is sufficiently large, a consequence of Proposition 1 above is that

1

2πi

∮
Γn

G(x, y;λ)dλ =
∞∑
m=0

(−1)m
1

2πi

∮
Γn

Gm(x, y;λ)dλ.

Using the eigenfunction expansion (4) and the fact that (3) implies that Γn encloses
exactly one λn and exactly one eigenvalue of the unperturbed problem, namely n4,
we get

φn(x)φn(y) =
2

π
sinnx sinny −

∞∑
m=1

(−1)m
1

2πi

∮
Γn

Gm(x, y;λ)dλ.(13)

Next, we give a bound for the sum in (13). Using (11) and (12), we obtain the estimate∣∣∣∣∣
∞∑
m=2

(−1)m
1

2πi

∮
Γn

Gm(x, y;λ)dλ

∣∣∣∣∣ ≤ 75cn3
∞∑
m=2

δmn = 75cn3 δ2
n

1− δn
.

Thus by (10), there is a constant M (depending on ‖q‖∞) such that∣∣∣∣∣
∞∑
m=2

(−1)m
1

2πi

∮
Γn

Gm(x, y;λ)dλ

∣∣∣∣∣ ≤ M

n3
.(14)

We now treat the first term of the series in (13). By (8) or (9), we obtain

1

2πi

∮
Γn

G1(x, y;λ)dλ =
1

2πi

∮
Γn

∫ π

0

K(x, ξ;λ)q(ξ)K(ξ, y;λ)dξdλ.

The eigenfunction expansion of K(x, y;λ) together with the residue theorem give

1

2πi

∮
Γn

G1(x, y;λ)dλ = − 2

π

∫ π

0

sinnξ
[
Kn(ξ, y;n4) sinnx+Kn(x, ξ;n4) sinny

]
q(ξ)dξ,

where we have set

Kn(x, y, λ) =
2

π

∞∑
j=1
j 6=n

sinnx sinny

j4 − λ .
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It follows that ∣∣∣∣ 1

2πi

∮
Γn

G1(x, y;λ)dλ

∣∣∣∣ ≤ 8

π
‖q‖∞

∞∑
j=1
j 6=n

1

|j4 − n4| .(15)

Lemma 1. As n→∞,

∞∑
j=1
j 6=n

1

|j4 − n4| = O

(
lnn

n3

)
.

Proof. We split the series into three terms:

n−1∑
j=1

1

n4 − j4
+

2n∑
j=n+1

1

j4 − n4
+

∞∑
j=2n+1

1

j4 − n4
.(16)

The last term is O(n−3). Regarding the first term, we have

n−1∑
j=1

1

n4 − j4
=

1

n3

n−1∑
j=1

1

1− (j/n)
4

1

n
≤ 1

n3

∫ 1−(1/n)

0

dx

1− x4
+

1

n4 − (n− 1)4
.

Thus

n−1∑
j=1

1

n4 − j4
= O

(
lnn

n3

)
.

The second term in (16) can be treated similarly.
Using (14), (15), and Lemma 1 in (13), we arrive at the important formula

φn(x)φn(y) =
2

π
sinnx sinny +O

(
lnn

n3

)
.

Let us make the meaning of this formula more precise. For a fixed positive number
Q, there is a d1 > 0 (depending only on Q) such that if ‖q‖∞ ≤ Q, then∣∣∣∣φn(x)φn(y)− 2

π
sinnx sinny

∣∣∣∣ ≤ d1 lnn

n3
‖q‖∞ for all n ≥ 2(17)

and d1 remains bounded as Q↘ 0.
We can go a little further. Consider the linear operator

(Tf) (x) = f(π − x).

The eigenspace V corresponding to an eigenvalue of (1) can have dimension 1 or 2,
and T maps V into V . Since T 2 = I, T |V (T restricted on V ) is diagonalizable (in
fact, it is symmetric), and its eigenvalues are +1 or −1. Thus T has a complete set
of eigenvectors, and each eigenvector φ satisfies φ(π− x) = ±φ(x). It follows that for
each eigenfunction φn of (1), we can always assume that

φn(π − x) = cnφn(x) where cn = ±1.(18)
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Furthermore, by substituting y = π − x in (17) and using (18), we get that if n is
sufficiently large, then

φn(π − x) = (−1)n+1φn(x).(19)

If we set y = x in (17), we obtain

φn(x)2 =
2

π
sin2 nx+O

(
lnn

n3

)
.

On the other hand, if we freeze y, (17) implies that (up to an error of size O(n−3 lnn))
φn(x) changes sign like sinnx. We have therefore established the main result of this
section.

Theorem 1. Let Q be a fixed positive number. Then there is a d2 > 0 (depending
only on Q) such that if ‖q‖∞ ≤ Q, the eigenfunctions of (1) satisfy∣∣∣∣∣φn(x)−

√
2

π
sinnx

∣∣∣∣∣ ≤ d2lnn

n3
‖q‖∞ , n ≥ 2,

for all x ∈ [0, π]. Furthermore, d2 remains bounded as Q↘ 0.

3. The inverse problem. Theorem 1 enables us to attack the inverse problem
associated with (1). We follow Borg’s original approach (see [2]).

Let us consider the two eigenvalue problems

u′′′′ + q(x)u = λu, u(0) = u′′(0) = u(π) = u′′(π) = 0(20)

and

u′′′′ + q̃(x)u = λu, u(0) = u′′(0) = u(π) = u′′(π) = 0,(21)

where q and q̃ are continuous and symmetric and without loss of generality,∫ π

0

q(x)dx =

∫ π

0

q̃(x)dx = 0.(22)

If a is some quantity associated with (20), the corresponding quantity for (21) is

denoted by ã. Let λn and λ̃n, n = 1, 2, 3, . . ., be the eigenvalues of (20) and (21),
respectively. Here we assume that

λn = λ̃n for all n.

Then if φn(x) and φ̃n(x), n = 1, 2, 3, . . ., are the corresponding normalized eigenfunc-
tions, we have

φ′′′′n + q(x)φn = λnφn and φ̃′′′′n + q̃(x)φ̃n = λnφ̃n.

If we multiply the first equation by φ̃n and the second by φn and then subtract the
second from the first, we obtain

φ′′′′n φ̃n − φ̃′′′′n φn = (q̃ − q)φnφ̃n.
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Now we integrate from 0 to π and use integration by parts and the boundary conditions
that φn and φ̃n satisfy. Thus we get∫ π

0

[q̃(x)− q(x)]φn(x)φ̃n(x)dx = 0, n = 1, 2, 3, . . . .(23)

Let L2
s(0, π) be the Hilbert space of all L2 symmetric functions on (0, π), namely,

L2
s(0, π) =

{
f ∈ L2(0, π) : f(π − x) = f(x) a.e. x

}
.

Then by (23), the uniqueness part for the inverse problem is related to the following

question: how much of L2
s(0, π) does the set {φnφ̃n}∞n=1 span?

If in particular the set {φnφ̃n}∞n=1 is complete in L2
s(0, π), then we have uniqueness

since (23) then implies that we must have q̃(x) ≡ q(x).
Following Borg, we set

Un(x) =

√
2

π

(∫ π

0

φnφ̃n

)
− (2π)

1/2
φn(x)φ̃n(x)(24)

(so that the average of Un(x) on (0, π) is 0). Then because of (22), formula (23) is
equivalent to ∫ π

0

[q̃(x)− q(x)]Un(x)dx = 0, n = 1, 2, 3, . . . .(25)

Theorem 1 implies that for fixed Q, there is a d3 > 0 (depending only on Q) such
that if ‖q‖∞ , ‖q̃‖∞ ≤ Q, then∣∣∣∣∣Un(x)−

√
2

π
cos (2nx)

∣∣∣∣∣ ≤ d3Q (1 + lnn)

n3
for all n.(26)

(Notice that {1/
√
π} ∪ {(2/π)

1/2
cos 2nx}∞n=1 is an orthonormal basis of L2

s(0, π).)
By (18), it follows that

Un(π − x) = cnc̃nUn(x) = ±Un(x).

If n ≥ n0(Q), formula (19) implies that cn = c̃n = (−1)n+1. Therefore,

Un(π − x) = Un(x) for all n ≥ n0.

Hence Un ∈ L2
s(0, π) if n ≥ n0 (and Un ⊥ L2

s(0, π) or Un ∈ L2
s(0, π) if n < n0).

Next, we consider the expansions

Un(x) =

∞∑
k=1

rnk

√
2

π
cos 2kx, n ≥ n0,

where, of course,

rnk =

∫ π

0

Un(x)

√
2

π
cos (2kx) dx.
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We can also set rnk = 0 if n < n0. Introduce the operator R acting on l2(N) with
matrix (rnk)1≤k,n<∞. By (26), R is a bounded operator on l2(N) (also see Lemma 2
below). We write

R = I + T,(27)

where

T = (tnk)1≤k,n<∞ , tnk = rnk − δnk.

(δnk is the Kronecker delta.)
Lemma 2. The operator T defined above is compact on l2(N). Furthermore, if Q

is sufficiently small (where, as usual, Q is an upper bound of ‖q‖∞ and ‖q̃‖∞), then
‖T‖ < 1.

Proof. (In fact, we prove a slightly stronger statement). We have

∞∑
n=1

∞∑
k=1

t2nk =
∞∑
n=1

∞∑
k=1

(rnk − δnk)
2

=
∞∑
n=1

(
1− 2rnn +

∞∑
k=1

r2
nk

)
.(28)

Since

rnn =

∫ π

0

Un(x)

√
2

π
cos (2nx) dx,

formula (26) implies that

|rnn − 1| ≤ d4 (1 + lnn)

n3
‖q‖∞ .(29)

Next, we observe that the Parseval equation gives

∞∑
k=1

r2
nk =

∫ π

0

U2
n(x)dx.

Thus again using (26), we obtain∣∣∣∣∣
∞∑
k=1

r2
nk − 1

∣∣∣∣∣ ≤ d5 (1 + lnn)

n3
‖q‖∞ .

Using this and (29) in (28), we obtain that the double series converges.
Notice that if ‖T‖ < 1, then (27) implies that R is invertible, and this means

that the set {1} ∪ {Un(x)}∞n=1 is complete in L2
s(0, π). Thus we have established our

second main result, namely the following.
Theorem 2. There is a Q > 0 such that if problems (20) and (21) have the same

spectrum (where q and q̃ are symmetric), and if ‖q‖∞ , ‖q̃‖∞ ≤ Q, then q(x) ≡ q̃(x).
Remarks. (a) Notice that for our analysis, we needed only q, q̃ ∈ L∞(0, π).
(b) We believe that our analysis can provide a precise numerical value for Q.
(c) If q and q̃ are not symmetric, then we believe that a theorem analogous

to Theorem 2 can be proved using this same method under the assumptions that
the operators have two spectra in common and that the norms ‖q‖∞ and ‖q̃‖∞ are
sufficiently small. In the special case where q and q̃ have the same Dirichlet spectrum
on (0, π)—say σD—and the same spectrum—denoted by σDN—that corresponds to
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the boundary conditions u(0) = u′′(0) = u′(π) = u′′′(π) = 0, we can consider the
symmetric extensions qs and q̃s of q and q̃, respectively, on (0, 2π). It follows that qs
and q̃s have a common Dirichlet spectrum on (0, 2π), which is equal to σD ∪ σDN .
Thus Theorem 2 implies that qs(x) ≡ q̃s(x) on [0, 2π] and therefore q(x) ≡ q̃(x) on
[0, π].

(d) We believe that our approach applies to operators of the form

Lu =

(
− d

dx

)2l

u+ qu.

We end this section with a small result in the spirit of Ambarzumian.
Theorem 3. Consider the (Neumann) eigenvalue problem on the interval (0, b),

Lu = u′′′′ + q(x)u = µu, u′(0) = u′′′(0) = u′(b) = u′′′(b) = 0

with eigenvalues µn, n = 0, 1, 2, 3, . . .. If q ∈ C[0, b] and µn = n4 for infinitely many
n’s, including n = 0, then b = π and q(x) ≡ 0.

Proof. First, we observe that the given behavior of µn for large n implies that
b = π and ∫ π

0

q(x)dx = 0.

Next, we consider the associated Rayleigh quotient, namely,

N [v] =

∫ π
0

[
v′′(x)2 + q(x)v(x)2

]
dx∫ π

0
v(x)2dx

, v′(0) = v′′′(0) = v′(π) = v′′′(π) = 0.

We have that infv N [v] = µ0 = 0. However, N [1] = 0. Therefore, infv N [v] =
N [1]. Thus v(x) ≡ 1 is a Neumann eigenfunction corresponding to the eigenvalue 0.
Therefore, q(x) ≡ 0.

Appendix. In the second-order case, there is a way to reconstruct q (not men-
tioned in our introduction) that is due to Hald [11]. Hald’s algorithm is a beautiful
direct method of solving the inverse problem with symmetric q by a clever discretiza-
tion. It is suitable for numerical implementation since it gives a stable algorithm for

reconstructing q. However, it requires that ||q||2 and
∑
n

(
λn − n2

)2
be sufficiently

small, and for this reason, its theoretical significance is underestimated since other
methods do not impose such restrictions. We believe that Hald’s algorithm extends
to the fourth-order problem (1).

Here is a telegraphic description of our proposed reconstruction process. First,
we mention that if q ∈ C2[0, π], then the large eigenvalues of (1) obey the asymptotic
formula

λn = n4 +O(n−2)

(see, for example, [18]). We need to impose the condition

(C) ||q||2 ≤ Q2 and
∑
n

(
λn − n4

)2 ≤ Λ2,

where Q2 and Λ2 are fixed numerical bounds. (We believe that one can allow bounds
that are bigger than the corresponding bounds of [11] for the second-order case.)
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Step 1. Let λ1 < · · · < λm be the first m eigenvalues of (1). (Condition (C)
excludes the possibility of multiple eigenvalues.) Then there is a unique set of real
numbers β1, . . . , βm such that if we set

bjk =

{
j4δjk + β|k−j|/2 − β(k+j)/2 if k + j = even,

0 if k + j = odd,
where β0 = 0,

then the m × m matrix B = (bjk) has eigenvalues λ1, . . . , λm (notice that these
βk’s depend on m and that they are not the cosine Fourier coefficients of q), and
furthermore,

β2
1 + β2

2 + · · ·+ β2
m ≤ (2/π)Q2

2.

Step 2. If we set

qm(x) = 2
m∑
k=1

βk cos (2kx) ,

where βk, k = 1, . . . ,m, is as in Step 1, then

||q − qm||2 → 0 as m→∞.

To justify these steps, we believe that one need only repeat Hald’s analysis (see

[11]) with basically one modification, namely, the discretization of − (d/dx)
2
; i.e.,

the matrix diag(12, 22, 32, . . .) that appears in [11] should now be replaced by the

discretization of (d/dx)
4
, i.e., the matrix diag(14, 24, 34, . . .).
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solve in order to recursively update the predictor as more data and information about the process
becomes available and thus saves some resources and time. The procedure extends the well-known
Levinson recursive algorithm to the case of random fields.

Key words. stationary random field, prediction, Levinson’s algorithm
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1. Introduction. Prediction of random fields requires knowledge of the observed
past and the covariance of the process. In practice, one must find the coefficients of
the predictor and study the error. In general, finding the coefficients involves solving
a system of linear equations at each point in time. As more data and information
about the process become available, the predictor must be updated. This requires
solving an entirely new and larger system of equations, which becomes increasingly
difficult and time consuming.

In the case of a stationary sequence X = {x(n) : n ∈ Z}, Levinson [6] developed a
simple algorithm for computing the predictor (x(0)|Mn+1) of x(0) based onMn+1 =
sp{x(k) : −n−1 ≤ k ≤ −1}, assuming that (x(0)|Mn) is known. The purpose of this
paper is to present a similar recursive procedure for stationary fields.

As remarked by Kallianpur, Miamee, and Niemi [4], the starting point in the
prediction problem is the appropriate definition of the past. In one of the earliest
studies, Chiang [1] took the half-plane as the past, whereas Helson and Lowdenslager
used the augmented half-plane for past in their study [2, 3]. More recently, Kallianpur
and Mandrekar [5] performed a time-domain analysis of a two-parameter weakly sta-
tionary random field in which they took the quarter-plane in the southwest corner as
the past. Marzetta [7] pointed out that the proper definition of the past must include
all of the data points that lie between the data points at (s, t) being predicted and
data points at (k, l) that have been observed. In this paper, we will work with the
truncated quarter-plane, namely Mn = {(i, j) ∈ Z2 : −n ≤ i, j ≤ −1}, as the finite
past. Having identified our past here, we define the “nearest future” as all those data
points that are one step ahead of the finite past, that is, Fn = {(i, 0) : −n− 1 ≤ i ≤
0} ∪ {(0, j) : −n− 1 ≤ j ≤ −1}.

Recall that the Levinson’s algorithm (the one-parameter case) is based on the
fact that the projection (x(0)|Mn+1) of x(0) ontoMn+1 can be expressed in terms of
(x(0)|Mn) and the “backward” predictor of the “new observation” (x(−n− 1)|Mn),
where the latter can be deduced from the coefficients of (x(0)|Mn). In the case
considered in this paper, the “new observations” consist of 2n + 1 points x(p, q),

∗ Received by the editors July 24, 1995; accepted for publication (in revised form) March 12,
1996. This research was supported by Office of Naval Research grant N00014-89-J-1824 and U.S.
Army Research grant DAAH04-96-1-0027.
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† Department of Mathematics, Hampton University, Hampton, VA 26668 (makagon@

math1.math.hamptonu.edu, miamee@cs.hamptonu.edu).
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(p, q) ∈Mn+1 \Mn. Therefore, if one wants to employ Levinson’s idea of “backward”
prediction, the predictors of all elements x(p, q), (p, q) ∈ Fn, must be available. In
other words, the procedure must involve the simultaneous construction of the predic-
tors of all elements in the near future.

2. The problem. Let Z denote the set of integers. A family of complex random
variables X = {x(i, j) : (i, j) ∈ Z2} ⊂ L2(Ω) is said to be a weakly stationary random
field (WSRF) if E(x(i, j)) = 0 for all (i, j) ∈ Z2 and the correlation function of X,
E(x(i, j)x(k,m)) = R(i−k, j−m), depends only on i−k and j−m. In what follows,
the expectation E(xy), x, y ∈ L2(Ω), will be denoted by 〈x, y〉 and (x|M) will stand
for the orthogonal projection of x onto a closed subspace M ⊂ L2(Ω) (with respect
to the inner product defined above). Let us recall that

y = (x|M) ⇐⇒ y ∈M and 〈y, z〉 = 〈x, z〉(1)

for each z in a linearly dense subset of M.
For every integer n > 0, let Mn = {(i, j) ∈ Z2 : −n ≤ i ≤ −1,−n ≤ j ≤ −1} be

the finite past, Fn = {(i, 0) : −n − 1 ≤ i ≤ 0} ∪ {(0, j) : −n − 1 ≤ j ≤ −1} be the
nearest future, and Dn = Mn+1 \Mn. Let X be a WSRF and let Mn = sp{x(i, j) :
(i, j) ∈ Mn}, where sp denotes the closed linear span. The best linear predictor of
x(p, q) based on Mn is the orthogonal projection

(x(p, q)|Mn) =
∑

(i,j)∈Mn

α
(n)
i,j (p, q)x(i, j).(2)

The coefficients α
(n)
i,j (p, q), (i, j) ∈ Mn, will be referred to as predictor coefficients of

the predictor (x(p, q)|Mn). If we assume that any finite nontrivial subset of X is
linearly independent (as vectors in L2(Ω)), then by (1), the predictor coefficients are
the unique solution of the following system of linear equations:

R(p− k, q − l) =
∑

(i,j)∈Mn

α
(n)
i,j (p, q)R(i− k, j − l), (k, l) ∈Mn.(3)

Therefore, finding the predictor of the “nearest future” elements {x(p, q) : (p, q) ∈ Fn}
based on Mn requires solving (2n + 3) systems of linear equations each with n2

unknowns. In the next section, we present a recursive Levinson-type algorithm for
computing the predictor coefficients.

3. The algorithm. In this section, X is a WSRF with the property that any
finite nontrivial subset of X is linearly independent. Let n > 0 be fixed and assume

that the predictor coefficients α
(n)
i,j (p, q), (i, j) ∈ Mn, of (x(p, q)|Mn) are known for

every (p, q) ∈ Fn. To get our prediction of the nearest future at the next iteration, we

have to find the coefficients α
(n+1)
i,j (p, q) for (i, j) ∈Mn+1 and (p, q) ∈ Fn+1. We first

find these coefficients for (p, q) ∈ Fn. The remaining two sets of coefficients, namely

α
(n+1)
i,j (−n− 2, 0) and α

(n+1)
i,j (0,−n− 2), will be discussed later.

Denote en(s, t) = x(s, t)− (x(s, t)|Mn) and En = sp{en(s, t) : (s, t) ∈ Dn}. Then
en(s, t), (s, t) ∈ Dn, are linearly independent and En =Mn+1	Mn. Hence for every
(p, q),

(x(p, q)|Mn+1) = (x(p, q)|Mn) +
∑

(s,t)∈Dn

β
(n)
s,t (p, q)en(s, t).(4)
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Substituting en(s, t) = x(s, t)− (x(s, t)|Mn) and then using (2), we obtain

(x(p, q)|Mn+1) =
∑

(i,j)∈Mn

α(n)
i,j (p, q)−

∑
(s,t)∈Dn

β
(n)
s,t (p, q)α

(n)
i,j (s, t)

x(i, j)

+
∑

(i,j)∈Dn

β
(n)
i,j (p, q)x(i, j).

This implies that

α
(n+1)
i,j (p, q) =


α

(n)
i,j (p, q)−

∑
(s,t)∈Dn

β
(n)
s,t (p, q)α

(n)
i,j (s, t) if (i, j) ∈Mn,

β
(n)
i,j (p, q) if (i, j) ∈ Dn.

(5)

Relation (5) shows that for any (p, q) ∈ Fn, in order to obtain the predictor

coefficients of (x(p, q)|Mn+1), it is enough to find the coefficients α
(n)
i,j (s, t), (s, t) ∈

Dn, (i, j) ∈Mn, and β
(n)
s,t (p, q), (s, t) ∈ Dn.

In the next lemma, we show that the coefficients α
(n)
i,j (s, t), (s, t) ∈ Dn, can be

obtained by renumbering the coefficients α
(n)
i,j (p, q), (p, q) ∈ Fn. This is a simple conse-

quence of the fact that due to the stationarity of X, the inner products 〈x(s, t), x(i, j)〉
and 〈x(−n− 1− i,−n− 1− j), x(−n− 1− s,−n− 1− t)〉 are equal. This principle,
usually called the principle of backward–forward predictors, is the basis of Levinson’s
algorithm.

Lemma 1. For every (i, j) ∈Mn and (s, t) ∈ Dn,

α
(n)
i,j (s, t) = α

(n)
−n−1−i,−n−1−j(−n− 1− s,−n− 1− t).

Note that if (s, t) ∈ Dn, then (−n− 1− s,−n− 1− t) ∈ Fn.
Proof. By (3), it suffices to show that for all (u, v) ∈Mn,

R(s− u, t− v) =
∑

(i,j)∈Mn

α
(n)
i,j (−n− 1− s,−n− 1− t)R(i− u, j − v).(6)

Using the fact that R(i, j) = R(−i,−j) and substituting i = −n − 1 − k and j =
−n− 1− l, we see that the right-hand side of (6) equals∑

(k,l)∈Mn

α
(n)
k,l (−n− 1− s,−n− 1− t)R(k − (−n− 1− u), l − (−n− 1− v)).

Using (3) again, this time with p = −n − 1 − s and q = −n − 1 − t, we see that the
latter equals R(u− s, v − t).

The next lemma provides the equations for computing the coefficients β
(n)
s,t (p, q),

(s, t) ∈ Dn, (p, q) ∈ Fn, defined in (4). We state the equations in a more general
form that is ready to be used later in computing the predictor coefficients of (x(−n−
2, 0)|Mn+1). Let us remark that in the case of a one-parameter stationary sequence,
the space En is one dimensional and there is only one coefficient to compute.

Lemma 2. Let Ln be the “nearest neighborhood” of Mn, that is, Ln = Fn ∪Dn,
and let K be a nonempty subset of Ln. Let K = sp{x(i, j) : (i, j) ∈ Mn ∪K} 	Mn.
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Denote

A(s, t;u, v) = R(s− u, t− v)−
∑

(i,j)∈Mn

α
(n)
i,j (s, t)R(i− u, j − v)

−
∑

(i,j)∈Mn

α
(n)
i,j (u, v)R(s− i, t− j)

+
∑

(i,j)∈Mn

∑
(k,l)∈Mn

α
(n)
i,j (s, t)α

(n)
k,l (u, v)R(i− k, j − l),

B(p, q;u, v) = R(p− u, q − v)−
∑

(i,j)∈Mn

α
(n)
i,j (u, v)R(p− i, q − j).

Then for every (p, q) ∈ Fn,

(x(p, q)|Mn ⊕K) = (x(p, q)|Mn) +
∑

(s,t)∈K
κ

(n)
s,t (p, q)(x(s, t)− (x(s, t)|Mn)),(7)

where the coefficients κ
(n)
s,t (p, q), (s, t) ∈ K, satisfy the following system of equations:∑

(s,t)∈K
κ

(n)
s,t (p, q) A(s, t;u, v) = B(p, q;u, v), (u, v) ∈ K.(8)

Proof. The summation in (7) represents the orthogonal projection on K, and

therefore by (1) the coefficients κ
(n)
s,t (p, q), (s, t) ∈ K, are the unique solutions of the

system ∑
(s,t)∈K

κ
(n)
s,t (p, q)〈(x(s, t)− (x(s, t)|Mn), (x(u, v)− (x(u, v)|Mn))〉

= 〈x(p, q), (x(u, v)− (x(u, v)|Mn))〉, (u, v) ∈ K.

Substituting (2) into the last equation completes the proof.

IfK = Dn, Lemma 2 shows that the coefficients β
(n)
s,t (p, q), (s, t) ∈ Dn, (p, q) ∈ Fn,

needed in (5), are the solutions of the system∑
(s,t)∈Dn

β
(n)
s,t (p, q) A(s, t;u, v) = B(p, q;u, v), (u, v) ∈ Dn,(9)

and hence we can compute (x(p, q)|Mn+1) for (p, q) ∈ Fn via formula (7).
It remains to compute the two predictors (x(−n − 2, 0)|Mn+1) and (x(0,−n −

2)|Mn+1). If we apply Lemma 2 for K = Rn := {(0, j) : j = −1, . . . ,−n − 1} ∪
{(i,−n− 1) : i = −n, . . . ,−1} and denote the solutions to (8) by ρ

(n)
s,t (p, q), we obtain

(x(−n− 1, 0)|Mn ⊕Rn)(10)

= (x(−n− 1, 0)|Mn) +
∑

(s,t)∈Rn

ρ
(n)
s,t (−n− 1, 0)(x(s, t)− (x(s, t)|Mn)),

where the coefficients ρ
(n)
s,t (−n− 1, 0), (s, t) ∈ Rn, satisfy∑

(s,t)∈Rn

ρ
(n)
s,t (−n− 1, 0) A(s, t;u, v) = B(−n− 1, 0;u, v), (u, v) ∈ Rn.(11)
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The coefficients ρ
(n)
s,t are needed to compute the coefficients α

(n+1)
i,j (−n − 2, 0) and

α
(n+1)
i,j (0,−n − 2), (i, j) ∈ Mn+1, and this is done in the next lemma. In fact, from

the remark preceeding Lemma 1, it follows that it is enough to compute only one of
these two sets of coefficients.

Lemma 3. Let ρ
(n)
s,t (−n− 1, 0), (s, t) ∈ Rn, be as above.

1. If (i, j) ∈ {−n− 1, . . . ,−2} × {−n, . . . ,−1}, then

α
(n+1)
i,j (−n−2, 0) = α

(n)
i+1,j(−n−1, 0)+

∑
(s,t)∈Rn

ρ
(n)
s,t (−n−1, 0)α

(n)
i+1,j(−n−1, 0).

2. If (i, j) ∈ {(−1, j) : −n− 1 ≤ j ≤ −1} ∪ {(i,−1− n) : −n− 1 ≤ i ≤ −2}, then

α
(n+1)
i,j (−n− 2, 0) = ρ

(n)
i+1,j(−n− 1, 0).

3. If (i, j) ∈Mn+1, then

α
(n+1)
i,j (0,−n− 2) = α

(n+1)
−n−2−i,−n−2−j(−n− 2, 0).

Proof. Consider the unitary operator U defined by Ux(i, j) = x(i− 1, j), (i, j) ∈
Z2. Then by (10), (x(−n − 2, 0)|Mn+1) = U(x(−n − 1, 0)|Mn ⊕Rn) = U((x(−n −
1, 0)|Mn) +

∑
(s,t)∈Rn ρ

(n)
s,t (−n − 1, 0)(x(s, t) − (x(s, t)|Mn)). Substituting (2), we

obtain parts 1 and 2. Part 3 of the lemma follows immediately from the fact that
〈x(−n− 2, 0), x(i, j)〉 = 〈x(0,−n− 2), x(n+ 2 + i,−n− 2 + j)〉 (cf. Lemma 1).

The following theorem summarizes the algorithm presented in this note.
Theorem 1 (Levinson algorithm for random fields). Let X be a WSRF with the

property that any finite nontrivial subset of X is linearly independent. Assume that

the predictor coefficients α
(n)
i,j (p, q), (i, j) ∈ Mn, of (x(p, q)|Mn) are known for each

(p, q) ∈ Fn. Let the functions A(·, · ; ·, ·) and B(·, · ; ·, ·) be as in Lemma 2. Then for

every (p, q) ∈ Fn+1, the coefficients α
(n+1)
i,j (p, q), (i, j) ∈Mn+1, appearing in

(x(p, q)|Mn+1) =
∑

(i,j)∈Mn+1

α
(n+1)
i,j (p, q)x(i, j)

can be computed via the following procedure:

(i) If (p, q) ∈ Fn+1 \ {(−n− 2, 0), (0,−n− 2)}, then α
(n+1)
i,j (p, q) are given by (5),

where α
(n)
i,j (s, t), (s, t) ∈ Dn, are related to α

(n)
i,j (p, q), (p, q) ∈ Fn, by Lemma 1 and

β
(n)
s,t (p, q), (s, t) ∈ Dn, are solutions of the system∑

(s,t)∈Dn

β
(n)
s,t (p, q) A(s, t;u, v) = B(p, q;u, v), (u, v) ∈ Dn.(12)

(ii) If (p, q) ∈ {(−n − 2, 0), (0,−n − 2)}, then the coefficients α
(n+1)
i,j (p, q) are

calculated as in Lemma 3.
From Theorem 1, it follows that in order to find α

(n+1)
i,j (p, q), (i, j) ∈ Mn+1, for

a fixed (p, q) ∈ Fn+1, the algorithm requires solving system (12) (or (11)) consisting
of 2n + 1 equations whose coefficients are obtained by renumbering, multiplying,

and summing known predictor coefficients α
(n)
i,j (u, v), (u, v) ∈ Fn, (i, j) ∈ Mn, while

direct computation would involve solving system (3) (with n replaced by n+ 1) with
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(n+1)2 equations. In the case of stationary sequences, the original Levinson algorithm
required computing only one new coefficient, and this is because in that case there is
just one “new observation,” while in our case there are 2n+ 1 “new observations.”
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Abstract. The general analytic solution to the functional equation

φ1(x+ y) =

∣∣∣∣φ2(x) φ2(y)
φ3(x) φ3(y)

∣∣∣∣∣∣∣∣φ4(x) φ4(y)
φ5(x) φ5(y)

∣∣∣∣
is characterized. Up to the action of the symmetry group, this is described in terms of Weierstrass
elliptic functions. We illustrate our theory by applying it to the classical addition theorems of the
Jacobi elliptic functions and the functional equations

φ1(x+ y) = φ4(x)φ5(y) + φ4(y)φ5(x)

and

Ψ1(x+ y) = Ψ2(x+ y)φ2(x)φ3(y) + Ψ3(x+ y)φ4(x)φ5(y).

Key words. functional equation, Calogero–Moser, special functions

AMS subject classifications. 39B32, 33E05

PII. S0036141095291385

1. Introduction. The purpose of this article is to describe the general analytic
solution to the functional equation

φ1(x+ y) =

∣∣∣∣φ2(x) φ2(y)
φ3(x) φ3(y)

∣∣∣∣∣∣∣∣φ4(x) φ4(y)
φ5(x) φ5(y)

∣∣∣∣ .(1.1)

Although this equation appears to depend on five a priori unknown functions, we shall
show that (1.1) is invariant under a large group of symmetries G and that each orbit
has a solution of a particularly nice form, expressible in terms of elliptic functions.

Theorem 1. The general analytic solution to the functional equation (1.1) is, up
to a Gaction given by (2.1)–(2.4) (see section 2), of the form

φ1(x) =
Φ(x; ν1)

Φ(x; ν2)
,

(
φ2(x)

φ3(x)

)
=

(
Φ(x; ν1)

Φ(x; ν1)′

)
, and

(
φ4(x)

φ5(x)

)
=

(
Φ(x; ν2)

Φ(x; ν2)′

)
.

Here

Φ(x; ν) ≡ σ(ν − x)

σ(ν)σ(x)
eζ(ν)x,(1.2)
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where σ(x) = σ(x|ω, ω′) and ζ(x) = σ(x)′/σ(x) are the Weierstrass sigma and zeta
functions.

The group G of symmetries of (1.1) will be described further below. Our proof is
constructive and indeed yields more.

Theorem 2. Let x0 be a generic point for (1.1). Then for k = 1, 2, we have

∂y ln

∣∣∣∣ φ2k(x+ x0) φ2k(y + x0)
φ2k+1(x+ x0) φ2k+1(y + x0)

∣∣∣∣
∣∣∣∣∣
y=0

= ζ(νk)− ζ(x)− ζ(νk − x)− λk

= − 1

x
− λk +

∑
l=0

Fl
xl+1

(l + 1)!
,

and the Laurent expansion determines the parameters g1 and g2 (which are the same
for both k = 1, 2) characterizing the elliptic functions of (1.2) by

g2 =
5

3

(
F2 + 6F 2

0

)
, g3 = 6F 3

0 − F 2
1 +

5

3
F0F2

and the parameters νk via F0 = −℘(νk). Further, we have

φ1(x+ 2x0) = φ1(2x0) e(λ2−λ1)x Φ(x; ν1)

Φ(x; ν2)

and(
φ2k(x+ x0)
φ2k+1(x+ x0)

)
=
e−λkx

f(x)

(
φ′2k(x0) φ2k(x0)
φ′2k+1(x0) φ2k+1(x0)

)(
1 0
λk −1

)(
Φ(x; νk)
Φ′(x; νk)

)
.

Here the function

f(x) =
e−λkx

Φ(x; νk)

∣∣∣∣ φ′2k(x0) φ2k(x0)
φ′2k+1(x0) φ2k+1(x0)

∣∣∣∣∣∣∣∣ φ2k(x+ x0) φ2k(x0)
φ2k+1(x+ x0) φ2k+1(x0)

∣∣∣∣
is, in fact, the same for k = 1, 2.

The term “generic” will be defined below, and we will give more expressions for
the quantities appearing in the theorem.

One merit of writing (1.1) in this general form is that several different functional
equations may now be seen as different points on a G orbit of (1.1). Thus, for example,

φ1(x+ y) = φ1(x)φ1(y),(1.3)

φ1(x+ y) = φ4(x)φ5(y) + φ4(y)φ5(x),(1.4)

A(x+ y)[B(x)−B(y)] = A(x)A′(y)−A(y)A′(x)(1.5)

are particular1 examples of (1.1). The functional equation for the exponential (1.3)
corresponds to ν1 = ν2 in our solution and the exponential comes wholly from G.

1These correspond to
(a) φ2(x) = φ1(x)φ4(x) and φ3(x) = φ1(x)φ5(x),
(b) φ2(x) = φ2

4(x) and φ3(x) = φ2
5(x), and

(c) φ1(x) = φ2(x) = A(x), φ3(x) = A′(x), φ4(x) = B(x), and φ5(x) = 1.
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Particular cases of (1.4) have been studied in [8] and we shall determine (see Lemma
4) the general solution to (1.4) as an application of our work.

More interesting is equation (1.5), which has been studied by various authors
with assumptions of evenness/oddness on the functions appearing [12, 18, 19] or as-
sumptions on the nature of B [16]. The general solution [4, 5] A(x) = Φ(x; ν) now
corresponds to the limit ν2 → 0 together with a G action. This will be illustrated
later.

Finally, when φ1(x) = α(x), φ2(x) = α(x)τ(x), φ4(x) = τ(x), φ3(x) = φ′2(x), and
φ5(x) = φ′4(x), we obtain the functional equation

α(x+ y) = α(x)α(y) + τ(x)τ(y)ψ(x+ y).(1.6)

The function ψ(x) will be described in more detail in what follows. This equation was
studied by Bruschi and Calogero [4] and will be used in our analysis.

Let us remark that both (1.4) and (1.6) may be viewed as limiting cases of the
functional equation

Ψ1(x+ y) = Ψ2(x+ y)φ2(x)φ3(y) + Ψ3(x+ y)φ4(x)φ5(y),(1.7)

which a priori depends on seven unknown functions. Later we shall show how (1.1)
may be used to solve this.

It remains to place (1.1) in some form of context. The last decade has seen
a remarkable confluence of ideas from completely integrable systems, geometry, field
theory, and functional equations that is still being assimilated. To make some of these
matters concrete, let us consider how such functional equations arise in the context
of integrable systems of particles on the line. A pair of matrices L and M such that
L̇ = [L,M ] is known as a Lax pair; this is a zero-curvature condition. Starting with an
ansatz for the matrices L and M , one seeks restrictions necessary to obtain equations
of motion of some desired form. These restrictions typically involve the study of
functional equations. The paradigm for this approach is the Calogero–Moser system
[11]. Beginning with the ansatz (for n× n matrices)

Ljk = pjδjk + g (1− δjk)A(qj − qk),

Mjk = g

δjk∑
l 6=j

B(qj − ql)− (1− δjk)C(qj − qk)

 ,
one finds that L̇ = [L,M ] yields the equations of motion for the Hamiltonian system
(n ≥ 3)

H =
1

2

∑
j

p2
j + g2

∑
j<k

U(qj − qk), U(x) = A(x)A(−x) + constant,

provided that C(x) = −A′(x) and that A(x) and B(x) satisfy the functional equation
(1.5). With this ansatz and assuming B(x) to be even,2 Calogero [12] found A(x)
to be given by (1.2). In this case, the corresponding potential is the Weierstrass ℘-
function: A(x)A(−x) = ℘(ν)−℘(x). The functional equation (1.6) is associated with
a different ansatz and yields the relativistic Calogero–Moser systems [3, 21]. Similarly,

2This assumption can, in fact, be removed [2].
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(1.1) arises from a more general ansatz [2] associated with equations of motion of the
form

q̈j =
∑
k 6=j

(a+ bq̇j)(a+ bq̇k)Vjk(qj − qk),

which combines both relativistic (b 6= 0) and nonrelativistic (b = 0) systems to-
gether with potentials that can vary between particle pairs. This unifies, for example,
Calogero–Moser and Toda systems [20, 21, 22]. The relativistic examples yield the
functional equation (1.1), while the nonrelativistic situation involves the functional
equation

φ6(x+ y) = φ1(x+ y)(φ4(x)− φ5(y)) +

∣∣∣∣φ2(x) φ3(y)
φ′2(x) φ′3(y)

∣∣∣∣.(1.8)

The general analytic solution to (1.8) has yet to be determined, although particular
solutions are known. We remark that (1.1) and, after suitable symmetrizing, (1.8) are
particular cases of the functional equation

N∑
i=0

φ3i(x+ y)

∣∣∣∣φ3i+1(x) φ3i+1(y)
φ3i+2(x) φ3i+2(y)

∣∣∣∣ = 0,(1.9)

with N = 1 in the former case and N = 2 in the latter. When φ3i+2 = φ′3i+1,
Buchstaber and Krichever have discussed (1.9) in connection with functional equations
satisfied by Baker–Akhiezer functions [10].

Lax pairs are only one way in which functional equations are associated with
integrable systems, and we mention [7, 13, 9, 14] for others. There also appears
to be a close connection between these functional equations and the elliptic genera
associated with the string-inspired Witten index [15, 17]. Krichever, for example, used
the functional equation (1.5) in his proof of the “rigidity” property of elliptic genera
[17], and it also appears when discussing rational and pole solutions of the Kadomtsev–
Petviashvili (KP) and Korteweg–deVries (KdV) equations [16, 1]. We feel that this
connection between functional equations and completely integrable systems is part
of a broader and less well-understood aspect of the subject that deserves further
attention.

An outline of the paper is as follows. First, we will discuss the group of symmetries
of (1.1). These will be used in the proof of Theorem 1. Before turning to the proof,
we show in section 3 how the indicated solution indeed satisfies (1.1), using this
as a vehicle to recall some of the properties of elliptic functions that we will need
throughout. Section 4 is devoted to the proof of Theorem 1 and section 5 to that
of Theorem 2. Several applications of our theorems, including the general analytic
solution to (1.4) and a discussion of (1.7), are then given in section 6. An appendix
is given that contains various elliptic function formulas that we shall make use of.

Various versions of Theorem 1 have appeared in unpublished preprints. In [6],
the form of φ1(x) only was stated. In [2], we introduced the G action to give Theorem
1 in its present form. In improving the proof of this, we obtained Theorem 2, given
here alongside the better proof of Theorem 1.

2. The group of symmetries. We next describe the group G of invariances of
(1.1). Theorem 1 gives a representative of each G orbit on the solutions of (1.1) with
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a particularly nice form. First, observe that a large group of symmetries G act on the
solutions of (1.1). The transformation

(2.1)(
φ1(x),

(
φ2(x)

φ3(x)

)
,

(
φ4(x)

φ5(x)

))
→
(
c eλxφ1(x), U

(
e−λ

′xφ2(x)

e−λ′xφ3(x)

)
, V

(
eλ
′′xφ4(x)

eλ′′xφ5(x)

))

clearly preserves (1.1), provided that

λ+ λ′ + λ′′ = 0, U, V ∈ GL2, and detU = c det V.(2.2)

Further, (1.1) is also preserved by(
φ1(x),

(
φ2(x)

φ3(x)

)
,

(
φ4(x)

φ5(x)

))
→
(

1

φ1(x)
,

(
φ4(x)

φ5(x)

)
,

(
φ2(x)

φ3(x)

))
(2.3)

and (
φ1(x),

(
φ2(x)

φ3(x)

)
,

(
φ4(x)

φ5(x)

))
→
(
φ1(x), f(x)

(
φ2(x)

φ3(x)

)
, f(x)

(
φ4(x)

φ5(x)

))
.(2.4)

We will use these symmetries in our proof of Theorem 1 to find a solution of (1.1) on
each G orbit with a particularly nice form.

3. Illustration of the solution. Before proceeding to the proof, it is instructive
to see how the stated solution satisfies (1.1). This will also allow us to introduce some
elliptic function identities needed throughout. From the definition of the zeta function,
we have (

ln Φ(x; ν)
)′

= −ζ(ν − x)− ζ(x) + ζ(ν).(3.1)

Thus∣∣∣∣ Φ(x; ν) Φ(y; ν)
Φ(x; ν)′ Φ(y; ν)′

∣∣∣∣ = Φ(x; ν)Φ(y; ν)

[(
ln Φ(y; ν)

)′−( ln Φ(x; ν)
)′]

= Φ(x; ν)Φ(y; ν)

[
ζ(ν − x) + ζ(x) + ζ(−y) + ζ(y − ν)

]
.

Upon using the definition of Φ, the right-hand side of this equation takes the form

Φ(x+ y; ν)
σ(ν − x)σ(ν − y)σ(x+ y)

σ(ν − x− y)σ(ν)σ(x)σ(y)

[
ζ(ν − x) + ζ(x) + ζ(−y) + ζ(y − ν)

]
.(3.2)

After noting the two identities [23]

ζ(x) + ζ(y) + ζ(z)− ζ(x+ y + z) =
σ(x+ y)σ(y + z)σ(z + x)

σ(x)σ(y)σ(z)σ(x+ y + z)
(3.3)

and

℘(x)− ℘(y) =
σ(y − x)σ(y + x)

σ2(y)σ2(x)
,(3.4)
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we find that (3.2) simplifies to Φ(x+ y; ν)
[
℘(x)− ℘(y)

]
, where ℘(x) = −ζ ′(x) is the

Weierstrass ℘-function. Putting these together yields the addition formula

Φ(x+ y; ν) =

∣∣∣∣ Φ(x; ν) Φ(y; ν)
Φ(x; ν)′ Φ(y; ν)′

∣∣∣∣
℘(x)− ℘(y)

(3.5)

and consequently a solution of (1.1) with the stated form. Further, from (3.5), we see
the solution to (1.5) mentioned in section 1.

The general solution (1.2) involves the two nonzero constants ν1 and ν2. Let
us see how our group of symmetries enables φ1(x) = Φ(x; ν1) to occur as a limit
ν2 → 0. Consider the G action on the general solution φi(x) of Theorem 1 given by
φi(x)→ φ̃i(x), where(
φ̃1(x),

(
φ̃2(x)

φ̃3(x)

)
,

(
φ̃4(x)

φ̃5(x)

))
=

(
eζ(ν2)x

−ν2
φ1(x),

(
Φ(x; ν1)

Φ′(x; ν1)

)
,

(
e−ζ(ν2)xΦ(x; ν2)

−ν2 e−ζ(ν2)xΦ′(x; ν2)

))
.

Now

lim
ν2→0

φ̃1(x) = Φ(x; ν1)

and

lim
ν2→0

∣∣∣∣ φ̃4(x) φ̃4(y)
φ̃5(x) φ̃5(y)

∣∣∣∣ = ℘(x)− ℘(y).

Thus (1.5) arises as the ν2 → 0 of (1.1).

4. Proof of Theorem 1. Our proof of Theorem 1 proceeds in two stages. First,
we will use the symmetry (2.2) to transform (1.1) into a particularly simple canonical
form. This form may be immediately integrated to yield a functional equation studied
by Bruschi and Calogero [4]; by appealing to their result, our Theorem 1 will follow.
The first stage of this process is entirely algorithmic, and consequently we may readily
identify the parameters that appear in our solution. We begin with the following
definition.

Definition 1. A point x0 ∈ C is said to be generic for (1.1) if
(1) φk(x) is regular at x0 for k = 2, . . . , 5,
(2) φ1(x) is regular at 2x0, and

(3)

∣∣∣∣φ2(x0) φ′2(x0)
φ3(x0) φ′3(x0)

∣∣∣∣ 6= 0,

∣∣∣∣φ4(x0) φ′4(x0)
φ5(x0) φ′5(x0)

∣∣∣∣ 6= 0.

Now let x0 be a generic point. Using at first the matrices U and V of transfor-
mation (2.2), we may choose linear combinations of φk (k : 2, . . . , 5) such that (1.1)
becomes

φ̃1(x+ y) =

∣∣∣∣ φ̃2(x) φ̃2(y)
φ̃3(x) φ̃3(y)

∣∣∣∣∣∣∣∣ φ̃4(x) φ̃4(y)
φ̃5(x) φ̃5(y)

∣∣∣∣
and such that (for k = 1, 2)

φ̃2k(0) = φ̃′2k+1(0) = 0, φ̃′2k(0) = φ̃2k+1(0) = 1.(4.1)
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The arguments of the functions have been shifted to be centered on x0 (or 2x0 in the
case of φ̃1(x)). Here we have set

φ̃1(x) = c φ1(x+ 2x0)

and (for k = 1, 2)(
φ̃2k(x)
φ̃2k+1(x)

)
=

(
φ′2k(x0) φ2k(x0)
φ′2k+1(x0) φ2k+1(x0)

)−1(
φ2k(x+ x0)
φ2k+1(x+ x0)

)
.

The constant c here is just the ratio of the appropriate determinants specified in (2.1).
We next observe the following result.

Lemma 1. For k = 1, 2, we may write(
φ̃2k(x)
φ̃2k+1(x)

)
=

1

γk(x)

(
ξk(x)
ξ′k(x)

)
,

where γk(x), ξk(x) are regular at 0 and

ξk(0) = 0, ξ′k(0) = γk(0) = 1.

Further, upon writing ξk(x) = eλkxξ̃k(x) with λk = −φ̃′′2k(0)/2, the function ξ̃k(x),
regular at 0, satisfies

ξ̃k(0) = ξ̃′′k (0) = 0, ξ̃′k(0) = 1.

Proof. Upon differentiating ξk(x) = γk(x)φ̃2k(x) and comparing with ξ′k(x) =

γk(x)φ̃2k+1(x), we see that

γ′k(x)

γk(x)
=
φ̃2k+1(x)− φ̃′2k(x)

φ̃2k(x)
.(4.2)

The only issue is whether the right-hand side of this differential equation is regular
at x = 0. Using (4.1) and l’Hôpital’s rule, we find that

γ′k(0)

γk(0)
=
φ̃′2k+1(0)− φ̃′′2k(0)

φ̃′2k(0)
= −φ̃′′2k(0),

and so γk(x) and hence ξk(x) are regular at 0. Now γk(x) is determined by (4.2)
given an initial condition, which we choose to be γk(0) = 1. The remaining initial
conditions for ξk(x) follow from (4.1). Indeed, from

φ̃′2k+1(x) =
ξ′′k (x)γk(x)− ξ′k(x)γ′k(x)

γ2
k(x)

,

we also find that

ξ′′k (0) = −φ̃′′2k(0).

Now upon writing ξk(x) = eλkxξ̃k(x) with λk = −φ̃′′2k(0)/2, we obtain the final
statement of the lemma.
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Thus far we have not used the exponential part of the symmetry (2.2). Utilizing
this symmetry, we set ξ̃0(x) = e(λ1−λ2)xφ̃1(x) and γ(x) = e2(λ1−λ2)xγ2(x)/γ1(x). This
scaling has (upon noting that 2λk = γ′k(0)) the effect of making γ′(0) = 0. Thus we
obtain the following result.

Corollary 1. At any generic point, we may rewrite (1.1) using the symmetry
(2.1) as

ξ̃0(x+ y) = γ(x)γ(y)

∣∣∣∣ ξ̃1(x) ξ̃1(y)
ξ̃′1(x) ξ̃′1(y)

∣∣∣∣∣∣∣∣ ξ̃2(x) ξ̃2(y)
ξ̃′2(x) ξ̃′2(y)

∣∣∣∣ ,(4.3)

where for k = 1, 2,

ξ̃k(0) = ξ̃′′k (0) = γ′(0) = 0, ξ̃′k(0) = γ(0) = 1.(4.4)

Given the complexity of the differential equation (4.2), one may wonder whether
(4.3) simplifies much further. In fact, we find the following.

Lemma 2. The functional equation (4.3)—and consequently (1.1)—may be writ-
ten as

∂

(
ξ̃1(x+ y)

ξ̃1(x)ξ̃1(y)

)
= ∂

(
ξ̃2(x+ y)

ξ̃2(x)ξ̃2(y)

)
,(4.5)

where ∂ = ∂x − ∂y. Further,

ξ̃0(x) =
ξ̃2(x)

ξ̃1(x)
.(4.6)

Proof. Taking the logarithmic derivative of (4.3) with respect to ∂ = ∂x − ∂y, we
obtain

0 =
γ′(x)

γ(x)
− γ′(y)

γ(y)
+
∂2
(
ξ̃1(x)ξ̃1(y)

)
∂
(
ξ̃1(x)ξ̃1(y)

) − ∂2
(
ξ̃2(x)ξ̃2(y)

)
∂
(
ξ̃2(x)ξ̃2(y)

) .(4.7)

Now employing (4.4), one finds

∂
(
ξ̃k(x)ξ̃k(y)

)
|y=0 = ξ̃′k(x)ξ̃k(y)− ξ̃k(x)ξ̃′k(y)|y=0 = −ξ̃k(x)

and, similarly,

∂2
(
ξ̃k(x)ξ̃k(y)

)
|y=0 = −2ξ̃′k(x).

Upon setting y = 0 in (4.7) and with these simplifications, we obtain the differential
equation

0 =
γ′(x)

γ(x)
+

2ξ̃′1(x)

ξ̃1(x)
− 2ξ̃′2(x)

ξ̃2(x)

with solution

γ(x) = c
ξ̃2
2(x)

ξ̃2
1(x)

.(4.8)
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Again using l’Hôpital’s rule and (4.4), we find the constant c = 1. Therefore, (4.3)
may be rewritten as

ξ̃0(x+y) =
ξ̃2
2(x)

ξ̃2
1(x)

ξ̃2
2(y)

ξ̃2
1(y)

∣∣∣∣∣ ξ̃1(x) ξ̃1(y)
ξ̃′1(x) ξ̃′1(y)

∣∣∣∣∣∣∣∣∣∣ ξ̃2(x) ξ̃2(y)
ξ̃′2(x) ξ̃′2(y)

∣∣∣∣∣
=

∣∣∣∣∣
1

ξ̃1(x)
1

ξ̃1(y)(
1

ξ̃1(x)

)′ (
1

ξ̃1(y)

)′
∣∣∣∣∣∣∣∣∣∣

1
ξ̃2(x)

1
ξ̃2(y)(

1
ξ̃2(x)

)′ (
1

ξ̃2(y)

)′
∣∣∣∣∣

=
∂
(

1
ξ̃1(x)ξ̃1(y)

)
∂
(

1
ξ̃2(x)ξ̃2(y)

) .(4.9)

Letting y → 0, we find that

ξ̃0(x) =
ξ̃2(x)

ξ̃1(x)

as required. Utilizing (4.6), we may immediately rewrite (4.9) in the stated form
(4.5).

We observe that at this stage, the symmetry (2.2) has enabled us to transform
(1.1) into the form specified by Theorem 1. The solution will follow once we show
1/ξ̃k(x) = Φ(x; νk). Now (4.5) may be immediately integrated to give

ξ̃1(x+ y)

ξ̃1(x)ξ̃1(y)
=

ξ̃2(x+ y)

ξ̃2(x)ξ̃2(y)
+ Θ(x+ y).

Upon setting α(x) = ξ̃2(x)/ξ̃1(x) and ψ(x) = Θ(x)/ξ̃2(x), this may be rearranged into
the form

α(x+ y)

α(x)α(y)
= 1 + ξ̃2(x)ξ̃2(y)ψ(x+ y),(4.10)

which is the functional equation studied by Bruschi and Calogero [4]. Calling upon the
general analytic solution obtained by these authors together with our initial conditions
(4.4), we find that3 1/ξ̃k(x) = Φ(x; νk) as required.

5. Proof of Theorem 2. It is useful at the outset to gather together the various
transformations introduced in the last section:(

φ̃2k(x)
φ̃2k+1(x)

)
=

(
φ′2k(x0) φ2k(x0)
φ′2k+1(x0) φ2k+1(x0)

)−1(
φ2k(x+ x0)
φ2k+1(x+ x0)

)
(5.1)

=
1

γk(x)

(
ξk(x)
ξ′k(x)

)
=

eλkx

γk(x)

(
1 0
λk 1

)(
ξ̃k(x)
ξ̃′k(x)

)
(5.2)

=
eλkx

γk(x)Φ2(x; νk)

(
1 0
λk −1

)(
Φ(x; νk)
Φ′(x; νk)

)
,(5.3)

ξ̃0(x) = e(λ1−λ2)x φ1(x+ 2x0)

φ1(2x0)
=

Φ(x; ν1)

Φ(x; ν2)
.(5.4)

Let us introduce the function

f(x) = γk(x)Φ2(x; νk)e−2λkx.(5.5)

3For example, from [4], we obtain ξ̃2(x) = Aecxσ(ax|ω, ω′)/σ(ax + ν|ω, ω′). Using the prop-
erty σ(ax|aω, aω′) = aσ(ax|ω, ω′) and the definition of Φ(x; ν), we may rewrite this as ξ̃2(x) =
(A/σ(ν/a))e(c−ζ(ν/a))x/Φ(z;−ν/a). Now the x→ 0 limit shows (A/σ(ν/a))e(c−ζ(ν/a))x = 1.
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Observe that (4.8) entails that the function f(x) is independent of k:

γ1(x)Φ2(x; ν1)e−2λ1x = γ2(x)Φ2(x; νk)e−2λkx.

With this definition, we may rewrite (5.1) and (5.3) to give(
φ2k(x+ x0)
φ2k+1(x+ x0)

)
=
e−λkx

f(x)

(
φ′2k(x0) φ2k(x0)
φ′2k+1(x0) φ2k+1(x0)

)(
1 0
λk −1

)(
Φ(x; νk)
Φ′(x; νk)

)
(5.6)

=
e−λkx

f(x)


∣∣∣∣ Φ(x; νk) φ2k(x0)
Φ′(x; νk) φ′2k(x0) + λkφ2k(x0)

∣∣∣∣∣∣∣∣ Φ(x; νk) φ2k+1(x0)
Φ′(x; νk) φ′2k+1(x0) + λkφ2k+1(x0)

∣∣∣∣


and (
Φ(x; νk)
Φ′(x; νk)

)
(5.7)

= f(x)eλkx

(
1 0
λk −1

)(
φ′2k(x0) φ2k(x0)
φ′2k+1(x0) φ2k+1(x0)

)−1(
φ2k(x+ x0)
φ2k+1(x+ x0)

)

=
f(x)eλkx∣∣∣∣ φ′2k(x0) φ2k(x0)

φ′2k+1(x0) φ2k+1(x0)

∣∣∣∣


∣∣∣∣ φ2k(x+ x0) φ2k(x0)
φ2k+1(x+ x0) φ2k+1(x0)

∣∣∣∣∣∣∣∣ φ2k(x+ x0) φ′2k(x0) + λkφ2k(x0)
φ2k+1(x+ x0) φ′2k+1(x0) + λkφ2k+1(x0)

∣∣∣∣
 .

Now (5.4) and (5.6) are of the form stated in Theorem 2, provided that we can show
that f(x), defined in (5.5), can also be put into the form of the theorem. To see this,
note that (5.1) shows

φ̃2k(x) =
φ2k+1(x0)φ2k(x+ x0)− φ2k(x0)φ2k+1(x+ x0)

φ2k+1(x0)φ′2k(x0)− φ2k(x0)φ′2k+1(x0)

(5.8)

=

∣∣∣∣ φ2k(x+ x0) φ2k(x0)
φ2k+1(x+ x0) φ2k+1(x0)

∣∣∣∣∣∣∣∣ φ′2k(x0) φ2k(x0)
φ′2k+1(x0) φ2k+1(x0)

∣∣∣∣ ,

while from (5.3), we see that

γk(x) =
eλkx

Φ(x; νk)φ̃2k(x)
.(5.9)

Combining these thus shows that

f(x) =
e−λkx

Φ(x; νk)

∣∣∣∣ φ′2k(x0) φ2k(x0)
φ′2k+1(x0) φ2k+1(x0)

∣∣∣∣∣∣∣∣ φ2k(x+ x0) φ2k(x0)
φ2k+1(x+ x0) φ2k+1(x0)

∣∣∣∣(5.10)
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as required. Also, from (5.8) and the definition λk = −φ̃′′2k(0)/2, we find that

−2λk =
φ2k+1(x0)φ′′2k(x0)− φ2k(x0)φ′′2k+1(x0)

φ2k+1(x0)φ′2k(x0)− φ2k(x0)φ′2k+1(x0)
(5.11)

= ∂x ln

∣∣∣∣∣ φ′2k(x+ x0) φ2k(x0)
φ′2k+1(x+ x0) φ2k+1(x0)

∣∣∣∣∣
x=0

.(5.12)

At this stage, we then see that if we can determine Φ(x; νk), all of the terms
in (5.1)–(5.4) are determined and we obtain the stated expressions for φ1(x), φ2(x),
φ3(x), φ4(x), φ5(x), and f(x) given in Theorem 2. It therefore remains to determine
the parameters g2 and g3 specifying the elliptic functions Φ(x; νk) as well as ν1 and
ν2. To this end, we utilize (5.7) to give

Φ′(x; νk)

Φ(x; νk)
− λk =

∣∣∣∣ φ2k(x+ x0) φ′2k(x0)
φ2k+1(x+ x0) φ′2k+1(x0)

∣∣∣∣∣∣∣∣ φ2k(x+ x0) φ2k(x0)
φ2k+1(x+ x0) φ2k+1(x0)

∣∣∣∣
= ∂y ln

∣∣∣∣ φ2k(x+ x0) φ2k(y + x0)
φ2k+1(x+ x0) φ2k+1(y + x0)

∣∣∣∣
∣∣∣∣∣
y=0

.

Upon using (3.1) to simplify the left-hand side of this equality, we obtain the first
equality of Theorem 2,

∂y ln

∣∣∣∣ φ2k(x+ x0) φ2k(y + x0)
φ2k+1(x+ x0) φ2k+1(y + x0)

∣∣∣∣
∣∣∣∣∣
y=0

= ζ(νk)− ζ(x)− ζ(νk − x)− λk,(5.13)

and consequently

∂x∂y ln

∣∣∣∣ φ2k(x+ x0) φ2k(y + x0)
φ2k+1(x+ x0) φ2k+1(y + x0)

∣∣∣∣
∣∣∣∣∣
y=0

= ℘(x)− ℘(νk − x).(5.14)

In fact, we have the more general result

∂x∂y ln

∣∣∣∣∣ φ2k(x+ x0) φ2k(y + x0)
φ2k+1(x+ x0) φ2k+1(y + x0)

∣∣∣∣∣ = ∂x∂y ln

∣∣∣∣∣ Φ(x; νk) Φ(y; νk)
Φ′(x; νk) Φ′(y; νk)

∣∣∣∣∣
= ∂x∂y ln[Φ(x+ y; νk)(℘(x)− ℘(y))]

= ℘(x+ y)− ℘(νk − x− y) +
℘′(x)℘′(y)

(℘(x)− ℘(y))2
,

from which (5.14) arises as the y → 0 limit.
It remains to show that the Laurent series of (5.13) (or, equivalently, of (5.14))

determines the parameters of Φ(x; νk). Set

ζ(νk)− ζ(x)− ζ(νk − x)− λk = − 1

x
− λk +

∑
l=0

Fl
xl+1

(l + 1)!
(5.15)

or, equivalently,

℘(x)− ℘(νk − x) =
1

x2
+
∑
l=0

Fl
l!
xl.(5.16)
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While the coefficients Fl in these expansions depend on k = 1, 2, we will avoid includ-
ing this in our notation; certainly, the combinations of these coefficients that give g2

and g3 are independent of k. Now the left-hand side of (5.15) has the expansion

− 1

x
− λk − ℘(νk)x+ ℘′(νk)

x2

2
+ (2c2 − ℘′′(νk))

x3

3!
+ · · · ,

while that of (5.16) begins with

1

x2
+ c2 x

2 + c3 x
4 + · · · −

{
℘(νk)− x℘′(νk) +

x2

2
℘′′(νk) + · · ·

}
.

From either of these, we see that

F0 = −℘(νk), F1 = ℘′(νk), F2 = 2c2 − ℘′′(νk),

whereupon utilizing (A.4) (see the appendix) we obtain

c2 =
F2 + 6F 2

0

12
=
g2

20
and g3 = 6F 3

0 − F 2
1 +

5

3
F0F2.(5.17)

Thus, as stated in Theorem 2, we may obtain the parameters of the elliptic functions
from the Laurent expansion (5.15) for either choice of k, the combinations of the
coefficients in (5.17) being independent of k. The constant terms in the two expansions
then determine ν1 and ν2 via F0 = −℘(νk; g2, g3).

We have now established all of Theorem 2. It is perhaps useful to conclude the
section with a lemma that implements the theorem.

Lemma 3. Let

∂x∂y ln

∣∣∣∣∣ φ2k(x+ x0) φ2k(y + x0)
φ2k+1(x+ x0) φ2k+1(y + x0)

∣∣∣∣∣
y=0

= − 1

x
− λk +

∑
l=0

Fl
xl+1

(l + 1)!

=
h′(0)h′(x)

(h(x)− h(0))2
,

where h(x) = φ2k(x+ x0)/φ2k+1(x+ x0). Set hk = h(k+1)(0)/(k + 1)!h′(0). Then

F0 = −
∣∣∣∣h1 1
h2 h1

∣∣∣∣ , F1 = 2

∣∣∣∣∣∣
h1 1 0
h2 h1 1
h3 h2 h1

∣∣∣∣∣∣ , F2 = −6

∣∣∣∣∣∣∣
h1 1 0 0
h2 h1 1 0
h3 h2 h1 1
h4 h3 h2 h1

∣∣∣∣∣∣∣ .
6. Examples. We shall now consider the classical addition theorems of the Ja-

cobi elliptic functions and then the functional equations (1.4) and (1.7) as examples of
our theory. We have collected several standard results pertaining to elliptic functions
that are of use in our computations in the appendix.

Example 1. As a first application of our theory, we consider the addition theorems
for the Jacobi elliptic functions dn(x), cn(x), and sn(x), where dn(x) ≡ dn(x|m) and
so on. These may be cast in the form of (1.1) as

dn(x+ y) =

∣∣∣∣ cn′(x) cn′(y)
cn(x) cn(y)

∣∣∣∣∣∣∣∣ sn′(x) sn′(y)
sn(x) sn(y)

∣∣∣∣ (Jacobi), cn(x+ y) =
1

k2

∣∣∣∣ dn′(x) dn′(y)
dn(x) dn(y)

∣∣∣∣∣∣∣∣ sn′(x) sn′(y)
sn(x) sn(y)

∣∣∣∣ ,
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and

sn(x+ y) =

∣∣∣∣ 1 1
sn2(x) sn2(y)

∣∣∣∣∣∣∣∣ sn′(x) sn′(y)
sn(x) sn(y)

∣∣∣∣ (Cayley).

Let us now apply our theorem to the first equality. The first step is to choose an
appropriate generic point x0. This means that we wish x0 to be a regular point for
cn(x), sn(x), and dn(2x) as well as

0 6=
∣∣∣∣ cn′(x0) cn′′(x0)

cn(x0) cn′(x0)

∣∣∣∣ = 1−m+m cn4(x0),

0 6=
∣∣∣∣ sn′(x0) sn′′(x0)

sn(x0) sn′(x0)

∣∣∣∣ = 1−m sn4(x0).

Thus we can take x0 = 0 for this example.
Using (5.11), we find that

−2λ1 = ∂x ln cn′(x)
∣∣
x=0

= 0 and − 2λ2 = ∂x ln sn′(x)
∣∣
x=0

= 0.

Further, with h(x) = φ2(x)/φ3(x) = cn′(x)/ cn(x), we obtain

F (x) =
1−m+m cn4(x)

sn2(x) dn2(x)
=

1

x2
+

1− 2m

3
+

1 + 14m− 14m2

15
x2 + · · · ,

while with h(x) = φ4(x)/φ5(x) = sn′(x)/ sn(x), we obtain

F (x) =
1−m sn4(x)

sn2(x)
=

1

x2
+

1 +m

3
+

1− 16m+m2

15
x2 + · · · .

In both cases, we find that

g2 =
4

3
(1−m+m2) and g3 =

4

27
(m− 2)(2m− 1)(m+ 1)

(the required equality providing a nontrivial check), which means that

e1 =
2−m

3
, e2 =

2m− 1

3
, and e3 =

−1−m
3

.

Further,

℘(ν1) =
2m− 1

3
and ℘(ν2) =

−1−m
3

.

Comparison with (A.7) and (A.9) (see the appendix) shows that ω = K(m), ω′ =
iK ′(m), ν1 = K(m) + iK ′(m), and ν2 = K ′(m). We may also calculate f(x) =
1/ sn2(x), and upon using (A.13) (see the appendix), our identity may be rewritten
as

dn(x+ y) =
Φ(x+ y;K(m) + iK ′(m))

Φ(x+ y; iK ′(m))
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=

∣∣∣∣ Φ(x;K(m) + iK ′(m)) Φ(y;K(m) + iK ′(m))
Φ(x;K(m) + iK ′(m))′ Φ(y;K(m) + iK ′(m))′

∣∣∣∣∣∣∣∣ Φ(x; iK ′(m)) Φ(y; iK ′(m))
Φ(x; iK ′(m))′ Φ(y; iK ′(m))′

∣∣∣∣
=

1
sn2(x)

∣∣∣∣ cn′(x) cn′(y)
cn(x) cn(y)

∣∣∣∣
1

sn2(x)

∣∣∣∣ sn′(x) sn′(y)
sn(x) sn(y)

∣∣∣∣ .

The second identity may be treated in the same manner, yielding ν1 = K(m) and
ν2 = K ′(m). The third identity is a little different. It may be rewritten as

Φ(x+ y; iK ′(m)) =
1

sn(x+ y)
=

1
sn2(x)

∣∣∣∣ sn′(x) sn′(y)
sn(x) sn(y)

∣∣∣∣
1

sn2(x)

∣∣∣∣ 1 1
sn2(x) sn2(y)

∣∣∣∣
=

∣∣∣∣ Φ(x; iK ′(m)) Φ(y; iK ′(m))
Φ(x; iK ′(m))′ Φ(y; iK ′(m))′

∣∣∣∣∣∣∣∣Φ2(x; iK ′(m)) Φ2(y; iK ′(m))
1 1

∣∣∣∣ .
Now

Φ2(x; iK ′(m))− Φ2(y; iK ′(m)) = ℘(x)− ℘(y),

and the required identity follows from the general solution by the limiting procedure
described in section 3.

Example 2. We shall now determine the general analytic solution of

φ1(x+ y) = φ4(x)φ5(y) + φ4(y)φ5(x) =

∣∣∣∣φ2(x) φ2(y)
φ3(x) φ3(y)

∣∣∣∣∣∣∣∣φ4(x) φ4(y)
φ5(x) φ5(y)

∣∣∣∣ ,
where φ2(x) = φ2

4(x) and φ3(x) = φ2
5(x). The particular case φ1(x) = φ4(x) was

treated in [8].
Suppose that x0 is a generic point. Then from

0 6=
∣∣∣∣φ2(x0) φ′2(x0)
φ3(x0) φ′3(x0)

∣∣∣∣ = 2φ4(x0)φ5(x0)

∣∣∣∣φ4(x0) φ′4(x0)
φ5(x0) φ′5(x0)

∣∣∣∣,
we see that φ4(x0) 6= 0, φ5(x0) 6= 0, and φ1(2x0) = 2φ4(x0)φ5(x0) 6= 0. Further, from
(5.11), we find

λ1 = λ2 −
1

2

(
φ′4(x0)

φ4(x0)
+
φ′5(x0)

φ5(x0)

)
.(6.1)

Our strategy is as follows. We will first determine ν1, ν2, λ1, and λ2, the pa-
rameters that describe the elliptic functions and the ratio φ4(x + x0)φ5(x0)/φ5(x +
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x0)φ4(x0). Then from

φ1(x+ 2x0) = φ4(x+ x0)φ5(x0) + φ4(x0)φ5(x+ x0)

= φ4(x+ x0)φ5(x0)

(
1 +

φ5(x+ x0)φ4(x0)

φ4(x+ x0)φ5(x0)

)
= e(λ2−λ1)x Φ(x; ν1)

Φ(x; ν2)
φ1(2x0),

we will obtain

φ4(x+ x0) =
2φ4(x0)e(λ2−λ1)x

1 + φ5(x+ x0)φ4(x0)/φ4(x+ x0)φ5(x0)

Φ(x; ν1)

Φ(x; ν2)
,(6.2)

with φ5(x+ x0) immediately following.
Now from (5.6), we obtain

φ2k(x+ x0)

φ2k+1(x+ x0)

φ2k+1(x0)

φ2k(x0)
= 1 +

Nk
Dk

,(6.3)

where

Nk =
φ′2k(x0)

φ2k(x0)
−
φ′2k+1(x0)

φ2k+1(x0)
, Dk =

φ′2k+1(x0)

φ2k+1(x0)
+ λk −

Φ′(x; νk)

Φ(x; νk)
.

Here N1 = 2N2 and by our assumption that x0 was a generic point, these are nonva-
nishing. Further, from φ2(x) = φ2

4(x) and φ3(x) = φ2
5(x), we see that

1 +
N1

D1
=

(
1 +

N2

D2

)2

.

Expanding this shows that D2
2 = (D2 +N2/2)D1, which upon using (6.1) yields(

φ′5(x0)

φ5(x0)
+ λ2 −

Φ′(x; ν2)

Φ(x; ν2)

)2

=

(
φ′5(x0)

φ5(x0)
+ λ2 +

N2

2
− Φ′(x; ν2)

Φ(x; ν2)

)
(6.4)

×
(
φ′5(x0)

φ5(x0)
+ λ2 −

N2

2
− Φ′(x; ν1)

Φ(x; ν1)

)
.

Suppose that ν2 is finite. Comparing the pole behavior of each side of (6.5) shows that
ν1 = ν2 and consequently that N2 = 0, a contradiction. The remaining possibility is
that ν2 is infinite, which we now show to be a consistent solution. This can happen
only if the elliptic function degenerates into a hyperbolic or trigonometric function,
and without loss of generality we choose the former. In this case

Φ(x; ν) =
κ sinhκ(ν − x)

sinhκν sinhκx
exκ cothκν and Φ(x;∞) =

κ

sinhκx
.(6.5)

Let us then suppose that ν2 =∞. Utilizing (A.14) and (A.15) (see the appendix), we
then must solve(

φ′5(x0)

φ5(x0)
+ λ2 + κ cothκx

)2

=

(
φ′5(x0)

φ5(x0)
+ λ2 +

N2

2
+ κ cothκx

)

×
(
φ′5(x0)

φ5(x0)
+ λ2 −

N2

2
+ κ cothκ(ν1 − x) + κ cothκx− κ cothκν1

)
.
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This holds provided that

N2
2 =

4κ2

sinhκν1
,

φ′5(x0)

φ5(x0)
+ λ2 +

N2

2
+ κ cothκν1 = 0,

which determines ν1, λ2, and (via (6.1)) λ1 in terms of φ4(x0), φ5(x0), φ′4(x0), and
φ′5(x0). The choice of sign in taking the square root here is arbitrary (just defining
ν1), and we will take N2 = −2κ/ sinhκν1. Substituting these into (6.3), we find that

φ4(x+ x0)

φ5(x+ x0)

φ5(x0)

φ4(x0)
=
κ cothκx− κ cothκν1 + N2

2

κ cothκx− κ cothκν1 − N2

2

= coth
(κν1

2

)
tanhκ

(ν1

2
− x
)
.

Now employing (6.5) shows

φ1(x+ 2x0) = e(λ2−λ1+κ cothκν1)x sinhκ(ν1 − x)

sinhκν1
φ1(2x0),(6.6)

where the exponential may be rewritten to yield

λ2 − λ1 + κ cothκν1 =
φ′4(x0)

φ4(x0)
− N2

2
+ κ cothκν1 =

φ′4(x0)

φ4(x0)
+ κ coth

(κν1

2

)
=
φ′5(x0)

φ5(x0)
+
N2

2
+ κ cothκν1 =

φ′5(x0)

φ5(x0)
+ κ tanh

(κν1

2

)
.

We now have the information needed to determine φ4(x) and φ5(x) via (6.2),
which gives

φ4(x+ x0) =
sinhκ( ν12 − x)

sinh(κν12 )
e(φ
′
4(x0)/φ4(x0)+κ coth(κν1/2))x φ4(x0),(6.7)

φ5(x+ x0) =
coshκ( ν12 − x)

cosh(κν12 )
e(φ
′
5(x0)/φ5(x0)+κ tanh(κν1/2))x φ5(x0).(6.8)

Assembling this provides the following result.
Lemma 4. The general analytic solution to (1.4) is given by (6.6), (6.7), and

(6.8), where x0 is a generic point.
Example 3. We conclude by showing how our results determine the solutions of

the functional equation (1.7):

Ψ1(x+ y) = Ψ2(x+ y)φ2(x)φ3(y) + Ψ3(x+ y)φ4(x)φ5(y).

This equation encompasses as particular cases equations (1.4) (with Ψ2 = Ψ3 = 1,
φ2(x) = φ4(x), and φ3(x) = φ5(x)) and (1.6) (with (φ2(x) = φ3(x) and φ4(x) =
φ5(x)), which have already been discussed. Because of this, we will consider only the
generic case where φ2(x) 6= λφ3(x), φ4(x) 6= γφ5(x), and Ψ2(x) 6= δΨ3(x) (where λ,
γ, and δ are constants) rather than these limits. Our first step is to relate (1.7) to
(1.1).

Lemma 5. The functions Ψm(x) (m = 1, 2, 3) and φn(x) (n = 2, 3, 4, 5) give a
solution of equation (1.7) if and only if

Ψ3(x+ y)

Ψ2(x+ y)
= −

∣∣∣∣φ2(x) φ2(y)
φ3(x) φ3(y)

∣∣∣∣∣∣∣∣φ4(x) φ4(y)
φ5(x) φ5(y)

∣∣∣∣(6.9)
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and

Ψ1(x+ y)

Ψ2(x+ y)
= −

∣∣∣∣φ2(x)φ5(x) φ2(y)φ5(y)
φ3(x)φ4(x) φ3(y)φ4(y)

∣∣∣∣∣∣∣∣φ4(x) φ4(y)
φ5(x) φ5(y)

∣∣∣∣ .(6.10)

Proof. First, assume that the functions Ψm and φn give a solution of equation
(1.7). Then after interchanging x and y in (1.7) and subtracting the result from (1.7),
we obtain equation (6.9). Upon substituting the formula for Ψ3(x+ y)/Ψ2(x+ y)
into (1.7), we arrive at formula (6.10).

In the other direction, let the functions Ψm and φn now satisfy (6.9) and (6.10).
Upon writing the right-hand side of (1.7) as

Ψ2(x+ y)φ2(x)φ3(y) + Ψ3(x+ y)φ4(x)φ5(y)

= Ψ2(x+ y)

(
φ2(x)φ3(y) +

Ψ3(x+ y)

Ψ2(x+ y)
φ4(x)φ5(y)

)
(6.11)

and using expression (6.9) for Ψ3(x+ y)/Ψ2(x+ y), we find that the term in brackets
in (6.11) rearranges to give precisely the right-hand side of (6.10); substituting for
this then yields (1.7) and therefore the required solution.

We may now apply Theorem 1 to show that if the functions Ψm(x) (m = 1, 2, 3)
give a solution of (1.7), then we must have the ratios

Ψ1(x)

Ψ2(x)
= c1e

λ1x
Φ(x;µ1)

Φ(x;µ2)
,

Ψ3(x)

Ψ2(x)
= c2e

λ2x
Φ(x;µ3)

Φ(x;µ4)
.(6.12)

Further, because the denominators of (6.9) and (6.10) are the same, Theorem 2 shows
that µ4 = µ2. Theorem 1 also determines the functions φn(x) (n = 2, 3, 4, 5) up to
a G action. In fact, given three functions Ψm(x) (m = 1, 2, 3) whose ratios satisfy
(6.12) with µ4 = µ2, this is also sufficient to guarantee that there are functions φn(x)
(n = 2, 3, 4, 5) for which (1.7) holds. To see this, let us substitute these ratios into
equation (1.7) to give

c1e
λ1(x+y)Φ(x+ y;µ1) = Φ(x+ y;µ2)φ2(x)φ3(y)

+ c2e
λ2(x+y)Φ(x+ y;µ3)φ4(x)φ5(y).(6.13)

We will have established sufficiency once we have shown how to construct the
functions φn(x). This will be achieved by utilizing various properties of the functions
Φ(x; ν).

Lemma 6. The Baker–Akhiezer functions Φ(x; ν) satisfy the equations

Φ(x+ α; ν) = −e(ζ(α−ν)+ζ(ν)−ζ(α))xΦ(α; ν)
Φ(x; ν − α)

Φ(−x;α)
(6.14)

and

ceγ(x+y) Φ(x+ y; ν1 + ν2) = Φ(x+ y; ν1) Φ(x; ν2) Φ(y; ν2)

− Φ(x+ y; ν2) Φ(x; ν1) Φ(y; ν1),(6.15)

where c = ℘(ν2)− ℘(ν1) and γ = ζ(ν1) + ζ(ν2)− ζ(ν1 + ν2).
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These follow directly from the definition of Φ(x; ν) and the properties of the
Weierstrass sigma function; in particular, (6.15) is a consequence of the “three term
relation” of the sigma function [23, Chapter 20.53, Example 5].

Upon setting x→ x+ α in (6.15), we obtain

(6.16)

ceγ(x+y+α)Φ(x+ y + α; ν1 + ν2) = Φ(x+ y + α; ν1)Φ(x+ α; ν2)Φ(y; ν2)

− Φ(x+ y + α; ν2)Φ(x+ α; ν1)Φ(y; ν1).

Now by substituting (6.14) in (6.16) and setting µ1 = ν1 + ν2 − α, µ2 = ν1 − α,
and µ3 = ν2 − α, after some rearrangement, we obtain

(6.17)

c′eλ
′(x+y)Φ(x+ y;µ1) = Φ(x+ y;µ2)

Φ(x;µ3)

Φ(−x;µ1 − µ2 − µ3)
Φ(y;µ1 − µ2)

+ c′′eλ
′′(x+y)Φ(x+ y;µ3)

Φ(x;µ2)

Φ(−x;µ1 − µ2 − µ3)
Φ(y;µ1 − µ3)

for appropriate constants c′, c′′, λ′, and λ′′. This is precisely of the desired form
(6.13). Therefore, we have shown the following.

Theorem 3. Given functions Ψm(x) (m = 1, 2, 3), there are functions φn(x)
(n = 2, 3, 4, 5) for which the functional equation (1.7) is true if and only if the following
ratios take place:

Ψ1(x)

Ψ2(x)
= c1e

λ1x
Φ(x;µ1)

Φ(x;µ2)
,

Ψ3(x)

Ψ2(x)
= c2e

λ2x
Φ(x;µ3)

Φ(x;µ2)
,(6.18)

where cm, λm (m = 1, 2), and µn (n = 1, 2, 3) are free parameters.

Appendix. Elliptic functions.

A.1. The Weierstrass elliptic functions. The Weierstrass elliptic functions
are based on a lattice with periods 2ω and 2ω′, where =(ω′/ω) > 0. They satisfy the
homogeneity relations

σ(tx|tω, tω′) = tσ(x|ω, ω′), ζ(tx|tω, tω′) = t−1ζ(x|ω, ω′),(A.1)

℘(tx|tω, tω′) = t−2℘(x|ω, ω′).(A.2)

Here ζ(x) = (lnσ(x))
′

and ℘(x) = −ζ ′(x). These homogeneity relations mean that
our function Φ(x; ν) ≡ Φ(x; ν|ω, ω′) satisfies

Φ(tx; tν|tω, tω′) = t−1Φ(x; ν|ω, ω′).

The parameters g2 and g3, alternately used to describe the elliptic function, are
given by

g2 = 60
∑′

m,n∈Z

Ω−4, g3 = 140
∑′

m,n∈Z

Ω−6,

where Ω = 2mω + 2nω′.
The Weierstrass ℘-function, ℘(x) ≡ ℘(x|ω, ω′) = ℘(x; g2, g3), satisfies the differ-

ential equation

℘′2(x) = 4℘3(x)− g2℘(x)− g3 = 4
(
℘3(x)− 5c2℘(x)− 7c3

)
,(A.3)
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where c2 = g2/20 and c3 = g3/28. This means that

℘′′(x) = 6℘2(x)− 10c2.(A.4)

The terms ck (k ≥ 4) in the Laurent expansion of the Weierstrass ℘ function,

℘(x) =
1

x2
+
∑
l=2

cl x
2l−2,(A.5)

are expressible in terms of c2 and c3.
If ei ≡ ei(ω, ω′) (i = 1, 2, 3) denote the roots of the cubic

4x3 − g2x− g3 = 0,(A.6)

where

℘′2(x) = 4(℘(x)− e1)(℘(x)− e2)(℘(x)− e3),

the half-periods ωi are defined by

℘(ωi) = ei, where ω1 = ω, ω2 = ω + ω′, and ω3 = ω′.

Clearly,

ei(tω, tω
′) = t−2ei(ω, ω

′).(A.7)

Assuming that g2 and g3 are real and that the discriminant of (A.6) is positive
(the case of interest in this paper), the ei’s are real and may be ordered e1 ≥ e2 ≥ e3.

A.2. The Jacobi elliptic functions. The Jacobi elliptic functions are charac-
terized by a parameter m. Thus, for example, sn(x) ≡ sn(x|m) has periods 4K(m)
and 2iK ′(m), where K(m) is the complete elliptic function of the first kind. The ei’s
are related to the parameter m of the Jacobi elliptic functions by

e1 =
2−m

3

K2(m)

ω2
, e2 =

2m− 1

3

K2(m)

ω2
, and e3 =

−1−m
3

K2(m)

ω2
.(A.8)

Thus

g2 =
4

3
(1−m+m2)

K4(m)

ω4
, g3 =

4

27
(m− 2)(2m− 1)(m+ 1)

K6(m)

ω6
,(A.9)

and

ω

ω′
=
iK ′(m)

K(m)
, ω =

K(m)√
e1 − e3

.(A.10)

We find that

Φ(x;ω′) =
a

sn(a x)
, Φ(x;ω) = a

cn(a x)

sn(a x)
, and Φ(x;ω + ω′) = a

dn(a x)

sn(a x)
.

Here a =
√
e1 − e3 converts the periods of Φ based on ω and ω′ to those of the Jacobi

functions based on K(m) and iK ′(m). Equally, we may write this as

Φ(x; tω′|tω, tω′) =
1

sn(x|m)
, with t =

√
e1 − e3 =

K(m)

ω
.(A.11)

Thus with these periods in mind, we write

Φ(x; iK ′(m)) =
1

sn(x)
, Φ(x;K(m) + iK ′(m)) =

dn(x)

sn(x)
,(A.12)

Φ(x;K(m)) =
cn(x)

sn(x)
.(A.13)
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A.3. Degenerations. When the discriminant of (A.6) vanishes, one (or both)
of the periods of the elliptic function vanishes, yielding hyperbolic, trigonometric (or
rational) functions. If e1 = e2 = c, e3 = −2c (and so g2 = 12c2, g3 = −8c3), we then
have

σ(x; 12c2,−8c3) =
sinhκx

κ
e−κ

2x2/6 and ℘(x; 12c2,−8c3) =
κ2

3
+

κ2

sinh2 κx
,

where κ =
√

3c. In this case,

Φ(x; ν) =
κ sinhκ(ν − x)

sinhκν sinhκx
exκ cothκν = κ (cothκx− cothκν) exκ cothκν ,(A.14)

Φ′(x; ν) = −κΦ(x; ν) (cothκ(ν − x) + cothκx− cothκν) .

In particular,

Φ(x;∞) =
κ

sinhκx
and

Φ′(x;∞)

Φ(x;∞)
= −κ cothκx.(A.15)
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Abstract. For a polynomial P (ξ) in ξ in Rn with constant complex coefficients, the operator

defined by R(z)f = F−1((P (·)−z)−1f̂), where ∧ denotes the Fourier transform and F−1 denotes its
inverse, is not bounded from L2 to L2 when z is in the spectrum of P (D). What are suitable spaces
B and C so that R(z) is bounded from B to C? When P (ξ) is simply characteristic, we prove that
the operator R(z) is bounded from Bs to B∗1−s, 0 ≤ s ≤ 1, where Bs are spaces reasonably smaller

than L2 and B∗1−s are spaces reasonably larger than L2.

Key words. solutions, estimates, simply characteristic, critical value, Besov space, Fourier
transform, inverse Fourier transform

AMS subject classifications. 35E20, 35B05, 35B40

PII. S0036141095290628

1. Introduction and statements of results. In recent years, a method for
obtaining uniqueness results (and even giving a theoretical inversion procedure) for
a class of inverse problems in potential scattering has been developed very success-
fully. Sylvester and Uhlmann treated an inverse boundary-value problem from electric
impedance tomography (see [13]). Nachman and Ablowitz, Beals and Coifman, and
Novikov and Henkin studied some problems in inverse scattering (see [11, 3, 12]).
These have yielded a breakthrough on some problems for which only linearized ap-
proximation had been treatable before and led to the solution of a great number of
related inverse problems.

Most of these works treat problems which can, by one device or another, be re-
duced to problems for the Schrödinger operator −∆+q. One of the crucial ingredients
is a family of solutions φ(x, ζ) of (−∆+q)φ = Eφ which behave like so-called inhomo-
geneous plane waves exp(ix·ζ) for large values of the complex vector ζ. One motivation
for the study of such solutions comes from the observation that it is possible to have
∆eix·ζ = Eeix·ζ with ζ2 = E and the energy E fixed, while ζ is made arbitrarily
large. Then fixed-energy uniqueness follows from a complex version of the Born limit,
first observed in [11]. Following this key idea, inverse boundary-value problems for
parabolic, hyperbolic, and other more general partial differential operators were inves-
tigated by Isakov [5]. An inverse boundary-value problem for the biharmonic operator
at zero energy was considered by Ikehata [6]. More related inverse boundary-value
problems and inverse scattering problems can be found in [9, 7, 10] and the references
therein.

The direct scattering theory for operators of the form P0(D) + V (x,D), where
P0(D) is a partial differential operator with real constant coefficients and simply
characteristic (see Definition 1.1 below) and V is a short-range perturbation, has been
developed successfully by Agmon and Hörmander (see [4]) and many other authors.
One of the key ingredients of such a theory is an estimate for the resolvent (P0(D)−
z)−1 which remains valid as z approaches the real axis. This clearly cannot happen on

∗Received by the editors August 15, 1995; accepted for publication (in revised form) February 28,
1996.

http://www.siam.org/journals/sima/28-4/29062.html
†Biometrics Unit, Cornell University, 432 Warren Hall, Ithaca, NY 14853 (cl103@cornell.edu).
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the space L2 when z approaches the spectrum of P0(D), but if R0(z) = (P0(D)−z)−1

is viewed as an operator from a suitable space X smaller than L2 to another space Y
larger than L2, then its norm can be shown to remain bounded, independent of the
distance from z to the real axis (if z stays in a bounded subset K contained in the
complex plane C),

‖(P0(D)− z)−1f‖Y ≤ C‖f‖X .(1.1)

The result of the form of (1.1) is known as the “limiting-absorption principle.” To see
what spaces X and Y are appropriate, we note, for example, that when P0(D) = −∆
in R3, the operator (P0(D)− z2)−1, where z ∈ C\{0}, corresponds to convolution by

G+
0 (x− y) =

eiz|x−y|

4π|x− y| .

Even for f ∈ C∞0 ,

G+
0 ∗ f = O(1/|x|) as |x| → ∞.

Thus G+
0 ∗f is in general not in L2, but it can be shown that (1+x2)−

δ
2 (G+

0 ∗f) does

belong to L2 whenever (1+x2)
δ
2 f is in L2 if δ > 1/2. This motivates the introduction

of the weighted L2 spaces:

L2
δ =

{
v ∈ L2(Rn) :

∫
Rn

(1 + |x|2)δ|v(x)|2dx <∞
}
.

Estimates of the form (1.1), with X = L2
δ , Y = L2

−δ, δ > 1/2, and P0 simply
characteristic, were first proved by Agmon in [1]. In [2], Agmon and Hörmander
showed that the following class of spaces Bs (the Fourier transform of Besov space
Bs,12 ) and their duals B∗s (the Fourier transform of Besov space B−s,∞2 ) (−∞ < s <
∞),

Bs =

{
v ∈ L2

loc(Rn) :

∞∑
j=1

Rsj

(∫
Ωj

|v|2dx
)1/2

<∞
}
,(1.2)

B∗s =

{
u ∈ L2

loc(Rn) : sup
j≥1

R−sj

(∫
Ωj

|u|2dx
)1/2

<∞
}
,(1.3)

where

R0 = 0, Rj = 2j−1, j = 1, 2, . . . ,

Ωj = {x ∈ Rn : Rj−1 < |x| < Rj}, j = 1, 2, . . . ,

capture quite precisely the behavior of the resolvent operator at infinity. The rela-
tionship between L2

δ and Bs is

L2
δ ⊂ Bs ⊂ L2

s and L2
−s ⊂ B∗s ⊂ L2

−δ

for δ > s ≥ 0.
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Definition 1.1. Let P (ξ) be a real-valued polynomial of degree m in ξ ∈ Rn

such that

Λ(P0) = {η ∈ Rn : P0(ξ + η) ≡ P0(ξ)} = {0}.

P0 will be called simply characteristic if

P̃0(ξ) ≤ C

∑
|α|≤1

|P (α)
0 (ξ)|+ 1

 , ξ ∈ Rn,(1.4)

where

P̃0(ξ) =
∑

0≤|α|≤m
|P (α)

0 (ξ)|.

To study fixed-energy inverse problems in potential scattering for a general class
of differential operators P0(D), we want solutions φ(x, ζ) of (P0(D) + q)φ = λφ which
behave like eix·ζ with ζ ∈ Cn, P0(ζ) = λ. The construction of such solutions requires
a generalized limiting-absorption estimate for P0(D, ζ) = P0(D + ζ) − λ. The first
such estimate was obtained by Sylvester and Uhlmann [13] for the Laplacian −∆ at
zero energy (ζ2 = 0):

‖(−∆− 2iζ · ∇)−1f‖L2
−δ
≤ C

|ζ| ‖f‖L2
1−δ

, 0 < δ < 1.(1.5)

To obtain an estimate of the form of (1.5) for a general class of differential oper-
ators P0(D, ζ) = P0(D+ ζ)− λ, we first need an analogue of the Agmon–Hörmander
estimate (1.1) for complex polynomials. Our main goal in this paper is to give such an
estimate. Note that the key point for the validity of estimate (1.5) is that the real and
imaginary parts of the symbol (ξ2 + 2ξ · ζ) of the differential operator (−∆− 2iζ · ∇)
with ζ = 0 are linearly independent on the zero set {ξ ∈ Rn, ξ2 + 2ξ · ζ = 0}, which
allows one to reduce the resolvent operator (−∆ − 2iζ · ∇)−1 to the inverse of the
Cauchy–Riemann operator. Inspired by the same spirit, we first classify a class of
simply characteristic polynomials (see Definition 1.3 below) and then obtain an es-
timate similar to (1.1) for such complex polynomials. For clarity, let us stress that
emphasized simply characteristic refers to Definition 1.3 and nonemphasized simply
characteristic refers to Definition 1.1 given by Agmon and Hörmander. We also dis-
tinguish critical values in Definition 1.4 from critical values in the normal sense. We
will denote by F or ·̂ the Fourier transform and by F−1 or ∨ its inverse. Our main
estimate in this paper is as follows.

Theorem 1.2. Assume that P is simply characteristic and let K be a compact
subset of C containing no critical value of P in the sense given in Definition 1.4 below.
If f ∈ Bs, 0 ≤ s ≤ 1, it follows that R(z)f = F−1((P (·)− z)−1f̂) belongs to B∗1−s for
z ∈ K and we have the bound

‖R(z)f‖B∗
1−s
≤ C(n, s, cP ) sup

ξ∈Rn

1

P̃∗(ξ)
‖f‖Bs , z ∈ K,(1.6)

where C(n, s, cP ) depends only on the dimension n, s, and the constant cP in condition
(1.7) in Definition 1.3.
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Definition 1.3. Let P (ξ) = P1(ξ)+ iP2(ξ), ξ ∈ Rn, be an mth-order polynomial
with complex coefficients. We define a simply characteristic polynomial P to be one
that satisfies

P̃∗(ξ) ≤ cP (|P (ξ)− z0|+ |∇P (ξ)|∗)(1.7)

for all ξ ∈ Rn and some z0 ∈ C, where

P̃∗(ξ) =
∑

|α|≤m,|α|6=1

|P (α)(ξ)|+ |∇P (ξ)|∗

and

|∇P (ξ)|∗
def.
=

 ∑
i6=j,1≤i,j≤m

∣∣∣∣∣det

(
∂P1

∂ξi
∂P1

∂ξj
∂P2

∂ξi
∂P2

∂ξj

)∣∣∣∣∣
2
1/4

.(1.8)

Definition 1.4. If ∇P1(ξ) and ∇P2(ξ) are not linearly independent at some
point ξ ∈ {ξ ∈ Rn : P (ξ)− z = 0}, we say that the value z is a critical value of P .

Note that the estimates in Theorem 1.2 are from spaces Bs to spaces B∗1−s for
all 0 ≤ s ≤ 1. In particular, two endpoints s = 0 and s = 1 are included, i.e.,
(P (D)− z)−1 is bounded from B1 to B∗0 and from B0 to B∗1 . As in direct-scattering
theory, the spaces Bs and B∗1−s capture the behavior of the operator R(z)f at infinity
more precisely than weighted L2 spaces do. Estimates in (1.6) from Bs to B∗1−s for
R(z)f also match the “Bs-version limiting-absorption principle” better than weighted
L2 estimates do.

The idea of the proof of Theorem 1.2 basically follows the same idea given by
Sylvester and Uhlmann for the operator (−∆ − 2iζ · ∇)−1 in [13]. Using a partition
of unity and a change of variables, we reduce the problem to the Cauchy–Riemann
equation, for which the symbol is ξ1 + iξ2. However, since we deal with estimates in
the spaces Bs and B∗1−s instead of weighted L2 spaces—in particular, the endpoint
spaces B1 and B∗0—the techniques we use are quite different from those that Sylvester
and Uhlmann used. To generalize the estimates to the class of simply characteristic
polynomials, we follow the approach used by Agmon and Hörmander in obtaining the
Bs-version limiting-absorption principle [2].

The details of the proof of Theorem 1.2 are given in sections 2–4. In section 5,
we briefly discuss the behavior of the resolvent of a simply characteristic differential
operator P (D) at infinity, which is a simple application of estimate (1.6).

Estimates of the form of (1.5), the construction of exponentially growing solutions
for P0(D, ζ) = P0(D + ζ) − λ, and a uniqueness result for a general class of inverse
problems were also studied by the author. In particular, an estimate similar to (1.5)
for the Laplacian operator ∆ at fixed nonzero energy is an immediate consequence of
such estimates for a general class of partial differential operators. Then combining the
estimate for ∆ with estimate (1.6) will derive an estimate like (1.5) for the biharmonic
operator ∆2 at fixed nonzero energy. Therefore, exponentially growing solutions for
∆2 can be constructed as well. We refer to [8] for the technical details and more
applications.

2. Estimates for the model 1/(x1 + ix2). In this section, we will obtain the
main estimate for the special model 1/(x1 + ix2). First, we recall that the norm for
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v ∈ Bs (introduced in (1.2)) is

‖v‖Bs =
∞∑
j=1

Rsj

(∫
Ωj

|v|2dx
)1/2

and the norm for u ∈ B∗s (see (1.3)) is defined as

‖u‖B∗s = sup
j≥1

R−sj

(∫
Ωj

|u|2dx
)1/2

.

For s > 0, since

‖u‖2B∗s ≤ sup
R≥1

R−2s

∫
|x|<R

|u|2dx ≤ 22s

(1− 2−2s)
‖u‖2B∗s ,

the norm ‖u‖B∗s is equivalent to [supR≥1R
−2s

∫
|x|<R |u|

2dx]1/2.

Theorem 2.1. Let f ∈ B1(Rn), n ≥ 2. Define

u =

(
1

ξ1 + iξ2
f̂(ξ)

)∨
=

i

2π
f ∗
(

1

x1 + ix2

)
,(2.1)

where * represents the convolution with respect to the first two variables. Then there
is a constant C > 0, depending only on the dimension n, such that

‖u‖B∗0 ≤ C‖f‖B1 .(2.2)

Proof. Write x = (x′, x′′), where x′ = (x1, x2) and x′′ = (x3, . . . , xn). Then

u(x) =
i

2π

∫
y1,y2

f(y, x′′)

(x1 − y1) + i(x2 − y2)
dy.

To prove (2.2), we first prove the following two lemmas.

Lemma 2.2. Assume that f ∈ L1(R2) ∩ L2
loc(R2). Let u be defined by (2.1).

Then

(i) ∫
|x|<Rj

|u(x)|2dx ≤ C
[
R2
j

∫
|y|≤Rj+1

|f(y)|2dy + ‖f‖2L1

]
,

and for any integer m with j − 1 ≥ m ≥ 0, we have

(ii)∫
Rj−m−1<|x1|<Rj

∫
|x2|<Rj

|u(x)|2dx ≤ C
[
R2
j

∫
Ω∗
j

|f(x)|2dx+ (4m+2)‖f‖2L1

]
,

where Ω∗j = {(x1, x2) ∈ R2 : Rj−m−2 ≤ |x1| ≤ Rj+1, |x2| ≤ Rj+1} and the numbers
C in both estimates are constants independent of j and m.
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Proof. To prove estimate (i), we note that∫
|x|<Rj

|u(x)|2dx =
1

4π2

∫
|x|<Rj

[ ∫
|y|≤Rj+1

f(y)

(x1 − y1) + i(x2 − y2)
dy

+

∫
|y|>Rj+1

f(y)

(x1 − y1) + i(x2 − y2)
dy

]2

dx

≤ 1

2π2

[ ∫
|x|<Rj

∣∣∣∣∣
∫
|y|≤Rj+1

f(y)

(x1 − y1) + i(x2 − y2)
dy

∣∣∣∣∣
2

dx

+

∫
|x|<Rj

∣∣∣∣∣
∫
|y|>Rj+1

f(y)

(x1 − y1) + i(x2 − y2)
dy

∣∣∣∣∣
2

dx

]
.

For the first integral, we have∫
|x|<Rj

∣∣∣∣∫
|y|≤Rj+1

f(y)

(x1 − y1) + i(x2 − y2)
dy

∣∣∣∣2dx
=

∫
|x|<Rj

∣∣∣∣ ∫
|y|≤Rj+1︸ ︷︷ ︸

|x−y|≤3Rj

f(y)

(x1 − y1) + i(x2 − y2)
dy

∣∣∣∣2dx
(by Young’s inequality)

≤
(∫
|t|<3Rj

1

|t|dt
)2 ∫

|y|≤Rj+1

|f(y)|2dy

≤ (6π)2R2
j

∫
|y|≤Rj+1

|f(y)|2dy.

For the second integral, we have∫
|x|<Rj

∣∣∣∣ ∫
|y|>Rj+1︸ ︷︷ ︸

|x−y|≥Rj

f(y)

(x1 − y1) + i(x2 − y2)
dy

∣∣∣∣2dx

≤ 1

R2
j

∫
|x|<Rj

(∫
R2

|f(y)|dy
)2

dx

= π

(∫
R2

|f(y)|dy
)2

.

Combining the two terms, we have∫
|x|<Rj

|u(x)|2dx ≤ 1

2π2

[
(6π)2R2

j

∫
|y|≤Rj+1

|f(y)|2dy + π‖f(·)‖2L1(R2)

]
≤ 18R2

j

∫
|y|≤Rj+1

|f(y)|2dy +
1

2π
‖f(·)‖2L1(R2).

To prove the second estimate, we rewrite the integral in the left-hand side as:∫
Rj−m−1≤|x1|≤Rj

∫
|x2|≤Rj

|u(x)|2dx
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=
1

4π2

∫
Rj−m−1≤|x1|≤Rj

∫
|x2|≤Rj

∣∣∣∣ ∫
R2

f(y)

(x1 − y1) + i(x2 − y2)
dy

∣∣∣∣2dx
=

1

4π2

[ ∫
Rj−m−1≤|x1|≤Rj

∫
|x2|≤Rj

∣∣∣∣( ∫
Ω∗
j

+

∫
R2\Ω∗

j

)
f(y)

(x1 − y1) + i(x2 − y2)
dy

∣∣∣∣2dx].
For the first integral, we have by Young’s inequality that∫

Rj−m−1≤|x1|≤Rj

∫
|x2|≤Rj

∣∣∣∣ ∫
Ω∗
j

f(y)

(x1 − y1) + i(x2 − y2)
dy

∣∣∣∣2dx
≤
(∫
|t|≤6Rj

1

|t|dt
)2 ∫

Ω∗
j

|f(y)|2dy

since when Rj−m−1 < |x1| < Rj , |x2| ≤ Rj , and y ∈ Ω∗j ,

|x− y| ≤ |x1 − y1|+ |x2 − y2| ≤ |x1|+ |y1|+ |x2|+ |y2| = 6Rj .

For the second integral, we have∫
Rj−m−1≤|x1|≤Rj

∫
|x2|≤Rj

∣∣∣∣ ∫
R2\Ω∗

j

f(y)

(x1 − y1) + i(x2 − y2)
dy

∣∣∣∣2dx
≤ 1

R2
j−m−2

∫
Rj−m−1≤|x1|≤Rj

∫
|x2|≤Rj

(∫
R2\Ω∗

j

|f(y)|dy
)2

dx

≤
R2
j

R2
j−m−2

‖f(·)‖2L1(R2),

since when Rj−m−1 < |x1| < Rj , |x2| ≤ Rj , and y ∈ R2\Ω∗j ,

|x− y| ≥ |x1 − y1| ≥ Rj−m−2.

Combing the two terms, we have∫
Rj−m−1≤|x1|≤Rj

∫
|x2|≤Rj

|u(x)|2dx

≤
(

144

2

)
R2
j

∫
Ω∗
j

|f(y)|2dy +
1

2π2

R2
j

R2
j−m−2

‖f(·)‖2L1(R2)

= 72R2
j

∫
Ω∗
j

|f(x)|2dx+
1

2π2
(4m+2)‖f(·)‖2L1(R2).

Lemma 2.3. Let n ≥ 3 and let x = (x′, x′′), where x′ = (x1, x2) and x′′ =
(x3, . . . , xn). If f ∈ B1(Rn), then

(i)
∫
R2 ‖f(x′, ·)‖L2(Rn−2)dx

′ ≤
√
π‖f‖B1

and

(ii) (
∫
Rn−2 ‖f(·, x′′)‖2

L1(R2)
dx′′)1/2 ≤

√
π‖f‖B1

.

Proof. (i) Let fj = f in Ωj and fj = 0 elsewhere. Then by the Cauchy–Schwartz
inequality,∫

R2

‖fj(x′, ·)‖L2(Rn−2)dx
′ ≤ (πR2

j )
1/2

(∫
R2

‖fj(x′, ·)‖2L2(Rn−2)dx
′
)1/2

≤
√
πRj

(∫
Ωj

|f(x)|2dx
)1/2

.
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Thus since f =
∑
j fj , we obtain∫

R2

‖f(x′, ·)‖L2(Rn−2)dx
′ ≤

∑
j

∫
R2

‖fj(x′, ·)‖L2(Rn−2)dx
′ ≤
√
π‖f‖B1

,

where the second inequality follows from the definition of the B1 norm.
(ii) The Minkowski’s inequality for integrals shows that(∫

Rn−2

‖f(·, x′′)‖2L1(R2)dx
′′
)1/2

≤
∫
R2

‖f(x′, ·)‖L2(Rn−2)dx
′,

and then (ii) follows from (i).
Lemma 2.3 shows that the norm in B1 is a majorant for the above mixed L1 and

L2 norms (compare with Theorem 14.1.2 in [4]).
Now we are in a position to prove (2.2). By the definition of the B∗0 norm, we

need to show that supj
∫

Ωj
|u|2dx can be bounded by C‖f‖B1

. For dimension n = 2,

(2.2) follows immediately from Lemma 2.2(i). For n ≥ 3, we cover Ωj in the following
way:

Ωj = {x ∈ Rn : Rj−1 < |x| < Rj}(2.3)

⊂ ∪nk=1{x ∈ Rn : aj < |xk| < Rj , |xl| < Rj , 1 ≤ l ≤ n, l 6= k}
def.
=

n∑
k=1

W j
k ,

where aj = Rj−1/
√
n and for each k,

W j
k ⊂ {x ∈ Rn : aj < |x| < bj}(2.4)

with bj =
√
nRj (see Figure 2.1).

Let m be a positive integer such that 2m−1 ≤
√
n ≤ 2m. Then∫

Ωj

|u(x′, x′′)|2dx ≤
n∑
k=1

∫
W j
k

|u(x′, x′′)|2dx

=
n∑
k=1

∫
aj<|xk|<Rj

∫
|xl|<Rj ,l 6=k

|u(x′, x′′)|2dx1 · · · dx̂k · · · dxndxk.(2.5)

If k = 1 or 2—say k = 1—then∫
aj<|x1|<Rj

∫
|xl|<Rj ,l≥2

|u(x′, x′′)|2dx1 · · · dxn

≤ C1

∫
|x′′|<Rj

(∫
Rj−m−1<|x1|<Rj

∫
|x2|<Rj

|u(x′, x′′)|2dx′
)
dx′′

(by Lemma 2.2(ii))

≤ C2

∫
|x′′|<Rj

[
R2
j

∫
Ω∗
j

|f(y, x′′)|2dy + ‖f(·, x′′)‖2L1(R2)

]
dx′′

(by(2.4))(2.6)

≤ C2R
2
j

∫
Rj−m−2<|(y,x′′)|<

√
nRj+1

|f(y, x′′)|2dydx′′
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Fig. 2.1. The graph of Ωj .

+C2

∫
|x′′|<Rj

‖f(·, x′′)‖2L1(R2)dx
′′

(by Lemma 2.3(ii))

≤ C(4m+2)‖f‖2B1(Rn) + C‖f‖2B1(Rn).

If k ≥ 3—say k = 3—then∫
Rj−1/

√
n<|x3|<Rj

∫
|xl|<Rj ,l 6=3

|u(x′, x′′)|2dx1 · · · dx̂3 · · · dxndx3

≤ C3

∫
Rj−m−1<|x3|<Rj

∫
|xl|<Rj ,l 6=3,1,2

(∫
|x′|<Rj

|u(x′, x′′)|2dx′
)
dx′′

(by Lemma 2.2(i))

≤ C3

∫
Rj−m−1<|x3|<Rj

∫
|xl|<Rj ,l 6=3,1,2

[
18R2

j

∫
|y|<Rj+1

|f(y, x′′)|2dy

+
1

2π
‖f(·, x′′)‖2L1(R2)

]
dx′′

(by (2.4))(2.7)

≤ C3R
2
j

∫
Rj−m−1<|(y,x′′)|<

√
nRj+1

|f(y, x′′)|2dydx′′

+C3

∫
|x′′|<Rj

‖f(·, x′′)‖2L1(R2)dx
′′

(by Lemma 2.3(ii))

≤ C3(4m+2)‖f‖2B1(Rn) + C3‖f‖2B1(Rn).
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Thus for each k,∫
W j
k

|u(x′, x′′)|2dx ≤ Ck(4m+2‖f‖2B1(Rn) + ‖f‖2B1(Rn)),(2.8)

with m depending only on the dimension n.
Returning to (2.5), we obtain

‖u‖B∗0 = sup
j≥1

(∫
Ωj

|u(x)|2dx
)1/2

≤ C‖f‖B1(Rn).

Corollary 2.4. If f ∈ B0 and u = f ∗ (1/(x1 + ix2)), then

‖u‖B∗1 ≤ C‖f‖B0 .

Proof. Note that B∗1 is the dual space of B1. Thus

‖u‖B∗1 = sup
‖g‖B1

=1

∣∣∣∣ ∫ u(x)g(x)dx

∣∣∣∣
=

1

2π
sup

‖g‖B1
=1

∣∣∣∣ ∫
x′′

∫
x′

(∫
y

f(y, x′′)

(x1 − y1) + i(x2 − y2)
dy

)
g(x′, x′′)dx′dx′′

∣∣∣∣
=

1

2π
sup

‖g‖B1
=1

∣∣∣∣ ∫
x′′

∫
x′

∫
y

f(y, x′′)g(x′, x′′)

(x1 − y1) + i(x2 − y2)
dydx′dx′′

∣∣∣∣
(by Fubini’s Theorem)

=
1

2π
sup

‖g‖B1
=1

∣∣∣∣ ∫
x′′

∫
y

(∫
x′

g(x′, x′′)

(x1 − y1) + i(x2 − y2)
dx′
)
f(y, x′′)dydx′′

∣∣∣∣
≤ 1

2π
sup

‖g‖B1
=1

∞∑
j=1

∫
Ωj

|f(y, x′′)|
∣∣∣∣ ∫
x′

g(x′, x′′)

(x1 − y1) + i(x2 − y2)
dx′
∣∣∣∣dydx′′

≤ 1

2π
sup

‖g‖B1
=1

∞∑
j=1

(∫
Ωj

|f(y, x′′)|2dydx′′
)1/2

×
(∫

Ωj

∣∣∣∣ ∫
x′

g(x′, x′′)

(x1 − y1) + i(x2 − y2)
dx′
∣∣∣∣2dydx′′)1/2

≤ 1

2π
sup

‖g‖B1
=1

[ ∞∑
j=1

(∫
Ωj

|f(y, x′′)|2dydx′′
)1/2

× sup
j≥1

(∫
Ωj

∣∣∣∣ ∫
x′

g(x′, x′′)

(x1 − y1) + i(x2 − y2)
dx′
∣∣∣∣2dydx′′)1/2]

(by Theorem 2.1)

≤
[ ∞∑
j=1

∫
Ωj

|f(y, x′′)|2dydx′′
)1/2]

sup
‖g‖B1

=1

(C‖ḡ‖B1
)

= C‖f‖B0
.

Thus u = f ∗ (1/(x1 + ix2)) is in B∗1 .
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Corollary 2.5. Let 0 < s < 1. If f ∈ B1−s, then f ∗ (1/(x1 + ix2)) ∈ B∗s and∥∥∥∥f ∗ ( 1

x1 + ix2

)∥∥∥∥
B∗s

≤ Cs‖f‖B1−s ,

where Cs depends only on s and the dimension n.
Proof. First if u ∈ B∗0 , we have

‖u‖2L2
−s

=

∫
(1 + |x|2)−s|u(x)|2dx

=

∞∑
j=1

∫
Ωj

(1 + |x|2)−s|u(x)|2dx

≤
∞∑
j=1

R−2s
j−1

∫
Ωj

|u(x)|2dx

= 22s
∞∑
j=1

R−2s
j

∫
Ωj

|u(x)|2dx

≤ 4

∑
j≤k

R−2s
j

∫
Ωj

|u(x)|2dx+
∑
j>k

R−2s
j

∫
Ωj

|u(x)|2dx


= 4

∑
j≤k

R2−2s
j

1

R2
j

∫
Ωj

|u(x)|2dx+
∑
j>k

R−2s
j

∫
Ωj

|u(x)|2dx


≤ C

[
R2−2s
k

1

1− 2−(2−2s)
‖u‖2B∗1 +R−2s

k ‖u‖2B∗0

]
for each k ≥ 1, where C is independent of k. Thus

‖u‖L2
−s
≤
√
Cs/2[R1−s

k ‖u‖B∗1 +R−sk ‖u‖B∗0 ].

Now let f =
∑∞
k=1 fk, where fk = f |Ωk . Then with uk = fk ∗ 1/(x1 + ix2),

‖u‖L2
−s

=

∥∥∥∥∥
∞∑
k=1

uk

∥∥∥∥∥
L2
−s

≤
∞∑
k=1

‖uk‖L2
−s

≤ Cs
∑
k

[R1−s
k ‖uk‖B∗1 +R−sk ‖uk‖B∗0 ]

(by Theorem 2.1 and Corollary 2.4)

≤ Cs
∑
k

[R1−s
k ‖fk‖B0 +R−sk ‖fk‖B1 ]

= Cs
∑
k

[
R1−s
k

(∫
Ωk

|f(x)|2dx
)1/2

+R−sk Rk

(∫
Ωk

|f(x)|2dx
)1/2

]

= Cs
∑
k

R1−s
k

(∫
Ωk

|f(x)|2dx
)1/2

= Cs‖f‖B1−s .
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Since L2
−s ⊂ B∗s ,

‖u‖B∗s ≤ C‖u‖L2
−s
≤ Cs‖f‖B1−s .

Note that although the map f → f ∗ (1/(x1 + ix2)) is bounded from L2
δ to L2

−1+δ

for 0 < δ < 1, it is bounded from neither L2
1 to L2

0 nor L2
0 to L2

−1. Thus the spaces
Bs provide appropriate endpoint substitutes for the weighted L2 spaces.

3. Estimate for general distribution (1/(H1(ξ) + iH2(ξ))). We now gen-
eralize the result for the particular model 1/(x1 + ix2) to a general distribution
(1/(H1(ξ)+ iH2(ξ)))∨(x). Before doing so, we need some additional definitions and
lemmas, which can be found in [4, Chapter 14].

Let c1, c2, . . . be a sequence of positive numbers such that for some constant
M > 0,

cj
M
≤ cj+1 ≤Mcj , j = 1, 2, . . . .(3.1)

Define

B{c} =

v ∈ L2
loc(Rn) :

∞∑
j=1

cj

(∫
Ωj

|v|2dx
)1/2

<∞

 .

Then its dual space is

B∗{c} =

u ∈ L2
loc(Rn) : sup

j≥1
c−1
j

(∫
Ωj

|u|2dx
)1/2

<∞

 .

Lemma 3.1. Let N be the smallest integer such that 2N > M . Then there is a
constant CM such that if

T : L2
−N → L2

−N

is bounded and

T : L2
N → L2

N

is bounded with both norms ≤ A, it follows that

T : B{c} → B{c}

is bounded with norm ≤ CMA.
Lemma 3.2. Let r ∈ CN (Rn) and assume that Dαr is bounded when |α| ≤ N .

Then the operator r(D) = F−1rF is bounded in B{c} and

‖r(D)u‖B{c} ≤ CM
∑
|α|≤N

sup |Dαr|‖u‖B{c} , u ∈ B{c},

where F is the Fourier transform operator.
Lemma 3.3. Let X1 and X2 be open sets in Rn and Ψ be a CN+1 diffeomorphism

X1 → X2. Choose χ ∈ CN0 (X1) and set

Tu = F−1(χ(û ◦Ψ)).
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Then T is bounded in B{c} with a norm which can be estimated in terms of the
maximum of the derivatives of χ of order ≤ N and the derivatives of Ψ and Ψ−1 of
order ≤ N + 1.

The above three lemmas are Theorems 14.1.4, 14.1.5, and 14.1.6 in [4].
For the spaces Bs, s ≥ 0, we can choose {c}s = {Rsj} = {2(j−1)s} and Ms = 2s.

Then

2(j−2)s =
cj
Ms
≤ cj+1 = 2js = Mscj .

In Lemma 3.1, we can choose N = 2 if s = 1. If 0 ≤ s < 1, we can choose N = 1.
For the discussions in the rest of the paper, we always pick N = 2.

Theorem 3.4. Let H(ξ) = H1(ξ) + iH2(ξ) ∈ C3(Ω), where Ω is an open set
in Rn; assume that Re(∇H(ξ)) = ∇H1(ξ) and Im(∇H(ξ)) = ∇H2(ξ) are linearly
independent when H(ξ) = 0 in Ω, i.e., |∇H(ξ)|∗ 6= 0 when H(ξ) = 0 in Ω. Then for
fixed χ ∈ C2

0 (Ω), there exists a constant C such that when u ∈ B1 and v ∈ B0,∣∣∣∣ ∫ χ(ξ)H(ξ)−1û(ξ)v̂(ξ)dξ

∣∣∣∣ ≤ C‖u‖B1‖v‖B0(3.2)

and the constant C can be estimated in terms of the dimension n, the maximum of
the derivatives of χ of order ≤ 2 and the derivatives of H of order ≤ 3 on supp(χ),
the maximum of |∇H(ξ)|−1

∗ (see (1.8)) on supp(χ) ∩ Ō (O is a neighborhood of {ξ ∈
Rn : H(ξ) = 0}) and the maximum of |H(ξ)|−1 on supp(χ)\O.

Proof. First, suppose that suppχ is sufficiently small and |∇H(ξ)|∗ 6= 0 on suppχ
such that for an open set Ω′ ⊃ suppχ there is a C3 diffeomorphism ψ : Ω′′ → Ω′,
depending on H, |∇H|∗, and |∇H|−1

∗ , with H(ψ(η)) = η1 + iη2. Then χ can be
rewritten as χ = χ1χ2 for some functions χ1, χ2 ∈ C2

0 (Ω′). Thus∫
χ1(ξ)χ2(ξ)H(ξ)−1û(ξ)v̂(ξ)dξ

=

∫
1

η1 + iη2
χ1(ψ(η))û(ψ(η))χ2(ψ(η))v̂(ψ(η)| det(ψ′(η))|dη.

From Lemma 3.3 (ψ ∈ C3 is used here to apply Lemma 3.3 since in our situation,
N = 2), F−1(χ1 ◦ ψ · û ◦ ψ) ∈ B1 and F−1(χ2 ◦ ψ · v̂ ◦ ψ) ∈ B0. Then Theorem 2.1
and Corollary 2.4 imply that

F−1

(
1

η1 + iη2
χ1 ◦ ψ · û ◦ ψ

)
∈ B∗0 .

Therefore, ∣∣∣∣∫ χ1(ξ)χ2(ξ)H(ξ)−1û(ξ)v̂(ξ)dξ

∣∣∣∣ ≤ C‖u‖B1
‖v‖B0

.

In general, if |∇H(ξ)|∗ = 0 at some points ξ in suppχ, write χ(ξ) = χ1(ξ) + χ2(ξ),
where |∇H(ξ)|∗ 6= 0 in suppχ1 and H(ξ) 6= 0 in suppχ2. Then it is clear that∣∣∣∣∫ χ2(ξ)H(ξ)−1û(ξ)v̂(ξ)dξ

∣∣∣∣ ≤ C1

∫
|û(ξ)v̂(ξ)|dξ

≤ C1‖u‖L2
0
‖v‖L2

0

≤ C1‖u‖B1
‖v‖B0

,
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with C1 depending on max |χ2(ξ)| and the maximal lower bound of |H(ξ)| on supp (χ2).
On suppχ1, using a partition of unity and the proof for small suppχ, we have∣∣∣∣∫ χ1(ξ)H(ξ)−1û(ξ)v̂(ξ)dξ

∣∣∣∣ ≤ C2‖u‖B1
‖v‖B0

,

where C2 can be estimated in terms of the quantities stated in the theorem. Combining
the estimates for χ1 and χ2 yields (3.2).

Theorem 3.4 says that Tu = F−1(χH−1û) is bounded from B1 to B∗0 and also
from B0 to B∗1 . Then by interpolation, we have the following result.

Corollary 3.5. The operator Tsu = F−1(χH−1û), u ∈ Bs, is bounded from Bs
to B∗1−s for each 0 < s < 1, that is,

‖F−1(χH−1û)‖B∗
1−s
≤ Cs‖u‖Bs , u ∈ Bs,

where cs depends on n, s, and the quantities described in Theorem 3.4.

4. Estimate for complex simply characteristic polynomials. Let P (ξ) =
P1(ξ) + iP2(ξ) be a polynomial with constant complex coefficients, and assume that
|∇P (ξ)|∗ 6= 0 on {ξ ∈ Rn : P (ξ) = 0}. Then for χ ∈ C2

0 (Rn), we have shown in the
previous section that

‖F−1(χP−1f̂)‖B∗
1−s
≤ Cs‖f‖Bs , f ∈ Bs,(4.1)

for 0 ≤ s ≤ 1.
Now we want to impose a stronger condition on P to control the behavior of

|P (ξ)| at large ξ and thus allow an estimate like (4.1) without the cutoff function χ.
A simply characteristic complex polynomial, defined in Definition 1.3, is exactly the
kind of suitable condition that we want to impose, and it turns out to be an analogue
of the one introduced by Agmon and Hörmander for real polynomials (Definition 1.1).

Now let us analyze condition (1.7). We may assume that there is no real vector
η 6= 0 such that P (ξ + tη) ≡ P (ξ) because if there is such a vector η, we can take it
as a coordinate direction and obtain a polynomial in fewer variables. Our condition
implies that P̃∗(ξ)→∞ as ξ →∞.

1. For each ξ ∈ Rn, set Pξ(η) = P (ξ + η)/P̃∗(ξ). Then it is clear that the
family {Pξ(η) : ξ ∈ Rn} is uniformly bounded and equicontinuous on any compact
set in Rn. Thus by the Arzela–Ascoli theorem, the set M of all polynomials Pξ and
their limits form a compact set of polynomials. Straightforward calculations (the
uniform boundedness of coefficients of all polynomials in M plays an essential role
here; it allows us to interchange the limit operation with derivative operations and
other operations involved in |∇Pξ(η)|∗) give that

∂αη Pξ(η) =
P (α)(ξ + η)

P̃∗(ξ)
for any multi-index α

and

|∇ηPξ(η)|∗ =
|∇P (ξ + η)|∗

P̃∗(ξ)
.

If Q is any limit of Pξ as ξ →∞, then

∂αηQ(η) = lim
ξ→∞

P (α)(ξ + η)

P̃∗(ξ)
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and

|∇ηQ(η)|∗ = lim
ξ→∞

|∇P (ξ + η)|∗
P̃∗(ξ)

.

Therefore,

Q̃∗(η) = lim
ξ→∞

∑
|α|≤m,|α|6=1 |P (α)(ξ + η)|+ |∇P (ξ + η)|∗

P̃∗(ξ)
,

and for any fixed θ ∈ Rn,

Qθ(η) = lim
ξ→∞

[(
P (ξ + θ + η)

P̃∗(ξ)

)/(∑
|α|≤m,|α|6=1 |P (α)(ξ + θ)|+ |∇P (ξ + θ)|∗

P̃∗(ξ)

)]
= lim
ξ→∞

P (ξ + θ + η)∑
|α|≤m,|α|6=1 |P (α)(ξ + θ)|+ |∇P (ξ + θ)|∗

= lim
ξ+θ→∞

Pξ+θ(η).(4.2)

This means that Qθ(η) is also such a limit. In view of (1.7), we have

1 ≤ C(|Q(0)|+ |∇Q(0)|∗)(4.3)

if Q is any limit of Pξ as ξ → ∞. From (4.2), we also see that if Q(θ) = Q1(θ) +
iQ2(θ) = 0 at θ, then |∇Q(θ)|∗ 6= 0. This means that ∇Q1(θ) and ∇Q2(θ) are linearly
independent on the zero set of Q.

2. Let z be any complex number in C. Then condition (1.7) is valid for large |ξ|
if z0 is replaced by z. Otherwise, we can find a limit Q with |∇Q(0)|∗ = 0 and this
contradicts (4.3). Thus the validity of (1.7) for large |ξ| is independent of z ∈ C and
means precisely that large real zeros ξ of P (ξ) − z are simple in the sense that the
real part ∇P1(ξ) and the imaginary part ∇P2(ξ) of ∇P (ξ) are linearly independent.
For a simply characteristic complex polynomial, we conclude that (1.7) is uniformly
valid when z belongs to a compact set that does not contain any critical values of P .

3. If z ∈ C is not a critical value of P , then when we set Pξ(η) = P (ξ + η)−
z/P̃∗(ξ), condition (1.7) means that

Pξ(0) = 0, |∇Pξ(0)|∗ ≥
1

C
(4.4)

for ξ ∈ {ξ ∈ Rn : P (ξ) − z = 0}. Combining (4.3) and (4.4), we see that the
polynomials Pξ and their limits as ξ → ∞ either have a simple zero at η = 0 or do
not equal 0 at η = 0. Furthermore, from (4.3), (4.4), and the uniform boundedness
of the coefficients of all polynomials in M , we find that for some r > 0, independent
of ξ, such that on Ω = {|η| < r}, any Q in M either satisfies |∇Q|∗ 6= 0 or else is
uniformly bounded below.

Remark. If P (ξ) is a hypoelliptic polynomial,

P (α)(ξ)/P (ξ)→ 0

when ξ → ∞ in Rn for α 6= 0. Thus hypoelliptic polynomials satisfy condition (1.7)
for large ξ. Therefore if z ∈ C is not a critical value of P , condition (1.7) is satisfied
for all ξ ∈ Rn.
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Theorem 4.1. Assume that P is simply characteristic and let K be a compact
subset of C containing no critical values of P . If f ∈ B1, it follows that

R(z)f = F−1((P (·)− z)−1f̂)

is in B∗0 , and we have the estimate

‖R(z)f‖B∗0 ≤ C sup
ξ∈Rn

1

P̃∗(ξ)
‖f‖B1

(4.5)

for z ∈ K, where C depends only on the dimension n, the compact set K, and the
constant cP in condition (1.7).

Proof. It suffices to prove the theorem for some neighborhood K̃ of 0 in C
when 0 is not a critical value. On account of the previous analysis and the proof of
Theorem 3.4, we see that if χ ∈ C∞0 (Ω), Ω = {η ∈ Rn : |η| < r}, there is a constant
C (depending on the maximum of the derivatives of χ of order ≤ 2, a uniform bound
of derivatives of all polynomials Q in M , a uniform bound of |Q(η)|−1 on Ω̄ when
Q 6= 0 in Ω, and a uniform bound of |∇Q(η)|−1

∗ on Ω̄ when Q has zeros in Ω) and a
compact neighborhood K ′ of 0 in C, both independent of ξ, such that∣∣∣∣ ∫ |χ(η)|2

(
1

Pξ − z/P̃∗(ξ)

)
f̂(η)ĝ(η)dη

∣∣∣∣ ≤ C‖F−1(χf̂)‖B1
‖F−1(χĝ)‖B0

if f , g ∈ S, where S is the Schwartz space, and z/P̃∗(ξ) ∈ K ′. Let K̃ be a neighbor-

hood of 0 in C contained in P̃∗(ξ)K
′ for all ξ. Making a translation of f̂ and ĝ and

writing χξ(η) = χ(η − ξ), we have for any z ∈ K̃ that∣∣∣∣ ∫ P̃∗(ξ) 1

P (η)− z χξ(η)f̂(η)χξ(η)ĝ(η)dη

∣∣∣∣
=

∣∣∣∣ ∫ |χ(η)|2
(

1

Pξ − z/P̃∗(ξ)

)
f̂(η + ξ)ĝ(η + ξ)dη

∣∣∣∣
≤ C‖F−1(χf̂(ξ + ·))‖B1

‖F−1(χĝ(ξ + ·))‖B0

≤ C‖F−1(χξ f̂)‖B1
‖F−1(χξ ĝ)‖B0

.

If we then write f̂ξ = χξ f̂ , ĝξ = χξ ĝ, it follows that∣∣∣∣ ∫ 1

P (η)− z χξ(η)f̂(η)χξ(η)ĝ(η)dη

∣∣∣∣ ≤ C sup
ξ∈Rn

1

P̃∗(ξ)
‖fξ‖B1‖gξ‖B0 .

If we integrate with respect to ξ and use Lemma 4.2 below, we obtain

|(R(z)f, g)| ≤ C sup
ξ∈Rn

1

P̃∗(ξ)
‖f‖B1

‖g‖B0
.(4.6)

From (4.3) and (4.4), we also see that a uniform bound of derivatives of all polynomials
Q in M , a uniform bound of |Q(η)|−1 on Ω̄ when Q 6= 0 in Ω, and a uniform bound
of |∇Q(η)|−1

∗ on Ω̄ when Q has zeros in Ω can be estimated in terms of cP in (1.7).
Thus the constant C here depends only on the dimension n, the compact set K, and
cP in (1.7), and the proof is completed.
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Lemma 4.2. Let χ ∈ C∞0 (Rn) and set χ(D− η)u = F−1χ(· − η)û, u ∈ S ′. Then
we have ∫

‖χ(D − η)u‖2B{c}dη ≤ CM,χ‖u‖2B{c} , u ∈ B{c},

for all {c} satisfying condition (3.1).
This lemma is Theorem 14.1.7 in Hörmander’s book [4].
From estimate (4.6), we see that R(z) is bounded from B0 to B∗1 as well. Then

by interpolation, we obtain that R(z) is also bounded from Bs to B∗1−s for 0 < s < 1.
This completes the proof of Theorem 1.2.

Remark.
1. If {P (ξ, ζ)} is a family of polynomials of ξ ∈ Rn depending on a parameter

ζ in a subset Mζ ⊂ Cn and condition (1.7) is valid for all ζ ∈Mζ , with the constant
cP (ζ) depending on ζ, then

|(R(z, ζ)f, g)| ≤ C(s, cP (ζ)) sup
ξ∈Rn

1

P̃∗(ξ, ζ)
‖f‖Bs‖g‖B1−s(4.7)

for all f ∈ Bs and g ∈ B1−s (0 ≤ s ≤ 1) with C(s, cP (ζ)) dependent on ζ.
2. If cP is independent of ζ ∈Mζ , then

|(R(z, ζ)f, g)| ≤ C(s, cP ) sup
ξ∈Rn

1

P̃∗(ξ, ζ)
‖f‖Bs‖g‖B1−s(4.8)

for all f ∈ Bs and g ∈ B1−s (0 ≤ s ≤ 1) with C(s, cP ) independent of ζ.
These two remarks will be useful in constructing exponentially growing solutions

of a partial differential equation (P (D+ζ)−λ)u = f to study inverse problems. Some
examples can be found in [8].

5. The uniqueness of solutions and the behavior at infinity. In this sec-
tion, we use the estimate in Theorem 1.2 to discuss the uniqueness and the asymptotic
behavior in an average sense of solutions of the partial differential equation

P (D)u = f ∈ Bs, 0 ≤ s ≤ 1.(5.1)

We assume that the symbol P (ξ) = P1(ξ) + iP2(ξ) of P (D) is simply characteristic
and 0 is not a critical value. Then from Theorem 1.2, we have

R(0)f = F−1((P (·))−1f̂) ∈ B∗1−s

with the bound

‖R(0)f‖B∗
1−s
≤ C(s, cP ) sup

ξ∈Rn

1

P̃∗(ξ)
‖f‖Bs

for 0 ≤ s ≤ 1.
Theorem 5.1. Let P (ξ) = P1(ξ) + iP2(ξ) be a simply characteristic complex

polynomial and let 0 not be a critical value of P . Suppose that the zero set M of P (ξ)
is a C1 submanifold of codimension 2. Then the solution to (5.1) in B∗1−s is unique

if 0 < s ≤ 1 and u = F−1(P (·)−1f̂). Moreover, if f ∈ Bs and 0 < s < 1, then

lim
R→∞

sup
1

R2(1−s)

∫
|x|<R

|u(x)|2dx = 0.
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In particular, if f ∈ B1, then

lim
R→∞

sup
1

R2(1−s)

∫
|x|<R

|u(x)|2dx = 0

for all 0 < s < 1.
Proof. To prove uniqueness, we need the following lemma, proved in [2].
Lemma 5.2. Let u ∈ S ′ ∩ L2

loc and assume that

lim
R→∞

sup
1

Rk

∫
|x|<R

|u(x)|2dx <∞.

If the restriction of the Fourier transform û to an open subset Ω of Rn is supported
by a C1 submanifold M of codimension k, then it is an L2 density û0ds on M and∫

M

|û0|2ds ≤ c lim
R→∞

sup
1

Rk

∫
|x|<R

|u(x)|2,

where c depends only on the dimension n.
Suppose that we have u1 and u2 in B∗1−s satisfying equation (5.1). Set u = u1−u2.

Then

P (D)u = 0.

This implies that û is supported on M = {ξ ∈ Rn : P (ξ) = 0}, which is a C1

submanifold of codimension 2. Since u ∈ B∗1−s, (0 < s ≤ 1),

lim
R→∞

sup
1

R2

∫
|x|<R

|u(x)|2dx

= lim
R→∞

sup
1

R2s

1

R2(1−s)

∫
|x|<R

|u(x)|2dx

= lim
R→∞

1

R2s
lim
R→∞

sup
1

R2(1−s)

∫
|x|<R

|u(x)|2dx

= 0.

The last equality follows from

sup
R≥1

1

R2(1−s)

∫
|x|<R

|u(x)|2dx ≤ 22(1−s)

(1− 2−2(1−s))
‖u‖2B∗

1−s
<∞.

By Lemma 5.2, ∫
M

|û|2ds ≤ c lim
R→∞

sup
1

R2

∫
|x|<R

|u(x)|2dx = 0.

This proves uniqueness.
To prove that the limit is 0, we note that if 0 < s < 1 and f ∈ Bs, R(0)f ∈ L2

−1+s

(see the proof of Corollary 2.5), that is,∫
Rn

(1 + |x|2)−1+s|F−1(P (·)−1f̂)(x)|2dx <∞,
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then

lim
j→∞

sup

∫
x∈Ωj

(1 + |x|2)−1+s|F−1(P (·)−1f̂)(x)|2dx = 0.

This implies that

lim
j→∞

sup
1

R
2(1−s)
j

∫
x∈Ωj

|F−1(P (·)−1f̂)(x)|2dx = 0.

For any ε > 0, there is an integer N > 0 such that when m > N ,

1

R
2(1−s)
m

∫
Ωm

|u(x)|2dx < ε,

where u(x) = F−1(P (·)−1f̂)(x). Then

1

R
2(1−s)
m

∫
|x|<Rm

|u(x)|2dx =
1

R
2(1−s)
m

m∑
j=1

∫
Ωj

|u(x)|2dx

=
m∑
j=1

1

(22(1−s))m−1

∫
Ωj

|u(x)|2dx

=
m∑
j=1

1

(22(1−s))m−j
1

(22(1−s))j−1

∫
Ωj

|u(x)|2dx

=
N∑
j=1

1

(22(1−s))m−j
1

R
2(1−s)
j

∫
Ωj

|u(x)|2dx

+
m∑

j=N+1

1

(22(1−s))m−j
1

R
2(1−s)
j

∫
Ωj

|u(x)|2dx

≤ ‖u‖2B∗
1−s

N∑
j=1

1

(22(1−s))m−j
+ ε

m∑
j=N+1

1

(22(1−s))m−j

≤ ‖u‖2B∗
1−s

1

(22(1−s))m−N
1

1− 2−2(1−s) + ε
1

1− 2−2(1−s)

≤ ε

1− 2−2(1−s) (1 + ‖u‖2B∗
1−s

)

for m > N large enough. Therefore,

lim
R→∞

sup
1

R2(1−s)

∫
|x|<R

|u(x)|2dx

= lim
R→∞

sup
R′≥R

1

(R′)2(1−s)

∫
|x|<R′

|u(x)|2dx = 0.
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Abstract. The multifractal formalism for functions relates some functional norms of a signal to
its “Hölder spectrum” (which is the dimension of the set of points where the signal has a given Hölder
regularity). This formalism was initially introduced by Frisch and Parisi in order to numerically
determine the spectrum of fully turbulent fluids; it was later extended by Arneodo, Bacry, and
Muzy using wavelet techniques and has since been used by many physicists. Until now, it has only
been supported by heuristic arguments and verified for a few specific examples. Our purpose is to
investigate the mathematical validity of these formulas; in particular, we obtain the following results:
• The multifractal formalism yields for any function an upper bound of its spectrum.
• We introduce a “case study,” the self-similar functions; we prove that these functions have

a concave spectrum (increasing and then decreasing) and that the different formulas allow us to
determine either the whole increasing part of their spectrum or a part of it.
• One of these methods (the wavelet-maxima method) yields the complete spectrum of the self-

similar functions.
We also discuss the implications of these results for fully developed turbulence.

Key words. multifractal formalism, self-similarity, wavelet transform

AMS subject classifications. Primary, 26A15; Secondary, 76F99

PII. S0036141095282991

1. Introduction and statement of results. One-dimensional multifractal mea-
sures have been the object of many investigations by mathematicians and theoretical
physicists (see, for instance, [5], [7], [12], [23], and the references therein). Basically,
such measures have very different “scalings” from point to point, i.e., for such a mea-
sure µ, if I is an interval, the quantity µ(I) scales like |I|α, where the exponent α
differs very much following the position of the center of the interval I. Such measures
are important because they are natural measures carried by some strange attrac-
tors and thus appear in the modeling of many natural phenomena (diffusion-limited
aggregates, invariant measures of dynamical systems, voltage drop across a random
transistor network, etc.; see [2] and the references therein).

It may happen that the natural, fractal-like object that one wants to understand
is not a set or a measure but a function. The study of multifractal functions has
proved important in several domains of physics. Examples include plots of random
walks, interfaces developing in reaction-limited growth processes, and turbulent ve-
locity signals at inertial range (see [3]). The relevant mathematical tool studied in
this context is the Hölder spectrum, also frequently called spectrum of singularities;
this function associates with each positive α the Hausdorff dimension of the set where
F is approximately Hölder of order α (in a sense to be made precise). The most
important example where one would like to determine the spectrum of singularities
of a function is the velocity of fully developed turbulence. The reason is that tur-
bulent flows are not spatially homogeneous: the irregularity of the velocity seems to
differ widely from point to point. This phenomenon, called “intermittency,” suggests
that the determination of the Hölder spectrum of the velocity of the fluid might be
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a nontrivial function and thus would yield important information on the nature of
turbulence.

The first problem in this ambitious program is the numerical determination of
the spectrum. Obviously, it is almost impossible to deduce it from the mathemati-
cal definition since it involves the successive determination of several intricate limits.
The only method is to find some “reasonable” assumptions under which the spec-
trum could be derived using only “averaged quantities” (which should be numerically
stable) extracted from the signal. Such formulas for the spectrum can be guessed
heuristically using similarities with statistical physics. Frisch and Parisi [14] pro-
posed, in one dimension, a formula using the Lp modulus of continuity of the velocity
along one axis. Arneodo, Bacry, and Muzy (in [2], [3], and [26]) proposed, also in
one dimension, other formulas based on the wavelet transform of the signal, and they
proved their formulas’ validity when the function considered is the indefinite integral
of a multinomial measure or a C∞ perturbation of such a measure. The origin of this
method may be traced to the seminal work of Mandelbrot [23], and it has been used
a great deal by physicists (see for instance [4], [12], [24], and the references therein),
so the scope of its mathematical validity has become an important issue.

Our purpose in this paper is twofold:

• In Part I, we give some general results concerning the multifractal formalism.
We show that for any function, it yields an upper bound of its Hölder spectrum, but
we also show via some explicit counterexamples that, in general, it does not yield the
exact spectrum.

• In Part II, we introduce and study a model case, “self-similar functions,” and
prove that the multifractal formalism holds for these functions. Examples of such
functions include the indefinite integrals of self-similar measures, but they also in-
clude widely oscillating, several-dimensional functions—two requirements which are
obviously needed, for instance, in any realistic model of turbulence.

Before describing the multifractal formalism, we need to recall some definitions
and notation concerning the Hölder regularity of functions.

Suppose that α is a positive real number; a function F : Rm → R is Cα(x0) if
there exists a polynomial P of degree less than α such that

|F (x)− P (x− x0)| ≤ C|x− x0|α(1.1)

and F belongs to Γα(x0) if (see [18])

∀β > α, F /∈ Cβ(x0),

∀β < α, F ∈ Cβ(x0).

A function F is Cα (or Cα(Rm)) if (1.1) holds for any x in Rm, the constant
C being uniform. (Using this definition C1 means Lipschitz.) We also need the two
following definitions which assert (in two slightly different ways) that the singularity
of F at x0 can be measured on a “large” set near x0. We denote by mesA the Lebesgue
measure of a set A.

Definition 1.1. Let α > −m; a point x0 is a strong α-singularity of F if there
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exist C,C ′ > 0 such that ∀P polynomial of degree at most α, ∀j, ∃Aj , Bj,
mesAj ≥ C2−mj , mesBj ≥ C2−mj ,

∀x ∈ Aj ∪Bj , |x− x0| ≤ 2−j ,

∀x ∈ Aj , ∀y ∈ Bj , (F (x)− P (x− x0))− (F (y)− P (y − x0)) ≥ C ′2−αj .

(1.2)

Note that if α < 1, the last condition reduces to F (x) − F (y) ≥ C ′2−αj . The
wavelet transform of a function F is defined as follows:

C(a, b) =
1

am

∫
F (t)ψ

(
t− b
a

)
dt,

where ψ is a radial function with moments of order less than K vanishing and with
derivatives of order less than K having fast decay (with a K “large enough” depending
on the properties of F that we want to analyze).

Definition 1.2. A point x0 is a wavelet α-singularity of F if there exist wavelet
coefficients C(an, bn) in a cone pointing towards x0 (i.e., | bn − x0 |≤ Can) such that
an → 0, an/an+1 ≤ C, and

|C(an, bn)| ≥ Caαn.(1.3)

We will prove in section 2 that the two previous definitions are related and that
if F is Cα(x0) and x0 is a wavelet α-singularity of F , then x0 is a strong α-singularity
of F .

We can now define the object of our study.
Definition 1.3. The Hölder spectrum of a function F is the function d(α)

defined for each α ≥ 0 as follows:
d(α) is the Hausdorff dimension of the set of points x0 where F belongs to Γα(x0).
Remark. We will sometimes also call the function D(α), which is the packing

dimension of the strong α-singularities, the packing dimension spectrum.
The two definitions of dimension that we use will be recalled when needed. Note

that d(α) and D(α) are defined point by point. We will consider mainly d(α) except
in section 4 of Part I and section 6 of Part II.

We are now in a position to describe the methods used by Frisch and Parisi on one
side and Arneodo, Bacry, and Muzy on the other in order to determine the spectrum
of singularities of functions.
• The structure function method first requires the computation of

Sq(l) =

∫
Rm
|F (x+ l)− F (x)|qdx.

Assuming that the order of magnitude of Sq(l) is |l|ζ(q) when l → 0, the Hölder
spectrum is computed using the formula

d(α) = inf
q

(qα− ζ(q) +m).(1.4)

(We will define ζ(q) precisely below.)
• In the wavelet-transform integral method, one computes

Z̃(a, q) =

∫
Rm
|C(a, b)|qdb,
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and then if the order of magnitude of Z̃(a, q) is aη(q),

d(α) = inf
q

(qα− η(q) +m).(1.5)

• In order to describe the wavelet-transform maxima method, we first have to
introduce the notion of a line of maxima; consider for a given a′ > 0 the local maxima
of the function b → C(a′, b); generically, they belong to a line of maxima b = l(a)
defined in a small left-neighborhood [a′′, a′] of a′ by the condition that b→ C(a, b) has
a local maximum for b = l(a). Usually, one cannot choose a′′ = 0 because the lines
of maxima have ramifications called “fingerprints.” The wavelet-transform maxima
method first requires the computation of

Z(a, q) =
∑
l

sup
(b=l(a))

|C(a, b)|q,(1.6)

where l is a line of maxima of the wavelet transform defined on [a′′, a′] and where the
sum is taken on all lines of local maxima defined in left-neighborhoods [a′′, a′] of a′.
If the order of magnitude of Z(a, q) is aθ(q), then

d(α) = inf
q

(qh− θ(q)).(1.7)

Numerically, according to [3], the most reliable method seems to be the last one,
probably because the restriction of the computation to the maxima insures that small
errors are less likely to be taken into account since at the maxima, they are relatively
less important. More generally, methods that involve the wavelet transform are nu-
merically more stable, probably because they involve only averaged quantities and
not the direct values of the function. The use of such quantities has been advocated
in [15]. The structure function method involves only order-one differences so that it
is clearly unfit for computing the spectrum d(α) when α is larger than 1.

Since the scalings assumed above do not necessarily hold, we use the following
definitions. Let

ζ(q) = lim inf
l→0

logSq(l)

log |l| ;(1.8)

η(q) = lim inf
a→0

log Z̃(a, q)

log a
;(1.9)

θ(q) = lim inf
a→0

logZ(a, q)

log a
,(1.10)

The multifractal formalism may seem surprising at first glance because it relates
pointwise behaviors to global estimates. Before giving some mathematical explana-
tions for it, it may be enlightening to give the heuristic classical argument from which
it is derived. Although this argument cannot be transformed into a correct mathe-
matical proof, it at least shows why these formulas can be expected to hold, and a
careful study of its defects shows under which type of additional conditions it should
be mathematically correct.

We calculate the contribution of singularities of order α to the integral∫
Rm
|F (x+ l)− F (x)|qdx.
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Near a singularity of order α, we have, in a small box of size |l|,

|F (x+ l)− F (x)|q ∼ |l|αq.

If the dimension of these singularities is d(α), it means that there are about |l|−d(α)

such boxes, each of volume |l|m, so that the total contribution to the integral is
|l|αq+m−d(α). The real order of magnitude of the integral is given by the largest
contribution, which, since l→ 0 is given by the smallest exponent, is such that

ζ(q) = inf
α

(αq +m− d(α)).(1.11)

This formula is not the one that we are looking for since we know ζ(q) and are looking
for d(α), but if it holds and if d is concave (we will see that in general this assumption
need not be verified; however in many cases it is), d(α) is recovered by an inverse
Legendre transform formula which yields (1.4). Of course, if d(α) is not concave, one
expects the right-hand side of (1.4) to yield only the convex hull of the spectrum.

In all cases, (1.11) is more likely to hold because the concavity problem does not
appear there. (A straightforward application of Young’s formula shows that ζ(q) is
always concave.)

In the first part of this paper, the following results will be proved.
Theorem 1.4. If q > 1 and ζ(q) < q, then ζ(q) = η(q) for any function F . In

general, these functions need not be related to θ(q).
If F is a function of one real variable, and 0 < η(1) < 1, the box dimension of

the graph of F is 2− η(1).
The following upper bound holds for any function F such that η(p) > m ∀p:

d(α) ≤ inf
p

(m− η(p) + αp).(1.12)

Also, without any assumption on η,

D(α) ≤ inf
p

(m− η(p) + αp).

In general, (1.12) cannot be an equality ; more precisely, let d(α) be a Riemann-
integrable positive function on R+. There exists F1 and F2 which share the same
function η, but the spectrum of F1 is d(α) and F2 is C∞ except at the origin (so that
its spectrum is equal to −∞ everywhere except at one point).

Some counterexamples will show that a smooth function (with a large η(p)) may
nonetheless be such that θ(p) can be arbitrarily small. (The case θ(p) = −∞ ∀p > 0
can even happen.) The wavelet-transform maxima method need not be correct, even
in the more precise framework of self-similar functions, where the other methods will
work. However, after a slight modification, it yields the correct spectrum for self-
similar functions. The mathematical problem with using (1.6) is that the lines of
maxima can be too close to each other. In that case, we should instead keep for each
interval of width a only one line passing through this interval that yields the largest
contribution. However, the reader will see that the mathematical counterexamples
where η(q) 6= θ(q) are very contrived, and the author’s belief is that for practical
applications, (1.5) and (1.7) have the same range of validity.

The last assertion in the theorem is stronger than the mere failure of the Legendre
transform formulas. It asserts that there is not enough information in the function η
to determine the spectrum. In particular, contrary to a common belief, the fact that
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η is not linear does not imply that the signal has a multifractal structure. It also
shows that, mathematically, “any” function d(α) can be a spectrum. It is surpris-
ing to notice that in several different fields of application, this does not seem to be
the case. The spectra computed numerically have always the same shape—roughly
speaking, the upper part of an ellipse. This is actually the shape we will find for
self-similar functions. There can be several explanations to this analogy. Either (a)
these physical signals satisfy some “scaling-invariance” properties which makes them
fit in the framework (perhaps generalized in some ways) of self-similar functions or
(b) a pessimistic explanation could be that, these spectra being (perhaps wrongly)
calculated using a Legendre transform, the convex hull of the true spectrum is actually
calculated and not the spectrum itself—hence this “generic” concave shape. We will
also see that these examples answer the following problem raised by Daubechies and
Lagarias in [9], which is somehow converse to the multifractal formalism: Is η the Le-
gendre transform of m−d(α)? Positive answers to this problem find fewer applications
than the multifractal formalism since in practice one wants to obtain d(α) knowing
η(p) or ζ(p) and not the converse; nonetheless, it might hold more generally (see [9]).
The problem raised by Daubechies and Lagarias is to find explicit counterexamples.
We will see that in most cases, F1 and F2 are such counterexamples.

One of the referees of this paper raised the problem of a relationship between θ(q)
and η(q) such as

θ(q) ≤ η(q)−m.

This is true for self-similar functions satisfying the closed-set condition because then
the regions where the wavelet transform is large (and these are the regions taken into
account to estimate η(q)) are isolated so that there must exist a local maximum of
the wavelet transform in the neighborhood. In general, however, we have no answer
to this problem.

We now define self-similar functions by analogy with self-similar sets.
Recall that a set K is strictly self-similar if it is a finite union of disjoint subsets

K1, . . . ,Kd which can be deduced from K by similitudes. For instance, the triadic
Cantor set and the Van Koch curve are self-similar. These sets have been widely
studied, as have the measures supported on them. They play an important role in
the modeling of several physical phenomena (see, for instance, [5], [16], [12], and [3]).

Suppose that F is continuous and compactly supported and let Ω be the bounded
open subset of Rn such that Ω̄ = supp(F ). The intuitive idea of a self-similar function
is that there should exist disjoint subsets Ω1, . . . ,Ωd of Ω such that the graph of F
restricted to each Ωi is a “contraction” of the graph of F , modulo a certain error,
which is supposed to be smooth. First, suppose that “smooth” means Lipschitz, and
let us formalize this definition.

There should exist similitudes (Si)i=1,...,d such that if Si(Ω) = Ωi,

∀i, Ωi ⊂ Ω,(1.13)

Ωi ∩ Ωj = φ if i 6= j,

∀x ∈ Ωj , F (x) = λjF (S−1
j (x)) + gj(x) with gj Lipschitz on Ω̄j .

We suppose that Si are contractions, i.e., the product of an isometry by the
mapping x→ µix, where µi < 1.

Equation (1.13) does not tell how F behaves outside Ωi. We make the assumption
that it is smooth, i.e., Lipschitz, outside

⋃
Ωi.
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Since F (S−1
j (x)) = 0 if x /∈ Ωj ,

F (x) =
d∑
i=1

λjF (S−1
j (x)) + g(x),

where g = gj on Ωj , g = F outside
⋃

Ωj , and g is obviously continuous since F is
continuous; since it is Lipschitz on

⋃
Ω̄j and outside

⋃
Ωj , g is uniformly Lipschitz.

This equation holds for any Lipschitz function F (use it as a definition for g when
all λj = 0) so that it is interesting only if F is not uniformly Lipschitz, and in that
case, we will be interested in determining the points where F is Cα for α < 1.

We will generalize this model slightly by assuming that g is Ck(Rm) and not
necessarily compactly supported but also that the derivatives of g of order less than
k have fast decay. The same remark shows that in this case, we should suppose that
F is not Ck(Rm), and we will be interested in determining where F is Cα for α < k.
We will thus use the following definition.

Definition 1.5. A function F : Rm → R is self-similar (of order k ∈ R+) if the
three following conditions hold:
• There exists a bounded open set Ω and S1, . . . , Sd contractive similitudes such

that

Si(Ω) ⊂ Ω,(1.14)

Si(Ω) ∩ Sj(Ω) = ∅ if i 6= j.(1.15)

(The Si’s are the product of an isometry with the mapping x→ µix, where µi < 1.)
• There exists a Ck function g such that g and its derivatives of order less than

k have fast decay and F satisfies

F (x) =

d∑
i=1

λiF (S−1
i (x)) + g(x).(1.16)

• The function F is not uniformly Ck in a certain closed subset of Ω.
Recall that g has fast decay if

∀n ∈ N, |g(x)| ≤ Cn
(1 + |x|)n .

Let

αmin = inf
i=1,...,d

(
log λi
logµi

)
, αmax = sup

i=1,...,d

(
log λi
logµi

)
.

We use this notation because αmin will turn out to be the smallest pointwise Hölder
regularity exponent of F and αmax the largest (lower than k). Let τ be the function
defined by

d∑
i=1

λai µ
−τ(a)
i = 1.

Some results concerning the multifractal formalism for self-similar functions are
summed up in the following theorem and will be proved in the second part of the
paper.
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Theorem 1.6. Suppose that F is self-similar. If αmin > 0, the function d(α)
vanishes outside [αmin, αmax] ∪ [k,+∞) and is analytic and concave on [αmin, αmax].
Its maximal value dmax on this interval satisfies∑

µdmax
i = 1.

Let α0 be the value for which this maximum is attained. First, suppose that g is
C∞. If α ≤ α0, d(α) can be obtained by computing the Legendre transform of either
η(q)−m or ζ(q)−m.

If g is only Ck, let p0 be defined by η(p0) = kp0 and let α1 < α0 be the value of
the inverse Legendre transform of η(q)−m at p0; if α ≤ α1, d(α) can be obtained by
computing the Legendre transform of either η(q)−m or ζ(q)−m.

Without any assumption on αmin, if
∑
| λj | µmj < 1, the same results hold if

we replace d(α) by D′(α), the packing dimension of the wavelet α-singularities (or
by D(α) if g and λi are positive and if furthermore the separated open-set condition
holds).

We will also prove that in some cases, the wavelet-maxima method can be modified
so that it yields the whole spectrum of self-similar functions (see Theorem 2.2 in Part
II).

Corollary 8.5 in Part II of this paper will extend this result to a larger class of
functions than self-similar functions.

Before we begin to study the multifractal formalism for functions, we show its
relationship to the multifractal formalism for measures. We recall that if µ is a
probability measure on [0, 1], one defines

τ(q) = lim
j→+∞

1

j log 2
log
∑(

µ

([
k

2j
,
k + 1

2j

]))q
and

Eα =

{
t :

logµ(In(t))

log |In(t)| → α

}
,

where In(t) is the interval [k/2j , (k + 1)/2j ] which contains t. The multifractal for-
malism for measures asserts that the dimension of Eα is the Legendre transform of
τ (see, for instance, [5] and [12] for mathematical results concerning this assertion).
Let F be an indefinite integral of µ (F (x) = µ([0, x])). Clearly,

t ∈ Eα ⇔ |F (x+ h)− F (x)| ∼ hα

and∑(
µ

([
k

2j
,
k + 1

2j

]))q∑∣∣∣∣F( k

2j

)
− F

(
k + 1

2j

)∣∣∣∣q ∼ 2j
∫
|F (x+2−j)−F (x)|qdx.

Thus if F is the indefinite integral of a probability measure supported on [0, 1], the two
multifractal formalisms are identical. However, in dimensions larger than one or for
functions that are not of bounded variation, the multifractal formalism for functions
cannot be obtained as a consequence of the multifractal formalism for measures.

Our purpose in Part I of this paper is to prove Theorem 1.4. In section 2, we make
explicit the relation between the size of the wavelet transform and the local regularity
of the function. In section 3, we identify the quantities Sq(l) or Z(a, q) with some
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functional norms, thus proving the first point of Theorem 1.4. In section 4, we prove
the upper estimate for the dimensions of singularities and the formula for the box
dimension of the graph of F . In section 5, we study the wavelet-maxima method. In
section 6, we construct counterexamples to the validity of the multifractal formalism
in all generality.

The two parts of this paper can be read independently. Some results of this paper
have been announced in [18], [19], and [20].

2. Regularity, singularities, and two-microlocalization. The results of The-
orems 1.4 and 1.6 relate the pointwise behavior of a function to estimates on its wavelet
transform. Our purpose in this section is to recall existing results on this topic and
prove new ones concerning either negative exponents α or strong α-singularities. We
first recall the basic properties of the wavelet transform.

Let ψ be in Ck+1(Rm), radial, with moments of order less than k + 1 vanishing,
and such that the derivatives of ψ of order less than k+1 have fast decay. The wavelet
transform of F is defined by

C(a, b)(F ) =
1

am

∫
Rm

F (t)ψ

(
t− b
a

)
dt,(2.1)

and if C(ψ) =
∫
|ψ̂(ξ)|2dξ/|ξ|, F is recovered from its wavelet transform by

F (t) = C(ψ)

∫
a>0

∫
C(a, b)(F )ψ

(
t− b
a

)
db

da

am+1
.

An intuitive idea is that a large wavelet coefficient means that the corresponding
function locally has an oscillation at the corresponding scale of a corresponding am-
plitude. Although there does not seem to be a straightforward relationship between
the two notions, Propositions 2.2 and 2.5 can be seen as a mathematical formulation
of this idea. The following results can be found in [25] and [17]. Suppose that s > 0.
• F ∈ Cs(Rm) if and only if

|C(a, b)(F )| ≤ Cas.(2.2)

(Recall that if s = 1, the space Cs(Rm) must be replaced by the Zygmund class, which
is composed of the continuous functions F such that |F (x+h) +F (x−h)− 2F (x)| ≤
Ch, or, more generally, if s is a positive integer, then it must be replaced by the
corresponding indefinite integrals of the Zygmund class.)
• If F ∈ Cs(x0), then

|C(a, b)(F )| ≤ Cas
(

1 +
|b− x0|

a

)s
.(2.3)

• If (2.3) holds and if F ∈ Cε(Rm) for an ε > 0, there exists a polynomial P such
that if |x− x0| ≤ 1/2,

|F (x)− P (x− x0)| ≤ C|x− x0|s log

(
1

|x− x0|

)
.(2.4)

Due partly to physical motivations (the study of the velocity of turbulent fluids,
for instance), we do not want to consider only bounded functions, and thus we want
to be able to consider points where F has a singularity (i.e., in a neighborhood in
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which it is unbounded). We first want to obtain results similar to (2.3) or (2.4) for
singularities. A first problem is the definition of singularities that we should adopt.

The following definition is a straightforward generalization of (1.1) to negative
exponents.

Definition 2.1. Suppose that −m < s ≤ 0. F is Cs(x0) if

|F (x)| ≤ C|x− x0|s.(2.5)

We have to make the assumption −m < s ≤ 0 because if s ≤ m, F might not be
locally integrable and thus might not be a distribution. In that case, no computation
on F (such as defining wavelet coefficients) would make sense. We will nonetheless
see later how to define singularities of order less than −m.

We now relate (2.5) to conditions on the wavelet transform of F . We first check
that if (2.5) holds, then

|C(a, b)(F )| ≤ Cas
(

1 +
|b− x0|

a

)s
;(2.6)

First, suppose that ψ is supported in B(0, 1). Then

|C(a, b)| ≤ C

am

∫
B(b,a)

|x− x0|sdx,

where B(x, r) is the ball centered at x of radius r. If |b − x0| ≥ 2a and x ∈ B(b, a),
then |x−x0| ∼ |b−x0| and |C(a, b)| is bounded by (C/am)4mam|b−x0|s. Otherwise,
|x−x0| ∼ a and the integral is bounded by (C/am)4mamas, and hence we have (2.6).
The general case holds because condition (2.6) does not depend on the particular
wavelet chosen (see [21]).

Note that we will often use the notation a ∼ b for positive quantities, which
will always mean that the quotient a/b is bounded from below and above by positive
constants.

If (2.6) holds, one can easily check that it implies no regularity for F . In that
case, of course, we refuse to make a minimal smoothness assumption like F ∈ Cε(Rm),
which was needed in a similar situation in order to get (2.4). Let us show intuitively
how to obtain a converse estimate. Suppose that suppψ ⊂ B(0, 1), (2.5) holds, and
|∇F (x)| ≤ C|x− x0|s−1; we further have |C(a, b)| ≤ Ca|b− x0|s−1 for |b− x0| > a.

Conversely, one can easily check that this last estimate together with (2.6) implies
that |F (x)| ≤ C|x− x0|s. We actually prove a slightly more general result.

Proposition 2.2. Let −m < s ≤ 0. If |F (x)| ≤ C|x− x0|s, then

|C(a, b)(F )| ≤ Cas
(

1 +
|b− x0|

a

)s
.

Conversely, suppose that ∃s′ < s such that

|C(a, b)(F )| ≤ Cas
(

1 +
|b− x0|

a

)s′
.(2.7)

Then |F (x)| ≤ C|x− x0|s.
Proof. We already proved the first part. Suppose that (2.7) holds. Using the

reconstruction formula for F ,

|F (t)| ≤ C
∫ [∫

B(t,a)

|C(a, b)|db
]

da

am+1
.
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If |t− x0| ≥ 2a, |b− x0| ≥ a and the right-hand side is bounded by

C

∫
a≤ |t−x0|2

as−s
′ |t− x0|s

′ am

am+1
da ≤ C|t− x0|s.

If |t− x0| ≤ 2a, |b− x0| ≤ 4a and we get the bound

C

∫
a≥ |t−x0|2

aasam
da

am+1
≤ C|t− x0|s.

Hence Proposition 2.2 follows.
Let us now recall the following definition of the two-microlocal spaces Cs,s

′
(x0)

(see [17]):

F ∈ Cs,s′(x0)⇐⇒ |C(a, b)| ≤ Cas
(

1 +
|b− x0|

a

)−s′
.(2.8)

Proposition 2.2 generalizes to negative exponents the continuous embeddings

Cs(x0) ↪→ Cs,−s
′
(x0) if s′ < s,(2.9)

proved in [21], so that it also yields a justification of Definition 2.1 (and thus to the
definition of strong α-singularities when α ≤ 0).

The problem of defining Hölder exponents for s ≤ −m is not straightforward. As
mentioned before, we cannot consider only conditions such as |F (x)| ≤ C|x−x0|s since
this does not imply that F is a distribution. The following definition has sometimes
been proposed:

F ∈ Cs(x0)⇐⇒ (−∆)−
[s]
2 F ∈ Cs−[s](x0).(2.10)

There are two problems with this definition. The first is that it is not consis-
tent with the definition for s > 0. Let us present an example. Consider F (x) =
x1/2 cos(1/x); the integral of F is O(x5/2) at the origin. Nonetheless, we would not
consider F to be a C3/2 function at the origin. Furthermore, this definition is also
not consistent with the “natural” definition (2.5) when −n < α ≤ 0 for essentially the
same reasons (we leave this verification to the reader). In order to go further, we in-

terpret (2.10) as a two-microlocal condition. It implies (−∆)−
[s]
2 F ∈ Cs−[s],−s+[s](x0)

so that F ∈ Cs,−s+[s](x0). This condition is very far from f ∈ Cs,−s which because
of Proposition 2.2 should be “close” to the condition F ∈ Cs(x0). We show how to
obtain a definition which is consistent with the definition for s > −m and with the
imbeddings in (2.9).

First, note that if s′ is positive, Cs,s
′
(x0) ↪→ Cs(Rm), where by extension we

define for a negative s

Cs(Rm) = Ḃs,∞∞ = {F : |C(a, b)| ≤ Cas}.

Thus the condition F ∈ Cs(x0), where s is negative, implies a global (negative)
regularity for F . For s ≤ −m, we will suppose that this regularity holds, which
will guarantee that F is a distribution. In [11], Eyink proposed the definition f ∈
Cs,−s(x0). The advantage is that Proposition 4.1 can immediately be extended, which
one uses with this definition of a pointwise Hölder exponent. The drawback is that
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this condition implies no pointwise regularity, even for positive s. Thus we adopt the
following definition.

Definition 2.3. Suppose that s ≤ −m. F belongs to Cs(x0) if F ∈ Ḃs,∞∞ and if
F restricted to Rm − {x0} is a function that satisfies

|F (x)| ≤ C|x− x0|s.

Note that this definition is slightly redundant since any function defined on Rm−
{x0} is the restriction of a distribution (defined on Rm) which belongs to Ḃs,∞∞ .

If we define Ċs(Rm) = Ḃs,∞∞ (Rm), we have the surprising continuous embedding

Ċs(x0) ↪→ Ċs(Rm),

which goes in the opposite direction than it would for positive s.
This definition coincides with Definition 2.1 when −m < s ≤ 0 since in that case

the function F itself is the corresponding distribution, so

|F (x)| ≤ C|x− x0|s =⇒ F ∈ Ḃs,∞∞ .

Suppose that F ∈ Cs(x0). If |b − x0| ≥ 2a, as in the case where s > −m, we
get |C(a, b)| ≤ C|b − x0|s. Since |C(a, b)| ≤ as by hypothesis, we see that Cs(x0) ↪→
Cs,−s(x0).

Proposition 2.4. Using the previous definition of negative Hölder regularity, if
s ≤ −m, the following embeddings hold:

F ∈ Cs(x0)⇒ F ∈ Cs,−s(x0),

F ∈ Cs,−s′(x0) for an s′ < s⇒ F ∈ Cs(x0).
(2.11)

The proof of the second implication is similar to the case where s > −m. It is
interesting to check that some distributions which “should” belong to these generalized
Hölder spaces satisfy these conditions. For instance, the distribution p.p.(1/x) defined
by 〈

p.p.

(
1

x

)
| φ
〉

= lim
ε→0

∫
R−[−ε,ε]

φ(x)

x
dx

is C−1 at 0 and f.p.(1/x2) defined by〈
f.p.

(
1

x2

)
| φ
〉

= lim
ε→0

(∫
R−[−ε,ε]

φ(x)

x2
dx− 2φ(0)

ε

)

is C−2 at the origin. We leave these verifications as an exercise.
We now prove the following proposition, which relates the size of the wavelet

transform to the existence of strong α-singularities when the wavelet used is compactly
supported.

Proposition 2.5. Suppose that F is Cα(x0) and that x0 is a wavelet α-singularity
of F . Then x0 is a strong α-singularity of F .

For the sake of simplicity, we restrict our focus to the case where 0 < α < 1.
Suppose that F is Cα(x0) and that x0 is not a strong α-singularity of F . Let ε > 0
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be fixed and a > 0 be such that (1.3) does not hold for any (a, b) in the cone over x0.
For any x in the ball B(x0, Ca) (except on an exceptional set Ea of measure at most
εam), we have

|F (x)− F̄ | ≤ εaα,

where F̄ is the mean value of F in the ball B(x0, Ca). Also, if x ∈ Ea,

|F (x)− F̄ | ≤ |x− x0|α.

If the support of the wavelet ψ((x− b)/a) is included in B(x0, Ca),

|C(a, b)| = 1

am

∣∣∣∣∫ F (x)ψ

(
x− b
a

)
dx

∣∣∣∣ ≤ 1

am

∫
B(x0,Ca)

|F − F̄ |,

the integral on Ea is bounded by aαεam and outside Ea by εaαam, so |C(a, b)| ≤
2Cεaα and (1.3) does not hold. Hence we have a contradiction, and thus Proposition
2.5 holds.

The condition that F is Cα(x0) is necessary in Proposition 2.5, as shown by the
following counterexample. Suppose that ψ (perhaps after a translation) is compactly
supported in an interval of the form [2l, 2l+1], and suppose that the 2j/2ψ(2jx− k)’s
form an orthonormal wavelet basis of L2(R) (see [8] for such functions). Let I be an
interval such that ψ(x) ≥ C > 0 on I. Define F (x) =

∑
j 2−(α−1)j1Aj (x), where Aj =

2−jIj and Ij is a subinterval of I of length 2−j . Then clearly 2−j
∫
F (x)ψ(2jx)dx ≥

C2−αlj but F has no strong singularity at 0 (but is only Cα−1(0)).

3. Some functional norm estimates. We first show the link between quan-
tities such as Sp(l) or Z̃(a, q) and Sobolev or Besov-type norms. We recall a few
definitions and characterizations.

Suppose that s ∈ R and p, q > 0. A function F belongs to the homogeneous
Besov space Bs,qp if ∫

a>0

[∫
|C(a, b)|pdb

]q/p
da

asq+1
< +∞(3.1)

(which follows directly from [25]).
Since η(p) is the infimum of all numbers τ verifying, for a small enough,

Z̃(a, p)

(
=

∫
|C(a, b)|pdb

)
≤ Caτ ,

we see that if p > 0,

η(p) = sup{τ : F ∈ Bτ/p,∞p }.(3.2)

A similar characterization exists for the function ζ(p). The spaces Hs,p introduced
by Nikol’skii (see [1] or [27]) are defined as follows.

Let s ≥ 0. If s is not an integer, s = m + σ with m integer and 0 < σ < 1. Let
p ≥ 1, F ∈ Hs,p if F ∈ Lp and for any multiindex α such that |α| = m,∫ |∂αF (x+ h)− ∂αF (x)|p

|h|σp dx ≤ C.(3.3)
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Recall that ζ(p) is the lim sup of the numbers ξ such that

Sp(h)

(
=

∫
|F (x+ h)− F (x)|pdx

)
≤ Chξ(p)

for h small enough. Thus if p ≥ 1, ζ(p) = sup{s : F ∈ Hs/p,p}.
Of course, we see here that the formula in the structure function method must

be modified as follows in order to be consistent with (3.3): If ζ(p) is less than 1, the
formula is all right; if it is equal to 1, one should use the same formula but with
the gradient of F ; and so on until ζ(p) falls between two integers. (Note that this
procedure is obviously difficult to handle numerically if ζ(p) is large.)

The following embeddings hold if p ≥ 1:

∀ε > 0, Hs+ε,p ↪→ Bs,∞p ↪→ Hs−ε,p(3.4)

(because (3.4) holds between Hs,p and W s,p spaces (see [1]), between W s,p and Lp,s

spaces (see [1]), and between Lp,s and Bs,∞ spaces (see [21] or [25])). Thus, if p > 1,
ζ(p) = η(p) and the function η can be defined by

η(p) = sup{s : F ∈ Bs/p,pp } = sup{s : F ∈ Lp,s/p}(3.5)

(where Lp,s is defined for s > 0 by f ∈ Lp,s ⇔ f ∈ Lp and (−∆)s/2f ∈ Lp), and if
0 < p ≤ 1, it can be defined by the first equality only, so the last characterization of
η(p) in (3.5) is again a straightforward consequence of Sobolev-type embeddings.

Proposition 3.1. The following characterizations hold:

∀p > 0, η(p) = sup{s : F ∈ Bs/p,∞p },
∀p > 1, η(p) = ζ(p) = sup{s : F ∈ Hs/p,p} = sup{s : F ∈ Ls/p,p}.

Remark. The number η(2) can be interpreted as follows:

η(2) = sup

{
s :

∫
|F̂ (ξ)|2(1 + |ξ|2)s/2dξ ≤ C

}
.

This holds because Bs,22 = L2,s, and ∀q, q′, q′′, Bs+ε,qp ⊂ Bs,q′p ⊂ Bs−ε,q′′p , so

η(2) = sup{s : F ∈ Bs,∞2 } = sup{s : F ∈ Bs,22 }

= sup{s : F ∈ L2,s/2} = sup

{
s :

∫
|F̂ (ξ)|2(1 + |ξ|2)s/2dξ ≤ C

}
.

Note that this result differs from [3], where the interpretation given for η(2) is
|F̂ (ξ)|2 ∼ |ξ|−η(2)−2. Nonetheless, the interpretation given in [3] is correct provided
that such a scaling holds. An interpretation of η(1) of very different nature will be
given in section 4.

We will show in section 6 that “any” function d(α) can be a Hölder spectrum. It
is interesting to notice that this is not the case with the function η(p), which because
of the Sobolev imbeddings between Lp,s spaces cannot be arbitrary. Since Lp,s ⊂ Lt,q
if t ≤ s and q = mp/(m− (s− t)p) (see [1]), if q ≥ p,

η(q)− η(p)

q − p ≥ η(p)−m
p

.(3.6)

In particular, we see that η′(p) ≥ η(p)−m/p. Conversely, it is easy to check that any
function η(p) that satisfies (3.6) can be associated with a function F so that (3.6)
characterizes all possible functions η(p).
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4. Upper bounds for dimensions of spectrums. A first problem that we
meet is that of which mathematical definition of “dimension” we should use. The
physical literature is often unclear about this point, sometimes using the term Haus-
dorff dimension but computing it using coverings by boxes of the same size. Of
course, a given set of points (a potential “set of Hölder singularities” of our function)
can have very different dimensions depending on the definition considered. We will
see that the “good definition” depends on the kind of singularities that we look for.
For Hölder singularities, we will get bounds on Hausdorff dimensions, and for strong
α-singularities, we will get bounds on packing dimensions. An important difference
between the two settings is that in the first we necessarily have to suppose some min-
imal uniform regularity for F , which is not required in the second. We first recall the
definition of the Hausdorff dimension and Hausdorff measure.

Let A ⊂ Rn and Rε be the set of all coverings of A by sets of diameter at most ε.
Let

M(ε, d) = inf
r∈Rε

∑
Ai∈r

(diamAi)
d.

Then by definition,

d−Mes(A) = lim sup
ε→0

M(ε, d)

is the d-dimensional Hausdorff measure. The Hausdorff dimension of A is

D = inf{d : d−Mes(A) = 0} = sup {d : d−Mes(A) = +∞}.

If the coverings are done using only balls or only dyadic cubes, we obtain an
equivalent quantity for the d-measure, and thus D is not changed.

Proposition 4.1. Let s−m/p > 0 and p > 0. If F ∈ Bs,∞p , d(α) ≤ m−(s−α)p.
Thus if η(p) satisfies η(p) > m ∀p, d(α) ≤ infp(m− η(p) + αp).

This proposition is reminiscent of [5], where Brown, Michon, and Peyrière proved
similar results for measures (in dimension 1). If s ≤ m/p, a function in Lp,s or Bs,∞p
can be infinite on a dense set and thus smooth at no point (see [21]), so that no such
result can hold if we do not make the assumption s−m/p > 0.

Proof of Proposition 4.1. we use a slight modification of the two-microlocal space,
for convenience. We thus define

F ∈ Cs,s′p (x0) if and only if |Cj,k| ≤ C2−(m2 +s)jj2/p(1 + |2jx−k|)−s′ .(4.1)

We will prove that if F ∈ Bs,∞p , then d > 0. Outside a set of d-measure 0, F ∈
C
s−m−d/p,−d/p
p (x). Thus if 0 < s − m/p < α < s, the set {x : F /∈ Cα(x)} has

Hausdorff dimension at most m− (s− α)p, and Proposition 4.1 follows.
Let F ∈ Bs,∞p . Then

∀j,
∑
k

|Cj,k|p 2(ps+mp
2 −m)j ≤ C.(4.2)

Let d be such that 0 < d ≤ n and Bj,k be the ball centered on k2−j and of size

diam(Bj,k) = |Cj,k|p/d2αjj−2/d,
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where α is such that

−dα+ ps+
mp

2
−m = 0.

Then (4.2) can be rewritten as

∀j,
∑
k

(diamBj,k)d ≤ c

j2
.(4.3)

Let Aj =
⋃
k Bj,k. Equation (4.3) implies that the d-measure of A = lim supAj is 0.

If x /∈ lim supAj , ∃ j0, ∀j ≥ 0, ∀k, x /∈ Bj,k so that

|x− k2−j | ≥ C|Cj,k|p/d 2αjj−2/d.

Hence

∀j ≥ j0, |Cj,k| ≤ C2−(m/2+s−m/p)j |x− k2−j |d/pj2/p

and thus F ∈ Cs−m−d/p ,−d/pp (x) (because (4.1) automatically holds for j ≤ j0). Hence
Proposition 4.1 follows.

One can wonder if similar bounds (or equalities) hold for dimensions of strong
α-singularities. This problem is important for the following reasons. Recall that the
multifractal formalism was introduced for the study of turbulence. In [6], Caffarelli,
Kohn, and Nirenberg obtained a bound on the dimension of (possible) singularities in
Navier–Stokes equations that is actually a bound on the packing dimension of “strong
α-singularities” following the definition that we gave (with α = 0).

Another reason to obtain bounds for dimensions of strong singularities is that
when global regularity conditions (which imply that F is continuous) no longer hold,
no result such as Proposition 4.1 can be proved. Even in the strict framework of
self-similar functions, we will see in Part II that no such bounds exist. Since for
applications we clearly want to be able to consider unbounded functions (for instance,
the velocity of a turbulent fluid may be unbounded), it is important to obtain some
positive results in that case.

Our purpose is to prove that if F belongs to W s,p, given α < s, the set of points
x where F has a strong α-singularity has a small packing dimension. We first recall
the definition of the packing dimension of a subset of Rm (see [12]).

Let J > 0 and ΛJ be the set of dyadic cubes of size 2−J which contain a point of
E. Define

md(E) = lim
J→+∞

∑
λ∈ΛJ

2−dJ = Λ]j 2−dJ

(where Λ]j denotes the cardinality of Λj) and

mesd(E) = inf
E⊂∪En

∑
n

md (En).

The box dimension of E is the value of d for which md (E) falls from +∞ to 0.
This dimension is also called the potential dimension by some physicists. It is the only
one that is numerically easy to compute because it does not involve optimal coverings.
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The packing dimension of E is the value of d for which mesd(E) falls from +∞
to 0. It is clearly no larger than the box dimension.

Proposition 4.2. Let F ∈ W s,p(Rm) and α be such that −m < α ≤ 1. The
packing dimension of the strong α-singularities of F is bounded by m − (s − α)p so
that if D(α) is the packing dimension of strong α-singularities and −m < α ≤ 1, then

D(α) ≤ inf
p

(m− η(p) + αp).(4.4)

Such a result is in many cases more satisfactory than Proposition 4.1 since we do
not have to make the assumption of a minimal Hölder regularity of F . Actually, the
numerical estimation of the upper bound for D(α) when α = 0 using (4.4) could be
a way to check whether a stronger result than the one obtained by Caffarelli, Kohn,
and Nirenberg in [6] holds.

Of course, a way to avoid the problem of unbounded functions could be to consider
indefinite integrals or perhaps iterated indefinite integrals of the velocity, but such
quantities would have no direct physical interpretation.

We first describe the functional setting that we use. We will give bounds on the
packing dimension of strong α-singularities in the Sobolev spaces W s,p. Recall that
(see [1])

(4.5)

if 0 < s < 1, f ∈W s,p ⇔ f ∈ Lp and

∫ ∫ |f(x+t)− f(x)|p
|t|m+sp

dx dt ≤ +∞.

For s ≥ 1, these spaces can be defined as follows. First, if 0 < s < 2, they can be
defined by replacing |f(x+t) − f(x)| by |f(x+t) + f(x−t) − 2f(x)| in (4.5), and if
α ≥ 2, f ∈W s,p ⇔ f ∈ Lp and ∀i = 1, . . . , n, ∂f/∂xi ∈ W s−1,p (see [1]).

The fact that these spaces are defined by a condition on the Lp-modulus of con-
tinuity ωp(t) = ‖f(· + t) − f(·)‖p will yield an easy direct estimate on the packing
dimension of the strong α-singularities. (The intuitive idea is that if x0 is such a
singularity, the contribution for x close to x0 to the integral

∫
x∈Rm |f(x+t)−f(x)|p dx

is large.) The spaces Lp,s and W s,p are closely related since (see [1]) W s,2 = L2,s and
Lp,s ⊂ W s,p′ if p > p′ and W s,p ⊂ Lp

′,s if p > p′. Thus the bound of D(α) given
by Theorem 1.4 is a consequence of Proposition 4.2 which we now prove. Define El,m
as the set of points x0 such that (1.2) holds with

2−l ≤ C < 2 · 2−l and 2−n ≤ C ′ < 2 · 2−n.

The set of strong α-singularities of F is
⋃
l,nEl,n. Let l and n be fixed. Let Λj

be the set of dyadic cubes of size 2−j such that Λj ∩ El,n 6= ∅. If λ ∈ Λj , there exist
Aj , Bj ⊂ 3λ such that (1.2) holds (where 3λ is the cube that has the same center as
λ and is three times larger). We restrict the integral (4.5) to x ∈ 3λ, x+ t ∈ 3λ. The
integral on this set is thus bounded from below by

2−2l2−2mj (2−n2−αj)p

(2−j)m+sp
.

If we sum up for all λ ∈ Λj , each integral is taken at most 4m times. Thus

Λ]j 2−2l 2−np 2−j[αp+m−sp] ≤ 4m‖f‖pW s,p
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and thus if d > αp+m− sp, d−mes(El,m) = 0 so that d−mes(
⋃
l,nEl,n) = 0. Hence

Proposition 4.2 follows.
We now check that if F is a function of one real variable, the box dimension of

the graph of F is exactly 2−η(1) if η(1) is between 0 and 1. This is a straightforward
consequence of the following result (see [10] or [13]).

Proposition 4.3. Suppose 0 < γ < 1 and F : [0, 1] → R is continuous. Then
the box dimension of the graph of F is exactly 2− γ if and only if

F ∈
⋂
α<γ

Bα,∞1

∖ ⋃
β>γ

Bβ,∞1 .

Thus the result holds because η(p) = sup{s : F ∈ Bs/p,∞p }.

5. The wavelet-maxima method. Our purpose in this section is to show that
the wavelet-maxima method can yield a function θ(q) which is much smaller than
η(q)−m so that in general the multifractal formalism cannot hold using this method.
Via our counterexamples, we will show how to slightly modify its definition so that
θ(q) = η(q) − m. Our specific study of the wavelet-maxima method is justified by
its numerical importance. Arneodo, Bacry, and Muzy compared the three numerical
methods in cases where the Hölder spectrum is known analytically (self-similar func-
tions, Riemann’s function), and they clearly showed (in a personal communication)
that the wavelet-maxima method is the most accurate.

The reason why the wavelet-maxima method may fail is easy to understand in-
tuitively if we relate it to the wavelet-transform integral method. The two quantities∫

Rm |C(a, b)|qdb and a
∑
`∈L(a) sup(b,a′)∈` |C(a′, b)|q have the same order of magnitude

if the spacing between the maxima is approximately a since then the second term is
a Riemann sum of the first term. Thus the counterexamples that we will construct
will have maxima with spacing much smaller than a, and if we slightly modify the
wavelet-maxima method by imposing the restriction that we select only one maximum
(or, say, C maxima) in an interval of length a, then the multifractal formalism will
hold.

In order to give some insight into the pitfalls of the wavelet-maxima method, we
begin by describing an example where the maxima accumulate in certain regions. Not
surprisingly, this example involves chirps.

Lemma 5.1. Suppose that ψ is compactly supported on [0, l], has a vanishing
integral and m first vanishing moments, and satisfies

∃ε > 0 ψ(x) = xm ∀x ∈ [0, ε].

(This is the case, for instance, if ψ is a spline.) There exists a function F that is
compactly supported and arbitrarily smooth and a sequence an → 0 such that for all
values of n, the wavelet transform C(an, b) has infinite maxima.

We first construct F such that this property holds for a small interval of values
of the dilation parameter a. The general case will be obtained by a superposition
argument. Let

F (x) = xk sin

(
1

xl

)
φ(x),

where φ is C∞ except at the origin and supported on [0, 1], φ(x) = 1 ∀x ∈ [0, 1/2],
and φ is such that the integral and the first m moments of F vanish. After dilating
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ψ, we can suppose that it is equal to xm on the interval [0, 1]. Then if x ≤ 1/4 and
a ∈ [1/2, 1],

1

a

∫
F (t)ψ

(
x− t
a

)
dt =

1

a

∫ 1

x

F (t)

(
x− t
a

)m
dt

= −1

a

∫ x

0

F (t)

(
x− t
a

)m
dt = −1

a

∫ x

0

tk
(
x− t
a

)m
sin(t−l)dt

Integrating m times by parts, we obtain either∫
F (t)ψ(x− t)dt = a−m−1xk+m(l+1) sin

1

xl
+ o(xk+m(l+1))

or ∫
F (t)ψ(x− t)dt = a−m−1xk+m(l+1) cos

1

xl
+ o(xk+m(l+1))

depending on the parity of m. In all cases, the wavelet transform of F has for a ∈
[1/2, 1] an infinity of lines of maxima. The general case is obtained by considering the
function

G(x) =

∞∑
j=0

2−mjF (2j(x− l)),

where l is larger than the size of the support of ψ.
This example also shows that one should be careful when using the wavelet-

maxima method since the superposition of a small smooth function can completely
perturbate the lines of maxima.

We now show that the two functions θ(q) and η(q) − 1 can differ dramatically
so that even in cases where the multifractal formalism holds when using the wavelet
integral method, it may prove wrong when using the wavelet-maxima method. To
this end, we will construct a smooth function F (so that η(p) will take the maximal
value that is compatible with the smoothness of the wavelet) such that θ(q) = −∞ ∀q.
This example will use a wavelet with one vanishing moment. However, we will show
how to modify it in order to deal with wavelets with a given number of vanishing
moments. We will also show in Part II that F can be a self-similar function (which
will provide a case where the multifractal formalism holds using the wavelet integral
method and does not hold using the wavelet-maxima method).

Proposition 5.2. Let ψ be even and compactly supported (say on [−1, 1]) and
satisfy ∫

ψ(x)dx = 0 and

∫
xψ(x)dx = 1.

There exists a C∞ compactly supported function F such that θ(q) = −∞ ∀q > 0.
Proof. The idea of the proof is to construct a function g whose wavelet transform

is equal to, say, 1 on an interval and to perturbate it by adding another function whose
wavelet transform is extremely small but oscillates extremely fast, thus creating a huge
number of new maxima which take values close to 1.

Let g be a C∞ odd function supported by [−3, 3] such that g(x) = 1 on [1, 2]. Let

hj(x) = 2−j
2

g(2j+4(x− 8)) + 2−j
4

sin(2j
3

πx)φ(2jx),
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where φ is a C∞ function supported on [1/2, 1] that verifies φ(x+ 3/4) = φ(3/4− x)
and ∀x ∈ [9/16, 15/16], φ(x) = 1. Let F be the indefinite integral of

∑
j≥0 hj(x).

Since hj has a vanishing integral, F is C∞ and compactly supported. Let G be the

indefinite integral of g. F and the series
∑
j≥0 2−j

2

2−j−4G(2j+4(x− 8)) will have the
same function η. (Here the calculation will yield η(p) = p because this series is a C∞

function and the wavelet used will have only one vanishing moment.)
Note that

1

a

∫
sin(ωx)ψ

(
x− b
a

)
dx sin(ωb)ψ̂(ωa).

(Here ω = 2j
3

.) For a given value of j, we choose a in the interval [1/100.2−j , 1/10.2−j ]

such that ψ̂(ωa) does not vanish (which is possible since ψ̂(ωa) is an analytic function
of a).

Integrating by parts, one checks that on an interval of length at least 2−j−45/16,

the wavelet transform of 2−j
2

2−j−4G(2j+4(x−8)) takes a constant value equal to 2−j
2

.

Thus on the same interval, the wavelet transform of F is 2−j
2

+2−j
4

sin(2j
3

b)ψ̂(2j
3

a).

Thus it has about 2−j−42j
3

maxima, and∑
max

|C(a, b)|q ∼ 2−j−42j
3

2−j
2q.

Since j can be chosen arbitrarily large, the result is proved.
Note that we could have chosen a wavelet with a given number of vanishing

moments. In that case, we would have integrated g not once but the corresponding
number of times. The important fact is that the wavelet transform of G should locally
be constant. The reader will also easily check that we could have imposed a given
function η for F .

6. Counterexamples to the multifractal formalism. We define C as the
class of functions that can be written as the supremum of a countable set of functions
of the form c1[a,b](x) (where we can have a = b). Thus Riemann-integrable functions
belong to C, but so do, for instance, the indicatrix function of the rationals (but not
the indicatrix function of the irrationals).

Proposition 6.1. Let d(s) : ]0,+∞[→ [0,m] be a function in C. There exist two
continuous functions G1 and G2 : Rm → R that share the same function η(q) such
that d(s) is the Hölder spectrum of G1 while G2 is C∞ except at the origin, so its
spectrum vanishes everywhere.

We construct these functions when the space dimension is m = 1. The general-
ization to the multidimensional case is straightforward.

We first construct G1 when d(s) = cs1a,b(s), where 0 < a ≤ b <∞ and cb ≤ 1.
We will actually use three other parameters α, β, and γ, where a = γ, b = βγ, and
c = 1/(αβγ) so that γ > 0, β ≥ 1, and α ≥ 1. We thus define G1 = F (α,β,γ). The
general case will be obtained using a simple “superposition” procedure of the F (α,β,γ).

We will explicitly construct G1 by defining its coefficients on an orthonormal
wavelet basis. The function G2 will then be obtained by just moving at each scale
the location of the nonvanishing wavelet coefficients of G1. We use an orthonormal
wavelet basis in the Schwartz class (see [25]), and the functions

ψj,k(x) = 2j/2ψ(2jx− k), j, k ∈ Z,
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are an orthonormal basis of L2(R). Sometimes we will index the wavelets ψj,k or the
wavelet coefficients Cj,k (=

∫
Fψj,k) by the dyadic intervals λ = [k2−j , (k + 1)k2−j ].

Let Λ be the collection of all dyadic intervals of length at most 1. We will construct
a subcollection Λ(α, β) ⊂ Λ and consider the following “lacunary” wavelet series:

F (x) =
∑

λ∈Λ(α,β)

2−(γ+1/2)jψλ(x).(6.1)

The construction of Λ(α, β) is performed as follows. Define Λ(α, β) =
⋃
m≥1 Λ

(α,β)
m ,

where Λ
(α,β)
m is the set of intervals λ or couples (j, k) such that j = [αβm] and

2−jk = ε1l1 + · · ·+ εmlm ∈ Fm, ε1, . . . , εm ∈ {0, 1}, ln = 2−[αn],

[x] is the entire part of x and thus k = 2[αβm](±l1 ± · · · ± lm) is an integer since
[αβm] ≥ [αn].

Proposition 6.2. The function F defined by (6.1) belongs to the global Hölder
space Cγ(R) so that if s < γ, the set E(s) of points x0 where f ∈ Γs(x0) is empty. If
γ ≤ s ≤ βγ, the Hausdorff dimension of E(s) is s/αβγ. If s > βγ, E(s) is empty.

The characterization of the space Cγ on the wavelet coefficients is

|Cj,k| ≤ C2−(γ+1/2)j

(a simple rewriting of (2.2) in the orthonormal basis setting). Thus F belongs to
Cγ(R) and the spectrum of F vanishes for s < γ.

Lemma 6.3. A point x0 belongs to E(s) if and only if

dist(x0, Fm) = ηm2−
αβγ
s m, (Fm = {±l1 ± l2 ± · · · ± lm})(6.2)

with

lim inf
m→∞

ηm2−mε = 0 for any ε > 0(6.3)

and

lim inf
m→∞

ηm2mε = +∞ for any ε > 0.(6.4)

Proof. If F is Cs(x0), the rewriting of (2.3) yields

|Cj,k| ≤ C2−(s+1/2)j(1 + |2jx0 − k|)s.(6.5)

Conversely, from (2.3), we deduce that if (6.5) holds and if F is Cε(R) for an ε > 0,
then there exists a polynomial P such that

|F (x)− P (x− x0)| ≤ C|x− x0|s log

(
1

|x− x0|

)
.

Thus we see that F is Cs−ε(x0) ∀ε > 0 if ∀ε > 0, ∀λ ∈ Λ(α, β),

2−(γ+1/2)j ≤ C2−(s−ε+1/2)j(1 + |2jx0 − k|)s−ε = C2−j/2(2−j + dist(x0, λ))s−ε.

Conversely, if ∃λ ∈ Λ(α, β) corresponding to arbitrary large values of j such that

2−(γ+1/2)j ≥ C2−j/2(2−j + dist(x0, λ))s+ε,



MULTIFRACTAL FORMALISM: GENERAL RESULTS 965

F does not belong to Cs+ε(x0) ∀ε > 0. These two conditions can be written as

lim sup
λ∈Λ(α,β)

2−γj(2−j + dist(x0, λ))−s−ε = +∞ for any ε > 0(6.6)

and

lim sup
λ∈Λ(α,β)

2−γj(2−j + dist(x0, λ))−s+ε <∞ for any ε > 0.(6.7)

Condition (6.6) can also be written as

2−j + dist(x0, λ) = η(λ)2−
γ
s+ε j ,

where lim inf η(λ) = 0. Since s ≥ γ, 2−j = o(2−
γ
s+ε j) and the only condition to be

checked is

dist(x0, λ) = η(λ)2−
γ
s+ε j .

Since λ ∈ Λ
(λ,β)
m , this condition is equivalent to (6.3).

The same proof shows that (6.7) becomes (6.4). Hence we have Lemma 6.3.
We now define a compact Kα and sets Eα,δ, Kα will be composed of the limit

points of the Fm, and the Eα,δ’s will be subsets of Kα.
Let Kα be the compact set of the sums

∑∞
1 εj lj , where εj = ±1. Another

equivalent definition is

Kα =
∞⋂
1

(Fm + [−λm, λm]),

where

λm = lm+1 + lm+2 + · · · .

Note that the sets Gm = Fm+[−λm, λm] form a decreasing sequence of compact sets.

Let G
(β)
m be defined by G

(β)
m = Fm + [−λβm, λβm] and let Eα,β be the set of points

that belong to infinite G
(β)
m ’s. Since β ≥ 1, G

(β)
m ⊂ Gm so that Eα,β ⊂ Kα and, of

course, Eα,β = Kα if β = 1.
The idea of the construction that we made is as follows. We have placed “large”

wavelet coefficients on Fm so that on these sets the function F is exactly Γγ , but at
points which are at a certain distance on Fm (measured by their belonging to certain

G
(β)
m ’s), these “large” wavelet coefficients create “weaker” singularities (corresponding

to an exponent larger than γ).
Lemma 6.4. If γ ≤ s < βγ, then (6.3) is equivalent to x ∈

⋂
δ< βγ

s
Eα,δ, while if

s ≥ βγ, it is equivalent to x ∈ Kα. Condition (6.4) is equivalent to x /∈
⋃
δ> βγ

s
Eα,δ,

while if s > βγ, it is equivalent to x /∈ Kα.
Proof. If (6.3) holds and if δ < βγ/s, let us check that x ∈ Eα,δ. To this end, we

choose ε > 0 such that δ < βγ/s− ε. Then

dist(x0, Fm) = ηm2−
αβγ
s m = o(2−(αβγs −ε)m)

so that dist(x0, Fm) = o(lδm) ≤ λδm (because λm ∼ lm) for infinite values of m. Thus
x ∈ Eα,δ.



966 S. JAFFARD

Conversely, if x ∈ Eα,δ, dist(x, Fm) ≤ λδm so that dist(x, Fm) ≤ C2−αδm for
infinite values of m. If δ > βγ/s − ε, we get (6.3). When s ≥ βγ, we observe that if
ηm > 0 is an arbitrary sequence such that lim inf ηm = 0 and if

x ∈
⋂
m≥1

Fm + [−ηm, ηm],

then x ∈ Kα. This is because Kα is a compact set, and if x /∈ Kα, then dist(x,Kα) =
η > 0 so that dist(x, Fm) ≥ η; hence we have a contradiction. Condition (6.3) is thus
equivalent to x ∈ Kα as soon as s ≥ βγ. The proof of the second part of the lemma
is similar.

Lemma 6.5. The Hausdorff dimension of Eα,β is 1/αβ. If γ ≤ s ≤ βγ, the
Hausdorff dimension of E(s) is s/αβγ. If s > βγ, the set E(s) is empty.

The set Eα,β is defined by

Eα,β =
⋂
m≥1

E
(m)
α,β where E

(m)
α,β = G(β)

m ∪G(β)
m+1 ∪ · · · and G(β)

m = Fm + [−λβm, λβm].

For any ε > 0, we can cover Eα,β by the intervals Iq that appear in G
(β)
n , n ≥ m.

For a fixed n, there are 2n such intervals of length ∼ 2−αnβ so that if d > 1/αβ,∑
|Iq|d ≤ C, where C does not depend on ε. Thus the Hausdorff dimension of Eα,β

is bounded by 1/αβ.
Now suppose that γ ≤ s ≤ βγ. Then

E(s) =

 ⋂
δ< βγ

s

Eα,δ

∖ ⋃
δ> βγ

s

Eα,δ

 if γ ≤ s < βγ,

while if s = βγ,

E(s) = Kα

∖(⋃
δ>1

Eα,δ

)
.

Checking is done the same way in both cases, so we suppose that γ ≤ s < βγ. Thus
E(s) ⊂ Eα,δ for all δ < βγ/s so that dim(E(s)) ≤ s/αβγ. Hence we have the two
upper bounds for the Hausdorff dimensions in Lemma 6.5.

In order to obtain the lower bounds, we use a standard procedure. We construct
a probability measure µ that is supported on Eα,β and has certain “scalings.”

We now construct this measure.
Let m1 < m2 < · · · be an increasing sequence of integers that tends to∞ quickly

enough that for any n ≥ 1, mn+1 ≥ exp(mn), and now let

K(α,β) =
⋂
n≥1

G̃(β)
mn(6.8)

with

G̃(β)
m = Fm + [−2−[αβm], 2−[αβm]].(6.9)

This means that G̃
(β)
m is a finite union of dyadic intervals, and the dyadic intervals

that form G̃
(β)
m+1 will either be disjoint of those composing G̃

(β)
m or included in them



MULTIFRACTAL FORMALISM: GENERAL RESULTS 967

(just because they are dyadic intervals of smaller length). We have [αβm] ≥ β[αm],

and the set G̃
(β)
m is included in G

(β)
m so that K(α,β) ∈ Eα,β .

Let Nn be the number of intervals of length 2.2−[αβmn] that can be found in

Hn = G̃
(β)
m1 ∩ · · · ∩ G̃

(β)
mn , and let µn be the probability measure which on each of these

Nn intervals takes the value 2[αβmn](2Nn)−1dx. We can easily check that µn ⇀ µ
when n→∞, where µ = µ(α,β) is supported by K(α,β).

Lemma 6.6. There exists C such that ∀I of length |I| ≤ 1/2,

µ(I) ≤ C|I|1/αβ log
1

|I| .(6.10)

Proof. We first estimate Nn. Hn is composed of Nn intervals of length 2−[αβmn].
When constructing Hn+1, we split each of these intervals into 2mn+1−βmn+εn intervals,
where |εn| ≤ 2. Thus Nn+1 = Nn2mn+1−βmn+εn .

Now let I be an interval and define n by 2−αβmn ≤ |I| < 2−αβmn−1 .
Consider the two cases 2−αβmn ≤ |I| < 2−αmn and 2−αmn ≤ |I| < 2−αβmn−1 . In

the first one, I intersects at most two of the intervals that compose Hn so that

µ(I) ≤ CN−1
n ≤ C ′2−mn+O(mn−1) ≤ C|I|1/αβ log(|I|)

since mn ≥ exp(mn−1). In the second case, suppose that |I| ∼ 2−αj . Thus βmn−1 ≤
j ≤ mn. I meets at most 2mn−j intervals so that µ(I) ≤ 2mn−j/Nn, but Nn =
Nn−12mn−βmn−1+εn . Thus

µ(I) ≤ 2−j2βmn−1−εn

Nn−1
≤ C|I|1/αβ2j/β2−j2βmn−12−mn−1+O(mn−2)

≤ C|I|1/αβ2
(β−1)
β (βmn−1−j)+O(mn−2)

so that µ(I) ≤ C|I|1/αβ log(|I|). Hence we have Lemma 6.6.
We now prove the lower bounds in Lemma 6.5. We use the following slight

modification of Hausdorff measure. Let A ⊂ Rm and Rε be the set of all coverings of
A by sets of diameter at most ε. Let

M(ε, d) = inf
r∈Rε

∑
Ai∈r

(diamAi)
d log

(
1

(diamAi)

)
and let

d−mes(A) = lim sup
ε→0

M(ε, d)

be this “modified” d-dimensional Hausdorff measure. Of course, this modification
does not change the Hausdorff dimension of A, which is

D = inf{d : d−mes(A) = 0} = sup {d : d−mes(A) = +∞}.

We conclude with the following classical proposition (cf. [12]).
Proposition 6.7. Let Hs be the modified Hausdorff measure of dimension s. Let

µ be a probability measure on Rm, F ∈ Rm. If lim supr→0 µ(B(x, r))/rs log(1/r) <
C ∀x ∈ F,

Hs(F ) ≥ µ(F )

C
.
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The first lower bound in Lemma 6.5 is thus a consequence of Lemma 6.6 and
Proposition 6.7. The H1/αβ measure of Eα,β is strictly positive, and thus the Haus-
dorff dimension of Eα,β is at least 1/αβ.

We show that dim(E(s)) ≥ s/αβγ. Let µ be the probability measure µα,βγ/s. We
check that

E(s) ⊃ Eα,βγ/s
∖ ⋃

δ>βγ/s

Eα,δ

(6.11)

and

µ(Eα,δ) = 0 for any δ >
βγ

s
;

since the union of these sets can be written as a countable union, the measure of their
union vanishes so that the measure of E(s) is the same as the measure of Eα,βγ/s,
which is strictly positive. Hence we have the last point of Lemma 6.5.

We now prove the general case in Proposition 6.1.
Let E1, E2, . . . be disjoint subsets of R and suppose that Ek ⊂ [ak, bk], where the

[ak, bk]’s are disjoint. Let dk be the Hausdorff dimension of Ek. Then the Hausdorff
dimension of

⋃
k≥1Ek is sup(dk).

We return to the function F(α,β,γ). Clearly, F(α,β,γ) has fast decay and is C∞ out-
side of a compact set. After replacing F(α,β,γ)(x) by F(α,β,γ)(px+ q), we can, without
changing the spectrum of F(α,β,γ), suppose that it is C∞ outside any given interval
[a, b]. Let Fk(x) = f(αk,βk,γk)(x) be a sequence of functions as in Proposition 6.2 and
consider the corresponding spectra dk(s). We can suppose that the singular supports
of the Fk(x)’s are included in [2−k−1, 2−k]. (The singular support of a function is the
closure of the set where this function is not C∞.) We can also replace Fk by εkFk,
where εk > 0 tends to 0. Then let G1 =

∑∞
0 εkFk, and d(s) is the supremum of the

dk(s)’s. The function G1 thus constructed satisfies the requirements of Proposition
6.1, since we can easily check that a supremum of a countable set of functions of the
form ax1[b,c](x) is also a supremum of functions of the form a1[b,c](x).

The construction of G2 is now very easy. We remark that at each level j, the
number of nonvanishing wavelet coefficients of F(α,β,γ) is o(2j). Thus the same prop-
erty holds for G1 itself if we have chosen the contraction factors p (defined above) to
be large enough. We now consider a function G2 that has at each level j the same
nonvanishing wavelet coefficients as G1 but situated at different dyadic intervals. We
group them in the smallest possible interval Ij centered at the origin. Thus the quan-
tity (4.2) is the same for G1 and G2 so that these two functions share the same Bs,∞p
norm and hence the same function η. Nonetheless, if x 6= 0, there are a finite number
of nonvanishing wavelet coefficients in a certain interval centered at x because the
length of Ij tends to 0. Thus F2 is C∞ at x.

We now check that G1 and G2 are counterexamples to the following problem
raised in [9]: Is η or ζ the Legendre transform of m− d(α)?

Consider the function F defined by (6.1). At each level j = [αβm], it has 2m

wavelet coefficients equal to 2−(γ+1/2)j so that for this j,(∑
k

|Cj,k|p
)1/p

∼ 2(−(γ+1/2)+1/pαβ)j
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so that

‖F‖Bs,∞p ∼ 2js2j(
1
2−

1
p )

(∑
k

|Cj,k|p
)1/p

∼ 2j(s−γ+ cγ
p −

1
p )

and η(p) = ap+ 1− ca.
Thus η(p) is linear and does not depend on b so that it clearly can be the Legendre

transform of neither cs1[a,b](s) (when a 6= b) nor the function 0. Thus in general,
neither F1 nor F2 satisfies that η or ζ is the Legendre transform of its spectrum.

7. Acknowledgments. The author is thankful to Alain Arneodo, Emmanuel
Bacry, Benoit Mandelbrot, and Yves Meyer for many enlightening discussions.
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Abstract. In this paper we introduce and study the self-similar functions. We prove that these
functions have a concave spectrum (increasing and then decreasing) and that the different formulas
that were proposed for the multifractal formalism allow us to determine either the whole increasing
part of their spectrum or a part of it. One of these methods (the wavelet-maxima method) yields
their complete spectrum.
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1. Introduction. We proved in Part I that the multifractal formalism always
yields an upper bound for the Hölder spectrum. Hence a very natural and impor-
tant question arises: When does it yield the exact spectrum? Partial results exist
for multifractal measures (especially when multinomial or for invariant measures of
dynamical systems; see [6] and [8]). Hence we have similar results for the functions
that are indefinite integrals of these measures. Apart from these functions, no general
results hold. A few examples have been worked out: the scaling functions φ that ap-
pear in wavelet constructions [12], Riemann’s nondifferentiable function [20], and the
“peano-type” function of Polya [21]. These three examples exhibit a common feature:
their graphs follow locally some self-similarity conditions. This is explicitly stated
below in (2.7) for Riemann’s function. The recursive definition of Polya’s function is
an exact self-similarity condition, and this is also the case for the scaling equation of
the φ functions.

We can thus infer that the multifractal formalism probably holds if the function
considered exhibits some kind of self-similarity. Of course, this assertion is very vague,
and we are now far from guessing what is the weakest form of local self-similarity that
implies the validity of the multifractal formalism. Our purpose is to verify it for a
case study, i.e., under some restrictive assumptions for the self-similarity conditions.
These assumptions are listed in Definition 2.1 below. In our opinion, this partial result
is interesting for two reasons: 1) it is the first proof of the validity of the multifractal
formalism for a several-parameter family of functions different from indefinite integrals
of measures; 2) we also expect the methods we introduce to extend to more general
settings. There is already some evidence for this. Since the first preprint version of
this paper, Daubechies showed that some of the results concerning scaling functions
can be deduced from our study [11]. Slimane showed that our restricive conditions
concerning the contractions Si in Definition 2.1 can be weakened [4].

2. Basic properties of self-similar functions. In this section, we recall the
definition of self-similar functions, give some examples, and derive their basic
properties.

∗ Received by the editors March 13, 1995; accepted for publication (in revised form) April 5, 1996.
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In the following two sections, we obtain the exact regularity of these functions at
any point when the functions considered have uniform minimal regularity.

In section 4, we deduce these functions’ Hölder spectra in the aforementioned
case.

In section 5, we prove the validity of the multifractal formalism.
In section 6, we study the wavelet-maxima method. We show that after a slight

modification, this method yields the complete spectrum, including the part where the
infimum in the Legendre transform is obtained for negative values of q.

In section 7, we consider the more general case of unbounded self-similar functions.
We first recall the definition of self-similarity that was established in Part I.
Definition 2.1. A function F : Rm → R is self-similar (of order k ∈ R+) if the

following three conditions hold:
• There exists a bounded open set Ω and S1, . . . , Sd contractive similitudes such

that

Si(Ω) ⊂ Ω,(2.1)

Si(Ω) ∩ Sj(Ω) = ∅ if i 6= j.(2.2)

(The Si’s are the product of an isometry with the mapping x→ µix, where µi < 1.)
• There exists a Ck function g such that g and its derivatives of order less than

k have fast decay and F satisfies

F (x) =
d∑
i=1

λiF (S−1
i (x)) + g(x),(2.3)

where the λi’s are real or complex numbers.
• The function F is not uniformly Ck in a certain closed subset of Ω.
The first condition was first introduced by Hutchinson (in [17]) in order to study

self-similar sets; it is called the “open-set condition.” A stronger condition is some-
times required, namely,

Si(Ω̄) ∩ Sj(Ω̄) = ∅ if i 6= j;(2.4)

this is called the “separated open-set condition.”
Concerning the last point of the definition, if k is an integer, the condition must

be understood as follows. Once restricted to a closed subset A of Ω, the derivatives
of order k − 1 of F do not belong to the Zygmund class. Thus for any k ∈ R+, this
condition is equivalent to the existence of sequences an → 0, bn ∈ A, and Cn → ∞
such that

|C(an, bn)| ≥ Cnakn.(2.5)

(This condition is a straightforward consequence of the wavelet characterization of
the spaces Cs(Rm) that we recall below and of the localization of the wavelets.)

We will see that solutions of (2.3) need not necessarily be functions but can be
distributions.

Recall the following notations introduced in Part I. Let

Z̃(a, q) =

∫
Rm
|C(a, b)|qdb.
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Then

η(q) = lim inf
log Z̃(a, q)

log a
.

Let

αmin = inf
i=1,...,d

(
log λi
logµi

)
, αmax = sup

i=1,...,d

(
log λi
logµi

)
.

We use this notation because αmin will turn out to be the smallest pointwise Hölder
regularity exponent of F and αmax will be the largest (lower than k). Let τ be the
function defined by

d∑
i=1

λai µ
−τ(a)
i = 1.

The results concerning the multifractal formalism for self-similar functions are
summed up in the following theorems.

Theorem 2.2. Suppose that F is self-similar. If αmin > 0, the function d(α)
vanishes outside the interval [αmin, αmax] ∪ [k,+∞) and is analytic and concave on
[αmin, αmax]. Its maximal value dmax satisfies∑

µdmax
i = 1.

Let α0 be the value for which this maximum is attained. First, suppose that g
is C∞. If α ≤ α0, d(α) can be obtained by computing the Legendre transform of
η(q)−m.

If g is only Ck, let p0 be defined by η(p0) = kp0 and let α1 < α0 be the value of
the inverse Legendre transform of η(q)−m at p0. If α ≤ α1, d(α) can be obtained by
computing the Legendre transform of η(q)−m.

Without any assumption on αmin, if
∑
|λj |µmj < 1, the same results hold if we

replace d(α) with D′(α), the packing dimension of the wavelet α-singularities (or by
D(α), if g and the λi’s are positive, and furthermore if the separated open-set condition
holds).

The corresponding results concerning the wavelet-maxima method will be stated
and proved in section 6 (see Theorem 2.3).

Before beginning our study of self-similar functions, we consider a few examples.
(1) Indefinite integrals of multinomial measures in dimension 1.
Let µ be a probability measure supported by [0, 1] and suppose that for any

interval I,

∀i = 1, . . . , d, µ(Si(I)) = λiµ(I)

with
∑
λ = D1i = 1, the Si’s as above, and Ω = (0, 1). Let

F (x) =

(∫ x

0

dµ

)
− x ∀x ∈ [0, 1].

F vanishes at 0 and 1, and is smooth outside the intervals Si([0, 1]). One immediately
checks that F is continuous and

∀x ∈ Si([0, 1]), F (x) = λiF (S−1
i (x)) + gi(x)
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with gi linear. Thus F is self-similar.
For any probability measure µ on R, the scaling index of µ at x0 is the supremum

of all values of α such that

∃C > 0, ∀ε > 0, µ([x0 − ε, x0 + ε]) ≤ Cεα.

We can easily check that µ has a scaling index α at x0 if and only if its indefinite
integral F defined by F (x) = µ([0, x]) is Cα at x0 (see [2] or [19]). This property
allowed Arneodo, Bacry, and Muzy [2] to determine the Hölder spectrum of the indef-
inite integrals of multinomial measures when the separated open-set condition holds.
This remark shows that when F is the indefinite integral of a one-dimensional mea-
sure, some results derived in this paper are a consequence of similar results concerning
measures (for α ∈ [0, 1]) obtained by Brown, Michon, and Peyrière in [6]. Thus we
are particularly interested in the case of functions that are not in bounded variation
(BV), in which case Theorem 2.2 cannot be derived from corresponding results for
measures.

(2) Some self-similar fractal sets. Consider, for instance, the example of the Van
Koch set. Since it is a curve, it can be parametrized (in infinite ways) as the image of a
mapping t→ (x(t), y(t)) from [0, 1] to R2. This curve has dimension log 4/ log 3 and a
corresponding finite nonzero Hausdorff measure. Therefore, a canonical parametriza-
tion maps intervals of same length on sets of equal Hausdorff measure. The reader
will immediately check that with this parametrization the Van Koch function is self-
similar. Another example is supplied by Polya’s function, a continuous mapping
defined on [0, 1] whose graph fills the area of a triangle. However, the lack of regular-
ity of the function g in this case requires a specific treatment, and we plan to study
the local regularity of this function in a forthcoming paper.

(3) Lacunary trigonometric series and Riesz products. Let

Fα(x) =
∞∑
j=0

2−αj sin 2π2jx

for x ∈ [0, 1] and 0 < α ≤ 1. Define

g(x) = sin 2πx if x ∈ [0, 1]
= 0 otherwise.

Obviously,

Fα(x) = 2−αFα(2x) + 2−αFα(2x− 1) + g(x)

so that the Fα’s are self-similar.
Another example is very similar. Consider the Riesz products

Fα,k(x) =
∞∏
j=1

(1 + 2−αjsin(kjx)),

where 0 < α < 1 and k ∈ N, k ≥ 2. It is a simple exercise to check that log(Fα,k(x))
is self-similar (the function g being C inf(2α,1)). Since Fα,k(x) is bounded from above
and below by strictly positive constants, Fα,k(x) and its logarithm share the same
function η and the same spectrum so that the results that will be proved for self-
similar functions will also hold for the Riesz products Fα,k(x).
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(4) Several dimension examples. In dimension 1, the “geometry” contained in the
transforms Si is poor. In several dimensions, this is sometimes no longer the case.
Consider two examples. First, if

Ω = [−1, 1]2, let i, j ∈
{

1

2
,−1

2

}
, and Si,j(x) =

1

2
x+ (i, j).

The Si,j ’s map the square Ω on its four subsquares of half size. If the homothety
had a ratio smaller than 1/2, by iterating the Si,j ’s, we would get a kind of two-
dimensional Cantor set. There exist more “exotic” examples. For instance, if

S−1
1 =

(
1 −1
1 1

)
, S−1

2 =

(
1 −1
1 1

)
+ (1, 0),

the Si’s map a “fractal dragon” on their two self-similar components (see [9] or [16]).
In order to understand the scope and limitations of the model given by self-

similar functions, it is interesting to mention a few classical examples of functions
that, though not self-similar in the sense that we gave, satisfy functional equations
that have similarities with (2.3).

First, the scaling function of the function ϕ used in the construction of orthonor-
mal wavelet bases satisfies (see [10] or [12])

ϕ(x) =
∑

akϕ(2x− k),

but condition (2.2) does not hold except for some nonsmooth functions ϕ, such as
characteristic functions of sets, in which case there exist examples similar to the
fractal dragon that we mentioned above (see [9] or [16]). In [12], Daubechies and
Lagarias recently proved that a converse formula to the multifractal formalism holds
for these functions (i.e., the function η(p) is the Legendre transform of d(α)).

Our second example is the Brownian bridge on [0, 1]. It satisfies

B(t) =
1√
2
B1(2t) +

1√
2
B2(2t− 1) + ξΛ(x),(2.6)

where B1 and B2 are two Brownian bridges that have the same law as B, ξ is a
Gaussian, Λ(x) = sup(x, 1−x) on [0, 1], and the three terms of the right-hand side of
(2.6) are independent. We are in a situation where (2.3) holds “in law.” Actually, the
self-similar processes studied in, for instance, [3] also verify (2.3) “in law.” We will
not recall the definition of these processes here but only mention that in dimension 1,
they coincide with the fractional Brownian motions. The reader can easily check that
the results that we give below easily extend to this probabilistic setting. However,
such results would be poor for the following reason. Direct methods yield sharper
results for the the pointwise regularity of these processes and from a “multifractal
point of view,” the spectrum of these processes is not interesting since it vanishes
everywhere except at one point.

Our last example is Riemann’s nondifferentiable function

Φ(x) =

∞∑
1

1

n2
sin(πn2x),

which was shown by Duistermaat in [13] to satisfy some functional equations similar
to (2.3). For instance

Φ(1 + x) =
πi

12
− x

2
+ eiπ/4x3/2

(
4Φ
(−1

4x

)
− Φ

(−1

x

))
+ ξ(x),(2.7)
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where ξ is a smooth function. Also, using the periodicity of Φ, a whole collection of
similar equations can be derived. We are in a situation close to (2.3) but where the
Si’s are not linear. (See [20] for an extension of the multifractal formalism to this
case.)

We now determine the sense in which (2.3) has solutions, and we examine some
basic regularity properties of these solutions. They will depend upon the assumptions
that we make on the λi.

Iterating (2.3), we obtain for any N that

F (x) =

N−1∑
n=0

∑
(i1,...,in)

λi1 · · ·λing
(
S−1
in
. . . S−1

i1
(x)
)

(2.8)

+
∑

(i1,...,iN )

λi1 · · ·λinF
(
S−1
iN
· · ·S−1

i1
(x)
)
,

so a (formal) solution of (2.3) is given by

F (x) =
∞∑
n=0

∑
(i1,...,in)

λi1 · · ·λing
(
S−1
in
· · ·S−1

i1
(x)
)
.(2.9)

Here F is written as a superposition of similar structures at different scales,
reminiscent of some possible models of turbulence [5], [15], [26]. This formula also
looks like a wavelet decomposition (except that g has no cancellation), and our proof
of Proposition 3.2 in the next section will be similar to classical proofs of the regularity
of wavelets series; see [18] or [22].

When the (formal) series (2.9) converges in a certain function space, a solution
of (2.3) exists in this space. (Actually, it is easy to check that (2.9) converges al-
most everywhere if the separated open-set condition holds.) We will be particularly
interested in three cases: first, when (2.3) has solutions that are locally L1 functions;
second, when the solutions have some global Cα smoothness (this case is important
because it is the setting where the multifractal formalism works without any modifi-
cation); and third, in spaces of distributions where the series converge when we make
no assumption on the λi’s. A good setting to study this last case is supplied by the
real Hardy spaces, whose definition we now recall.

Suppose that we use an orthonormal basis of wavelets indexed by dyadic cubes.
We denote these wavelets by ψλ and the corresponding wavelet coefficients by Cλ.
The real Hardy Hp space (cf. [24]) is the set of distributions whose wavelet coefficients
satisfy ∫ (∑

j,k

|Cλ|2 2nj χλ(x)

)p/2
dx < +∞,(2.10)

assuming that the wavelets that we use are Cm(p−1−1) and have vanishing moments
up to order m(p−1 − 1). This is a direct generalization of the space Lp when p < 1.

Recall that

αmin = inf
j=1,...,d

log |λj |
logµj

and αmax = sup
j=1,...,d

log |λj |
logµj

.(2.11)
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Proposition 2.3. Suppose that
∑
|λj |µmj < 1. In this case, (2.3) has a unique

distribution solution, which is an L1 function and is given by the series (2.9). Fur-
thermore, if 0 < αmin < k, this function is Cαmin .

Suppose that
∑
|λj |µmj ≥ 1; in that case, (2.3) may have several distribution

solutions. Let p < 1 such that
∑
|λj |pµmj < 1. If g is Ck with k > m(p−1 − 1) and if

the moments of g of order less than k vanish, (2.9) converges in the Hardy real space
Hp so that (2.3) has at least one solution in this space of distributions.

Furthermore, these results are optimal.
Before proving Proposition 2.3, we begin with some preliminary results concerning

the geometry of the mappings Si. If A is a subset of Rn, we define the mapping S by

S(A) =

d⋃
i=1

Si(A)

and let K be the set defined by

K =
⋂
n∈N

Sn(Ω̄).

K is called the invariant compact set of S. Its Hausdorff dimension is dmax (defined in
Theorem 2.2). We introduce some notation. Let i be a finite sequence i = (i1, . . . , in).
We define xi = Si1 · · ·Sin(0), and if the sequence i is infinite, xi = limn→∞ x(i1,...,in).
Similarly, let µi = µi1 · · ·µin and λi = λi1 · · ·λin . Thus with each sequence i ∈
{1, . . . , d}N we associate a unique point xi in K. This correspondence is, in general,
not one to one. (Consider, for instance, the example of lacunary trigonometric series
where the dyadic points are the limit of two sequences.) However, the correspondence
is clearly one to one if the separated open-set condition holds.

The points of K can also be represented as the limit points of the branches
of the following tree T constructed in the “time-scale half-space.” The treetop is
conventionally the point (0, 1) ∈ Rm×R+. This treetop is linked to the d first nodes,
which are the (Sj(0), µj)’s. This point (Sj(0), µj) is linked to (SjSk(0), µjµk), . . . .
If Rm is identified to Rm × {0}, then clearly the branch indexed by a sequence i ∈
{1, . . . , d}N approaches the point xi (and it is the only one which does so if the mapping
i→ xi is one to one). This tree is related to the wavelet transform of F more precisely
in Proposition 4.1. We will show that the order of magnitude of the wavelet transform
of F near (xi, µi) is |λi|.

Definition 2.4. Let x ∈ Rm. A “D-branch over x” is a branch of the tree of
length n that starts from the origin (0, 1), ends at

(Si1 · · ·Sin(0), µi1 · · ·µin),

and is such that

|Si1 · · ·Sin(0)− x| ≤ Dµi1 · · ·µin .

When D ≤ 10Diam(Ω), such a branch is a “main branch over x.”
This requirement means that the endpoint of the branch is—in the time-scale

half-space—in a certain cone of width D over x. We often identify a branch with the
sequence i that indexes it.

We will need the following lemma, which estimates the number of D-branches
over a point x.
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Lemma 2.5. Let x ∈ K and let Bj,D(x) be the set of D-branches (i1, . . . , in) over
x such that

2−j ≤ µi1 · · ·µin < 2.2−j .(2.12)

The cardinality of this set of branches is bounded independentely of x and j by CDm.
Proof. We can assume that the Si1 · · ·Sin(Ω)’s are disjoint. If not, the open-

set condition implies that the corresponding sequences (i1, . . . , in) and (i′1, . . . , i
′
m)

satisfy—if n ≤ m, for instance —(i1, . . . , in) = (i′1, . . . , i
′
n). (One of the branches is

included in the other.) In that case, we keep the longest sequence, dividing the
cardinality of Bj,D(x) by at most an absolute constant (which depends only on the
values of µ1, . . . , µd). Thus we can assume that the Si1 · · ·Sin(Ω)’s are disjoint and
are all included in B(x,CD2−j), so if Bj,D(x)# denotes the cardinality of Bj,D(x),

Bj,D(x)#2−mjvol(Ω) ≤ C(D.2−j)m,

and thus Bj,D(x)# is bounded by CDm. Hence Lemma 2.5 follows.
We now prove Proposition 2.3. Existence and uniqueness in the L1 case are

straightforward. The last term in (2.8) tends to zero in L1, so that (2.9) is the only
(possible) solution in L1, and it is actually in L1 because the L1 norm of series (2.9)
is bounded by

C
∑
|i|≤n

|λi|µmi = C
∑
l≤n

 d∑
j=1

|λj |µmj

l

≤ C.

We estimate the Cs norm of F using the Littlewood–Paley characterization of
this norm. For the reader’s convenience, we recall this characterization.

Let ψ be a function in the Schwartz class whose Fourier transform vanishes outside
1 ≤ |ξ| ≤ 8 and is equal to 1 on 2 ≤ |ξ| ≤ 4. Let ψl(x) = 2mlψ(2lx). A function F
belongs to Cs if and only if |F ∗ ψl(x)| ≤ C2−sl.

We return to Proposition 2.3. We first split F as a sum F =
∑
Fj , where Fj is

series (2.9) restricted to the indices i ∈ Ij such that

2−j ≤ µi < 2.2−j .

Let ωl,j = Fj ∗ ψl. If l ≥ j, because of the localization and cancellation of ψ, for
any N ,

|ωl,j(x)| ≤ CN
∑
i∈Ij

λi2
−k(l−j)

(1 + 2j |x− xi|)N
.

Because of Lemma 2.5, as soon as N > m,∑
i∈Ij

1

(1 + 2j |x− xi|)N
≤ C

so that

|ωl,j(x)| ≤ C sup
i∈Ij
|λi|2−k(l−j).
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If j > l, |ωl,j(x)| ≤ C sup |Fj(x)| so that |ωl,j(x)| ≤ C supi∈Ij |λi|. Since

supi∈Ij |λi| ≤ C2−αminj , summing up, we obtain that |(F ∗ψl)(x)| ≤ C2−αminl. Hence
we have the Hölder regularity of F .

In order to show that F belongs to Hp, first notice that the regularity and can-
cellation that we requested for g is consistent with the atomic definition of Hp so
that series (2.9) can be interpreted as a “vaguelette” decomposition of F (see [24]).
Thus—following [24]—the “Hp norm” of Fj is bounded by

C

∫ (∑
i∈Ij

|λi|21|x−xi|≤µi(x)

)p/2
dx

1/p

= C

∑
i∈Ij

λpiµ
m
i

1/p

.

By the same argument as in the L1 case, this quantity is exponentially decreasing
with j so that F belongs to Hp.

The optimality of Proposition 2.3 can easily be checked via some explicit exam-
ples. The optimality of the global Hölder regularity is shown by example (2) above
concerning lacunary trigonometric series. We sketch how to obtain the optimality of
the L1 and Hp criteria.

Let g be supported on [1, 2] and suppose that F satisfies

F (x) = λF (2x) + g(x).

If
∫
g(x)dx 6= 0 and λ ≥ 2, series (2.9) does not converge in L1 (or in any distribution

space). If g has vanishing moments and λ ≥ 2, the “Hp norm” of F can be calcu-
lated. For instance, when g is the function ψ that generates an orthonormal basis of
compactly supported wavelets, ψ is properly contracted in order to be supported on
the interval [1, 2].

Proposition 2.6. If x does not belong to K, F is Ck in a neighborhood of x.

Proof. Let α be such that |α| ≤ k, and let us show that the series∑
λi∂

α(g ◦ S−1
i (.))

converges uniformly in a neighborhood of x.

This series is bounded in modulus by

∑ |λi|µ−|α|i

(1 + µ−1
i |x− xi|)N

≤
∑
j

∑
i∈Ij

C2C
′j

(1 + 2j |x− xi|)N
,

but since x /∈ K, |x− xi| ≥ C > 0 so that

∑
i∈Ij

C

(1 + 2j |x− xi|)N
≤ C ′2−(N−m)j .

Choosing N large enough, we obtain Proposition 2.6 when k ∈ N. The verification
when k is not an integer is just as easy and is thus left to the reader.

We conclude this section with a study on the uniqueness of solutions of (2.3).
First, note that (2.8) holds for any N and that outside K the second term in (2.8)
tends to 0 in Ck so that any distribution solution of (2.3) outside K is a function
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that satisfies (2.8). Thus if (2.3) has two solutions, their difference is a distribution
supported by K, which is a solution of the homogeneous equation

F =
d∑
j=1

λjF ◦ S−1
j .(2.13)

Since such a distribution is compactly supported, it belongs to a space Lp,s (perhaps

for a negative s). Note that ‖F ◦S−1
j ‖Lp,s = µ

m/p−s
j ‖F‖Lp,s . Thus (2.13) implies that

‖F‖Lp,s ≤

 d∑
j=1

|λj |µm/p−sj

 ‖F‖Lp,s ,
and it has a nonvanishing solution in Lp,s only if

∑d
j=1 |λj |µ

(m/p)−s
j > 1.

Suppose that
∑d
j=1 |λj |µmj < 1. For all s < 0, let p0m/(m − s). Then∑d

j=1 |λj |µ
(m/p)−s
j < 1 if p < p0 so that (2.13) has no solution in Lp,s for p < p0

(hence for any p since F is compactly supported). Hence we have the uniqueness
result in Proposition 2.3.

If
∑d
j=1 |λj |µ

(m/p)−s
j > 1, it is easy to find distributions supported by K and

solutions of (2.13). A trivial example is the Dirac mass at the origin, a solution
of δ(.) = 2mδ(2.), but multinomial measures, such as the canonical measure on the
triadic Cantor set, satisfy such equations. (The self-similar measures supported on
K that we construct in section 4 also satisfy such equations.) In the case where∑d
j=1 |λj |µ

(m/p)−s
j > 1, we thus have no unique solution of (2.3), and we call (2.9)

the fundamental solution.
For a given branch indexed by i = (i1, . . . , in), let

α(i) =
Log|λi|
Logµi

(2.14)

and denote the set Bj,10diam(Ω)(x) by Bj(x).
In the next two sections, we prove the following result, which yields the exact

regularity of f at each point of K when αmin > 0. (Recall that by definition f is Γα

at x if α is the supremum of all β such that f ∈ Cβ(x).)
Proposition 2.7. Suppose that αmin > 0. Let x ∈ K. Then F is Γα(x) at x,

where

α(x) = lim inf
j→∞

inf
i∈Bj(x)

Log|λi|
Logµi

.(2.15)

The lower bound for α(x) will be obtained in section 3, and the upper bound will
be obtained in section 4. In section 5, we determine the dimension of the set where
F is Γα for a given α.

A case of special interest is when the separated open-set condition holds. In
that case, there is only one branch over x and i → x(i) is onto so that if i =
(i1(x), . . . , in(x), . . .) is the only sequence such that x0 = x(i), (2.14) and (2.15)
become

α(x0) = lim inf
n→∞

Log|λi1(x0)| · · · |λin(x0)|
Logµi1(x0) · · ·µin(x0)

.
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3. A lower bound for regularity. We will need the following lemma, which
yields an estimate for the products λi1 · · ·λin on D-branches.

Lemma 3.1. Let Λj(x) = supi∈Bj(x) |λi| and Lj(x) =
∑j
l=1 Λl(x)2−A(j−l), where

A > αmax. Then

lim inf
j→∞

Log(Lj(x))

−j log 2
= lim inf

j→∞

Log(Λj(x))

−j log 2

(
= lim inf

j→∞
inf

i∈Bj(x)

Log(λi)

Log(µi)

)
and ∀x ∈ Rm, if µi ∼ 2−j,

|λi| ≤ CLj(1 + 2j |x− xi|)A.

In this lemma, we do not make any assumptions on the λi’s. Let us prove the
first assertion. Lj ≥ Λj , and if n(= n(j)) is such that n ≤ j and Λn(x)2−A(j−n) =
supl≤j Λl(x)2−A(j−l), then Ln ≤ nΛn(x). A > αmax so that n(j)→∞ when j →∞.
Hence we have the first assertion.

We now prove the second assertion. First, if i is a main branch, |λi| ≤ Lj .
Now suppose that i is not a main branch. Let i = (i1, . . . , in) and let l be the
largest integer such that the subbranch (i1, . . . , il) is a main branch over x. Clearly,
2l|x− xi| ∼ 10diam(Ω) and λi ≤ 2A(j−l)Λl (because all of the λj ’s are < 2αmax), so

|λi| ≤ Lj
Λl
Lj
≤ Lj2A(j−l) ≤ Lj(C2j |x− xi|)A.

Hence Lemma 3.1 follows.
Proposition 3.2. Let x0 ∈ K. The function F is Cβ(x0) for any β < α(x0).
Proof. Let x ∈ K and P (x − y) be the Taylor expansion of order [β] of (2.9) at

x. We first check that this Taylor expansion yields a convergent series.
Let α be a multiindex such that |α| < β. We have to check that the series

∑ |λi|µ−|α|i

(1 + µ−1
i |x− xi|)N

(3.1)

is convergent. We split this sum into the sets

Ij,l = {i ∈ Ij and 2l < µ−1
i |x− xi| ≤ 2l+1}.

Because of Lemma 2.5, each term has about 2lm elements, and because of Lemma
3.1, on this set Ij,l,

λi ≤ CLj(1 + 2l)A,

so series (3.1) is bounded by

C
∑
j,l

Ljµ
−|α|
i (1 + 2l)A−N2lm ≤ C

∑
j,l

2(|α|−β)j2l(m−N+A)

(since for j large enough, Lj ≤ C2−βj), which is bounded because N can be chosen
arbitrarily large.

Let Tgx(x− y) be the Taylor expansion of g of order [β] at point x, i.e.,

Tgx(x− y) =
∑
|γ|≤[β]

∂γg(x)

γ!
(x− y)γ .
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Let J such that 2−J ≤ |x−y| ≤ 2.2−J . Using formula (2.8) but stopping the iteration
on each branch at the first level such that µi ≤ 2−J , we obtain

F (y)− P (x− y)(3.2)

=
∑
j≤J

∑
i∈Ij

λi
(
g(S−1

i (y))− Tgx(S−1
i (x− y))

)
+
∑
j=J

∑
i∈IJ

λiF (S−1
i (y))−

∑
j>J

∑
i∈Ij

λiTgx(S−1
i (x− y)).

The third sum is bounded in modulus by

C
∑
|γ|≤β

∑
j≥J
|λi|µ−|γ|i |x− y||γ|(1 + µ−1

i |x− xi|)−N

≤ C
∑
|γ|≤β

|x− y||γ|
∑
l

∑
j≥J

Lj2
Al2|γ|j2l(m−N)

≤ C
∑
|γ|≤β

|x− y||γ|2(|γ|−β)J ≤ C|x− y|β

(where we have again split the sum into the sets Ij,l).
Because of the localization of F , the second sum is bounded by C supi∈IJ |λi| ≤

C2−βJ .
We now consider the first sum in (3.2). We consider two cases. Let D = |x− y|−ε

for an arbitrarily small ε. First, suppose that

|x− xi| ≤ D2−j .

For each j, the sum has about Dm terms, and using the mean-value theorem, the
sum of the corresponding terms is bounded by

Dm
∑
j≤J

∑
i

Lj(1 +D)A|x− y|[β]+1µ
−[β]−1
i

≤ C|x− y|[β]+1
∑
j≤J

2−βj2([β]+1)jDm+A ≤ C|x− y|βDm+A.

Hence we have the bound that we claimed if we take ε small enough.
Now suppose that |x − xi| > D2−j ; then |λi| ≤ CLj(1 + 2j |x − xi|)A. Applying

Lemma 2.5 with D = 2j |x− xi|, the remaining sum is bounded by

C
∑
|γ|≤β

∑
j≤J

Lj(1 + 2j |x− xi|)A(1 + 2j |x− xi|)m
(1 + 2j |x− xi|)N

|x− y|γ2γj

≤
∑
|γ|≤β

∑
j≤J

2−βj2γj |x− y|γ(1 + 2j |x− xi|)−N+m+A,

and we obtain the bound in this case since 2j |x− xi| > |x− y|−ε. Hence Proposition
3.2 follows.
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4. An upper bound of the pointwise Hölder exponent. We will bound the
regularity of F at each point in K by estimating the size of the wavelet transform
in a neighborhood of such a point. The wavelet transform of F satisfies a functional
equation similar to (2.3), which will enable us to obtain this estimate. Let C(a, b) be
the wavelet transform of F and ω(a, b) be the wavelet transform of g.

Proposition 4.1. There exists A > 0 such that ∀x ∈ K, J ∈ N. There exists
j ∈ [J −A, J ], a branch b = (j1, . . . , jn) in Bj(x), a ∼ 2−j, and t ∈ Ω such that

|t− x| ≤ Ca and |C(a, t)| ≥ CΛj(x).

Note that in this proposition, we do not have to make any assumptions on the
uniform regularity of F , and we will actually use the proposition in cases where F
is unbounded. Nonetheless, let us first show that if F has some minimal uniform
regularity, Proposition 2.7 follows. To this end, we first recall a relation between the
regularity of F and the size of the wavelet transform given by the following results
(see Part I). Suppose that s > 0. If F ∈ Cs(x0),

|Ca,b(F )| ≤ Cas
(

1 +
|b− x0|

a

)s
.(4.1)

Thus Proposition 4.1 together with (4.1) shows that F is not smoother than Cα(x)

at x. Thus using Proposition 3.2, we will have proved Proposition 2.7.
Proof of Proposition 4.1. We first prove Proposition 4.1 with j ∈ [(1− ε)J, J ] (for

an arbitrarily small ε). Let C(a, b) be the wavelet transform of F and let ω(a, b) be
the wavelet transform of g. Using (2.8) but stopping the iteration on each branch
when µi ∼ 2−J , we obtain

C(a, t) =
J∑
j=1

∑
i∈Ij

λiω

(
a

µi
, S−1

i (t)

)
+
∑
i∈IJ

λi C

(
a

µi
, S−1

i (t)

)
.(4.2)

Let y ∈ Ω be a fixed point that will be determined later. Let x ∈ K and let
b = (j1, . . . , jn) be a branch over x. Let t = Sj1 = CA · · ·Sjn(y). Then

|x− t| ≤ Cµj1 · · ·µjn .

Hence we have the first condition of Proposition 4.1.
We want to show that on the set Sj , the main term in (4.2) corresponds to the

branch b. This is intuitively clear because all terms in the first sum decay like ak

because of the smoothness of g, and since F is smooth outside Ω, all terms in the
second sum decay also like ak except precisely the one corresponding to the branch
b. We make this argument more precise. We first prove the following bound for the
first sum in (4.2):

∑
i∈Ij

∣∣∣∣λiω( a

µi
, S−1

i (t)

)∣∣∣∣ ≤ Cak2kjLj(t).(4.3)

First, note that because of the smoothness and decay of g,

∀N ≥ 0, |ω(a, b)| ≤ CNa
k

(1 + |b|)N .
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Thus ∑
i∈Ij

∣∣∣∣λiω( a

µi
, S−1

i (t)

)∣∣∣∣ ≤ Cak∑
i∈Ij

|λi|
µki (1 + |2j(t− xi)|)N

≤ Cak2kjLj(t)
∑
i∈Ij

1

(1 + |2j(t− xi)|)N−A

≤ Cak2kjLj(t).

Hence we have (4.3). Thus∑
j≤J

∑
i∈Ij

∣∣∣∣λiω( a

µi
, S−1

i (t)

)∣∣∣∣ ≤ Cak∑
j≤J

2kjLj(t).

Since sup(log λi/ logµi) < k, this series grows exponentially so that the first term in
(4.2) is bounded by Cak2kJLJ(t).

We now estimate the second term in (4.2) when i 6= b. Recall that A is the closed
subset of Ω where by assumption F is not uniformly Ck. Let Aε = A+B(0, ε), where
ε is a constant small enough that Aε ⊂ Ω. Thus outside Aε,

|C(a, b)| ≤ C ak

(1 + |b|)N

so that

C

(
a

µi
, S−1

i (t)

)
≤ C

(
a

µi

)k
1

(1 + 2j |t− xi|)N
.

Thus we obtain, as above,∑
i∈IJ , i 6=b

λiC

(
a

µi
, S−1

i (t)

)
≤ Cak2kJLJ(t).

Finally, from (4.2), we get

∣∣∣∣C(a, t)− λjC
(
a

µj
, S−1

j (t)

)∣∣∣∣ ≤ Cak2kJLJ(t).(4.4)

We now estimate the term corresponding to the sequence b. Recall that the last
condition in Definition 2.1 is equivalent to the existence of sequences an → 0, bn ∈ A,
and Cn → +∞ such that |C(an, bn)| ≥ Cnakn so that∣∣∣∣λbC ( a

µb
, S−1

b (t)

)∣∣∣∣ ≥ |λb|Cn( a

µb

)k
.

Recall that Λj = supi∈Bj(x) |λi|. Choosing a branch for which this supremum (taken
on a finite number of terms) is attained, we get for this branch that∣∣∣∣λbC ( a

µb
, S−1

b (t)

)∣∣∣∣ ≥ ΛJ(x)Cn2kJak
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so that

|C(a, t)| = 2kJak[CnΛJ(t) +R],

where |R| ≤ CLJ(t). We choose n such that Cn ≥ 2C, which determines a value of
an = a/µb. If

Λj(t) ≥
1

2
LJ(t),

the proposition is proved with j = J . Otherwise, since

LJ(t) = ΛJ + 2−AΛJ−1 + 2−2AΛJ−2 + · · · ,

one of the terms 2−lAΛJ−l must be large. More precisely, there exists l such that

2−lAΛJ−l ≥
1

10l2
ΛJ .(4.5)

(If several values of l satisfy (4.5), we choose the smallest.) We can choose the corre-
sponding branch in Proposition 4.1, and since l = o(J), this implies the irregularity
of F at x. We found points in the “cone above x” where the wavelet transform is
large. The statement of Proposition 4.1 is more precise because we will need precise
estimates on the wavelet transform everywhere in order to estimate the integrals of
the wavelet transform needed in the multifractal formalism. We have to check that
we can choose l ≤ C. We first prove that l ≤ εJ . We have ΛJ−l ≤ 2−αmin(J−l) and
ΛJ ≥ 2−αmaxJ so that if (4.5) holds,

2−lA2−αmin(J−l) ≥ 1

10l2
2−αmaxJ ,

which implies that

l ≤
(
αmax − αmin

A− αmin

)
J.

Choosing A large enough, we have l ≤ εJ for ε arbitrarily small. For this branch b,

|C(a, t)| ≥ 1

2
λb(x)C

(
a

µb
, S−1

b (t)

)
(4.6)

and C(a/µb, S
−1
b (t)) ∼ 1. Hence we have Proposition 4.1 when j ∈ [(1− ε)J, J ]. We

now want to prove that the proposition holds for j ∈ [J −A, J ].
Suppose that t is a point inside Ω such that the Si(t)’s do not approach the

boundary of Ω. We know that

C(a, t) = ω(a, t) +

d∑
j=1

λjC

(
a

µj
, S−1

j (t)

)
,

but |ω(a, t)| ≤ C1a
k and outside of a certain neighborhood of Ω, |C(a, t′)| ≤ C2a

k.
Let

i = (i1, . . . in) and i′ = (i1, . . . in, in+1).
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Thus if t and r are such that |C(µi, t)− rλi| ≤ e, then

|C(µi′ , Si′(t))− rλi′ |
∣∣∣∣ω(µi′ , Si′(t)) +

d∑
j

λjC

(
µi′

µj
, S−1

j (t)

)
− rλi′

∣∣∣∣
≤ C1(µi′)

k +
∑

j 6=in+1

λjC

(
µi′

µj

)k
+ λin+1

|rλi − C(µi, t)|

≤

C1 + C
∑

j 6=in+1

λj
(µj)k

µki′ + eλi+1 ≤ Cµki′ + eλi+1.

We start with a branch i such that r ∼ 1 and e = 0, which is possible because of
the first part of the proof. After one iteration, we obtain an error of Cµki ; after two
iterations, we get an error of Cµki λi+1 +Cµki+1, . . . ; and after j iterations, the error is

Cµki

(
λj
λi

+ µi
λj
λi+1

+ · · ·
)
∼ Cµki

λj
λi

so that |C(µj , t
′)−rλj | ≤ C ′µki (λj/λi) ≤ ελj , where t′ is on the subtree deduced from

t. Thus C(µj , t
′) ∼ rλj . Hence Proposition 4.1 follows.

Note that Propositions 3.2 and 4.1 show that the wavelet transform of F is “large”
near the tree T, and thus the ramifications of this tree of wavelet maxima reflect the
“dynamics” of self-similarity as stated by Arneodo, Bacry, and Muzy in [2].

It is remarkable that these results do not depend on the function g. If g were
replaced by another function, the new F would have the same regularity at every
point. Only the global smoothness of g is important. It defines a value beyond which
one can no longer calculate the regularity of F .

5. Determination of the Hölder spectrum. In this section, we prove that
for α < k, the Hölder spectrum of a self-similar function is the Legendre transform of
the function τ defined by

d∑
i=1

λai µ
−τ(a)
i = 1.

Proposition 5.1. Let α < k and define d(α) as the Hausdorff dimension of the
set of points x where F is Γα(x). Then d(α) is given on [0, k) by

d(α) =
(

inf
a
aα− τ(a)

)
.(5.1)

We will need the following proposition (Proposition 4.9 in [25]) in the proof of
Proposition 5.1.

Proposition 5.2. Let Hs be the Hausdorff measure of dimension s. Let µ be a
probability measure on Rm, F ⊂ Rm, and C be such that 0 < C < +∞. Then

• if lim supr→0 µ(B(x, r))/rs < C ∀x ∈ F, Hs(F ) ≥ µ(F )/C;
• If lim supr→0 µ(B(x, r))/rs > C ∀x ∈ F, Hs(F ) ≤ 2s/C.

Proof of Proposition 5.1. Let a ∈ R, b = −τ(a), and Pi = λai µ
b
i . Thus

∑
Pi = 1.

We first consider on K a probability measure ν such that

∀(i1, . . . , in), ν(Si1 · · ·Sin(K)) = Pi1 · · ·Pin .(5.2)
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The construction of such a measure by induction is straightforward (see, for instance,
[17]). Let x ∈ K, s > 0 and r > 0 and consider the set Bj(x), where 2−j ≤ r < 2.2−j .
Then

ν(Br(x))

rs
=

∑
i∈Bj(x)

λai µ
b
i

µsi
∼ sup
i∈Bj(x)

(
λi µ

b−s
a
i

)a
(because the number of branches over x in Bj(x) is bounded by an absolute constant).

Suppose that

b− s
a

< −α(x).

Then lim supr→0 ν(Br(x))/rs → +∞ so that, using Proposition 5.2, Hs(Γα) = 0.
Thus d(α) ≤ b+ aα so that d(α) ≤ −τ(a) + aα ∀a ∈ R.

In order to prove Proposition 5.1, we have to show that the infimum is reached.
Using Proposition 5.2, it is sufficient to find a and b such that ν(Γα) > 0.

Suppose that a and b are solutions of the following system

d∑
i=1

λai µ
b
i = 1,

∑
PiLogλi∑
PiLogµi

= α,


(5.3)

where Pi = λai µ
b
i . (In Lemma 5.3, we will determine the values of α for which this

system has a solution.)
If (i1, . . . , in) is a branch over x, let (nj)j=1,...,d be the proportion of j′s in the

sequence i1, . . . , in and let F be the subset of K composed of the points x such that

nj → Pj(5.4)

(meaning here that ∀ε > 0, ∃n : ∀m, ≥ n, if (i1, . . . , im) is a branch over x, then
|nj − Pj | ≤ ε ∀j = 1, . . . , d for this branch).

If x ∈ F , then

lim inf
j→∞

infi∈Bj(x)
Logλi
Logµi

= lim
Logλi
Logµi

=

∑
PjLogλj∑
PjLogµj

= α

so that F ⊂ Γα.
Let ν be the corresponding probability defined by (5.2). We can associate with

ν another probability P defined on {1, . . . , d}N as follows. If i = (i1, . . . , in) and Ii is
the subset of {1, . . . , d}N of all of the sequences starting with (i1, . . . , in), then

P (Ii) = Pi1 . . . Pin .

With probability P , the in’s are a sequence of i.i.d. random variables. The strong
law of large numbers implies that with probability 1, nj → Pj for a sequence i ∈
{1, . . . , d}N. Clearly, ν is the image of the probability P by the application x(i). We
want to show that on K, ν-almost everywhere nj → Pj . It would be obvious if x(i)
were one to one.
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First, note that if (i1, . . . , in) is a branch over x, so is (i1, . . . , in−1). Now suppose
that (5.4) fails. For n arbitrarily large, we can find a branch over x such that

|nj − Pj | ≥ ε.(5.5)

Consider such a sequence of branches over x for n→∞. Since at a scale r there are
at most N branches over x, (following Lemma 2.5) such branches for which (5.4) fails
can be grouped into at most N sets of increasing branches. Among these, at least
one, b̃x, has infinite length.

We call a branch of infinite length i such that x = x(i) a principal branch over x.
Because of Lemma 2.5, for each x, there are at most N such branches. Clearly, b̃x is
a principal branch over x.

Consider the event {x is such that (5.4) fails}. It is included in the event {∃b
principal branch over x such that (5.5) holds}. Since the probability for one given
branch is 0, the probability that (5.5) holds for at least one of the (at most) N
principal branches over x is also 0 such that for probability ν, almost every point of
K is such that (5.4) holds. Thus ν(F ) = 1, and since F ⊂ Γα, ν(Γα)1. We can now
apply Proposition 5.2. Hence we have the first part of Proposition 5.1.

Lemma 5.3. Suppose that αmin < αmax. System (5.3) has a solution if and only
if

αmin < α < αmax.(5.6)

If αmin = αmax, the only solution is α = αmin = αmax.
Proof. One can easily check that if a1, . . . , ad, b1, . . . , bd > 0, and the Pi’s are

weights (i.e., 0 < Pi and
∑
Pi = 1), then

inf

(
ai
bi

)
6= sup

(
ai
bi

)
=⇒ inf

(
ai
bi

)
<

∑
Piai∑
Pibi

< sup

(
ai
bi

)
so that (5.6) is necessary. Now suppose that this holds. Since

∑
λai µ

−τ(a)
i = 1,

∀i, τ(a) ≤ aLogλi/Logµi. If a → +∞, τ(a) ≤ a αmin so that if j is such that

Logλj/Logµj > αmin, then λajµ
−τ(a)
j → 0. Thus if αmin is reached for i in a subset J ⊂

{1, . . . , d}, then
∑
i∈J λ

a
i µ
−τ(a)
i → 1, but

∑
i∈J λ

a
i µ
−τ(a)
i =

∑
i∈J e

Logµi(aαmin−τ(a)) so
that τ(a)/a → αmin. Thus all of the Pi → 0 except for i ∈ J so that

∑
PiLogλi/∑

PiLogµi → αmin.
If a→ −∞, τ(a) ≤ aαmax and the same argument yields

∑
PiLogλi/

∑
PiLogµi →

αmax. By continuity,
∑
PiLogλi/

∑
PiLogµi takes all values between αmin and αmax.

Notice that if αmin = αmax = α0, then α = α0 is the only possible value for which
(5.3) has a solution.

6. Proof of the multifractal formalism. Now that we have determined the
spectrum of a self-similar function, we will prove the multifractal formalism for these
functions. First, we will do so for the wavelet-transform integral method. We recall
the formulas that are used. We compute

Z̃(a, q) =

∫
Rm
|C(a, b)|qdb.

Let

η(q) = lim inf
log Z̃(a, q)

log a
.(6.1)



MULTIFRACTAL FORMALISM: SELF-SIMILAR FUNCTIONS 989

The Hölder spectrum is computed using the formula

d(α) = inf
q

(qα− η(q) +m).(6.2)

In order to estimate Z̃(a, q) for self-similar functions, we first have to estimate
C(a, b) everywhere. Let 

i = (i1, . . . , in),

Ωi = Si1 · · ·Sin(Ω),

Bi = Ωi +B(0, a),

Ci = B(i1,...,in−1) −B(i1,...,in).

If a ≤ µi, Vol(Bi) ∼ (µi)
m and Vol(Ci) ≤ C(µi)

m. Inequality (4.6) shows that
there exists one point b ∈ Bi and an a such that C2−j ≤ a ≤ 2−j for which the order
of magnitude of C(a, b) is Λn. We show that this order of magnitude holds on a ball
of size ∼ a. To this end, we bound C(a, b) in Bi (and also in Ci, which will be useful
later).

Lemma 6.1. Let a > 0 and Bi be such that a ∼ µi. Then if b ∈ Bi,

|C(a, b)| ≤ CLi,

and if a ≤ µi1 · · ·µin , then if b ∈ Ci,

|C(a, b)| ≤ CLi
(
a

µi

)k
.

Lemma 6.1 is derived from (2.8) exactly as in the beginning of the proof of Propo-
sition 2.7. We leave the details to the reader.

We return to the estimation of C(a, b). In order to prove that it keeps the same
order of magnitude in a ball of size ∼ a, we bound 5bC(a, b) and ∂aC(a, b). Let
∂bC(a, b) be a partial derivative of C(a, b) in a certain direction b0 ∈ Rm. Clearly,

∂bC(a, b) =
1

a
C̃(a, b),

where C̃(a, b) is a wavelet transform using the wavelet ∂ψ.
The bound given by Lemma 6.1 for C(a, b) holds for C̃(a, b) so that

|∂bC(a, b)| ≤ C

a
Li.

Since at a certain point of Bi, C(a, b) is of the order of magnitude of Li, this is also
the case on a ball of size ∼ a.

If we now differentiate the wavelet transform with respect to the variable a, the
same procedure yields

∂aC(a, b) =
1

a
C̃(a, b),

where C̃(a, b) is a wavelet transform using the wavelet ψ(x)−x.5ψ(x), so that C(a, b)
is of the order of magnitude of Li on a ball of size ∼ a in the time-scale half-space.



990 S. JAFFARD

Furthermore, on Ci,

|C(a, b)| ≤ C akλi
(µi)k

.(6.3)

Let Aj be the interval [2−(j+A), 2−j ]. For each branch i such that µi ∼ 2−j ,
Proposition 4.1 shows that there exists a ball of radius at least C2−j in the time-scale
half-space located near xi and in scale in the interval Aj , where |C(a, b)| ≥ Cλi. Thus

C
∑

µi∼2−j

2−j(m+1)λqi ≤
∫
Aj×Rm

|C(a, b)|qda db

≤ C ′
∑

µi∼2−j

2−j(m+1)λqi + O

2−j
∑

µi≥2−j

2−kqjλqi

µqk−mi


so that

C
∑

2−j≤µi<2.2−j

µmi λ
q
i ≤ 2j

∫
Aj×Rm

|C(a, b)|qda db(6.4)

≤ C ′
 ∑

2−j≤µi<2.2−j

µmi λ
q
i +O

 ∑
µi≥2−j

2−kqjλqi

µqk−mi

 .
We first estimate the term ∑

2−j≤µi<2.2−j

µmi λ
q
i .(6.5)

The reader should notice that in the following estimation, we do not have to
assume that q is positive. This remark will be useful in section 7.

Recall that τ(q) is such that

d∑
j=1

µ
−τ(q)
j λqj = 1.(6.6)

Thus ∑
2−j≤µi<2.2−j

µmi λ
q
i ∼ 2−(m+τ(q))j

∑
2−j≤µi<2.2−j

µ
−τ(q)
i λqi .

Let

F (j) =
∑

2−j≤µi<2.2−j

µ
−τ(q)
i λqi .

From (6.6), we get

∑
|i|=N

µ
−τ(q)
i λqi =

 d∑
j=1

µ
−τ(q)
j λqj

N

= 1
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so that ∑
|i|≤N0

µ
−τ(q)
i λqi = N0.(6.7)

Clearly,

J∑
j=1

F (j) =
∑

µi≥2−J

µ
−τ(q)
i λqi .(6.8)

After permuting the indexation of the Si’s, we can assume that µ1 = inf µi and µd =
supµi.

The right-hand side of (6.8) contains all of the terms of length N if µN1 ≥ 2−J

and no terms of length M if µMd ≤ 2−J . Thus from (6.7) and (6.8), we get

N ≤
J∑
j=1

F (j) ≤M,

which can be written as

J
Log2

Log( 1
µ1

)
≤

J∑
j=1

F (j) ≤ J Log2

Log( 1
µd

)

so that there exist C1, C2 > 0 such that

lim sup
F (j)

j
≤ C1,

lim supF (j) ≥ C2.

(6.9)

Thus

lim sup
1

j
2(m+τ(q))j

∑
2−j≤µi<2.2−j

µmi λ
q
i ≤ C

and

lim sup 2(m+τ(q))j
∑

2−j≤µi<2.2−j

µmi λ
q
i ≥ C ′.

Now consider the term ∑
µi≥2−j

2−kqjλqi

µqk−mi

.

This is bounded by

C2−kqj
∑

µi≥2−j

λqiµ
m−qk
i .(6.10)
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We split this sum into bands Bl defined by 2−l−1 ≤ µi < 2−l. Using (6.7), we get

C2−kqj
∑
µi∈Bl

λqiµ
m−qk
i ≤ C2−kqj2−l(m−kq+τ(q))

∑
µi∈Bl

λqiµ
−τ(q)
i

≤ C2−kqj2−l(m−kq+τ(q)).

Now suppose that q is such that m− kq + τ(q) ≤ 0. Equation (6.10) is bounded
by

C2−kqj2−(m−kq+τ(q))j ≤ C2−(m+τ(q))j ,

and using (6.4) and (6.9), we obtain the followingproposition.
Proposition 6.2. Suppose that F is self-similar and let q be such that

τ(q) ≤ kq −m.(6.11)

Then

lim sup
a→0

a−m−τ(q)

∫
|C(a, b)|qdb ≥ C > 0(6.12)

lim sup
a→0

a−m−τ(q)

| log a|

∫
|C(a, b)|qdb ≤ C ′ < +∞.(6.13)

This result together with Proposition 2.7 proves the multifractal formalism for
the wavelet-integral method.

The multifractal formalism is also valid for the structure function method since
we showed in Part I that ζ(q) = η(q) for q > 1. However, the restriction q > 1 shows
that it might not yield the whole left-hand side of the spectrum but a smaller part
corresponding to the region where the infimum in the Legendre transform formula is
attained for q > 1.

Note that if k can be chosen arbitrarily large (when g is C∞), condition (6.11)
reduces to q ≥ 0. We consider the case of negative values of q in the next section.

7. The wavelet-box method. In this section, we first show some pitfalls of the
wavelet-maxima method and then show that a slight modification allows us to obtain
the spectrum even for its decreasing part.

Let us first briefly recall the principles of the wavelet-maxima method. Consider
for a given a′ > 0 the local maxima of the function b → C(a′, b). Generically, they
belong to a line of maxima b = l(a) defined in a small left-neighborhood [a′′, a′] of
a′ by the following condition: b → C(a, b) has a local maximum for b = l(a). The
wavelet-transform maxima method requires first the computation of

Z(a, q) =
∑
l

sup
b=l(a)

|C(a, b)|q,

where l is a line of maxima of the wavelet transform defined on [a′′, a′], and the sum
is taken on all lines of local maxima defined in a left-neighborhood [a′′, a′] of a′. We
then define

θ(q) = lim inf
logZ(a, q)

log a
.
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The counterexamples concerning the wavelet-maxima method that were given in
Part I easily adapt to the self-similar case. Suppose, for instance, that g is one of these
counterexamples supported by the interval [3, 4]. (We can make this assumption be-
cause they are compactly supported and these properties still hold after a contraction
and a translation.) Then

F (x) =
∑

2−αjF (2jx),

where α > 0 is self-similar and yields a similar counterexample. Nonetheless, we will
see that we can adapt the wavelet-maxima method so that it yields results as good as
and even better than the other methods. To this end, we introduce a slight variant,
the wavelet-box method.

Let C be a parameter larger than 1. The wavelet-box method consists of dividing
Rm into cubes of length C and, for each cube included in Ω, keeping only the largest
local maximum (if there is one on each of these cubes). Clearly, this procedure has
the advantage of not taking into account accumulations of lines of local maxima, on
which the counterexamples of Part I were based. We still use the notation θ(q), which
will avoid confusion with the wavelet-maxima method.

Theorem 7.1. Under the same hypotheses as Theorem 2.2, the wavelet-box
method yields the increasing part of the spectrum of self-similar functions. Further-
more, if dmax = m or, equivalently, if ∪Si(Ω) = Ω, the wavelet-box method yields the
whole spectrum of self-similar functions, provided that we keep only the largest maxi-
mum of a box of size Ca for a constant C large enough, i.e., d(α) can be obtained by
computing the Legendre transform of θ(q)−m.

With regard to the increasing part of the spectrum (corresponding to p ≥ 0),
the theorem is a consequence of the wavelet-integral method because of the following
lemma.

Lemma 7.2. The two quantities∫
|C(a, b)|qdb and am

∑
max

|C(a, b)|q

are of the same order of magnitude if the sum is computed as in the wavlet box method.
This result is quite straightforward since we estimated

∫
|C(a, b)|qdb precisely by

computing its order of magnitude near the wavelet maxima. We showed that its
value is about λqi near the tree T and smaller far from the tree. This shows that
there exists at least one maximum near each point of the tree. The estimation of
am
∑

max |C(a, b)|q then follows exactly the estimation performed in Proposition 6.2.
Thus, in that case, the verification of the fractal formalism reduces to the verification
for the integral formula, and the multifractal formalism holds when using the two-
wavelet methods. Note that for positive q’s we do not have to restrict the sum to
cubes included in Ω, which is interesting if we do not have a priori knowledge on Ω.

Before proving Theorem 2.3 for the decreasing part of the spectrum, we make
some general remarks.

Consider again the case q < 0 but for the quantity
∑

max |C(a, b)|q. An important
difference from the exact computations of [2] appears. Recall that the authors of [2]
were interested in the case where F is the indefinite integral of a multinomial measure
supported by a Cantor set. In this case, the wavelet maxima are situated on the “tree
over the Cantor set” since F is piecewise constant outside this set, so, for a small
enough, the wavelet transform vanishes there. Thus in this case, the last term of (6.4)
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vanishes, and the same proof as above shows that Proposition 6.2 will hold for q < 0
(with the same restriction concerning the distance between the maxima).

In the general case that we consider in this paper, F is a Ck function outside
K for which we do not have special information (since g is Ck but arbitrary). Thus
there may be extremely small wavelet maxima “far away” (on the scale of a) from K
(i.e., at a distance � a). Thus no formula involving negative values of q can work
reasonably. We present an example of this phenomenon.

First, note that if Ω 6= K, it is easy to construct examples where g and thus F
will be locally constant so that F (x+ h)− F (x) will vanish on an open subset for h
small enough, as does C(a, b) for a small enough. Thus ζ(q) and η(q) take the value
+∞ for negative values of p so that in all generality, computing ζ(q) and η(q) for
negative values of p does not make sense. The same problem appears for formulas
involving wavelet maxima. Of course, in the regions where C(a, b) vanishes, there are
no more maxima. However, it is easy to construct g with lines of very small maxima
as follows.

Let ψ be a Ck+2 function with moments of order k + 1 vanishing and supported
by [3/2, 2], and let

h(x) =
∑
j≥0

2−2kjψ(22jx).

This is supported by [0, 2], and if ψ is the analyzing wavelet and a = 2−j , C(a, b)
vanishes outside the interval |b| ≤ 2−j/2 (if |b| ≤ 2−j/8), but C(a, 0) = C2−kj . Thus
C(a, b) has a line of maxima that goes through the interval |b| ≤ 2−j/2 and the
supremum on this line is of the order of magnitude of 2−kj . Now suppose that F = g
in a neighborhood of 0 (which we can always assume if Ω 6= K). Then Z(a, q) is larger
than Ca−kq. We see that no bound of Z(a, q) can be found independent of k. If the
multifractal formalism held, since d(α) is independent of k, the order of magnitude of
Z(a, q) would be as well. Hence we have a contradiction.

We make one final remark on Theorem 2. First, suppose that g is C∞. If α ≤ α0,
the infimum in the Legendre transform is obtained for q > 0 (because τ(0) = −dmax

and τ is convex and increasing). In that case, we cannot directly calculate d(α) up to
α0 since we cannot use a C∞ wavelet with all vanishing moments, but following [1],
this can be done using a sequence of increasingly smoother wavelets and determining
increasingly larger parts of the spectrum. The case where g is Ck is still easier to
check.

We now want to show that using the wavelet-box method, we can recover the left
part of the spectrum corresponding to negative values of q when

∪Sj(Ω) = Ω.

(This implies that there exists no region where F is smooth.) The validity of this
condition can actually be checked on the part of the spectrum computed for q > 0
since at the maximum (the case where q = 0) d(α) = dmax, which satisfies∑

µdmax
j = 1.

However, the condition ∪Sj(Ω) = Ω can be rewritten
∑
µmj = 1 since Vol(Ωj) =

µmj Vol(Ω). Thus ∪Sj(Ω) = Ω is equivalent to dmax = m, which is easy to check.
In this case, the tree T leaves no void in the region of the upper half-plane above

Ω. (By this we mean that for any (a, b) in this region, we can find a point of the
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tree in a domain [a/C,Ca] × [b − Ca, b + Ca]); however, after perhaps increasing
the constant C, we can also find a point (µi, S

i(t)) where the order of magnitude
of the wavelet transform of F is λi. Thus if we modify the wavelet-maxima method
by imposing the condition that we first take the largest local maximum on the box
[a/C,Ca]×[b−Ca, b+Ca] (which amounts to considering a kind of maximal function),
we see that for a given scale a,∑

max

|C(a, b)|q ∼
∑
a∼µi

|λi|q.

Returning to the estimation of (6.5), we see that

lim sup
a→0

a−τ(q)
∑
max

|C(a, b)|qdb ≥ C > 0,

lim sup
a→0

a−τ(q)

| log a|
∑
max

|C(a, b)|qdb ≤ C ′ < +∞.

Hence we have the multifractal formalism in that case.
Note that the constant C in the definition of the wavelet-box method must be

chosen “large enough” depending on the self-similar function that is analyzed.

8. Unbounded self-similar functions. Thus far, we made the assumption
αmin > 0 (which is equivalent to |λj | < 1 ∀j = 1, . . . , d). This implied that F ∈ Cαmin .
Thus we were interested only in Hölder exponents larger than α > 0. However, we
would like to consider negative exponents, which, as mentioned before, should be
pertinent in some applications. We have already discussed the definition of negative
exponents in Part I. We will now show that the multifractal formalism holds using a
slightly different definition for the Hölder spectrum. We suppose that

d∑
i=1

|λi||µi|m < 1(8.1)

so that a function F that satisfies (2.3) belongs to L1. Condition (8.1) can clearly
give rise to unbounded functions. In fact, the following result holds.

Lemma 8.1. Suppose that one of the λj’s satisfies |λj | > 1 and that g does not
vanish identically. Then ∀x ∈ K, F is unbounded in any neighborhood of x so that
d(α) = 0 ∀α.

Proof. First, note that a straightforward estimation yields that if F ∈ L∞, then
|C(a, b)| ≤ C so that if F is bounded in a neighborhood of x |C(a, b)| ≤ C if b is in a
(perhaps) smaller neighborhood of x.

Let x ∈ K and i = (i1, . . . , in, . . .) such that x = x(i). Let j be such that
|λj | > 1. Then we fix an n and define i′ = (i1, . . . , in, j, j, . . .) = (i′1, . . .). Proposition

4.1 shows that there exists an x0 such that if bl = Si
′
1 · · ·Si′l(x0) and al = µi′1 · · ·µi′l ,

|C(al, bl)| ∼ |λi′1 . . . λi′l | and is thus unbounded. If n is large enough and l ≥ n, the
points bl are arbitrarily close to x so that F is unbounded in any neighborhood of x.
Hence we have Lemma 8.1.

In this case, the Hölder spectrum of F for α > −n is trivial: d(α) = 0 ∀α > −n.

Note that if sup |λj | = 1, F can be either unbounded or bounded depending on
the specific values taken by the function g, as shown by the following example.
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Suppose that F satisfies

F (x) = F (2x) + g(x)

and suppose that g is Lipschitz. If g is positive and does not vanish at 0, F is
unbounded, whereas if g(0) = 0, F is bounded.

Lemma 8.1 suggests that if F is unbounded, the spectrum defined by the Hausdorff
dimension of α-singularities is not the right quantity to consider, but we should instead
compute the packing dimension of strong singularities.

We now suppose that the separated open-set condition holds and that g and the
λj ’s are positive. We prove Theorem 2.2 in that case.

Let x ∈ K and i = (i1, . . . , in, . . .) be the (unique) branch over x. We define two
subsets A1 and A2 of B(x, µi) as follows. First, let Ω′ be a set where g(x) ≥ C > 0.
Suppose that λ1 > 1 and let i′ = (i1, . . . , in, 1, . . . , 1), where the number p of ones will
be made precise later. Since

F (y) =
∑

λig(S−1
i (y)),

if y ∈ Si′(Ω), F (y) ≥ C1λiλ
p
1. Si

′
(Ω) is the set A1. If dist(y,K) ≥ µi/2, F (y) ≤ C2λi.

A2 is the set of points of B(x, µi) such that dist(y,K) ≥ µi/2.
We choose p such that C1λ

p
1 ≥ 2C2. The volumes of A1 and A2 are ∼ µmi (because

of the separated open-set condition). Thus if

β(x) = lim sup
log |λi1(x)| · · · |λiN (x)|
logµi1(x) · · ·µiN (x)

,(8.2)

F has a strong singularity of order β(x) at x. Furthermore, the order of magnitude of
F on a subset of B(x,Cµi1(x) · · ·µiN (x)) of size comparable to the size of this ball is
exactly µi1(x) · · ·µiN (x) so that if β(x) is negative, the order of the strong singularity
at x is not higher than β(x). Hence we have the first part of the following proposition.
(The last part is a direct consequence of Proposition 4.1.)

Proposition 8.2. If the separated open-set condition holds, if g and the λj’s
are positive, and if (8.1) holds, F has a “strong singularity” of order β(x) at x but
no strong singularity of higher order. Furthermore, without any assumption on g, the
Si’s or the λi’s, F has a “wavelet singularity” of order β(x) at x.

It would be interesting to prove this proposition without the assumption of the
separated open-set condition. It clearly holds if K 6= Ω (i.e., if

∑
µmi 6= 1) because in

that case the choice that we made for the y’s is still possible.
The case where K = Ω is perhaps less interesting for applications since f is then

nowhere locally bounded (by Lemma 7.2), which is usually not realistic for “physical”
functions. Actually, in the case of three-dimensional turbulence, the singularities seem
to concentrate on a set of dimension < 3 (see [1] or [23]).

We now determine the packing dimension of the strong α-singularities of F .
Proposition 8.3. Under the same assumptions, the packing dimension of the

strong α-singularities of f is given by D(α) = inf(aα− τ(a)).
We already know that D(α) ≤ inf(aα− τ(a)), so we have to prove only the lower

bound. We will use the following result (see [14] or [25]).
Proposition 8.4. Let Hs be the packing measure of dimension s. Let µ be a

probability measure on Rm, F ∈ Rm, and C be such that 0 < C < +∞.
If lim infr→0 µ(Br(x))/rs < C ∀ x ∈ F, Hs(F ) ≥ µ(F )/C.
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The proof of Proposition 8.3 follows the proof of Proposition 5.1 since we can
take exactly the same measure µ and the same set F . It is now easy to check that
the multifractal formalism holds in this setting because the proof of Proposition 6.2
actually holds without any change.

We conclude this paper with the proof of the following corollary, which shows
that the multifractal formalism holds in a more general setting.

Corollary 8.5. Let A be a pseudodifferential elliptic operator of order s whose
symbol σ satisfies

∀α, β, |∂αx ∂
β
ξ σ(x, ξ)| ≤ C(α, β)(1 + |ξ|)s−β .

Suppose that h is a self-similar function that satisfies

h(x) =
d∑
i=1

λih(S−1
i (x)) + g(x),

and if s is negative, suppose further that the moments of g of order at most |s| vanish.
Let F = A(h). If F ∈ Cε(Rm) for an ε > 0, then its spectrum is a concave

function whose increasing part is given by

d(α) = inf
q

(αq − η(q) +m).

Proof. Following a result of Calderón and Zygmund [7], A can be written Ã(−∆)m/2

(up to a regularizing operator), where Ã and Ã−1 are Calderón–Zygmund operators.
Clearly, (−∆)m/2h is a self-similar function if m ≥ 0 and also if m < 0 and g has the
corresponding number of vanishing moments. Thus the multifractal formalism holds
for F because Calderón–Zygmund operators are continuous on the Besov spaces so
that (−∆)m/2h and F share the same function η. Since these operators are also
continuous on the two-microlocal spaces (see [18]), (−∆)m/2h and F have the same
Hölder regularity at each point (perhaps up to a logarithmic correction).
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Abstract. This paper characterizes the stability and orthonormality of the shifts of a multidi-
mensional (M, c) refinable function φ in terms of the eigenvalues and eigenvectors of the transition
operator Wcau defined by the autocorrelation cau of its refinement mask c, where M is an arbitrary
dilation matrix. Another consequence is that if the shifts of φ form a Riesz basis, then Wcau has
a unique eigenvector of eigenvalue 1, and all of its other eigenvalues lie inside the unit circle. The
general theory is applied to two-dimensional nonseparable (M, c) refinable functions whose masks
are constructed from Daubechies’ conjugate quadrature filters.
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1. Introduction. In this paper, we present a complete characterization of the
stability and orthonormality of the shifts of a refinable function in terms of the re-
finement mask by analyzing the simplicity of eigenvalue 1 of the transition operator.

Denote by `1(Zd) and `2(Zd) the spaces of absolutely summable and modulus-
square-summable complex-valued sequences defined on Zd, respectively. Let M ∈
Zd×d be a d×d integer matrix with eigenvalues of modulus > 1 and with | detM | =
m > 1. Let c ∈ `1(Zd) and φ : Rd → C be a complex-valued function. The equation

φ(x) =
∑
q∈Zd

mc(q)φ(Mx− q)(1.1)

is called a refinement equation. The matrix M is called a dilation matrix. The
sequence c is called a refinement mask, and the function φ is called an (M, c) refinable
function or (M, c) scaling function. We assume that

∫
φ(x)dx = 1.

Denote by L1(Rd) and L2(Rd) the spaces of Lebesque-integrable and modulus-
square-integrable functions defined on Rd, respectively. The class of all tempered
distributions on Rd will be denoted by S ′. The dilation operator M associated with
the dilation matrix M is defined for all functions φ by Mφ(x) := φ(Mx), x ∈ Rd.
This can be extended to all distributions φ ∈ S ′ by defining

〈Mφ, f〉 :=
1

m
〈φ,M−1f〉 for all f ∈ S,

where S denotes the class of all infinitely differentiable functions with rapid decay at
infinity. Similarly, the shift operator T pφ(x) := φ(x − p), p ∈ Zd, for functions may
be extended to distributions by

〈T pφ, f〉 := 〈φ, T−pf〉 for all f ∈ S.
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The refinement equation (1.1) may now be extended to include distributions φ ∈ S ′
by writing

φ =
∑
q∈Zd

mc(q)MT qφ.(1.2)

A distribution φ that satisfies (1.2) is called an (M, c) refinable distribution.
The Fourier transform of a sequence a ∈ `1(Zd) will be denoted by â and is

defined by

â(u) :=
∑
p∈Z2

a(p)e−ipu,

where i ≡
√
−1. Note that â(u) is a complex-valued 2π-periodic continuous function

on Rd and thus is defined on the d-dimensional torus Td. For a finitely supported
sequence (aj)j∈Zd with support in [0, N − 1]d, we define N as its length.

For any continuous function f defined on Rd, we shall denote by f| the sequence

(f(p))p∈Zd , which is the restriction of f to Zd.

The Fourier transform of a function f ∈ L1(Rd) is

f̂(u) :=

∫
Rd

f(x)e−ixudx.

This maps S onto itself and extends to all tempered distributions S ′ by duality.
We shall assume throughout this paper that c is a finitely supported sequence

that satisfies ∑
p∈Zd

c(p) = 1.(1.3)

Then there exists a compactly supported (M, c) refinable distribution φ, unique up
to a constant multiple, such that its Fourier transform admits the infinite-product
representation

φ̂(u) = φ̂(0)
∞∏
j=1

ĉ
(
(MT )−ju

)
, u ∈ Rd(1.4)

(see [11]). Henceforth, we assume that φ̂(0) = 1.
An (M, c) refinable function φ ∈ L2(Rd) is stable if {φ(x − p)}p∈Zd is a Riesz

basis of its closed linear span. It is orthonormal if {φ(x− p)}p∈Zd is an orthonormal
basis of its closed linear span.

For an (M, c) refinable function φ ∈ L2(R), define

φau(x) :=

∫
Rd

φ(x− t)φ(−t) dt, x ∈ Rd,(1.5)

and

cau(p) :=
∑
q∈Zd

c(p− q)c(−q), p ∈ Zd.(1.6)

Then φau is a continuous (M, cau) refinable function. The function φau is called the
autocorrelation of φ and the sequence cau is called the autocorrelation of c.
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A necessary condition for an (M, c) refinable function φ to be orthonormal is that
the refinement mask c satisfies the conditions

mcau(Mp) = δ(p), p ∈ Zd,(1.7)

and ∑
q∈Zd

c(q) = 1,(1.8)

where δ(p) = 1 for p = 0 and δ(p) = 0 otherwise. A sequence c that satisfies (1.7)
and (1.8) is called a conjugate quadrature filter with respect to the dilation matrix M
(M -CQF). Note that (1.8) implies that∑

q∈Zd

cau(q) = 1.(1.9)

For a dilation matrix M and any finitely supported refinement mask c, we define
the (M, c) subdivision operator Sc : `2(Zd)→ `2(Zd) by

(Scb)(p) :=
∑
q∈Zd

mc(p−Mq)b(q), b ∈ `1(Zd).(1.10)

For the case M = 2I, this operator has been studied extensively in [1]. The adjoint
of Sc̃, where c̃(p) := c(−p), p ∈ Zd, is the (M, c) transition operator, which shall be
denoted by Wc. Thus the operator Wc : `2(Zd)→ `2(Zd) is defined by

(Wcb)(p) =
∑
q∈Zd

mc(Mp− q)b(q), b ∈ `2(Zd).(1.11)

We remark that the transition operator Wcau corresponding to the autocorrelation
cau of c is called the wavelet-Galerkin operator in [18].

Note that if c is conjugate symmetric, i.e., c = c̃, then Sc = Sc̃, and Wc is the
adjoint of the subdivision operator Sc. For our purposes, we shall restrict the transition
operator to the space `1(Zd). If φ is an (M, c) refinable continuous function, where
c is finitely supported, then φ is compactly supported, and the sequence φ| is an

eigenvector of Wc in `1(Zd) of eigenvalue 1. If c is an M -CQF, then φcau | = δ, which
is an eigenvector of Wcau of eigenvalue 1.

The definition in (1.11) shows that if the refinement mask c is supported in [0, N−
1]d and if M = 2I, then WCau maps sequences supported on [−N + 1, N − 1]d into
sequences supported on [−N + 1, N − 1]d. For a general dilation matrix M , a more
detailed discussion in section 4 leads to the fact that Wcau has a finite-dimensional
invariant subspace that consists of sequences on a finite set. The operator Wcau

(respectively, Wc) restricted to any of its finite-dimensional invariant subspaces will
be called a restricted transition operator.

The eigenvalues of WCau
hold the key to many important properties of the refin-

able function, for instance, stability, regularity, and the convergence of the cascade
algorithm (see [17], [5], [9], [8], [22], and [23]). The first indication of this role ap-
peared in [17] and [18], where it was shown that for d = 1 and M = (2), i.e., in one
dimension with dyadic scaling, if φ is a (2, c) refinable function, then φ is orthonormal
if and only if 1 is a simple eigenvalue of the transition operator Wcau .
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The object of this note is to investigate further the relationship between stability
and orthonormality of an (M, c) refinable function on one hand and the eigenvalues
of the corresponding transition operator Wcau on the other in the multivariate setting
with an arbitrary dilation matrix. In particular, we give a multidimensional extension
of the results in [17] on the characterization of the orthonormality of the refinable
function. We further show that an (M, c) refinable function φ is stable if and only if
the transition operator Wcau has a unique eigenvector of eigenvalue 1, whose Fourier
transform does not vanish on the torus. This is given in Theorem 2.5, where Theorem
2.3 plays a key role in the proof. Another consequence of Theorem 2.3 is the fact that
if the shifts of an (M, c) refinable function φ form a Riesz basis, then the sequence
φcau | is the unique eigenvector of Wcau corresponding to the eigenvalue 1, and all of
the other eigenvalues of Wcau lie inside the unit circle. Section 3 deals with M -CQFs.
In particular, it is shown that for an M -CQF, the corresponding (M, c) refinable
function belongs to L2(Rd), and further characterizations of orthonormality are also
given. Restricted transition operators are studied in more detail in section 4. It is
shown that checking for stability and orthonormality is reduced to checking whether 1
is a simple eigenvalue of a finite-order matrix, which is generated from the refinement
mask of φ. The general theory is applied to the construction of nonseparable conjugate
quadrature filters (M -CQFs) and the corresponding refinable functions from the one-
dimensional CQFs of Daubechies.

Another approach to the characterization of stability and orthonormality of a
refinable function φ with finitely supported refinement mask c makes use of the zero
set of the Fourier transform of c. A detailed discussion for the univariate case can be
found in [2] and [12]. In one dimension, both approaches characterize the stability
and orthonormality of a refinable function φ in terms of its refinement mask c using
the equivalent characterization of the Fourier transform of φ. We prefer the eigen-
value approach for the following reasons. First, as pointed out in [7], for a specified
finitely supported mask, it is easier to check for stability and orthonormality of the
corresponding refinable function using the eigenvalue characterization. In this case,
the problem of checking for stability and orthonormality is reduced to the simple
routine of checking whether 1 is a simple eigenvalue of a finite-order matrix. Second,
the analysis of the zero set of the Fourier transform of the refinement mask relies on
the fact that a univariate polynomial has a finite number of zeros. This no longer
holds for multivariate polynomials. However, it is possible to extend the correspond-
ing univariate results to higher dimensions by imposng the condition that a certain
multivariate polynomial has a finite number of zeros, as suggested by [11].

It is of particular interest to construct compactly supported wavelets from a com-
pactly supported refinable function and its mask. In the univariate case, with dyadic
scaling (M = (2)), the construction is simple. For a general integer dilation M = (m),
an algorithmic approach in the construction of compactly supported wavelets from
a given refinable function φ and its refinement mask is given in [16]. The problem
of wavelet construction from an (M, c) refinable function φ and its refinement mask
is much more challenging in higher dimensions. However, in dimensions no greater
than 3 and M = 2I, a method is given in [20] and [21] under a mild condition on
the refinement mask c. In this case, compactly supported wavelets can be constructed
based solely on c.

2. Stability and orthonormality of refinable functions. Let c : Zd → C
be a finitely supported sequence satisfying (1.3) and let M be a dilation matrix. This
section studies the relationship between stability and orthonormality of the (M, c)
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refinable function φ on one hand and the spectral properties of the corresponding
transition operator Wc on the other. Recall that the sequence φ| is an eigenvector of
Wc of eigenvalue 1. We shall first establish a result relating the spectrum of Wc and
the nonvanishing of the Fourier transform of φ| and then deduce results on stability
and orthonormality of φ.

Lemma 2.1. Suppose that c is a finitely supported sequence satisfying ĉ(0) = 1.
Let φ be a continuous (M, c) refinable function and b ∈ `1(Zd). Then for any integer
N ≥ 1 and for any r ∈ Zd,∑

p∈Zd

b(p)φ
(
r −M−Np

)
=
(
WN
c (b ∗ φ|)

)
(r).(2.1)

Proof. The proof is by induction on N . For N = 1, applying the refinement
equation (1.1) gives∑

p∈Zd

b(p)φ
(
r −M−1p

)
=

∑
p,q∈Zd

mb(p)c(q)φ| (Mr − p− q)

=
∑
q∈Zd

mc(q)b ∗ φ|(Mr − q)

=
(
Wc(b ∗ φ|)

)
(r).

If (2.1) holds for N, then(
WN+1
c (b ∗ φ|)

)
(r) =

∑
q∈Zd

mc(Mr − q)
(
WN
c (b ∗ φ|)

)
=
∑
q∈Zd

mc(Mr − q)
∑
p∈Zd

b(p)φ
(
q −M−Np

)
.(2.2)

Interchanging the order of summation on the sum in (2.2) followed by a change of
index, it can be written as∑

p∈Zd

b(p)
∑
k∈Zd

mc(k)φ
(
M(r −M−N−1p)− k

)
=
∑
p∈Zd

b(p)φ
(
r −M−N−1p

)
.

The result now follows by induction.
Corollary 2.2. Suppose that c is a finitely supported sequence satisfying ĉ(0) =

1 and φ is a continuous (M, c) refinable function. Then φ| is the unique eigenvector

of Wc in `1(Zd) ∗ φ| of eigenvalue 1.

Proof. Suppose that b ∗φ|, b ∈ `1(Zd), is another eigenvector of Wc of eigenvalue
1. Then (2.1) gives∑

p∈Zd

b(p)φ
(
r −M−Np

)
=
(
WN
c (b ∗ φ|)

)
(r) = b ∗ φ|(r)

for all integers N ≥ 0 and r ∈ Zd. Letting N →∞, we have∑
p∈Zd

b(p)

φ(r) = b ∗ φ|(r),
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which is equivalent to∑
p∈Zd

b(p)

 φ̂|(u) = b̂(u)φ̂|(u), u ∈ Rd.

Since φ̂| does not vanish on a set of positive measure, it follows that b̂(u) is a constant.
Equivalently, b = αδ for some α ∈ C. Hence b ∗ φ| = αφ|.

Remark 1. In general, if φ̂| can be factored as

φ̂|(u) = ĥ(u)ĝ(u),

where ĝ(u) 6= 0 for all u ∈ Rd and g ∈ `1(Z), then it follows from Corollary 2.2
and Wiener’s theorem that φ| is the unique eigenvector of Wc in h ∗ `1(Z) of eigen-
value 1.

Theorem 2.3. Suppose that c is a finitely supported sequence satisfying ĉ(0) = 1
and φ is a continuous (M, c) refinable function. If

φ̂|(u) :=
∑
p∈Zd

φ(p)e−ipu 6= 0, u ∈ Rd,(2.3)

then φ| is the unique eigenvector of Wc in `1(Zd) of eigenvalue 1, and all of the other
eigenvalues of Wc lie inside the unit circle.

Further, 1 is a simple eigenvalue of any restricted Wc.
Proof. Suppose that (2.3) holds, and let

1/φ̂|(u) =:
∑
p∈Zd

w(p)e−ipu, u ∈ Rd.

Since 1/φ̂|(u) is smooth, it follows that w ∈ `1(Zd). Hence `1(Zd) ∗ φ| = `1(Zd), and
Corollary 2.2 implies that φ| is the unique eigenvector of Wc in `1(Z) of eigenvalue 1.

Now let λ 6= 1 be an eigenvalue of Wc and let v ∈ `1(Zd) be the corresponding
eigenvector. Equation (2.1) gives

λNv(r) = (WN
c v)(r) = (WN

c v ∗ w ∗ φ|)(r) =
∑
p∈Z

(v ∗ w)(p)φ
(
r −M−Np

)
.(2.4)

The limit as N →∞ of the sum on the right of (2.4) exists and is equal to(∑
p

v ∗ w(p)

)
φ(r), r ∈ Zd.

Therefore, if λ 6= 1, then necessarily |λ| < 1. Further,
∑
p v ∗ w(p) = 0.

If 1 is not a simple eigenvalue of a restricted transition operator Wc, then it must
be a degenerate eigenvalue with only one eigenvector, say b. In this case, there exists a
vector b1 such that Wcb1 = b1 + b, which implies that WN

c b1 = b1 +Nb for all integers
N ≥ 1. Again, (2.4) gives

b1(r) +Nb(r) = (WN
c b1)(r) =

∑
p∈Z

(b1 ∗ w)(p)φ
(
r −M−Np

)



STABILITY AND ORTHONORMALITY 1005

for all N ≥ 1, which is impossible.
A function φ ∈ L2(Rd) is stable if {φ(·−p)}p∈Zd is a Riesz basis of its closed linear

span. Recall that {φ(· − p)}p∈Z is a Riesz basis if and only if there exist constants
0 < C1 ≤ C2 <∞ such that

C1 ≤
∑
q∈Zd

|φ̂(u+ 2πq)|2 ≤ C2 for almost all u ∈ Rd.(2.5)

If φau| ∈ `1(Zd), the Poisson summation formula leads to the characterization that φ
is stable if and only if

C1 ≤
∑
p

φau(p)e−ipu ≤ C2, u ∈ Rd.(2.6)

Corollary 2.4. Suppose that c is a finitely supported sequence satisfying ĉ(0) =
1 and that φ is a stable (M, c) refinable function. Then φau| is the unique eigenvector

in `1(Zd) of Wcau corresponding to the eigenvalue 1, and all of the other eigenvalues
of Wcau lie inside the unit circle.

Corollary 2.4 follows directly from Theorem 2.3 and equation (2.6). In one di-
mension with dyadic scaling, Cohen and Daubechies [3] proved that for a stable (2, c)
refinable function φ, the eigenvalues of the corresponding transition operator Wcau re-
stricted to its invariant subspace of finite sequences with zero mean lie inside the unit
circle. Their result was extended to higher dimensions with dilation matrix M = 2I
by Long and Chen [14]. We note that in one dimension, the result of Cohen and
Daubechies was also improved upon by Hervé [10].

The following theorem gives a characterization of the stability of an (M, c) refin-
able function. A similar result in one dimension with dilation M = (2) was obtained
in [5].

Theorem 2.5. Suppose that c is a finitely supported sequence that satisfies ĉ(0) =
1. An (M, c) refinable function φ is stable if and only if Wcau has a unique eigenvector
of eigenvalue 1 whose Fourier transform does not vanish.

Further, 1 is a simple eigenvalue of any restricted Wcau .
Proof. If φ is stable, then condition (2.3) of Proposition 2.3 is satisfied for φau.

Hence Wcau has a unique eigenvector φau| of eigenvalue 1 that has a nonvanishing
Fourier transform.

Conversely, since φau| ∈ `1(Zd) is an eigenvector of Wcau with eigenvalue 1 and
since such an eigenvector is unique and has a nonvanishing Fourier transform, it
follows from (2.6) that the (M, c) refinable function φ is stable.

An (M, c) refinable function φ ∈ L2(Rd) is interpolatory if φ is continuous and
satisfies

φ(p) = δ(p), p ∈ Zd.(2.7)

Theorem 2.6. Suppose that c is a finitely supported sequence that satisfies ĉ(0) =
1. A necessary and sufficient condition for a continuous (M, c) refinable function φ
to be interpolatory is that the sequence δ is the unique eigenvector of Wc of eigen-
value 1.

Further, 1 is a simple eigenvalue of any restricted Wcau .
Proof. Since φ is (M, c) refinable, the corresponding sequence φ| is an eigenvector

of Wc in `1(Zd) with eigenvalue 1. If δ is the unique eigenvector of eigenvalue 1, then

φ(p) = δ(p), p ∈ Zd,
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i.e., φ is interpolatory.
Conversely, if φ is interpolatory, then obviously φ| = δ is an eigenvector of Wc in

`1(Zd) with eigenvalue 1. Since∑
p∈Zd

φ(p)e−ipu = 1 for all u ∈ Rd

does not vanish, by Theorem 2.3, δ is the unique eigenvector of eigenvalue 1.
Clearly, φ ∈ L2(Rd) is an orthonormal (M, c) refinable function if and only if φau

is an interpolatory (M, cau) refinable function.
Corollary 2.7. Suppose that c is a finitely supported sequence that satisfies

ĉ(0) = 1. An (M, c) refinable function φ is orthonormal if and only if the sequence δ
is the unique eigenvector of Wcau of eigenvalue 1.

Further, 1 is a simple eigenvalue of any restricted Wcau .
Combining this corollary with Theorem 2.5, we have the following proposition.
Proposition 2.8. Suppose that c is a finitely supported sequence satisfying

ĉ(0) = 1 and that φ ∈ L2(Rd) is (M, c) refinable. Then the following are equiva-
lent:

(i) φ is orthonormal ;
(ii) c is an M -CQF and φ is stable;

(iii) c is an M -CQF and φ̂au|(u) 6= 0, u ∈ Rd.
If c is an M -CQF, Corollary 2.7 says that the simplicity of the eigenvalue 1 of

any restricted transition operator Wcau is equivalent to the orthonormality of the
refinable function φ. On the other hand, Theorem 2.5 states that the stability of
the refinable function φ is equivalent to the simplicity of the eigenvalue 1 of any
restricted transition operator Wcau and the nonvanishing of the Fourier transform
of the corresponding eigenvector. It will be shown in an example below that the
simplicity of the eigenvalue 1 of a restricted Wcau does not imply the existence of
an eigenvector with nonvanishing Fourier transform. This shows that the conditions
in Theorem 2.5 are not superfluous. In fact, it will be interesting to know whether
the simplicity of the eigenvalue 1 of a restricted transition operator together with the
additional condition ∑

k

|ĉ(u+ (MT )−12πγk)|2 > 0(2.8)

would imply the nonvanishing of the Fourier transform of the corresponding eigenvec-
tor.

The following examples show that the simplicity of eigenvalue 1 together with
(2.8) do not imply the nonvanishing of the Fourier transform of the corresponding
eigenvector. In particular, they show that the converse of Theorem 2.3 is false even
under the assumption in (2.8).

Example 1. Let c be the sequence{
. . . , 0,

1

4
,

1

2
,

1

4
,

1

4
,

1

2
,

1

4
, 0, . . .

}
,

where c(0) = 1/4, c(1) = 1/2, . . . . It is straightforward to check that the sequence
a = {. . . , 0, 1, 2, 2, 2, 1, 0, . . .}, where a(0) = 1, a(1) = 2, . . . , is the unique eigenvector
for Wc of eigenvalue 1 and that the Fourier transform of a is (1 + eiu)(1 + eiu + ei2u),
which vanishes at −1.
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We shall show that there is a compactly supported continuous (2, c) refinable
function φ such that

φ(n) = a(n), n ∈ Z,(2.9)

and the Fourier transform ĉ(u) of the mask c satisfies

|ĉ(u)|2 + |ĉ(u+ π)|2 > 0 for all u ∈ R.(2.10)

The Fourier transform of c can be written as

ĉ(u) = b̂(u)(1− eiu + ei2u) = b̂(u)(eiu + ω)(eiu + ω2),(2.11)

where

b(u) =
1

4
(1 + eiu)3

is the Fourier transform of the mask

b =

{
. . . , 0,

1

4
,

3

4
,

3

4
,

1

4
, 0, . . .

}
with b(0) = 1/4, b(1) = 3/4, . . . , and ω 6= 1 is a cube root of unity. All of the roots
of ĉ lie on the unit circle, and they are precisely −1,−1,−1,−ω, and −ω2. Since no
root is the negative of another root, |ĉ(u)|2 + |ĉ(u+ π)|2 > 0 for all real u. Thus the
mask c satisfies (2.10).

Note that the sequence b is exactly the mask for the (2, b) refinable quadratic
B-spline g obtained by convolving the characteristic function χ[0,1) with itself three
times. Let

φ(x) = g(x) + g(x− 1) + g(x− 2), x ∈ R.(2.12)

Then the Fourier transform of φ is

φ̂(u) = ĝ(u)(eiu − ω)(eiu − ω2) = ĝ(u)(1 + eiu + ei2u).(2.13)

Since the set of roots of (1− z)3(1 + z+ z2) is closed under the mapping z → z2, φ(x)
is (2, a) refinable by Theorem 2.1 of [15]. The function φ is not stable since ω and ω2

are zeros of 1 + z + z2. With a suitable normalization of g, we have

φ| = {. . . , 0, 1, 2, 2, 2, 1, 0, . . .},

which is (2.9).
Example 2. Let c and φ be as in Example 1. Then

cau = {. . . , 0, 1, 4, 6, 6, 9, 12, 9, 6, 6, 4, 1, 0, . . .}.

The sequence φau| is an eigenvector of Wcau of eigenvalue 1. The 11 × 11 linear sys-
tem satisfied by the eigenvectors for Wcau corresponding to the eigenvalue 1 has rank
10. (Here Wcau is restricted to sequences supported on [−5, 5], which form an invari-
ant subspace containing all finitely supported eigenvectors.) Hence φ| is the unique
eigenvector of Wcau of eigenvalue 1.

In summary, this example gives a (2, c) refinable function which is not stable, but
Wcau has a simple eigenvalue 1 and the mask c satisfies

|ĉ(u)|2 + |ĉ(u+ π)|2 > 0 for all u.
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3. Multivariate CQF. Let M be an integer dilation matrix and c : Zd → C be
a finitely supported sequence that satisfies (1.3). Hence there is a unique compactly

supported (M, c) refinable distribution φ, normalized so that φ̂(0) = 1. Assuming
that c is an M -CQF, we are interested in knowing when φ ∈ L2(Rd) and obtaining
further characterizations of orthonormality.

We first consider the cascade algorithm for the computation of the compactly
supported (M, c) refinable distribution. Let φ(0) be the indicator function of any

fundamental region for Zd ⊂ Rd. (Thus φ̂(0) is continuous at 0 and φ̂(0)(0) = 1.)
Starting from φ(0), define a sequence of functions φ(n) by

φ(n)(x) :=
∑
p∈Zd

mc(p)φ(n−1)(Mx− p), n = 1, 2, . . . .(3.1)

Then

φ̂(n)(u) = φ̂(0)
(
(MT )−nu

) n∏
j=1

(
ĉ
(
(MT )−ju

))
, u ∈ Rd.(3.2)

The sequence φ̂(n) → φ̂ uniformly on compact subsets as n→∞, where

φ̂(u) =

∞∏
j=1

ĉ
(
(MT )−ju

)
, u ∈ Rd,(3.3)

since c satisfies (1.3). Further, φ̂ is continuous at the origin and φ̂(0) = 1.
It is clear that φ(n) ∈ L2(Rd) and is compactly supported. Next, we prove

that ‖φ(n)‖ = 1 for all n = 0, 1, . . . . Note that if c is an M -CQF, then (1.7) and

(1.11) imply that δ is an eigenvector of Wcau of eigenvalue 1. Since φ
(0)
au | = δ and

φ
(n)
au | = Wcauφ

(n−1)
au |, we have φ

(n)
au | = δ. Hence ‖φ(n)‖ = 1 for all n = 0, 1, . . . .

Proposition 3.1. If c is an M -CQF, then φ(n) defined by (3.1) converges weakly
to the (M, c) refinable function φ ∈ L2(Rd).

If, in addition, ‖φ‖ = 1, then φ(n) converges strongly in L2(Rd) to φ.
Proof. First, note that if c is an M -CQF, then ||φ(n)|| = 1 for all n ≥ 0. There-

fore, {φ(n)} has a subsequence which converges weakly to ϕ ∈ L2(Rd). Since weak
convergence is stronger than convergence in distribution, we have ϕ = φ, and hence
φ ∈ L2(Rd).

Next, we show that the sequence φ(n) itself converges weakly to φ. If φ(n) does not
converge weakly to φ, then there exists a subsequence φ(ni) which converges weakly
to a function in L2(Rd) other than φ. This contradicts the fact that φ(ni) converges
to φ in distribution.

In addition, if ‖φ‖ = 1, then ‖φ(n)‖ → ‖φ‖. With this, weak convergence of
φ(n) → φ implies strong convergence.

Remark 2. For a general finitely supported mask c, a similar proof shows that
the corresponding (M, c) refinable distribution φ belongs to L2(Rd) if the `2 operator
norm ‖Wcau‖ ≤ 1.

Since φ is compactly supported, if φ ∈ L2(Rd), then φ ∈ L1(Rd). Hence φ̂(u)→ 0
as |u| → ∞. If φ is refinable, then for any p ∈ 2πZd/{0},

φ̂((MT )np) = φ̂(p)
n∏
j=1

ĉ(((MT )n−j)p) = φ̂(p).
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Letting n→∞ implies that φ̂(p) = 0 for p ∈ 2πZd/{0}. This means that φ satisfies
the Strang–Fix condition of order 1. By the Poisson summation formula, this condition
is equivalent to the shifts of φ forming a partition of unity, i.e.,∑

p∈Zd

φ(x− p) = 1, x ∈ Rd.(3.4)

Proposition 3.2. Let M be a dilation matrix, c be an M -CQF, and φ be the
unique (M, c) refinable function normalized such that φ̂(0) = 1. The following are
equivalent:

(i) δ is the unique eigenvector of Wcau of eigenvalue 1;
(ii) the shifts of φ are orthonormal ;
(iii) the shifts of φ are orthogonal.

Proof. The equivalence of (i) and (ii) is given in Corollary 2.7. We need only
to show that (iii) implies (ii). If (iii) holds, multiplying both sides of (3.4) by φ
and integrating term by term, the orthogonality of the shifts of φ and the fact that∫
φ(x) = 1 give ‖φ‖2 = 1.

As a consequence of Propositions 3.1 and 3.2, the cascade algorithm converges
strongly if the corresponding (M, c) refinable function φ is orthonormal, a result which
coincides with the well-known fact that the stability of an (M, c) refinable L2 function
implies strong convergence of the cascade algorithm.

4. Restricted transition operators. We now discuss how to restrict the tran-
sition operator to a finite-dimensional subspace. For a dilation matrixM and a finitely
supported refinement mask c, a subset D ⊂ Zd is called an invariant support set for
the transition operator Wc if the following are satisfied:

(i) D is finite;
(ii) for all sequences b with support in D, the support of Wcb is also in D; and

(iii) the support of every finitely supported eigenvector of Wc that corresponds to
a nonzero eigenvalue is contained in D.

Such a finite invariant support set D for Wc always exists. To construct D, choose a
vector norm ‖ · ‖ on Rd and a number 0 < α < 1 such that for all x ∈ Rd,

||M−1x|| ≤ (1− α)||x||.

This is possible because the spectral radius ρ(M−1) < 1. Now choose

r ≥ rmin :=
(1− α)

α
max
c(p)6=0

‖p‖

and define

Dr = {p ∈ Zd : ||p|| ≤ r}.

Clearly, Dr is an invariant support set for Wc. Further, if a sequence b is supported
in Ds with s > r, then Wcb is supported in Dt, where t = αr + (1 − α)s. Therefore,
Dr contains the support of every compactly supported eigenvector of Wc. Further,
any compactly supported eigenvector of Wc is also an eigenvector of the restricted
operator Wc|`(Dr), where `(Dr) is the space of all sequences supported on Dr. One
may construct the disk Dr to be arbitrary close to the minimal size by using a vector
norm so that the corresponding operator norm ‖M−1‖ is sufficiently closed to ρ(M−1)
and by choosing r = rmin.
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For the case where M = 2I with refinement mask c supported in [0, N − 1]d,
the support of φ is in [0, N − 1]d and that of φau is contained in [−N + 1, N − 1]d.
A mimimal invariant support set for the corresponding transition operator Wcau is
[−N + 1, N − 1]d.

For a dilation matrix M and a finitely supported mask c, let Ω be an invariant
support set of Wcau , and `(Ω) be the space of all sequences supported on Ω. Then the
transition operator Wcau restricted to `(Ω) is represented by the matrix

A := (m cau(Mp− q))p,q∈Ω ,(4.1)

and φau| is an eigenvector of A of eigenvalue 1.
Theorem 4.1. Suppose that c is a finitely supported sequence satisfying ĉ(0) = 1

and that φ ∈ L2(Rd) is the compactly supported (M, c) refinable function. Then φ is
stable if and only if

(i) there is an eigenvector corresponding to the eigenvalue 1 of matrix A defined
by (4.1) whose Fourier transform does not vanish, and

(ii) 1 is a simple eigenvalue of A.
Proof. Conditions (i) and (ii) together with the fact that φau| is an eigenvector

of A of eigenvalue 1 imply that φau| has a nonvanishing Fourier transform. Hence
conditions (i) and (ii) imply that φ is stable.

On the other hand, if φ is stable, then φau| is an eigenvector of A of eigenvalue 1
whose Fourier transform does not vanish; hence condition (i) holds. To show condition
(ii), assume that 1 is not a simple eigenvalue of A. Then there exists an eigenvector a
of A of eigenvalue 1, and a is not a scalar multiple of the eigenvector φau|. Since the

transition operator Wcau maps `(Ω) into `(Ω), the vector a is an eigenvector in `1(Z)
of the transition operator Wcau of eigenvalue 1. This contradicts Theorem 2.5.

A similar argument using Theorem 2.6 and Corollary 2.7, respectively, leads to
the following results.

Proposition 4.2. Let c be a finitely supported sequence that satisfies ĉ(0) = 1, φ
be the (M, c) refinable function, and D be an invariant support set of Wc, and suppose
that φ is continuous. Then φ is interpolatory if and only if the sequence δ is a unique
eigenvector of the matrix

C := (m c(Mp− q))p,q∈D
of simple eigenvalue 1.

Proposition 4.3. Suppose that c is a finitely supported sequence satisfying
ĉ(0) = 1 and that φ is the (M, c) refinable function in L2(Rd). Then φ is orthonormal
if and only if the sequence δ is a unique eigenvector of the matrix A defined by (4.1)
of simple eigenvalue 1.

This proposition shows that the problem of checking whether φ has orthonormal
shifts simply amounts to checking whether 1 is a simple eigenvalue of the matrix
A. Similarly, checking whether φ is stable reduces to checking whether 1 is a simple
eigenvalue of the matrix A and whether the Fourier transform of the corresponding
eigenvector vanishes on the torus.

In the case where d = 2, 3 and M = 2I, if φ has orthonormal shifts and the
refinement mask c satisfies

ĉ(u) = eip0·y ĉ(u)

for some p0 ∈ Zd, then it was shown in [20] and [21] that compactly supported
orthonormal wavelets can easily be constructed from c and φ. Interested readers
should consult [20] and [21] for details.
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5. Construction of admissible refinement masks. This section constructs
three 2 × 2 dilation matrices M with | det(M)| = 2 and an infinite family of two-
dimensional finitely supported masks c and shows that the corresponding (M, c) re-
finable functions φ are orthonormal. The refinable functions φ are constructed so that
the set of points satisfying the condition {u : φ̂(u) 6= 0} contains a connected open set

that contains a fundamental domain for 2πZ2 ⊂ R2. This implies that ̂(φau|)(u) > 0;
hence by Corollary 2.7, φ has orthonormal shifts.

Up to a similarity transformation and multiplication by matrices that represent
reflection about the origin and reflection about the x1 axis, there are only three
distinct 2× 2 integer dilation matrices whose determinant equals 2 or −2. They are

M1 =

(
0 −2
1 0

)
, which has eigenvalues ±i

√
2,

M2 =

(
1 −1
1 1

)
, which has eigenvalues 1± i,

and

M3 =

(
0 −2
1 1

)
, which has eigenvalues

(1± i
√

7)

2
.

We shall now construct refinement masks c : Z2 → C which generate nonseparable
orthonormal refinable functions and wavelets for dilation matrices M1, M2, and M3.

For a given one-dimensional sequence b, we define the induced two-dimensional
mask c : Z2 → C by

c

(
m
n

)
= b(m)δ(n), (m,n)T ∈ Z2.(5.1)

Lemma 5.1. Let Z
b̂

denote the set of real zeros of b̂. Then the zero set Z
ĉ

of the
Fourier transform of the induced mask c is given by

Z
ĉ

=
{

(u1, u2)T : u1 ∈ Zb̂, u2 ∈ R
}
.(5.2)

Proof. From (5.1),

ĉ((u1, u2)T ) = b̂(u1), (u1, u2)T ∈ R2,

which gives (5.2).
Lemma 5.2. Let b and c be as above. Let M be a 2 × 2 dilation matrix, and

let φ be the unique (M, c) refinable distribution. Then the zero set Z
φ̂

of the Fourier

transform of φ satisfies

Z
φ̂

=
⋃
j≥1

(MT )jZ
ĉ
.(5.3)

Proof. The assertion follows from the infinite-product representation of φ̂.
Let L1 and L2 be the lines x1 = π and x1 = −π in R2, respectively. For any

2× 2 dilation matrix M and the corresponding (M, c) refinable function φ, the set K
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is defined as the closure of the largest connected subset of R2 containing the origin
and consisting of points where the Fourier transform φ̂ is nonzero.

Lemma 5.3. Let b be a one-dimensional mask and let c be the induced two-
dimensional mask. Suppose that the zero set of b̂ satisfies

Z
b̂

= {(2n+ 1)π : n ∈ Z}.(5.4)

Then K is bounded by a subset of lines (MT )kLj , k ≥ 1, j = 1, 2.
Proof. The assertion follows from Lemmas 5.1 and 5.2.
Remark 3. The refinement masks b used by Daubechies in [6] to construct or-

thonormal refinable functions of one variable are CQFs, and the zero set of b̂ satisfies
condition (5.4).

For the three dilation matrices Mn, n = 1, 2, 3, the set K can be computed
explicitly if the zero set of b̂ satisfies condition (5.4). In each case, the set K is a
polygon whose vertices are the columns of the matrix Vn, where

V1 =

(
1 1 −1 −1
1 −1 −1 1

)
,

V2 =

 0 1 3
2 0 −1 − 3

2

1 1 1
2 −1 −1 − 1

2

 ,

V3 =

 2
3

4
3 − 2

3 − 4
3

5
3

1
3 − 5

3 − 1
3

 .

Theorem 5.4. Suppose that b is a one-dimensional mask satisfying the zero
condition (5.4), and let c be the two-dimensional induced mask. Then for M = Mn,

n = 1, 2, 3, the symbol φ̂au|(u) is positive. Further, if b is a CQF, then c is also an
M -CQF, and the corresponding (M, c) refinable function is orthonormal.

Proof. It is straightforward to check that for each of the three dilation matrices
Mn, n = 1, 2, 3, the interior of K contains the closure of a fundamental domain for

Z2 ⊂ R2. Therefore, the symbol φ̂au|(u) > 0.

If b is a CQF, then c is an M -CQF because the intersection of MZ2 with the
lattice points on the x1-axis is exactly the set of even integers. Since the symbol is
positive, by Corollary 2.7, the integer shifts of φ are orthonormal.

We note that the results of Theorem 5.4 for the dilation matrix M2 have been
obtained by Cohen and Daubechies [4].

Remark 4. The fact that φ̂au|(u) > 0 implies orthonormality was first proved
in [19]. However, the proof in that paper was based on the Lebesque dominated
convergence theorem and special properties of scaling tiles and was quite complicated.
In [19], the refinable functions produced above were also constructed and mesh plots of
some of these functions were produced. However, the report did not examine the zero
set of φ̂ and therefore did not actually prove that the refinable functions constructed
had orthonormal shifts.

Remark 5. For each of the dilation matrices Mn, n = 1, 2, 3 and the mask induced
by the Daubechies length-4 coefficients b, we computed an invariant support set for
the transition operator Wcau , and we computed the eigenvalues of the corresponding
restricted transition operator. There are 49, 63, and 39 nonzero eigenvalues (counted
with multiplicity) corresponding to M1, M2, and M3, respectively, and the eigenvalue
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1 is simple in all cases. All of the eigenvalues have modulus ≤ 1 and several—but
not all—of these eigenvalues are negative-integer powers of the eigenvalues of the
corresponding dilation matrix. This is significant because the degree of smoothness of
the refinable function implies the existence of a finite number of such eigenvalues. The
corresponding eigenvectors can be constructed from the derivatives of the refinable
function in the directions of the eigenvectors of the dilation matrix. The degree
of smoothness of the refinable function also implies the existence of a continuous
spectrum for the unrestricted transition operator that includes a continuous family
of eigenvectors constructed from fractional derivative and integral operators. The
discrete spectrum of the transition operator can easily be shown to coincide with the
spectrum of the restricted transition operator. The significance of discrete eigenvalues
that do not correspond to negative integer powers of the eigenvalues of the dilation
matrices will be discussed in a subsequent paper.

Remark 6. The existence of negative-integer powers of the eigenvalues of the
dilation matrix in the spectrum of Wcau is not sufficient for regularity of the corre-
sponding refinable function. Indeed, the (M2, c) refinable function φ constructed from
the Daubechies length-4 sequence is not continuous [24, Example 5.2], and none of
the longer filters leads to C1 solutions [4, Theorem 4.2].

Remark 7. Let V0 be the closed shift-invariant subspace generated by φ and let

Vk := {f(Mk·) : f ∈ V0}.

Then {Vk} forms a multiresolution analysis of L2(Rd) by Remark 2.6 of [13]. We
further remark that the construction of the corresponding wavelet for φ and c is
straightforward since | detM | = 2.

Acknowledgment. We thank an anonymous referee for Remark 6 and for some
relevant references.
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[10] L. Hervé, Construction et regularite des fonctions d’ echelle, SIAM J. Math. Anal., 26 (1995),
pp. 1361–1385.

[11] T. Hogan, Stability and Independence of the Shifts of a Multivariate Refinable Function, 1995,
preprint.

[12] R.-Q. Jia and J. Z. Wang, Stability and linear independence associated with wavelet decom-
positions, Proc. Amer. Math. Soc., 117 (1993), pp. 1115–1124.



1014 W. LAWTON, S. L. LEE, AND ZUOWEI SHEN

[13] R.-Q. Jia and Z. Shen, Multiresolution and wavelets, Proc. Edinburgh Math. Soc. (2), 37
(1994), pp. 271–300.

[14] R. Long and D. Chen, Biorthogonal wavelet bases on Rd, Appl. Comput. Harmonic Anal., 2
(1995), pp. 230–242.

[15] W. Lawton, S. L. Lee, and Z. Shen, Complete characterization of refinable splines, Adv.
Comput. Math., 3 (1995), pp. 137–145.

[16] W. Lawton, S. L. Lee, and Z. Shen, An algorithm for matrix extension and wavelet con-
struction, Math. Comp., 65 (1996), pp. 723–737.

[17] W. Lawton, Necessary and sufficient conditions for constructing orthonormal wavelets, J.
Math. Phys., 32 (1991), pp. 52–61.

[18] W. Lawton, Multilevel properties of the wavelet-Galerkin operator, J. Math. Phys., 32 (1991),
pp. 1440–1443.

[19] W. Lawton and H. Resnikoff, Multidimensional wavelet bases, Technical report, AWARE,
Bedford, MA, 1991.

[20] S. D. Riemenschneider and Z. Shen, Box splines, cardinal series, and wavelets, in Approxi-
mation Theory and Functional Analysis, C. K. Chui, ed., Academic Press, New York, 1991,
pp. 133–149.

[21] S. D. Riemenschneider and Z. Shen, Wavelets and pre-wavelets in low dimensions, J. Approx.
Theory, 71 (1992), pp. 18–38.

[22] G. Strang, Eigenvalues of (↓ 2)H and Convergence of the Cascade Algorithm, preprint, De-
partment of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, 1995.

[23] L. F. Villemoes, Energy moments in time and frequency for two-scale difference equation
solutions and wavelets, SIAM J. Math. Anal., 23 (1992), pp. 1519–1543.

[24] L. F. Villemoes, Continuity of nonseparable quincux wavelets, Appl. Comput. Harmonic
Anal., 1 (1994), pp. 180–187.
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Abstract. We prove new existence results for the Boltzmann equation with an initial data
with infinite energy. In the framework of renormalized solutions we assume (|x|α + |x− v|2) f0 ∈ L1

instead of (|x|2+|v|2) f0 ∈ L1, and we show new a priori estimates. In the framework of distributional
solutions we treat small initial data compared to a Maxwellian of the type exp(−|x − v|2/2). We
also treat initial data close enough to such a Maxwellian. Hence, our theory does not require that
the initial data decrease in both variables x and v.

Key words. Boltzmann equation, moments lemma, renormalized solution, distributional solu-
tion, small initial data, initial data close to a Maxwellian, dispersive effects
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1. Introduction. This paper is devoted to the existence proof of solutions to
the Boltzmann equation in the case of initial data with infinite energy. We prove
global existence of renormalized solutions and distributional solutions either for small
initial data compared to the local Maxwellian exp(−|x − v|2/2) or for initial data
close to that particular local Maxwellian. Hence, we generalize the classical theories
to initial data which do not decay in all the directions of the phase space. They may
have infinite mass and energy.

More precisely, we consider the Boltzmann equation which describes the statistical
evolution of a moderately rarefied gas. In this model, the gas is described by the
kinetic density f(t, x, v) ≥ 0 of particles which at time t ∈ [0,+∞[, at the point
x ∈ RN , move with velocity v ∈ RN , where N is an integer ≥ 1. This kinetic density
satisfies the Boltzmann equation
(1.1)

∂f

∂t
+ v · ∇xf = Q(f, f) = Q+(f, f)−Q−(f, f) on ]0,+∞[×RN× RN ,

f(0, x, v) = f0(x, v) on RN× RN .

We refer to Cercignani [C], Cercignani, Illner, and Pulvirenti [C,I,P], DiPerna and
Lions [DP,L1] and to their references for a detailed presentation of the physical mean-
ing and the notion of renormalized solution of such an equation; we will recall this
definition in section 3.

Here, Q is a quadratic collision operator, acting only on velocities, and is defined
by

Q+(ϕ,ϕ)(v) =

∫
v?∈RN

∫
ω∈SN−1

ϕ′ ϕ′?B(v − v?, ω) dωdv?,(1.2)
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Q−(ϕ,ϕ) = ϕL(ϕ),(1.3)

where

(1.4) L(ϕ) = A ∗v ϕ and A(z) =

∫
SN−1

B(z, ω) dω.

As usual, we denote, in order to shorten notation, ϕ = ϕ(v), ϕ? = ϕ(v?), ϕ
′ = ϕ(v′),

and ϕ′? = ϕ(v′?). The post-collisional velocities v′ and v′? are obtained from the
pre-collisional velocities v and v? and the unit vector ω thanks to

(1.5)

{
v′ = v − 〈v − v?, ω〉ω,
v′? = v? + 〈v − v?, ω〉ω.

Here and everywhere below, we denote indifferently by a·b or 〈a, b〉 the usual scalar
product of a, b ∈ RN . Equations (1.5) are just a parametrization of the conservation
of the impulsion and the kinetic energy during the collisions

(1.6)

{
v′ + v′? = v + v?,

|v′|2 + |v′?|2 = |v|2 + |v?|2.

The collision kernel B that enters the bilinear operator Q is a given function on
RN × SN−1. We will always assume that

(1.7) B ≥ 0 , B(z, ω) depends only on |z| and |〈z, ω〉|

and the so-called Grad [Gr] angular cut-off assumption

(1.8) B ∈ L1
loc(RN × SN−1).

Renormalized solutions for the Boltzmann equation have been introduced and
developed by DiPerna and Lions [DP,L1], [DP,L2], [L1], [L2], [L3], [L4]. They have
proved stability results and the existence of global solutions for initial data with finite
mass, energy, and entropy

(1.9)

∫∫
RN×RN

f0(x, v)
(

1 + |x|α + |v|2 + | log f0(x, v)|
)
dvdx < +∞,

for some α > 0. In [L4], existence is extended to initial data which are bounded
perturbations of particular solutions, such as pure Maxwellian.

In this work we do not assume bounded energy anymore. Due to dispersion effects
(see Perthame [P1]), the assumption (1.9) can be replaced, for instance, by

(1.10) Γα =

∫∫
RN×RN

f0(x, v)
(

1 + |x|α + |x− v|2 + | log f0(x, v)|
)
dvdx < +∞,

for some α > 0. Using the fact that
∫

RN
∫

RN f(t, x, v) |x−(1+t) v|2 dvdx is independant
of t, we prove velocity moment bounds which give us enough a priori estimates to apply
the stability result of renormalized solutions. Notice that for the Vlasov–Poisson
system also, one can build solutions with infinite energy. It is enough to assume
f0 ∈ L1 ∩ L∞ and |x|2f0 ∈ L1 (see [P1]). Notice also that our assumption on f0

implies that (1+ |x|α+ |v|α+ | log f0(x, v)|) f0 ∈ L1. But the existence of renormalized
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solutions under this only assumption is open. Also, the time decay for solutions built
with only the assumption (1.10) is an open question. Under the assumption (1.9), an
answer is given in [P1].

On the other hand, existence, uniqueness, and time decay of the global distribu-
tional solution have been studied by many authors. The recent theory was initiated
by Illner and Shinbrot [I,S] (see also [K,S]). Much progress has been made [Ba,D,G],
[B,P,T], [B,T], [H], [Pa] and most general assumptions are due to [T]. They deal with
small initial data with respect to a reference function ϕ(v)h(x). The functions ϕ and
h can have Maxwellian decay or, in the latest works, polynomial decay, which allow
initial data with infinite mass; see [T]. Other existence results have been obtained for
initial data close to a local Maxwellian. These theories rely on dispersive effects in
the whole space.

Using the same idea as above, namely, that |x−(1+t) v|2 solves the free transport
equation and a is collisional invariant, we construct global upper and lower Maxwellian
solutions of the Boltzmann equation. By the standard maximum principle this proves
existence results. The new fact here is the decay assumption only on the direction
x−v instead of both directions x and v. We can deal with two situations: small initial
data compared to the Maxwellian exp(−|x−v|2/2) for general kernel Q or initial data
close to such a Maxwellian for Maxwellian molecules. These solutions have infinite
energy; nevertheless, we can prove that energy becomes locally finite: particles with
high energy go away very fast despite the collisions.

The outline of the paper is the following. In the second section we establish
new estimates for a classical solution of the Boltzmann equation. We prove velocity
moment bounds and a local energy bound in some cases when the initial data does
not satisfy energy bound. We use appropriate multiplicators in the spirit of Perthame
[P2] and Lions and Perthame [L,P]. In the third section we use these estimates in
order to prove the existence of renormalized solutions to the Boltzmann equation in
an infinite energy case. In the fourth section we prove the existence of the global
classical solution for small initial data with infinite mass and energy. In the fifth
section we deal with initial data close to a local Maxwellian.

2. A priori estimates. In this section we prove new estimates for a classical
solution f to the Boltzmann equation. In order to rigorously establish our result, we
assume that f is of class C1 and has compact support in space and velocity variables
for every fixed time t. We assume that the collision kernel B just satisfies (1.7)
and (1.8). It is classical to prove by change of variables and thanks to the symmetry
property (1.7) that, for all test functions ψ in L∞loc(RN ), we have the following equality:

(2.1)∫
RN

Q(f, f)ψdv

=
1

4

∫
v∈RN

∫
v?∈RN

∫
ω∈SN−1

B(v − v?, ω)(f ′ f ′? − f f?)(ψ + ψ? − ψ′ − ψ′?) dωdv?dv.

This implies that 1, v, and |v|2 are collisional invariant; indeed, taking ψ = 1, (vi)1≤i≤N ,
|v|2 in (2.1), and using equation (1.6), we have

(2.2)

∫
RN

Q(f, f)

 1
v
|v|2

 dv = 0 ∀ t, x ∈ [0,+∞)× RN .
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Lemma 1. For all time t ≥ 0, the solution f satisfies

(2.3)

∫∫
RN×RN

f(t, x, v)|x− (t+ 1) v|2 dvdx =

∫∫
RN×RN

f0(x, v)|x− v|2 dvdx.

Proof of Lemma 1. We just multiply the Boltzmann equation (1.1) by |x − (t +
1) v|2: (

∂

∂t
+ v · ∇x

)
(f |x− (t+ 1) v|2) = Q(f, f) |x− (t+ 1) v|2.

Then, we integrate the previous equation in velocity and space variables, and because
|x − (t + 1) v|2 is a collisional invariant, the right-hand side vanishes and we obtain
the result.

Lemma 2. Let α be a given real number in (0, 2); then the solution f satisfies for
every t ≥ 0:

(2.4)∫∫
RN×RN

f(t, x, v)(1+|x|2)α/2 dvdx ≤ eα t
∫∫

RN×RN
f0(x, v)

(
(1+|x|2)α/2+|x−v|2

)
dvdx.

Proof of Lemma 2. We multiply the Boltzmann equation (1.1) by (1 + |x|2)α/2

and because (1 + |x|2)α/2 is a collisional invariant, we get after integration

d

dt

∫∫
RN×RN

f(t, x, v)(1+|x|2)α/2 dvdx = α

∫∫
RN×RN

f(t, x, v) v·x (1+|x|2)α/2−1 dvdx.

Next, using

2|v · x| ≤ |v|2 + |x|2 ≤
(

1 +
1

(1 + t)2

)
|x|2 +

1

(1 + t)2
|x− (t+ 1) v|2,

we get

d

dt

∫∫
RN×RN

f(t, x, v)(1 + |x|2)α/2 dvdx

≤ α
(

1

2
+

1

2(1 + t)2

)∫∫
RN×RN

f(t, x, v)
|x|2

1 + |x|2 (1 + |x|2)α/2 dvdx

+
α

2(1 + t)2

∫∫
RN×RN

f(t, x, v)
|x− (t+ 1) v|2
(1 + |x|2)1−α/2 dvdx

≤ α
∫∫

RN×RN
f(t, x, v)(1 + |x|2)α/2 dvdx+ α

∫∫
RN×RN

f0(x, v)|x− v|2 dvdx.

We conclude the proof thanks to the Gronwall lemma.
Lemma 3. Let α ∈ (0, 2); if Γα is finite (see (1.10)), there exists a constant

CT = C(T, α,Γα) such that

(2.5) sup
[0,T ]

∫∫
RN×RN

f(t, x, v)
(

1 + |x|α + |v|α + | log f(t, x, v)|
)
dvdx ≤ CT ,

(2.6)

∫ T

0

∫∫
RN×RN

e(f) dvdxdt ≤ CT ,
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where

(2.7) e(f) =

∫∫
RN×SN−1

B(v − v?, ω)(f ′ f ′? − f f?) log
f ′ f ′?
f f?

dωdv?.

Proof of Lemma 3. We compute∫∫
RN×RN

f(t, x, v)|v|α dvdx ≤
∫∫

RN×RN
f(t, x, v)

1

(1 + t)α

(
|x|+ |x− (t+ 1) v|

)α
dvdx

≤ C
∫∫

RN×RN
f(t, x, v)

(
(1 + |x|2)α/2 + |x− (t+ 1) v|2

)
dvdx,

which is bounded by CT Γα thanks to Lemmas 1 and 2.
The entropy estimate is classically deduced from the bound (2.6) and we skip it

(see [DP,L1] for the case α = 2).
Lemma 4. For every T , there exists a constant CT such that the solution f

satisfies

(2.8)

∫ T

0

∫∫
RN×RN

f(t, x, v)
|v|2

(1 + |x|2)3/2
dvdxdt ≤ CT Γ1.

Proof of Lemma 4. We multiply (1.1) by
x · v

(1 + |x|2)1/2
, and we compute

v · ∇x
( x · v

(1 + |x|2)1/2

)
=

|v|2
(1 + |x|2)3/2

+
|v|2|x|2(1− x

|x| ·
v
|v| )

(1 + |x|2)3/2
.

We remark that the second right-hand term is nonnegative, and thus we get∫∫
RN×RN

f(T, x, v)
x · v

(1 + |x|2)1/2
dvdx−

∫∫
RN×RN

f0(x, v)
x · v

(1 + |x|2)1/2
dvdx

≥
∫ T

0

∫∫
RN×RN

f(t, x, v)
|v|2

(1 + |x|2)3/2
dvdxdt.

This ends the proof because the two left-hand side terms are bounded by CT Γ1 thanks
to Lemma 3.

3. Renormalized solution. In this section we show how the previous estimates
can be used to prove an existence result of a renormalized solution to the Boltzmann
equation for some initial data with infinite energy. DiPerna and Lions [DP,L1] have
introduced the concept of renormalized solution. A function f ∈ C([0,+∞[;L1(RN×
RN )) is a renormalized solution of the Boltzmann equation if

Q±(f, f)

1 + f
∈ L1

loc([0,+∞[×RN× RN ), (3.1)

∂

∂t
log(1 + f) + v · ∇x log(1 + f) =

Q(f, f)

1 + f
in D′([0,∞[×RN× RN ). (3.2)

They have proved a stability result that we mimic here in order to prove our existence
result.
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In this section we assume, following [DP,L1], that for a given ᾱ ∈ (0, 1) or ᾱ = 2

(3.3)
1

1 + |z|ᾱ
∫
BR

A(v − z) dv −→
|z|→+∞

0 ∀R ∈]0,+∞[,

where BR = {v ∈ RN ; |v| < R}.
Theorem 1. Let f0 be an initial data such that in (1.10), Γα(f0) < +∞ for a

given α ∈ (0, 1] and B such that (1.7), (1.8), and (3.3) hold with ᾱ = α if α < 1
and with ᾱ = 2 if α = 1. Then there exists a global renormalized solution f of the
Boltzmann equation with initial data f0, and (2.5), (2.6), and (2.8) hold.

Proof of Theorem 1. We split the proof in two steps.
Step 1. A regularized problem.
For λ > 1 we define the following cross-section:

(3.4) Bλ(v, v?, ω) =
λ

meas(SN−1)
∧B(v − v?, ω) · Xλ(v, v?, ω)

where Xλ(v, v?, ω) =

{
1 if v, v?, v

′ and v′? belong to B(0, λ),

0 elsewhere,

so that

(3.5) 0 ≤ Aλ(v, v?) =

∫
SN−1

Bλ(v, v?, ω) dω ≤ λ.

We set qλ(ϕ) = rλ(
∫

RN ϕdv), where rλ is a smooth function such that rλ = 1 if t < λ
2 ,

rλ ≤ λ
t for every t.

Let (ρε(x, v))ε>0 be a sequence of mollifiers, with supp ρε ⊂ B(0, 1) for all ε, and
let

(3.6) φλ =

(
f0(x, v) 1{

|v|<λ
2

}1{
|x|<λ

2

})?ρ 1
λ
.

We are looking for a solution to the regularized problem

(3.7)


∂fλ
∂t

+ v · ∇xfλ = qλ(fλ)Qλ(fλ, fλ),

fλ(0, x, v) = φλ(x, v),

where Qλ is defined from Bλ in the same way that Q from B in (1.2) to (1.4). We
remark that this collisional term has a linear growth at infinity.

In order to prove the existence of a solution we set

A =
{
ϕ ≥ 0, ϕ ∈ L∞([0, T ]× RN × RN ), suppϕ(t, .) ⊂ B(1+t)λ ×Bλ

}
,

which is a complete set for the uniform norm. Next, we define the map ϕ ∈ A 7−→
Λ(ϕ) = ψ as the solution of

(3.8)

{
ψ̇# + λψ# = qλ(ϕ)#Q+

λ (ϕ,ϕ)# +
(
λ− qλ(ϕ)# Lλ(ϕ)#

)
ϕ#,

ψ#(0, x, v) = φλ(x, v),
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where we denote R#(t, x, v) = R(t, x+ t v, v). It is obvious that Λ maps A into A and
is Lipschitz continuous for the uniform norm. Then the Cauchy–Lipschitz theorem
and the Gronwall lemma imply the existence of a unique global solution fλ of the
equation (3.7), which falls in A and is smooth.

Step 2. Passing to the limit.
Lemmas 3 and 4 applied to the sequence of regularized solution fλ imply that fλ

satisfies the bounds (2.5), (2.6), and (2.8) uniformly in λ. Then the stability results
for renormalized solution of DiPerna and Lions [DP,L1], [DP,L2], [L3] adapt here and
allow us to conclude.

4. Distributional solution for small initial data. We use the same idea
in the theory of distributional solution, and more precisely for solutions satisfying
Q(f, f) ∈ L∞. The proof we present here is adapted from [L2], and we refer to
[B,P,T] for a general presentation of the method as well as a very sharp assumption,
which, however, is different from ours.

Theorem 2. Let f0 satisfy, for some a, b, C0 > 0 and x0, v0 ∈ RN ,

(4.1) 0 ≤ f0(x, v) ≤ f̂0(x, v) :=
C0

6
exp

(
−1

2

∣∣∣∣x− x0

a
− v − v0

b

∣∣∣∣2
)
.

We assume that A ∈ Lp′(RN ) for some p′ ∈ ( N
N−1 ,+∞], and we have

(4.2) C0 b
N
p −1 a < κ :=

N − p
p ‖A‖p′

( p

2π

) N
2p

.

Then there exists a solution f ∈ L∞((0,+∞)×RNx ×RNv ) to the Boltzmann equation
(1.1) in D′([0,∞[×RN× RN ), such that

(4.3) 0 ≤ f(t, x, v) ≤ C(t)

6
exp

(
−1

2

∣∣∣∣x− x0 − v t
a

− v − v0

b

∣∣∣∣2
)
,

where C(t)(≥ 0) is uniformly bounded; more precisely,

(4.4)
1

C(t)
=

1

C0
− b

N
p −1 a

κ
+
a

κ

(
1

b
+
t

a

)1−Np
.

Also, Q±(f, f) ∈ L∞((0, T )× RN × RN ).
Proof of Theorem 2. We set

f̂ = C(t) exp

(
−1

2

∣∣∣∣x− x0 − v t
a

− v − v0

b

∣∣∣∣2
)
,

where C(t) ≥ 0 will be determined in such a way that we have

(4.5) ĊC−1f̂ ≥ Q+(f̂ , f̂) on [0,∞[×RN× RN .

We remark that f̂ is, for all x ∈ RN and t ≥ 0, a Maxwellian in v, and thus Q+(f̂ , f̂) ≡
Q−(f̂ , f̂) = f̂ ·A ?v f̂ .

Therefore, (4.5) holds if we have

Ċ ≥ C2 sup
(x,v)∈R2N

{
A ?v exp

(
−1

2

∣∣∣∣x− x0 − v t
a

− v − v0

b

∣∣∣∣2
)}

.
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Next we observe that we have on R2N , thanks to a Hölder inequality with p and p′

such that 1
p + 1

p′ = 1 (which implies N
p > 1),

A ?v exp

(
− 1

2

∣∣∣∣x− x0 − v t
a

− v − v0

b

∣∣∣∣2)

≤ ‖A‖p′
(∫

RN
exp

(
−p
∣∣∣∣x− x0

a
+
v0

b
−
(

1

b
+
t

a

)
v

∣∣∣∣2
)
dv

)1/p

≤ ‖A‖p′
(

2π

p

) N
2p
(

1

b
+
t

a

)−Np
=: λ(t).

Therefore, we choose C ∈ C1([0,∞[) such that C(0) = C0 and solves the ordinary
differential equation

(4.6) Ċ =
C2

κ

1
N
p − 1

(
1

b
+
t

a

)−Np
.

The solution to (4.6) is given by (4.4) and is a global solution if the condition (4.2)
holds.

In such a way, we have constructed, dividing f̂ by 6, an upper solution f̂ of the
Boltzmann equation in the following sense:

(4.7)


∂

∂t
f̂ + v · ∇xf̂ ≥ 6 λ̂(t) f̂ ≥ 6Q±(f̂ , f̂) in D′([0,∞[×RN× RN ),

f̂(t = 0, .) = f̂0,

where λ̂(t) = C(t)λ(t).
In order to prove the existence result, we define a suitable function space where

we will do a classical Banach fixed point theorem. Let B be the space

(4.8) B =
{
ϕ ∈ L∞([0, T ]× RN × RN ); 0 ≤ ϕ(t, x, v) ≤ f̂(t, x, v)

}
,

and we define the map ϕ ∈ B 7−→ Λ(ϕ) = ψ by

(4.9)


∂

∂t
ψ + v · ∇xψ + λ̂(t)ψ = Q+(ϕ,ϕ) + (λ̂(t)− L(ϕ))ϕ,

ψ(t = 0, .) = f0.

The norm defined in B is the following:

‖ϕ‖ = ess sup
t∈[0,T ] x∈RN v∈RN

|ϕ(t, x, v)|
f̂(t, x, v)

.

The function space B is, with the previous norm, a Banach space. The global existence
and uniqueness of the solution of the Boltzmann equation is assured if the following
conditions hold:

∀ϕ ∈ B; Λϕ ∈ B,(4.10)

∀ϕ1, ϕ2 ∈ B; ‖Λϕ2 − Λϕ1‖ ≤
5

6
‖ϕ2 − ϕ1‖.(4.11)
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First, we show (4.10). For all ϕ ∈ B we have

∂

∂t
ψ + v · ∇xψ + λ̂(t)ψ = Q+(ϕ,ϕ) + (λ̂(t)− L(ϕ))ϕ,

≤ Q+(f̂ , f̂) + λ̂(t) f̂ ,

≤ ∂

∂t
f̂ + v · ∇xf̂ + λ̂(t)f̂ .

Thus ψ ≤ f̂ . On the other hand, ψ ≥ 0 is clear since the source term in (4.9) is

nonnegative thanks to the definition of λ̂(t).
We pass to (4.11). For all ϕ1, ϕ2 ∈ B the following equality holds:

(4.12)(
∂

∂t
+ v · ∇x + λ̂(t)

)(
ψ2 − ψ1

)
= Q+(ϕ2, ϕ2 − ϕ1) +Q+(ϕ2 − ϕ1, ϕ1)

+ λ̂(t)(ϕ2 − ϕ1)− L(ϕ2)(ϕ2 − ϕ1)− (L(ϕ2)− L(ϕ1))ϕ1.

Denoting by C(t, x, v) the right-hand side term, equation (4.13) writes

(ψ2 − ψ1)#(t, x, v) =

∫ t

0

C#(s, x, v)e−
∫ t

s

λ̂(σ) dσ ds.

Next, multiplying and dividing all terms of the right-hand side by f̂# and using
the definition of the norm and (4.7) yield

|ψ2 − ψ1|#(t, x, v) ≤ (2 ‖ϕ1‖+ 2 ‖ϕ2‖+ 1) ‖ϕ1 − ϕ2‖
∫ t

0

λ̂(s) f̂#(s, x, v) ds

≤ 5

6
‖ϕ1 − ϕ2‖ f̂#(t, x, v),

and thus (4.11) holds.
Remarks 1. We can examine in which sense the initial data is small. Of course,

for a given Maxwellian profile (a, b, x0, and v0 fixed) f0 has to be small enough for

the uniform norm with respect to exp
(
− 1

2

∣∣x−x0

a − v−v0
b

∣∣2), but depending on a and
b, ‖f0‖∞, can be as large as we wish.

Next, at the macroscopic level, the global mass is always infinite. Also, the
macroscopic functions associated with the Maxwellian distribution are

ρ0(t, x) = ρ̄0 = (2π)
N
2 bN

C0

6
,

u0(t, x) = v0 +
b

a
(x− x0),

T0(t, x) = b2.

Thus, we see that we can take the uniform norm of f0, ρ0, and T0 arbitrarily large
if we choose a

b small enough such that (4.2) holds. In that case the quantity

sup
v∈RN

∫
x∈RN

f0(x, v) dx ≤ ρ̄0

(a
b

)N
is small; in particular, f0 is small in L1(BR ×BR) for all fixed R > 0.
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Remarks 2. We also recover the classical time decay. From (4.2) and (4.4), C(t)

is uniformly bounded (by some constant C∞), and an explicit computation of f̂ gives

ρ(t, x) ≤ C∞

( 1
b + t

a )N
,

ρ(t, x) (|u(t, x)|2 + T (t, x)) ≤ C∞

( 1
b + t

a )N+2
.

5. Distributional solution for an initial data close to a local Maxwellian.
In this section we show how the idea developed in the previous section can be used
to prove the existence of a global distributional solution for an initial data close to
a local Maxwellian. We consider the simple case when the reference Maxwellian is

ξ0(x, v) = exp(− |x−v|
2

2 ) and the cross-section B is of Maxwellian type; precisely, we
assume that

(5.1) B(z, ω) = B

(∣∣∣∣ z|z| · ω
∣∣∣∣) and A(z) ≡ (2π)−

N
2 .

Again, this gives a variant of classical results [B,P,T], [K,S] that requires global
decay in both directions x and v.

Theorem 3. Let f0 be an initial data which satisfies, for some ε, C0 > 0,

(5.2) (1− ε)C0 ξ0(x, v) ≤ f0(x, v) ≤ (1 + ε)C0 ξ0(x, v).

If ε is small enough, there exists a distributional solution f ∈ L∞((0,+∞)×RNx ×RNv )
of the Boltzmann equation (1.1) in the sense of distribution. Moreover, Q±(f, f) ∈
L∞((0,+∞)× RN × RN ).

Proof of Theorem 3. Step 1. We first build two functions g0(t, x, v) = c(t) ξ(t, x, v)

and G0(t, x, v) = C(t) ξ(t, x, v), where ξ(t, x, v) = exp(− |x−v (1+t)|2
2 ) and 0 ≤ c(t) ≤

C(t) will be determined in such a way that we have

(5.3)


∂

∂t
g0 + v · ∇xg0 + L(G0) g0 = Q+(g0, g0),

∂

∂t
G0 + v · ∇xG0 + L(g0)G0 = Q+(G0, G0),

g0(t = 0, .) = (1− ε)C0 ξ0, G0(t = 0, .) = (1 + ε)C0 ξ0.

To do so, since ξ is a Maxwellian in v and thanks to assumption (5.1), we easily
compute

(5.4) Q+(ξ, ξ) = ξ L(ξ) =
ξ

(1 + t)N
.

Hence, the equations (5.3) are equivalent to the system of ODEs

(5.5)


ċ+

C c

(1 + t)N
=

c2

(1 + t)N
,

Ċ +
cC

(1 + t)N
=

C2

(1 + t)N
,

c(0) = (1− ε)C0, C(0) = (1 + ε)C0.
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In order to prove the existence of global nonnegative solutions c and C for (5.5),
we set y = C − c and z = C + c, and (5.5) is equivalent to

(5.6)

 ẏ =
y z

(1 + t)N
, ż =

y2

(1 + t)N
,

y(0) = 2 ε C0, z(0) = 2C0.

It is enough to prove an a priori bound for y. Eliminating z, the system (5.6)
reduces to

(5.7) ẏ =
y

(1 + t)N

(
2C0 +

∫ t

0

y2(s) ds

(1 + s)N

)
.

First, we remark that since ẏ ≥ 0 we have

(5.8) ẏ ≤ 2C0
y

(1 + t)N
+

y3

(1 + s)2N−1
.

Next, we consider the simple equation

(5.9) Ẏ = (2C0 + 1)
Y

(1 + t)N
, Y (0) = y(0),

which has a global solution satisfying Y (t) ≤ 1 if

(5.10) ε ≤ 1

2C0
exp
(
2C0 (1−N)

)
.

Now, by a comparison principle, we get y(t) ≤ Y (t) for all t ≥ 0. This ends the
proof of the existence of g0 and G0.

Step 2. Following the classical Kaniel and Shinbrot iterative scheme [K,S], we
define the sequences (gn)n∈N and (Gn)n∈N as

(5.11)


∂

∂t
gn + v · ∇xgn + L(Gn−1) gn = Q+(gn−1, gn−1),

∂

∂t
Gn + v · ∇xGn + L(gn−1)Gn = Q+(Gn−1, Gn−1),

gn(t = 0, .) = Gn(t = 0, .) = f0.

As in [K,S] we obtain, by a comparison principle, that gn, Gn satisfy

(5.12) 0 ≤ g0(t) ≤ g1(t) ≤ · · · ≤ gn(t) ≤ · · · ≤ Gn(t) ≤ · · · ≤ G1(t) ≤ G0(t).

Therefore, gn and Gn are monotone sequences and converge pointwise to limits de-
noted by ḡ and Ḡ. We may pass to the limit, in the distributional sense, in (5.11),
and we obtain

(5.13)


∂

∂t
ḡ + v · ∇xḡ + L(Ḡ) ḡ = Q+(ḡ, ḡ),

∂

∂t
Ḡ+ v · ∇xḠ+ L(ḡ) Ḡ = Q+(Ḡ, Ḡ),

ḡ(t = 0, .) = Ḡ(t = 0, .) = f0.
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It remains to show that Ḡ = ḡ. We remark that thanks to (5.12) we already know
that Ḡ ≥ ḡ. To prove the other inequality, notice that

(5.14)


∂

∂t
(Ḡ− ḡ) + v · ∇x(Ḡ− ḡ) + (Ḡ− ḡ)L(Ḡ)

= Q+(Ḡ− ḡ, Ḡ) +Q+(ḡ, Ḡ− ḡ) + Ḡ L(Ḡ− ḡ),

(Ḡ− ḡ)(t = 0, .) = 0.

As before, we define the norm relative to ξ for all ϕ by

‖ϕ‖
t

= ess sup
s∈[0,t] x∈RN v∈RN

|ϕ(s, x, v)|
ξ(s, x, v)

.

Using ξ̇# = 0, the equation (5.14) gives

(5.15)( Ḡ− ḡ
ξ

)#

(t, x, v) ≤
∫ t

0

1

ξ#

(
Q+(Ḡ− ḡ, Ḡ) +Q+(ḡ, Ḡ− ḡ) + Ḡ L(Ḡ− ḡ)

)#
(s, x, v) ds.

Again, multiplying and dividing the collision terms by ξ and using (5.4) we deduce
from (5.15) the following inequality:( Ḡ− ḡ

ξ

)#

(t, x, v) ≤ 3

∫ t

0

‖Ḡ‖s ‖Ḡ− ḡ‖s L(ξ)# ds

so that

‖Ḡ− ḡ‖
T
≤ 3

∫ T

0

C(t)

(1 + t)N
‖Ḡ− ḡ‖t dt for all T > 0.

Thanks to the Gronwall lemma we prove that Ḡ = ḡ is a distributional solution of
the Boltzmann equation.
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1. The problem. We are concerned with a class of moving boundary problems
for bounded domains in Rn, which comprise in particular the so-called single phase
Hele–Shaw problem. In order to describe precisely the involved geometry, let Ω be a
bounded domain in Rn and assume that its boundary ∂Ω is of class C∞. Moreover,
assume that ∂Ω consists of two disjoint nonempty components J and Γ. Later on,
we will model over the exterior component Γ a moving interface, whereas the interior
component J describes a fixed portion of the boundary. Let ν denote the outer unit
normal field over Γ and fix α ∈ (0, 1). Given a > 0, set

U := {ρ ∈ C2+α(Γ) ; ‖ρ‖C1(Γ) < a}.

For each ρ ∈ U define the map

θρ := idΓ + ρν

and let Γρ := im(θρ) denote its image. Obviously, θρ is a C2+α diffeomorphism
mapping Γ onto Γρ, provided a > 0 is chosen sufficiently small. In addition, we
assume that a > 0 is small enough such that Γρ and J are disjoint for each ρ ∈ U .
Let Ωρ denote the domain in Rn being diffeomorphic to Ω and whose boundary is
given by J and Γρ. To describe the evolution of the hypersurface Γρ, fix T > 0 and
set I := [0, T ]. Then each map ρ : I → U defines a collection of domains Ωρ(t), t ∈ I.
For later purposes it is convenient to introduce the following generalized parabolic
cylinder:

Ωρ,T :=
{

(x, t) ∈ Rn × [0, T ] ; x ∈ Ωρ(t)

}
=
⋃
t∈I

(
Ωρ(t) × {t}

)
and, correspondingly,

Γρ,T :=
{

(x, t) ∈ Rn × [0, T ] ; x ∈ Γρ(t)

}
=
⋃
t∈I

(
Γρ(t) × {t}

)
.
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Observe that Ω0,T is just the standard parabolic cylinder Ω× [0, T ]. Similarly, Γ0,T =
Γ× [0, T ]. For the sake of completeness, we write JT := J × [0, T ].

Now let ρ0 ∈ U be given. Moreover, pick b ∈ C(J) and δ ∈ {0, 1}. Then
we consider the moving boundary problem of determining a pair (u, ρ) satisfying the
following set of equations:

(1.1)ρ0

∆u = 0 in Ωρ,T ,

u = 0 on Γρ,T ,

(1− δ)u+ δ(∇u|νJ) = b on JT ,

∂tNρ − (∇u|∇Nρ) = 0 on Γρ,T ,

ρ(0, ·) = ρ0 on Γ.

Here, ∆ and ∇ stand for the Laplacian and the gradient, respectively, in the Euclidean
metric. The outer unit normal field over J is denoted by νJ . The parameter δ is
introduced to label the boundary condition on the fixed boundary J (where δ = 0
corresponds to a Dirichlet boundary condition and δ = 1 corresponds to a Neumann
condition). Moreover, Nρ is a defining function for Γρ, i.e., Γρ = N−1

ρ (0), ρ ∈ U . A
precise definition of Nρ is given in section 2.

The set of equations in (1.1) express that the free boundary moves with normal
velocity given by the normal derivative of a harmonic function which vanishes on the
boundary. More precisely, the motion of the free boundary is governed by V = −∂u∂ν ,
where the function u satisfies the first three equations in (1.1). Here, V is the normal
velocity taken to be positive for expanding hypersurfaces and ν is the outer unit
normal field on the moving boundary.

Assume now that n = 2, δ = 1, and b > 0. Then problem (1.1)ρ0 represents the
classical formulation of the expanding two-dimensional Hele–Shaw flow; see Crank
[5], Elliott and Ockendon [10], Elliott and Janovsky [9], DiBenedetto and Friedman
[7], and Richardson [21]. In this model, u has the meaning of the pressure in an
incompressible viscous fluid blob Ωρ. Since b is positive, further fluid is injected
through the fixed boundary J at the rate b. Hence, the blob is advancing in time,
modelled by the moving boundary Γρ. Some authors (see Fasano and Primicerio [15] or
Steinbach and Weinelt [22]) consider the above model in the case of prescribed pressure
on the fixed boundary, i.e., with the inhomogeneous Dirichlet boundary condition
u = b on J . This boundary condition corresponds to the case δ = 0 in (1.1)ρ0 . In our
model, we cover both cases and we prove the existence of a unique classical solution
(u, ρ) for the general problem (1.1)ρ0 ; see the main result below. As pointed out in [5],
[8], [9], [10], [16], and [22], there are further applications of (1.1)ρ0 to different multi-
dimensional moving boundary problems. We mention the electrochemical machining
problem, the one-phase Stefan problem with zero specific heat, the flow of viscous
fluid through porous media, and the injection moulding process. These models make
sense in higher space dimensions and under general boundary conditions on the fixed
boundary J .

To clearly state our result, we need some definitions. Given an open subset U of
Rm, let hs(U) denote the little Hölder space of order s > 0, a closed subspace of the
usual Hölder space BUCs(U); see section 2 for a precise definition. Throughout this
paper we fix α ∈ (0, 1) and we define

V := h2+α(Γ) ∩ U .
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Moreover, we need the anisotropic function spaces Ch0,s(Ωρ,T ) consisting of all u :
Ωρ,T → R such that, given (x, t) ∈ Ωρ,T , the function u(·, t) belongs to hs(Ωρ(t))
and the function u(x, ·) belongs to C([0, T ]). A pair (u, ρ) is called a classical Hölder
solution of (1.1) if

(u, ρ) ∈ Ch0,2+α(Ωρ,T )×
(
C([0, T ),V) ∩ C1([0, T ), h1+α(Γ))

)
and if (u, ρ) satisfies the equations in (1.1) pointwise. Our main result now reads as
follows.

Theorem 1.1. Assume that b ∈ h2+α−δ(J) is nonnegative and not identi-
cally equal to zero. Then, given any initial value ρ0 ∈ V, there exist T > 0 and
a unique classical solution (u, ρ) of (1.1)ρ0 on [0, T ]. Moreover, the moving boundary
ρ : (0, T )→ V is analytic in the time variable.

It should be emphasized that Theorem 1.1 guarantees a unique classical solution
to problem (1.1) for each C2+α initial hypersurface Γρ0 which is close to Γ in the sense
that ρ0 belongs to V.

In Elliott [8] and Elliott and Janovsky [9], a variational inequality approach for
problem (1.1)ρ0 is developed, and the existence and uniqueness of global weak so-
lutions are proved. However, as stated in the Conclusion of [9] (see p. 106), the
existence of classical solutions left an open problem.

Our approach to problem (1.1)ρ0 proposed in this paper is of a different nature.
Indeed, transforming the original problem on a fixed domain, we are looking for clas-
sical solutions from the very beginning. After a natural reduction of the transformed
equations, we are led to an evolution equation for the moving boundary involving
a nonlinear and nonlocal pseudodifferential operator of first order. The main result
for this pseudodifferential operator can be summarized by the fact that it depends
smoothly on the unknown and that the corresponding linearized operator is a nicely
behaving operator; i.e., it generates a strongly continuous analytic semigroup on an
appropriate subspace of Hölder continuous functions, provided b ≥ 0 and b 6= 0. This
generation property of the linearization makes it possible to use the general results of
the theory of maximal regularity, due to Da Prato and Grisvard [6], and to construct
a unique classical solution of the nonlinear problem. The same technique has been
applied to moving boundary problems arising in gravity flows of incompressible fluids
through porous media; see [12] and [13].

There is a one-dimensional version of problem (1.1)ρ0 ; see the work of Fasano
and Primicerio [14], [15]. Since the geometry of one-dimensional moving boundary
problems is considerably easier to handle, classical solutions are well known to exist
in this case.

For two-dimensional simply connected domains and for initial data belonging to
an appropriate Gevrey class, Reissig [20] recently proved the existence of analytic
solutions to a Hele–Shaw model with a point source.

Let ρ0 ∈ V be given and assume that b ∈ h2+α−δ(J) \ {0} is nonnegative. More-
over, let (u, ρ) denote the classical solution of (1.1)ρ0 constructed in Theorem 1. Then,
given t ∈ [0, T ], the pressure u(·, t) ∈ h2+α(Ωρ(t)) is the unique solution in h2+α(Ωρ(t))
of the following elliptic boundary value problem:

∆u = 0 in Ωρ(t), u = 0 on Γρ(t), (1− δ)u+ δ(∇u|νJ) = b on J.

Hence the strong maximum principle implies that the pressure u(·, t) is strictly positive
in Ωρ(t). This property is crucial for our approach; see step (b) in the proof of Theorem
4.2.
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From a mathematical and a physical point of view, problem (1.1)ρ0 also makes
sense for negative b. However, in this so-called ill-posed case, the problem has a
completely different feature, as pointed out by Elliott and Ockendon [10] based on
numerical investigations, by DiBenedetto and Friedman [7] proving so-called finger-
ing, and by Fasano and Primicerio [15] establishing blow-up and nonexistence results
for one-dimensional problems. Our results are also optimal in this sense, since we
guarantee the existence of classical solutions in the well-posed case b ≥ 0, b 6= 0, and
we prove that the linearized reduced problem for the moving boundary is ill-posed in
the sense of Hadamard for b ≤ 0, b 6= 0; see Remark 5.3.

2. The transformed problem. In this section we transform the original prob-
lem into a problem on a fixed domain, and we introduce a nonlinear, nonlocal pseudo-
differential operator Φ of an appropriate reduced problem for the moving boundary
Γρ. In addition, we provide a useful representation of the Fréchet derivative of Φ.

Let us first introduce some function spaces which we will need in what follows.
Assume that U is an open subset of Rm. Given k ∈ N ∪ {∞}, let Ck(U) denote
the space of all f : U → R having continuous derivatives up to order k. The closed
subspace of Ck(U) consisting of all maps from U into R which have bounded and
uniformly continuous derivatives up to order k is denoted by BUCk(U). Given α ∈
(0, 1), the space BUCk+α(U) stands for all f ∈ BUCk(U) having uniformly α-Hölder
continuous derivatives of order k. In addition, Cω(U) denotes the subspace of all real
analytic functions on U .

Furthermore, we write S(Rm) for the Schwartz space, i.e., the Fréchet space of
all rapidly decreasing smooth functions on Rm.

Next let rU denote the restriction operator with respect to U , i.e., rUu := u|U
for u ∈ BUC(U). Then the little Hölder spaces hs(U), s ≥ 0, are defined as

hs(U) := closure of rU
(
S(Rm)

)
in BUCs(U).

Finally, assume that M is an m-dimensional (sufficiently) smooth submanifold of Rn.
Then the spaces BUCs(M) and hs(M), s ≥ 0, are defined as usual by means of a
smooth atlas for M ; see [24].

It is useful to write Γρ as a 0-level set of an appropriate function. For this, pick
a0 ∈ (0, dist(Γ, J)) and let

N : Γ× (−a0, a0)→ Rn, N (x, λ) := x+ λν(x).

If a0 > 0 is small enough, we have that

N ∈ Diff∞(Γ× (−a0, a0),R),

whereR := im(N ). It is convenient to decompose the inverse ofN intoN−1 = (X,Λ),
where

X ∈ BUC∞(R,Γ) and Λ ∈ BUC∞(R, (−a0, a0)).

Note that X(y) is the nearest point on Γ to y and that Λ(y) is the signed distance
from y to Γ (that is, to X(y)). The neighborhood R consists of those points with
distance less than a0 to Γ. Given ρ ∈ V, now define

Nρ : R → R, Nρ(y) := Λ(y)− ρ(X(y)).
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Then it is not difficult to verify that Γρ = N−1
ρ (0). Therefore, the gradient ∇Nρ

is perpendicular to Γρ, and ∇Nρ points outward since Nρ(y) < 0 if y ∈ Ωρ. So it

follows that the outer unit normal field ν on Γρ is given by ν =
∇Nρ
|∇Nρ| . Let ρ ∈

C1([0, T ], h1+α(Γ)) be given and set

Nρ(y, t) := Λ(y)− ρ(X(y), t), y ∈ R, t ∈ [0, T ].

Then

V (y, t) := − ∂tNρ(y, t)

|∇Nρ(y, t)|
=
∂tρ(X(y), t)

|∇Nρ(y, t)|
, y ∈ Γρ(t), t ∈ [0, T ],

is the normal velocity of the moving hypersurfaces Γρ(t) in the direction of the outer

normal field. Hence the fourth equation in (1.1) can be rewritten as − ∂tNρ
|∇Nρ| =

−(∇u|ν), which shows that the motion of the hypersurfaces Γρ(t) is governed by

V = −∂u∂ν .
Next we introduce an appropriate extension of θρ to Rn. For this we assume that

a ∈ (0, a0/4), and we fix a ϕ ∈ C∞(R, [0, 1]) such that

ϕ(λ) =

 1 if |λ| ≤ a,
0 if |λ| ≥ 3a

and such that sup |∂ϕ(λ)| < 1/a. Then we define for each ρ ∈ V the map

Θρ(y) :=

 N
(
X(y),Λ(y) + ϕ(Λ(y))ρ(X(y))

)
if y ∈ R,

y if y 6∈ R.

Note that [λ 7→ λ + ϕ(λ)ρ] is strictly increasing since |∂ϕ(λ)ρ| < 1. Then it is not
difficult to verify that

Θρ ∈ Diff 2+α(Rn,Rn) ∩Diff 2+α(Ω,Ωρ) and Θρ|Γ = θρ.

Moreover, we observe that there exists an open neighborhood U of J such that

(2.1) Θρ|U = idU .

It should be mentioned that the above diffeomorphism was first introduced by Han-
zawa [18] to transform multidimensional Stefan problems to fixed domains. In the
following we use the same symbol θρ for both diffeomorphisms θρ and Θρ. The pull-
back operator induced by θρ is given as

θ∗u := θ∗ρu := u ◦ θρ for u ∈ BUC(Ωρ).

Similarly, the corresponding push-forward operator is defined as

θ∗v := θρ∗v := v ◦ θ−1
ρ for v ∈ BUC(Ω).

Lemma 2.1. Given ρ ∈ V and k ∈ {1, 2}, we have

θ∗ρ ∈ Isom(hk+α(Ωρ), h
k+α(Ω)) ∩ Isom(hk+α(Γρ), h

k+α(Γ))
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with [θ∗ρ]−1 = θρ∗ .
Proof. Let ρ ∈ V and k ∈ {1, 2} be given. It follows from the mean value theorem

that

θ∗ρ ∈ Isom(BUCk+α(Ωρ), BUC
k+α(Ω)).

Hence, to prove the first assertion, it suffices to show that θ∗ρu belongs to the space

hk+α(Ω), whenever u belongs to hk+α(Ωρ). But this is an easy consequence of the
following known characterization of little Hölder spaces: a function u ∈ BUCk+α(Ω)
belongs to hk+α(Ω) iff

lim
τ→0+

sup
0<|x−y|≤τ

|∂βu(x)− ∂βu(y)|
τα

= 0, β ∈ Nn, |β| = k.

This can be seen by means of local coordinate charts along the lines of Lemma 2.7
and Remark 2.8 in [19]; see also [3]. The second assertion follows analogously.

Given ρ ∈ V, we now introduce the following transformed differential operators,
acting linearly on BUC2(Ω):

A(ρ)v := −θ∗ρ
(
∆(θρ∗v)

)
, B(ρ)v := γθ∗ρ(∇(θρ∗v)|∇Nρ),

Cv := (1− δ)γJv + δ(γJ∇v|νJ),

where γ and γJ denote the trace operators with respect to Γ and J , respectively.
Assume now that (u, ρ) is a classical Hölder solution of (1.1)ρ0 . Then it is not difficult
to see that v := [t 7→ θ∗ρ(t)u(t, ·)] belongs to C([0, T ], h2+α(Ω)) and that the pair (v, ρ)
satisfies the following equations:

(2.2)ρ0

A(ρ)v = 0 in Ω0,T ,

v = 0 on Γ0,T ,

Cv = b on JT ,

∂tρ+B(ρ)v = 0 on Γ0,T ,

ρ(0, ·) = ρ0 on Γ.

A pair (v, ρ) is called a classical Hölder solution of (2.2)ρ0 if

v ∈ C([0, T ], h2+α(Ω)),

ρ ∈ C([0, T ],V) ∩ C1([0, T ], h1+α(Γ))

and if (v, ρ) satisfies the equations in (2.2)ρ0 pointwise. The following lemma is an
obvious consequence of Lemma 2.1 and (2.1).

Lemma 2.2. Let ρ0 ∈ V be given.
(a) If (u, ρ) is a classical Hölder solution of (1.1)ρ0 , then (θ∗ρu, ρ) is a classical

Hölder solution of (2.2)ρ0 .
(b) If (v, ρ) is a classical Hölder solution of (2.2)ρ0 , then (θρ∗v, ρ) is a classical

Hölder solution of (1.1)ρ0 .
In the next two lemmas we collect some results for elliptic boundary value prob-

lems in little Hölder spaces. We shall use these results in sections 3 and 4.
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Lemma 2.3.

(A,B) ∈ Cω(V,L(h2+α(Ω), hα(Ω)× h1+α(Γ))).

Proof. Let η denote the standard Euclidean metric on Rm and let θ∗η be the
Riemannian metric on Ω induced by the diffeomorphism θρ, i.e.,

θ∗ρη|x(ξ, ζ) := η|θρ(x)(Txθρξ, Txθρζ)

for x ∈ Ω and ξ, ζ ∈ Tx(Ω). Then A(ρ) and B(ρ) are just the Laplace–Beltrami
operator and the outer normal derivative of (Ω, θ∗ρη). Since the metric θ∗ρη depends
analytically on ρ ∈ V, the assertion follows easily.

Lemma 2.4. Let ρ ∈ V be given. Then for each

(f, g, h) ∈ hα(Ω)× h2+α(Γ)× h2+α−δ(J)

there exists a unique classical solution v := V (ρ)(f, g, h) in h2+α(Ω) of

A(ρ)v = f in Ω, v = g on Γ, Cv = h on J.

Moreover, there exists a positive constant C := C(ρ) such that

‖V (ρ)(f, g, h)‖2+α,Ω ≤ C
(
‖f‖α,Ω + ‖g‖2+α,Γ + ‖h‖2+α−δ,J

)
.

Proof. (a) It follows from the proof of Lemma 2.3 and by construction that A
is a uniformly elliptic operator having α-Hölder continuous coefficients and that C is
a normal boundary operator with regular coefficients too. Hence we conclude from
Theorem 7.3 and Remark 2 on p. 669 in [1] that, given any compact subset K of V,
there exists a positive constant C := C(K) such that

‖v‖2+α,Ω ≤ C
(
‖A(ρ)v‖α,Ω + ‖γv‖2+α,Γ + ‖Cv‖2+α−δ,J

)
for all v ∈ h2+α(Ω) and all ρ ∈ K.

(b) Observe that
(
A(0), γ, C

)
is a regular elliptic boundary value problem with

constant coefficients on a smooth domain. Hence it follows from formula (3) on p.
236 in [24] that(

A(0), γ, C
)
∈ Isom(h2+α(Ω), hα(Ω)× h2+α(Γ)× h2+α−δ(J)).

Now let ρ ∈ V be given and set K := {tρ ; t ∈ [0, 1]}. Then K is a compact subset of
V, and therefore it follows from (a) and the continuity method (see Theorem 5.2 in
[17]) that (

A(ρ), γ, C
)
∈ Isom(h2+α(Ω), hα(Ω)× h2+α(Γ)× h2+α−δ(J)).

This completes our argumentation.
Let us now introduce the natural decomposition V = S ⊕ T ⊕ R of the above

solution operator by setting

S(ρ) := V (ρ)(·, 0, 0) ∈ L(hα(Ω), h2+α(Ω)),

T (ρ) := V (ρ)(0, ·, 0) ∈ L(h2+α(Γ), h2+α(Ω)),

R(ρ) := V (ρ)(0, 0, ·) ∈ L(h2+α−δ(J), h2+α(Ω)).
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Given v ∈ BUC1(Ω), let ∂νv denote the directional derivative with respect to the
outer unit normal on Γ, i.e., ∂νv := γ(∇v|ν). Using this notation it follows from the
strong maximum principle that

(2.3) ∂ν(R(ρ)b) < 0,

provided b ∈ h2+α−δ(J) \ {0} with b ≥ 0.
Throughout the remainder of this paper we fix

(2.4) b ∈ h2+α−δ(J) \ {0} with b ≥ 0

and we set

Φ(ρ) := B(ρ)R(ρ)b for ρ ∈ V.

It follows from Lemma 2.3 and the definition of R that Φ maps V into h1+α(Γ). Given
ρ0 ∈ V, we now consider the nonlinear evolution equation in h1+α(Γ) for the operator
Φ:

(2.5) ∂tρ+ Φ(ρ) = 0, ρ(0) = ρ0.

A function ρ : I = [0, T ]→ h1+α(Γ) is called a classical Hölder solution of (2.5) if

ρ ∈ C(I,V) ∩ C1(I, h1+α(Γ))

and if ρ satisfies (2.5) pointwise on I. Using this notation it is now easy to state the
following reduction of the transformed problem (2.2).

Lemma 2.5. Let ρ0 ∈ V be given.
(a) If ρ is a classical Hölder solution of (2.5), then the pair (R(ρ)b, ρ) is a classical

Hölder solution of (2.2).
(b) Suppose that (v, ρ) is a classical Hölder solution of (2.2). Then ρ is a classical

Hölder solution of (2.5).
Proof. This follows immediately from the definition of R(ρ).
In order to treat the nonlinear evolution equation (2.5), we first show that Φ(ρ)

depends smoothly on ρ ∈ V and we provide an appropriate representation of the
Fréchet derivative ∂Φ(ρ) of Φ at ρ ∈ V. For this we introduce for each ρ ∈ V the
following linear operators:

K := K(ρ) := −∂A(ρ)[·, R(ρ)b] ∈ L(h2+α(Γ), hα(Ω)),

M := M(ρ) := ∂B(ρ)[·, R(ρ)b] ∈ L(h2+α(Γ), h1+α(Γ)).

Here, the notation ∂A(ρ)[h, v] stands for

∂A(ρ)[h, v] =
∂

∂ε

∣∣∣∣
ε=0

A(ρ+ εh)v, h ∈ h2+α(Γ), v ∈ h2+α(Ω).

Lemma 2.6. Φ ∈ Cω(V, h1+α(Γ)) with

∂Φ(ρ) = B(ρ)S(ρ)K(ρ) +M(ρ)

for each ρ ∈ V.
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Proof. (a) Due to Lemma 2.3, it suffices to show that

[ρ 7→ R(ρ)b] ∈ Cω(V, h2+α(Ω)) with ∂(R(ρ)b) = S(ρ)K(ρ).

(b) Recall that V is an open subset of h2+α. Let γ denote the trace operator with
respect to Γ and let

F (ρ, v) := (A(ρ)v, γv, Cv − b), (ρ, v) ∈ V × h2+α(Ω).

Then it follows from Lemma 2.3 that

F ∈ Cω
(
V × h2+α(Ω), hα(Ω)× h2+α(Γ)× h2+α−δ(J)

)
.

Moreover, given (ρ, v) ∈ V × h2+α(Ω), we have that

∂2F (ρ, v)w = (A(ρ)w, γw,Cw) and ∂1F (ρ, v)h = (∂A(ρ)[h, v], 0, 0)

for w ∈ h2+α(Ω) and h ∈ h2+α(Γ). Now the assertion follows from Lemma 2.4 and
the implicit function theorem.

The next two sections are devoted to the study of the linearization ∂Φ(ρ) of Φ.
We will see that it is a nicely behaving operator; i.e., we will prove that −∂Φ(ρ)
generates a strongly continuous analytic semigroup on h1+α(Γ).

3. Localizations. Given κ ∈ (0, a], let Rκ := N (Γ× (−κ, 0]). Then there exists
m := mκ ∈ N and an atlas {(Ul, ϕl) ; 1 ≤ l ≤ m} of Rκ such that diam(Ul) < 2κ for
all l ∈ {1, . . . ,m}. Let

sl ∈ C∞((−δ, δ)n−1, Ul), l ∈ {1, . . . ,m},

be a parameterization of Ul∩Γ. Furthermore, let P := (−δ, δ)n−1 and Q := P × [0, δ)
and define

µl : Q→ Ul, (ω, r) 7→ sl(ω)− rν(sl(ω)).

Without loss of generality, we may assume that δ = κ and that µl := ϕ−1
l for 1 ≤ l ≤

m. The additional parameter κ is introduced to control the size of the chart domain
Ul. This fact will be used in section 5 to prove a perturbation result; cf. Lemma 5.1.
Finally, to further economize our notation, we set µ := µl, U := Ul and we let

µ∗u := u ◦ µ, u ∈ C(Ul) and µ∗v := v ◦ µ−1, v ∈ C(Q)

denote the pull-back and push-forward operators, respectively, induced by µ. Given
l ∈ {1, . . . ,m}, we define local representations A := Al and B := Bl of A and B with
respect to (Q,µl) by setting

A(µ∗ρ)µ∗ = µ∗A(ρ) and B(µ∗ρ)µ∗ = µ∗B(ρ), ρ ∈ V,

respectively. To determine the coefficients of A and B, let

ρ̂ := ρ̂l := µ∗l ρ, ρ ∈ V

and put d(ω, r) := ρ̂(ω)− r for (ω, r) ∈ Q. In addition, we use the notation

∂j := ∂ωj , 1 ≤ j ≤ n− 1, ∂n := ∂r.
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Given 1 ≤ j, k ≤ n− 1, define

wjk := (∂js|∂ks) + d
(
(∂jµ

∗ν|∂ks) + (∂kµ
∗ν|∂js)

)
+ d2(∂jµ

∗ν|∂kµ∗ν).

Clearly, [wjk] is symmetric. In addition, observe that [(∂js|∂ks)] is uniformly positive
definite on P and that sup |d(ω, r)| ≤ 2a. Hence we may assume also that [wjk] is
uniformly positive definite on Q, provided a > 0 is small enough. Let w denote the
inverse of [wjk] and let wjk be the components of w. Finally, set

D(ω, r) :=

 ∇ρ̂⊗∇ρ̂ ∇ρ̂
(∇ρ̂)T 1

 , (ω, r) ∈ Q,

and let

gjk := gljk(ρ) := (∂jµ
∗θρ|∂kµ∗θρ), 1 ≤ j, k ≤ n,

denote the components of the metric tensor with respect to (Q,µ). Note that

µ∗θρ(ω, r) = θρ(µ(ω, r)) = s(ω) + d(ω, r)ν(s(ω))

since ϕ ≡ 1 on µ(Q). In addition, observe that d(w, r) = ρ̂(ω)− r is the function −Nρ
in local coordinates. Using the orthogonality relations (∂js|ν) = 0 and (∂jν|ν) = 0,
direct calculations yield the formulas

(3.1) [gjk] =

 w−1 0

0 0

+D

and

(3.2) [gjk] =

 w −w∇ρ̂
−(w∇ρ̂)T 1 + (w∇ρ̂|∇ρ̂)

 ,

where [gjk] is the inverse of [gjk]. From (3.1), (3.2), and the well-known formula
(which essentially is Cramer’s rule)

gnn = det [gjk]1≤j,k≤n · det [gjk]1≤j,k≤n−1,

one then deduces that

(3.3) G :=
√

det [gjk]1≤j,k≤n =
√

detw−1.

Finally, let W denote the uniformly elliptic second-order differential operator acting
on C2(P ) which is induced by w, i.e.,

Wσ := −
n−1∑
j,k=1

wjk∂j∂kσ, σ ∈ C2(P ).

In the next lemma, we use the following notation: given ã ∈ C∞(Q × R × Rn−1,R)
and σ ∈ C1(P ), let a(σ,∇σ) denote the Nemitskii operator induced by ã, i.e.,

a(σ,∇σ)(ω, r) := ã((ω, r), σ(ω),∇σ(ω)), (ω, r) ∈ Q.
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Lemma 3.1. There exist

ãjk, ãj , b̃j ∈ C∞(Q× (−a, a)× Rn−1,R), 1 ≤ j, k ≤ n,

such that

(3.4)
[ãjk] is symmetric and uniformly positive definite,

b̃n is uniformly positive

on compact subsets of Q× (−a, a)× Rn−1 and such that

(3.5)

A(ρ̂) = −
n∑

j,k=1

ajk(ρ̂,∇ρ̂)∂j∂k +
n∑
j=1

aj(ρ̂,∇ρ̂)∂j + (Wρ̂)∂n,

B(ρ̂) = −
n∑
j=1

bj(ρ̂,∇ρ̂)∂j .

Proof. Recall that A(ρ) and B(ρ) are just the Laplace–Beltrami operator of
(Ω, θ∗ρη) and the outer normal derivative on Γ of (Ω, θ∗ρη), respectively, where η denotes
the standard Euclidean metric on Rm; see the proof of Lemma 2.3. Hence assertion
(3.4) is obvious, since (A,B) is a representation of (A,B) in local coordinates. The
explicit decomposition of the coefficient of ∂n of A follows from (3.2).

We close this section by determining the local representations of K(ρ) and M(ρ)
according to the parameterization (Q,µ). In order to do this, we introduce

K := K(ρ) := −∂A(ρ̂)[·, µ∗(R(ρ)b)] ∈ L(h2+α(P ), hα(Q̊)),

M :=M(ρ) := ∂B(ρ̂)[·, µ∗(R(ρ)b)] ∈ L(h2+α(P ), h1+α(P ))

for each ρ ∈ V.
Lemma 3.2. Given ρ ∈ V, we have

µ∗K(ρ) = K(ρ)µ∗ and µ∗M(ρ) =M(ρ)µ∗.

Proof. Fix ρ ∈ V. To shorten our notation, we write v := R(ρ)b and ĥ := µ∗h for
h ∈ h2+α(Γ). Then we have

µ∗K(ρ)h = µ∗∂A(ρ)[h, v] = µ∗A(ρ+ h)v − µ∗A(ρ)v + o(h)

= A(ρ̂+ ĥ)µ∗v −A(ρ̂)µ∗v + o(ĥ)

= ∂A(ρ̂)[ĥ, µ∗v]

= K(ρ)µ∗h

as h→ 0 in h2+α(Γ ∩ Ul). The second assertion can be proved analogously.
Lemma 3.3. There exist

k̃j , m̃j ∈ C∞(Q× (−a, a)× Rn−1,R), j = 0, . . . , n− 1,

such that

Kh = −∂n[µ∗(R(ρ)b)]Wh+
n−1∑
j=1

kj(ρ̂,∇ρ̂)∂jh+ k0(ρ̂,∇ρ̂)h,

Mh =
n−1∑
j=1

mj(ρ̂,∇ρ̂)∂jh+m0(ρ̂,∇ρ̂)h
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for each h ∈ h2+α(P ). Here again, kj and mj denote the Nemitskii operators induced

by k̃j and m̃j, respectively.
Proof. The above assertions follow easily from Lemma 3.1.

4. Fourier multiplier operators. In this section we are concerned with lin-
ear differential operators having constant coefficients, obtained by freezing the local
representation (A,B) of (A,B) at ρ ∈ V and at 0 ∈ Q. These operators are used to
associate a Fourier multiplier operator G1 to the Fréchet derivative ∂Φ(ρ) of Φ at ρ.

Throughout this section we fix ρ ∈ V and l ∈ {1, . . . ,mκ}. Of course, all operators
appearing in this section will depend on the choice (ρ, l). However, we will suppress
this dependence throughout this section. Let Hn = Rn−1×(0, 1) denote the truncated
half-space in Rn, and let γ0 denote the restriction operator from Hn to Rn−1×{0} ≡
Rn−1. Moreover, we set

(4.1) a0
jk := ajk(ρ̂)(0), b0j := bj(ρ̂)(0), 1 ≤ j, k ≤ n,

and we define the following linear differential operators with constant coefficients:

A0 := −
n∑

j,k=1

a0
jk∂j∂k, B0 := −

n∑
j=1

b0jγ0∂j .

Furthermore, let

~a := (a0
1n, . . . , a

0
(n−1)n), a0 :=

n−1∑
j,k=1

a0
jkξ

jξk, ξ ∈ Rn−1,

and define for fixed ξ ∈ Rn−1 the following parameter-dependent quadratic polyno-
mial:

qξ(z) := 1 + a0(ξ) + 2i(~a|ξ)z − a0
nnz

2, z ∈ C.

Since the matrix [a0
jk] is positive definite, it follows that, given ξ ∈ Rn−1, there exists

exactly one root λ(ξ) of qξ(·) with positive real part, which is given by

λ(ξ) =
i(~a|ξ)
a0
nn

+
1

a0
nn

√
a0
nn(1 + a0(ξ))− (~a|ξ)2.

Finally, we set

~b := (b01, . . . , b
0
n−1), ~m := (m0

1, . . . ,m
0
n−1).

In the following, F and F−1 denote the Fourier transform and the inverse Fourier
transform, respectively, in Rn−1. We are now ready to introduce the following Fourier
multiplier operators, acting on functions defined on Rn−1.

(4.2) T0g(x, y) := [F−1e−λ(·)yFg](x),

where g ∈ h2+α(Rn−1) and (x, y) ∈ Hn. Moreover,

(4.3) S0h(x, y) :=

[
F−1(1− e−λ(·)y)

1

1 + a0(·) Fh
]

(x),
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for h ∈ hα(Rn−1) and (x, y) ∈ Hn. Then it can be shown that

(4.4)
T0 ∈ L(h2+α(Rn−1), h2+α(Hn)),

S0 ∈ L(hα(Rn−1), h2+α(Hn));

see Appendices A and B in [12]. Next note that the function u = T0g solves the
elliptic boundary value problem

(1 +A0)u = 0 in Hn, γ0u = g on Rn−1,

whereas v = S0h is a solution of

(1 +A0)v = h in Hn, γ0v = 0 on Rn−1,

where we use the same notation for the extended function h̃(x, y) := h(x), (x, y) ∈
Hn = Rn−1 × (0, 1). In addition, we define

(4.5)
k0 :=

(
∂n[µ∗(R(ρ)b)]

)
(0),

wjk0 := wjk(0), 1 ≤ j, k ≤ n− 1.

Note that
(
∂n[µ∗(R(ρ)b)]

)
(0) = −

(
∂ν [R(ρ)b]

)
(µ(0)). Hence, it follows from (2.3) that

k0 is positive. Given h ∈ h2+α(Rn−1), let

(4.6) (K0h)(x) := −k0

1−
n−1∑
j,k=1

wjk0 ∂j∂k

h(x), x ∈ Rn−1.

It is then obvious that

(4.7) K0 ∈ L(h2+α(Rn−1), hα(Rn−1)).

Similarly, we set m0
j := mj(ρ̂)(0) and define

M0h :=
n−1∑
j=1

m0
j∂jh, h ∈ h2+α(Rn−1).

Now let t ∈ [0, 1] be given and set

Gt := t(B0S0K0 +M0) + (1− t)B0T0.

Observe that Gt ∈ L(h2+α(Rn−1), h1+α(Rn−1)) for t ∈ [0, 1], as (4.4) and (4.7) show.
Since K0 and M0 are the principal parts of K and M, respectively, with coefficients
fixed at ρ ∈ V and at 0 ∈ Q, the operator G1 may be considered as the constant
coefficient operator of the principal part of ∂Φ(ρ). The operator BT is called the
Dirichlet–Neumann operator. Hence G0 is the constant coefficient version of the lo-
calization BT of BT ; see also [11]. We should mention that we slightly modified the
concepts and notations as introduced in [11] and [12]. However, an inspection of the
proofs given in [12] show that formula (4.4) can be proved in the same way by using
Fourier multiplier results in Hölder spaces; see [12, App. A.]. We can now prove the
following result.
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Lemma 4.1. Given t ∈ [0, 1], the operator Gt is a Fourier multiplier operator with
symbol gt; i.e., Gt = F−1gtF where

gt(ξ) := b0nλ(ξ)

{
(1− t) + tk0 (1 + wjk0 ξjξk)

1 + a0(ξ)

}
+ i
{

((t− 1)~b+ t~m|ξ)
}

for all ξ ∈ Rn−1.
Proof. (a) In a first step we provide a representation of S0K0. It is an immediate

consequence of (4.6) that the Fourier transform of K0h is given by

(FK0h)(ξ) = −k0 (1 + wjk0 ξjξk)(Fh)(ξ)

for h ∈ h2+α(Rn−1) and ξ ∈ Rn−1. Now it follows from (4.3) that

(4.8) (FS0K0h)(ξ, y) = −(1− e−λ(ξ)y)k0 (1 + wjk0 ξjξk)

1 + a0(ξ)
(Fh)(ξ),

where ξ ∈ Rn−1 and y ∈ (0, 1).
(b) Observe that γ0∂ju = ∂jγ0u for u ∈ h2+α(Hn) and j = 1, . . . , n − 1. Hence

(4.8) yields

(4.9) B0S0K0h = F−1

[
b0nλ(ξ)k0 (1 + wjk0 ξjξk)

1 + a0(ξ)
Fh
]
.

From formula (4.2) we infer that

b0jγ0∂jT0 = F−1[ξ 7→ ib0jξj ]F , j = 1, . . . , n− 1,

and

b0nγ0∂nT0 = −F−1b0nλ(·)F .

Hence we find that

(4.10) B0T0 = F−1[ξ 7→ b0nλ(ξ)− i(~b|ξ)]F .

Finally, it is clear that

(4.11) M0 = F−1[ξ 7→ i(~m|ξ)]F .

Combining (4.9)–(4.11), we get the assertion.
As a first consequence of Lemma 4.1, we show that −Gt generates for each t ∈ [0, 1]

a strongly continuous analytic semigroup on h1+α(Rn−1). To make this precise we
need a few definitions. To begin with, assume that α∗ > 0, σ > 0 and let

E llS∞σ (α∗) :=
{
a ∈ C∞(Rn−1 × (0,∞)) ; a is positively homogeneous

of degree σ, all derivatives of a are bounded on |ξ|2 + µ2 = 1,

and Re a(ξ, µ) ≥ α∗(|ξ|2 + µ2)σ/2, (ξ, µ) ∈ Rn−1 × (0,∞)
}
.

Given two Banach spaces E0 and E1 such that E1 is continuously and densely embed-
ded in E0, let H(E1, E0) denote the set of all A ∈ L(E1, E0) such that −A, considered
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as an unbounded operator in E0, generates a strongly continuous analytic semigroup
on E0. It is known (see Remark I.1.2.1(a) in [2]) that A ∈ L(E1, E0) belongs to
H(E1, E0) if there exist positive constants C and λ∗ such that

(4.12)
λ∗ +A ∈ Isom(E1, E0),

|λ| ‖x‖E0 + ‖x‖E1 ≤ C‖(λ+A)x‖E0 , x ∈ E1, λ ∈ [Re z ≥ λ∗].

Theorem 4.2. Suppose that (2.3) holds. Then

Gt ∈ H(h2+α(Rn−1), h1+α(Rn−1)), t ∈ [0, 1].

Proof. (a) Basically, the idea is to use Lemma 4.1 together with appropriate
results on Fourier multipliers to verify the generation property of Gt. Having this
intention, it is well known that homogeneous symbols are much easier to handle.
Hence, in a first step we introduce a parameter-dependent version of the symbol gt,
which is positively homogeneous of degree 1. Given (ξ, µ) ∈ Rn−1 × (0,∞), let

λ(ξ, µ) :=
i(~a|ξ)
a0
nn

+
1

a0
nn

√
a0
nn(µ2 + a0(ξ))− (~a|ξ)2

and r(ξ, µ) := Re(λ(ξ, µ)). Then we set

g̃t(ξ, µ) := b0nλ(ξ, µ)

{
(1− t) + tk0 (µ2 + wjk0 ξjξk)

µ2 + a0(ξ)

}
+ i
{

((t− 1)~b+ t~m|ξ)},

for (ξ, µ) ∈ Rn−1 × (0,∞) and t ∈ [0, 1]. Obviously, g̃t(·, 1) = gt. Moreover, it is
clear that g̃t ∈ C∞(Rn−1 × (0,∞),C) and that each g̃t is positively homogeneous of
degree 1. In addition, it is easily verified that all derivatives of a are bounded on
|ξ|2 + µ2 = 1.

(b) Observe that k0 > 0, thanks to assumption (2.4) and (2.3). In addition, we
know from (3.4) and (3.5) that a0

nn > 0 and b0n > 0. Furthermore, there exist positive
constants K and r∗ such that

µ2 + a0(ξ) ≤ K(µ2 + |ξ|2), r(ξ, µ) ≥ r∗
√
µ2 + |ξ|2

for all (ξ, µ) ∈ Rn−1× (0,∞). The first estimate follows immediately from the defini-
tion of a0. The second one is a consequence of the ellipticity of [ajk]1≤j,k≤n. Finally,
recall that w is uniformly positive definite; see section 3. Hence there is a positive
constant w∗ > 0 such that (µ2+wjk0 ξjξk) ≥ w∗(µ2+|ξ|2) for all (ξ, µ) ∈ Rn−1×(0,∞).
This leads to an estimate

Re g̃t(ξ, µ) = b0nr(ξ, µ)

{
(1− t) + tk0 (µ2 + wjk0 ξjξk)

µ2 + a0(ξ)

}
≥ b0nr∗

√
µ2 + |ξ|2

{
(1− t) + tk0 w∗(µ

2 + |ξ|2)

K(µ2 + |ξ|2)

}
≥ b0nr∗

√
µ2 + |ξ|2{(1− t) + tk∗},

where k∗ := k0K−1w∗ > 0. Now, letting

α∗ := r∗b
0
nmin{1, k∗} > 0,

we find that g̃t ∈ E llS∞1 (α∗) for all t ∈ [0, 1]. Now the assertion is implied by a general
result due to Amann, which in particular states that given a ∈ E llS∞1 (α∗) and µ0 > 0;
it follows that a(·, µ0) ∈ H(h2+α(Rn−1), h1+α(Rn−1)); see [3].
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5. Perturbations. In this section we prove that, given ρ ∈ V, the linearization
−∂Φ(ρ) of −Φ at ρ generates a strongly continuous analytic semigroup on h1+α(Γ).
The main technical tool is a perturbation result contained in Lemma 5.1. To state
this result we need some preparation. First let

∂Φt(ρ) := t∂Φ(ρ) + (1− t)B(ρ)T (ρ)

for ρ ∈ V and t ∈ [0, 1]. Obviously, ∂Φt(ρ) is a convex combination connecting ∂Φ(ρ)
and the Dirichlet–Neumann operator B(ρ)T (ρ); see [11].

Next, given κ ∈ (0, a], choose smooth test functions ψl ∈ D(Ul) such that
{(Ul, ψl) ; 1 ≤ l ≤ mκ} is a partition of unity on Rκ; see section 3 for the defini-
tion of Rκ. Call such a family {(Ul, ψl) ; 1 ≤ l ≤ mκ} a (finite) localization sequence
for Rκ. Moreover, we fix x̂l ∈ Γ such that x̂l ∈ Ul, l = 1, . . . ,mκ. We may further
assume that µl(0) = x̂l for l = 1, . . . ,mκ.

To economize our notation, the symbols | · |s and ‖ · ‖s are exclusively used for
the norms in hs(Rn−1) and hs(Γ), respectively.

Finally, throughout this section we fix ρ ∈ V and β ∈ (0, α).
Lemma 5.1. Given ε > 0, there exists κ ∈ (0, a], a localization sequence {(Ul, ψl);

1 ≤ l ≤ mκ} for Rκ, and a positive constant C := C(ρ, ε, κ) such that

|µ∗l (ψl∂Φt(ρ)h)− Gt(ρ, l)µ∗l (ψlh)|1+α ≤ ε|µ∗l (ψlh)|2+α + C‖h‖2+β

for all h ∈ h2+α(Γ), l ∈ {1, . . . ,mκ}, and t ∈ [0, 1].
Proof. (a) We fix ρ ∈ V, l ∈ {1, . . . ,mκ} and suppress the pair (ρ, l) in our

notation. Moreover, given ε > 0 and β ∈ (0, α), we only show explicitly the existence
of a positive constant C such that

|µ∗(ψBSKh)− B0S0K0µ
∗(ψh)|1+α ≤ ε|µ∗(ψh)|2+α + C‖h‖2+β

for all h ∈ h2+α(Γ). The remaining two terms

|µ∗(ψBTh)− B0T0µ
∗(ψh)|1+α, |µ∗(ψMh)−M0µ

∗(ψh)|1+α

can be estimated similarly (and are even easier to handle). Our argumentation fol-
lows the proof of Lemma 6.1 in [12] and uses in particular obvious generalizations of
Lemmas 6.5, 6.6, and 6.7 in [12] to the n-dimensional case.

(b) Choose a smooth test-function χ ∈ D(U) such that χ|supp(ψ) = 1. Then we
have

µ∗ψBSK − B0S0K0µ
∗ψ = µ∗χBSKψ − B0S0K0µ

∗χψ − µ∗χ[BSK,ψ],

where ψ and χ also denote the linear operators induced by pointwise multiplication
by ψ and χ, respectively, and where [A,B] := AB − BA denotes the commutator of
A and B. It follows, essentially from Leibniz’ rule (see Lemma 6.5(b) in [12]), that
there exists a positive constant C such that

‖[BSK,ψ]h‖1+α ≤ C‖h‖2+β , h ∈ h2+α(Γ).

Hence, it suffices to estimate the operator

µ∗χBSK − B0S0K0µ
∗χ.
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In addition, we split that operator in the following way:

µ∗χBSK − B0S0K0µ
∗χ = µ∗χBSK − B0µ

∗χSK + B0{µ∗χS − S0µ
∗χ}K(5.1)

+ B0S0{µ∗χK −K0µ
∗χ}.

(c) Let us start with the first term µ∗χBSK−B0µ
∗χSK. Again, by Leibniz’ rule,

the commutator [µ∗χ,B0] can be estimated as

(5.2) |[µ∗χ,B0]u|1+α ≤ C|u|1+α,Hn , u ∈ h2+α(Hn).

Thus we are left to control the operator µ∗χB − (µ∗χ)B0µ
∗. By the definition of B

we get the formula

(5.3) µ∗χB − (µ∗χ)B0µ
∗ = (µ∗χ){B − B0}µ∗.

But, as in [12, Lemma 6.7(a)], we find positive constants C and Cκ such that

(5.4)
|(µ∗χ){1 +A0 −A}(µ∗v)|α,Hn +|(µ∗χ){B − B0}(µ∗v)|1+α

≤ Cκ1−α‖v‖2+α,Ω + Cκ‖v‖1+α,Ω

for all v ∈ h2+α(Ω). Finally, observe that

(5.5) S ∈ L(hγ(Ω), h2+γ(Ω)), K ∈ L(h2+γ(Γ), hγ(Ω))

for γ ∈ [β, α] and that

(5.6) µ∗ ∈ Diff∞(h2+α(Γ ∩ U), h2+α(P )).

Combining (5.2)–(5.6), we can find a κ1 ∈ (0, a] and a positive constant C such that

(5.7) |µ∗(χBSKg)− B0µ
∗(χSKg)|1+α ≤

ε

3
|µ∗g|2+α + C‖g‖2+β

for all g ∈ h2+α(Γ ∩ U).
(d) In a next step we estimate the operator µ∗χS − S0µ

∗χ. To achieve this, we
use the representation

(5.8) µ∗χS − S0µ
∗χ = S0

{
[A0, µ

∗χ]µ∗S + (µ∗χ){1 +A0 −A}µ∗S
}
,

which follows from Lemma 6.6 in [12]. Again, the operator [A0, µ
∗χ] is of lower order

in the sense that there exists a positive constant C such that

(5.9) |[A0, µ
∗χ]u|α,Q̊ ≤ C|u|1+α,Q̊ , u ∈ h1+α(Q̊).

Hence, it follows from (5.4), (5.5), (5.6), (5.8), and (5.9) that there is a κ2 ∈ (0, a]
such that

(5.10) |B0

{
µ∗(χSKg)− S0µ

∗(χKg)
}
|1+α ≤

ε

3
|µ∗g|2+α + C‖g‖2+β

for all g ∈ h2+α(Γ ∩ U).
(e) From Lemma 3.2 we know that

µ∗χK −K0µ
∗χ = (µ∗χ){K − K0}µ∗ + [µ∗χ,K0]µ∗.
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But here again, it follows from Leibniz’ rule that there is a C > 0 such that

(5.11) |[µ∗χ,K0]µ∗g|α,Hn ≤ C‖g‖1+α, g ∈ h2+α(Γ ∩ U).

Finally, we infer from Lemma 6.7(b) in [12] that there are positive constants C and
Cκ such that

(5.12) |(µ∗χ){K − K0}g|α,Hn ≤ κ1−αC|µ∗g|2+α + Cκ‖g‖1+α

for all g ∈ h2+α(Γ ∩ U). Since B0S0 ∈ L(hα(Hn), h1+α(Γ)), we conclude from (5.11)
and (5.12) that there is a κ3 ∈ (0, a] and a C > 0 such that

(5.13) |B0S0

{
µ∗χK −K0µ

∗χ
}
g|1+α ≤

ε

3
|µ∗g|2+α + C‖g‖2+β

for all g ∈ h2+α(Γ∩U). Now, letting κ := min{κ1, κ2, κ3}, the assertion follows from
(5.7), (5.10), and (5.13).

Theorem 5.2. We have

∂Φt(ρ) ∈ H(h2+α(Γ), h1+α(Γ)), ρ ∈ V, t ∈ [0, 1].

Proof. (a) In a first step we provide a parameter-dependent a priori estimate for
∂Φt(ρ). To begin with, we know from Theorem 4.2 that there are positive constants
λ1 and C1, independent of κ ∈ (0, a] and l ∈ {1, . . . ,mκ}, such that

(5.14) |g|2+α + |λ||g|1+α ≤ C1|(λ+ Gt(ρ, l))g|1+α

for all g ∈ h2+α(Rn−1), λ ∈ [Re z ≥ λ1], and l ∈ {1, . . . ,mκ}. Furthermore, Lemma
5.1 guarantees the existence of positive constants κ, C2, and a localization sequence
{(Ul, ψl) ; 1 ≤ l ≤ mκ} such that

|µ∗l
(
ψl∂Φt(ρ)h

)
− Gt(ρ, l)µ∗l (ψlh)|1+α ≤

1

2C1
|µ∗l (ψlh)|2+α + C2‖h‖2+β

for all h ∈ h2+α(Γ), l ∈ {1, . . . ,mκ}, and t ∈ [0, 1]. Consequently, it follows from
(5.14) that

(5.15)
|µ∗l (ψlh)|2+α+ |λ||µ∗l (ψlh)|1+α

≤ 2C1

{
|µ∗l
(
ψl(λ+ ∂Φt(ρ))h

)
|1+α + C2‖h‖2+β

}
for all h ∈ h2+α(Γ), λ ∈ [Re z ≥ λ1], l ∈ {1, . . . ,mκ}, and t ∈ [0, 1]. Next observe
that [

h 7→ max
1≤l≤mκ

|µ∗l (ψlh)|k+α

]
defines an equivalent norm on hk+α(Γ), k = 1, 2, due to the fact that the family
{(Ul, ψl) ; 1 ≤ l ≤ mκ} is a localization sequence for Rκ; see [24]. Hence (5.15)
implies the existence of a positive constant C such that

(5.16) ‖h‖2+α + |λ|‖h‖1+α ≤
C

2
‖(λ+ ∂Φt(ρ))h‖1+α + C‖h‖2+β

for all h ∈ h2+α(Γ), λ ∈ [Re z ≥ λ1], and t ∈ [0, 1].
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Finally, let (·, ·)0
θ,∞ denote the continuous interpolation functor of Da Prato and

Grisvard; see [6]. It is known that

(5.17) h2+β(Γ) =
(
h1+α(Γ), h2+α(Γ)

)0
1−α+β,∞.

Hence there exists a positive constant C3 such that

‖h‖2+β ≤
1

2C
‖h‖2+α + C3‖h‖1+α, h ∈ h2+α(Γ).

Now we conclude from (5.17) that

(5.18) ‖h‖2+α + |λ|‖h‖1+α ≤ C‖(λ+ ∂Φt(ρ))h‖1+α

for all h ∈ h2+α(Γ), λ ∈ [Re z ≥ λ∗], and t ∈ [0, 1], where we have set λ∗ :=
2 max{λ1, CC3}.

(b) In view of (4.12) and (5.18), it remains to prove that ∂Φt(ρ) is surjective for
each t ∈ [0, 1]. Moreover, since the estimate (5.18) is uniform in t ∈ [0, 1], a well-
known homotopy argument (see Theorem 5.2 in [17]) implies that it is sufficient to
prove that ∂Φ0(ρ) is onto. Thus, let g ∈ h1+α(Γ) be given. Then we find, as in the
proof of Lemma 2.4, a unique v ∈ h2+α(Ω) such that

(5.19)
(
A(ρ), λ∗γ +B(ρ), C

)
v = (0, g, 0).

The first and the third components of this identity imply that

T (ρ)γv =
(
A(ρ), γ, B(ρ)

)−1
(0, γv, 0) = v;

see section 2 for the definition of the operator T (ρ). Now, putting h := γv ∈ h2+α(Γ),
the second component of (5.19) gives(

λ∗ +B(ρ)T (ρ)
)
h =

(
λ∗γ +B(ρ)

)
v = g,

which completes our argumentation.
Remark 5.3. Let ρ ∈ V be given. Then the proofs of Theorems 4.2 and 5.2

show that −∂Φ(ρ) does not generate a strongly continuous semigroup on h1+α(Γ) if
b ∈ h2+α−δ(J)\{0} is nonpositive. Hence, for such b, the linearized evolution equation
for the moving boundary

∂tσ + ∂Φ(ρ)σ = 0, σ(0) = σ0

is not well posed in h1+α(Γ) in the sense of Hadamard.
Proof of Theorem 1. Let ρ0 ∈ V be given. Thanks to Lemmas 2.2 and 2.5 we only

have to prove the existence and uniqueness of a classical Hölder solution of (2.5). To
show this, fix β ∈ (0, α). Then it follows from Theorem 5.2 that

∂Φ(ρ) ∈ H(h2+γ(Γ), h1+γ(Γ)), ρ ∈ V, γ ∈ [β, α].

From this and the known fact that little Hölder spaces are stable under continuous
interpolation one finds that

(5.20) ∂Φ(ρ) ∈M1(h2+α(Γ), h1+α(Γ)), ρ ∈ V,

whereM1(E1, E0) denotes the class of all operators in L(E1, E0), having the property
of maximal regularity in the sense of Da Prato and Grisvard [6]; see also [4] and [23].
The assertions now follow from Theorem 2.7 in [4].
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A DEGENERATE PARABOLIC-HYPERBOLIC SYSTEM MODELING
THE SPREADING OF SURFACTANTS∗
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Abstract. We consider the initial-boundary value problem for a coupled parabolic-hyperbolic
system for which the parabolic part degenerates. The problem arises in studying the spreading of
surfactants on thin films, and the degeneracy occurs if either the surfactant concentration or the
film height vanishes. Both cases will be considered. If the film height vanishes, the front does not
advance. If, on the other hand, the surfactant concentration vanishes, then solutions with stationary
or moving fronts are possible.

Key words. surfactant spreading, degenerate parabolic equations, parabolic-hyperbolic systems
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PII. S0036141096299120

1. Introduction. We consider the spreading of a surfactant on a thin fluid
film. The equations modeling this problem were introduced in [3], motivated by
an application involving the medical treatment of premature infants. It is assumed
that the flow in the film is driven entirely by the shear stress resulting from surface
tension gradients, and that the surfactant is advected with the flow. Under these
assumptions, the equations of motion, in dimensionless form, are [3]

ht + div

(
h2

2
∇σ(Γ)

)
= 0,

(1) Γt + div (hΓ∇σ(Γ)) = 0.

Here h is the film thickness, Γ is the surfactant concentration, and σ is the concentration-
dependent surface tension coefficient. For a surfactant, σ′(Γ) < 0.

From a mathematical point of view, equations (1) form a parabolic-hyperbolic
system. Even in the absence of molecular diffusion of the surfactant, there is an
effective diffusion associated with the spreading of surfactant by the self-induced flow.
This diffusion, however, is present only if both h and Γ are positive, and hence the
parabolic part of the equation degenerates if either h or Γ vanishes. If molecular
diffusion is added, this degeneracy is removed.

In earlier work [6], we have studied the case of positive molecular diffusion, where
the parabolic equation is nondegenerate. The well-posedness of initial and initial-
boundary value problems was established. In addition, it was shown that shocks
associated with the hyperbolic part of the equation can develop from smooth data in
finite time. For this result, it is essential that molecular diffusion be present; if it is
zero, then hyperbolic shocks are impossible. The fronts which will arise in this paper
are fundamentally different from hyperbolic shocks, even though they also involve
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jumps in h and Γx; they are associated with the parabolic part of the problem, rather
than the hyperbolic part.

Throughout this paper, we shall be concerned with “smooth” solutions. Al-
though there is an extensive literature on degenerate parabolic equations (see [4]
for an overview), results guaranteeing the existence of smooth solutions seem to be
known only in one space dimension [1], [2], [5]. We therefore consider only the one-
dimensional case of (1):

ht +
1

2
(h2σ(Γ)x)x = 0,

(2) Γt + (hΓσ(Γ)x)x = 0.

We seek solutions for t > 0, on the interval 0 < x < φ(t), where φ(t) is an unknown
free boundary. We have initial conditions

(3) φ(0) = 1, h(x, 0) = h0(x), Γ(x, 0) = Γ0(x).

It is understood that h0 and Γ0 are strictly positive except at the right end point,
where either h0(1) = 0 or Γ0(1) = 0. In the first case, φ(t) = 1 for t > 0, while
in the second case, φ(t) has to be determined as part of the problem, subject to the
condition

(4) Γ(φ(t), t) = 0.

At the left end point we shall impose, for simplicity, a no-flux condition,

(5) Γx(0, t) = 0.

Following the lead of [6], we make the transformation h = Γ1/2p. This leads to
the new set of equations

pt −
1

4
Γ−1/2Γxp

2σ(Γ)x +
1

2
Γ1/2ppxσ(Γ)x = 0,

(6) Γt + (pΓ3/2σ(Γ)x)x = 0.

The effect of the transformation is an uncoupling of the hyperbolic and parabolic parts
of the equation; note that the equation for p in (6) contains no second derivatives of
Γ and can be viewed as a first-order hyperbolic equation for p when Γ is given.

2. Fronts with vanishing film thickness. In this section, we consider so-
lutions for which φ(t) = 1 for all t and h(1) = p(1) = 0. In (6), we substitute
p(x, t) = (1− x)q(x, t), leading to the new set of equations:

qt −
1

4
(1− x)Γ−1/2Γxq

2σ(Γ)x −
1

2
Γ1/2q2σ(Γ)x

+
1

2
(1− x)Γ1/2σ(Γ)xqqx = 0,

(7) Γt + ((1− x)qΓ3/2σ(Γ)x)x = 0.
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To complement these equations, we have the initial conditions

(8) Γ(x, 0) = Γ0(x), q(x, 0) = q0(x),

and we assume that Γ0 and q0 are smooth and strictly positive. In addition, we have
the boundary condition

(9) Γx(0, t) = 0;

no boundary condition is needed at x = 1.
To solve (7)–(9), we employ the iteration

qn+1
t − 1

4
(1− x)(Γn)−1/2Γnx(qn)2σ(Γn)x −

1

2
(Γn)1/2(qn)2σ(Γn)x

+
1

2
(1− x)(Γn)1/2σ(Γn)xq

nqn+1
x = 0,

(10) Γn+1
t + ((1− x)qn(Γn)3/2σ′(Γn)Γn+1

x )x = 0.

To formulate results, we need to define some function spaces. Let

(11) Xk = {u |u ∈ Hk−1(0, 1), (1− x)u(k) ∈ L2(0, 1)}.

Moreover, we define ‖ · ‖k,p,l as the norm of a function in W l,p((0, T );Xk). Let ZM
be the set of all (q,Γ) such that

q ∈
k+1⋂
i=1

W k+1−i,∞((0, T );Xi) ∩Hk+1((0, T ), X0),

Γ ∈
k+2⋂
i=2

Hk+2−i((0, T );Xi) ∩Hk+1((0, T ), X0),

‖q‖0,2,k+1 +

k+1∑
i=1

‖q‖i,∞,k−i+1 + ‖Γ‖0,2,k+1 +

k+2∑
i=2

‖Γ‖i,2,k+2−i ≤M,

q(x, 0) = q0(x), Γ(x, 0) = Γ0(x), Γx(0, t) = 0,

The time derivatives of q and Γ up to order k

(12) satisfy the appropriate initial condition.

By the latter condition, we mean that the initial values of time derivatives agree with
those which can be derived from the equations (7) and initial conditions (8).

The solution will be constructed as a fixed point of the iteration (10) via the
contraction mapping theorem. Let S denote the mapping (qn,Γn) 7→ (qn+1,Γn+1),
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which is defined by (10) in conjunction with the initial condition (8) and boundary
condition (9).

Lemma 2.1. Assume that Γ0 and q0 are strictly positive and sufficiently smooth,
that the function Γ 7→ σ(Γ) is smooth, and that σ′ < 0. Moreover, assume k ≥ 2.
Finally, assume that Γ′0(0) = 0 and that the initial values for all time derivatives of
Γ up to order k − 1 are also compatible with the boundary condition (9). If M is
chosen sufficiently large, and T is sufficiently small relative to M , then S maps ZM
into itself.

Remark. In stating the result, we have been deliberately vague about the required
smoothness of the initial data. Basically, the smoothness required of the initial data
is the same as is recovered by the solution. However, this involves time derivatives of
q and Γ as well as the functions themselves, and the initial values of time derivatives
depend on q0 and Γ0 in a very complicated fashion. Hence a precise smoothness
condition on q0 and Γ0 would be very awkward to state.

We now sketch the proof of the lemma. The first equation of (10) has the simple
form

(13) qn+1
t + gnqn+1

x + fn = 0;

i.e., it is simply a first-order hyperbolic equation. Since gn vanishes at both end
points, no boundary conditions are required. A simple energy estimate yields that∫ 1

0

(qn+1(x, t))2 dx =

∫ 1

0

q0(x)2 dx+
1

2

∫ t

0

∫ 1

0

gnx (x, τ)(qn+1(x, τ))2 dx dτ

(14) −
∫ t

0

∫ 1

0

fn(x, τ)qn+1(x, τ) dx dτ.

This yields a bound for the L2-norm of qn+1. In a similar fashion, we can obtain
a bound for the L2-norm of (1 − x)qn+1, if we first multiply (13) by (1 − x). We
can obtain analogous bounds for spatial and temporal derivatives of qn+1 by taking
derivatives of (12); note that the initial values of any derivative of qn+1 or Γn+1

depend only on q0 and Γ0. In this fashion, we recursively obtain an estimate of the
form

(15)
k+1∑
i=1

‖q‖i,∞,k−i+1 ≤ C
(
k+1∑
i=1

‖f‖i,1,k−i+1 +

k∑
i=1

‖g‖i,1,k−i
k+1∑
i=1

‖q‖i,∞,k−i+1

)
+C0,

where C0 depends only on the initial conditions. We can bound the right-hand side
of (15) by

(16) C
√
T

(
k+1∑
i=1

‖f‖i,2,k−i+1 +
k∑
i=1

‖g‖i,2,k−i
k+1∑
i=1

‖q‖i,∞,k−i+1

)
+ C0,

and by using this and choosing T sufficiently small, we finally obtain a bound of the
form

(17)
k+1∑
i=1

‖q‖i,∞,k−i+1 ≤ C
√
T
k+1∑
i=1

‖f‖i,2,k−i+1 + C0.
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Finally, we can get a bound on the (k + 1)st time derivative of q from the equation
itself, and we find that ‖q‖0,2,k+1 is also bounded by an expression of the form (17).

The second equation of (10) has the form

(18) Γn+1
t + (snΓn+1

x )x = 0;

since we also need to consider time derivatives of this equation, we look at the more
general form

(19) Γt + (sΓx)x = v,

with given s and v. Here s is negative and proportional to 1 − x as x → 1. We
multiply (19) with (sΓx)x and integrate. After an integration by parts this yields

−1

2

∫ 1

0

s(x, t)Γx(x, t)2 dx+
1

2

∫ 1

0

s(x, 0)Γ′0(0)2 dx+
1

2

∫ t

0

∫ 1

0

st(x, τ)Γx(x, τ)2 dx dτ

(20) +

∫ t

0

∫ 1

0

[(s(x, τ)Γx(x, τ))x]2 dx dτ =

∫ t

0

∫ 1

0

v(x, τ)(s(x, τ)Γx(x, τ))x dx dτ.

Noting that

(21) ‖Γx‖L2(0,1) ≤ C‖(1− x)Γx‖H1(0,1),

we can use (20) to get a bound on ‖Γ‖2,2,0 in terms of v and s:

(22) ‖Γ‖2,2,0 ≤ C‖v‖L2((0,T )×(0,1)) + C0.

We use this bound on the second equation of (10) and its first k time derivatives.
After estimating time derivatives of Γn+1, we can get bounds for spatial derivatives
by exploiting the equation and (21).

The lemma follows by combining the estimates sketched above. We omit the
tedious but straightforward details.

On ZM , we now define a distance function by using a weaker norm than that in
(12):

d((q,Γ), (q̃, Γ̃)) = ‖q − q̃‖0,2,k +
k∑
i=1

‖q − q̃‖i,∞,k−i + ‖Γ− Γ̃‖0,2,k

(23) +
k+1∑
i=2

‖Γ− Γ̃‖i,2,k+1−i.

We now consider two equations of the form (10) and estimate the difference of the
solutions. By using the a priori bounds already established in Lemma 2.1 and using
similar estimates as above, one can show the following.

Lemma 2.2. Let the assumptions be as in Lemma 2.1. If T is sufficiently small
relative to M , then S is a contraction in ZM with the metric defined by d.

Since ZM with the metric d is a complete metric space, the mapping S has a
unique fixed point, which is the solution we seek.
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3. Stationary fronts with vanishing concentration. We now consider the
case where Γ = 0 at x = 1, and h 6= 0. For this situation, we substitute Γ(x, t) =
(1− x)2Φ(x, t), p(x, t) = (1− x)−1q(x, t). This leads to the equations

qt + σ′((1− x)2Φ)

(
−1

4
Φ−1/2q2(1− x)2Φ2

x +
3

2
Φ1/2Φxq

2(1− x)− 2Φ3/2q2

+
1

2
Φ1/2Φx(1− x)2qqx − Φ3/2(1− x)qqx

)
= 0,

Φt − 3qΦ3/2σ′((1− x)2Φ)((1− x)Φx − 2Φ)

(24) +(1− x)[qΦ3/2σ′((1− x)2Φ)((1− x)Φx − 2Φ)]x = 0.

We note that for x = 1, we obtain the system of ODEs

(25) q̇ = 2Φ3/2q2σ′(0), Φ̇ = −6qΦ5/2σ′(0).

We find from this that q3Φ is constant; i.e., q is a multiple of Φ−1/3. Note that σ′(0)
is negative, and q and Φ are positive quantities. If we prescribe any strictly positive
initial data, then (25) will lead to finite time blow up of Φ(1). Hence solutions with
a stationary front can only exist for a finite time, and eventually the front will begin
to advance. This behavior is well known for the porous media equation.

We can transform (24) to a nondegenerate parabolic-hyperbolic system on an
infinite interval by using the substitution 1− x = exp(−y) so that y ranges from 0 to
∞. Note that

(26) (1− x)
∂

∂x
=

∂

∂y
,

so the transformation indeed leads to a nondegenerate parabolic equation. A local
time existence result for smooth solutions of the nondegenerate system can then be
established along the lines of [6]. The issue remains whether a solution which is
“smooth” as a function of y is also smooth in terms of the original variable x. From
(26), we see that, for instance, Γx is in L2 if Γy exp(y/2) is in L2. Hence smoothness
with respect to x translates into exponential decay with respect to y. Similarly, higher
order smoothness means that the solution has an asymptotic expansion in powers of
exp(−y), with sufficiently rapid decay of the remainder. It is easy to adapt the
analysis of [6] to exponentially weighted spaces and thus obtain an existence result
for solutions which are smooth in x. It should be stressed, however, that solutions will
decay exponentially with respect to y only if such exponential decay is already present
in the initial data (i.e., q0 and Γ0 exponentially approach a constant as y →∞). No
exponential decay in y (and hence no smoothness in x) is created by the differential
equation.

4. Advancing fronts with vanishing concentration. We now consider an
advancing front at the location x = φ(t). We first transform the problem to a fixed
domain. Since we impose a no-flux condition at x = 0, the total amount of surfactant,

(27) MΓ =

∫ φ(t)

0

Γ(x, t) dx,
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remains constant. We now set

(28) y2 = MΓ −
∫ x

0

Γ(z, t) dz,

and we use y as an independent variable in place of x. Note that y ranges over the
fixed interval [0,

√
MΓ], and the front is now at y = 0. We find

∂y

∂x
= − Γ

2y
,

(29)
∂y

∂t
= − 1

2y

∫ x

0

Γt(z, t) dz =
1

2y
pΓ3/2σ(Γ)x = − 1

4y2
Γ5/2pσ(Γ)y.

Using these relationships, we can evaluate derivatives using the chain rule:

(30)
∂f

∂x
=
∂f

∂y

∂y

∂x
,

∂f

∂t
=
∂f

∂t
+
∂f

∂y

∂y

∂t
.

In a slight abuse of notation, ∂/∂t denotes a time derivative for fixed x on the left-hand
side, and a time derivative for fixed y on the right-hand side, of the last equation.

By using (30) in (6), we derive the new set of equations

pt −
1

8y2
Γ5/2σ′(Γ)ppyΓy −

1

16y2
Γ3/2σ′(Γ)p2Γ2

y = 0,

(31) Γt −
1

4y2
Γ5/2σ′(Γ)pΓ2

y +
Γ

2y

[
1

2y
Γ5/2σ′(Γ)pΓy

]
y

= 0.

At an advancing front, we expect Γ to be proportional to φ(t)−x, and hence propor-
tional to y, while h approaches a finite limit, which makes p proportional to y−1/2.
We therefore substitute p = y−1/2q, Γ = yΦ, leading to the new equations

qt −
1

16
σ′(yΦ)Φ5/2q2Φy −

1

8
σ′(yΦ)Φ7/2qqy

−y
8
σ′(yΦ)Φ5/2qqyΦy −

y

16
σ′(yΦ)Φ3/2q2Φ2

y = 0,

Φt −
1

4
σ′(yΦ)Φ7/2qΦy −

y

4
σ′(yΦ)Φ5/2qΦ2

y

(32) +
Φ

4
[σ′(yΦ)Φ5/2q(yΦy + Φ)]y = 0.

To complete the specification of the problem, we have initial conditions for Φ and
q, which can be derived from (3):

(33) Φ(y, 0) = Φ0(y), q(y, 0) = q0(y).

The no-flux boundary condition assumes the form

(34) Φ(
√
MΓ, t) +

√
MΓΦy(

√
MΓ, t) = 0.
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In addition, we need a boundary condition for the hyperbolic part of the equation
at y = 0. To obtain such a boundary condition, we need to consider jump relations
across the front. Suppose for simplicity that the front propagates into a film of uniform
thickness so that h = h∗ ahead of the front. From (2), we find the Rankine–Hugoniot
condition

(35) −φ′(t)[h] +
1

2
σ′(0)[h2Γx] = 0.

Here [·] denotes the amount by which a quantity jumps across the front. The speed
of the front is the speed with which the surfactant spreads, i.e.,

(36) φ′(t) = σ′(0)hΓx.

With h and Γx denoting values behind the front, (35) and (36) yield

(37) −hΓx(h− h∗) +
1

2
h2Γx = 0,

which simplifies to

(38) h = Φ1/2q = 2h∗.

This is the boundary condition which we prescribe at y = 0. By evaluating (32) at
y = 0, we obtain

qt(0)− 1

16
σ′(0)Φ5/2(0)q2(0)Φy(0)− 1

8
σ′(0)Φ7/2q(0)qy(0) = 0,

(39) Φt(0) +
7

8
σ′(0)Φ7/2(0)q(0)Φy(0) +

1

4
σ′(0)Φ9/2qy(0) +

1

4
σ′′(0)Φ11/2q(0) = 0.

Moreover, (38) implies

(40)
1

2
qΦt + Φqt = 0.

By combining (40) and (39), we find the simple condition

(41) Φy(0, t) +
1

3

σ′′(0)Φ2(0, t)

σ′(0)
= 0.

Although (32) is very similar to (7), we cannot use the same iteration. The crucial
difference is that qx in the second equation of (7) appears only in conjunction with a
factor 1− x, while qy in the second equation of (32) appears also without a factor y.
It is basically for this reason that we need a different iteration and different estimates.
To set up an iterative solution for (32), we first apply the operation

(42)
∂

∂t
− 1

8
σ′(yΦ)Φ7/2q

∂

∂y
− y

8
σ′(yΦ)Φ5/2Φyq

∂

∂y

to the second equation of (32) and then use the first equation of (32) to eliminate
terms involving second derivatives of q and terms involving qt. This yields an equation
of the following form:

Φtt + Φyt

(
1

2
σ′(yΦ)Φ7/2q + yQ1

)
− Φyy

(
1

16
(σ′(yΦ))2Φ7q2 + yQ2

)



1056 MICHAEL RENARDY

+
1

4
σ′(yΦ)Φ7/2q(yΦy)yt −

1

32
(σ′(yΦ))2Φ7q2(yΦy)yy

(43) −y
8

(σ′(yΦ))2Φ6q2Φy(yΦy)yy +Q3 = 0,

where the Qi are of the form

(44) Qi = Qi(y,Φ, q,Φt,Φy, qy).

The iterative construction of solutions now proceeds as follows. We first determine
a new iterate qn+1 from (32):

qn+1
t − 1

16
σ′(yΦn)(Φn)5/2(qn)2Φny −

1

8
σ′(yΦn)(Φn)7/2qnqn+1

y

(45) −y
8
σ′(yΦn)(Φn)5/2qnqn+1

y Φny −
y

16
σ′(yΦn)(Φn)3/2(qn)2(Φny )2 = 0,

subject to the prescribed initial condition and the boundary condition

(46) (Φn)1/2qn+1 = 2h∗

at y = 0. Then we determine a new iterate for Φ from (43) in the form

Φn+1
tt +Φn+1

yt

(
1

2
σ′(yΦn)(Φn)7/2qn + yQn1

)
−Φn+1

yy

(
1

16
(σ′(yΦn))2(Φn)7(qn)2 + yQn2

)

+
1

4
σ′(yΦn)(Φn)7/2qn(yΦn+1

y )yt −
1

32
(σ′(yΦn))2(Φn)7(qn)2(yΦn+1

y )yy

(47) − y

32
(σ′(yΦn))2(Φn)6(qn)2Φny (yΦn+1

y )yy +Qn3 = 0,

where

(48) Qni = Qi(y,Φ
n, qn,Φnt ,Φ

n
y , q

n+1
y ).

To solve (47), we need initial conditions and the boundary conditions (34) and (41);
the latter is implemented in the form

(49) Φn+1
y (0, t) +

1

3

σ′′(0)(Φn)2(0, t)

σ′(0)
= 0.

At each step of the iteration, we must therefore first solve (45), which is simply a
first-order hyperbolic PDE. Then one has to solve (47). Before stating a formal result,
we outline the basic energy estimate which is used to deal with (47). We represent
the equation in the schematic form

(50) Φtt − (a+ yQ1)Φyt − (b+ yQ2)Φyy − c(yΦy)yt − d(yΦy)yy +Q3 = 0.

Moreover, we have the boundary conditions

(51) Φy(0, t) = f(t), Φ(
√
MΓ, t) +

√
MΓΦy(

√
MΓ, t) = 0.
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We note that d(
√
MΓ, t) = 0; the energy estimates will make frequent use of this fact.

To obtain the basic energy estimate, we multiply (50) by Φt + dΦy/c and integrate.
This yields

(52)
11∑
i=1

Ai = 0.

In the following listing of the Ai, it is understood that all integrals over y are from 0
to
√
MΓ.

(53) A1 =

∫ t

0

∫
ΦttΦt dy dτ =

1

2

∫
Φ2
t (y, t) dy −

1

2

∫
Φt(y, 0)2 dy,

A2 = −
∫ t

0

∫
(a+ yQ1)ΦytΦt dy dτ =

1

2

∫ t

0

a(0, τ)Φ2
t (0, τ) dτ

−1

2

∫ t

0

(a(
√
MΓ, τ) +

√
MΓQ1(

√
MΓ, τ))Φ2

t (
√
MΓ, τ) dτ

(54) +
1

2

∫ t

0

∫
(a+ yQ1)yΦ2

t dy dτ,

A3 = −
∫ t

0

∫
(b+ yQ2)ΦyyΦt dy dτ =

∫ t

0

∫
(b+ yQ2)ΦyΦyt dy dτ

+

∫ t

0

∫
(b+ yQ2)yΦyΦt dy dτ +

∫ t

0

b(0, τ)f(τ)Φt(0, τ) dτ

−
∫ t

0

(b(
√
MΓ, τ) +

√
MΓQ2(

√
MΓ, τ))Φy(

√
MΓ, τ)Φt(

√
MΓ, τ) dτ

=
1

2

∫
(b(y, t) + yQ2(y, t))Φ2

y(y, t) dy − 1

2

∫
(b(y, 0) + yQ2(y, 0))Φ2

y(y, 0) dy

−1

2

∫ t

0

∫
(b+ yQ2)tΦ

2
y(y, τ) dy dτ +

∫ t

0

∫
(b+ yQ2)yΦyΦt dy dτ

+

∫ t

0

1√
MΓ

(b(
√
MΓ, τ) +

√
MΓQ2(

√
MΓ, τ))Φ(

√
MΓ, τ)Φt(

√
MΓ, τ) dτ

(55) +

∫ t

0

b(0, τ)f(τ)Φt(0, τ) dτ,
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A4 =

∫ t

0

∫
d

c
ΦttΦy dy dτ =

∫
d

c
(y, t)Φt(y, t)Φy(y, t) dy−

∫
d

c
(y, 0)Φt(y, 0)Φy(y, 0) dy

−
∫ t

0

∫ (
d

c

)
t

ΦtΦy dy dτ −
∫ t

0

∫
d

c
ΦtΦyt dy dτ

=

∫
d

c
(y, t)Φt(y, t)Φy(y, t) dy −

∫
d

c
(y, 0)Φt(y, 0)Φy(y, 0) dy

(56)

−
∫ t

0

∫ (
d

c

)
t

ΦtΦy dy dτ +
1

2

∫ t

0

d

c
(0, τ)Φ2

t (0, τ) dτ +
1

2

∫ t

0

∫ (
d

c

)
y

Φ2
t (y, τ) dy dτ,

A5 = −
∫ t

0

∫
(a+ yQ1)

d

c
ΦyΦyt dy dτ = −1

2

∫
(a+ yQ1)(y, t)

d

c
(y, t)Φ2

y(y, t) dy

(57) +
1

2

∫
(a+ yQ1)(y, 0)

d

c
(y, 0)Φ2

y(y, 0) dy +
1

2

∫ t

0

∫ [
(a+ yQ1)

d

c

]
t

Φ2
y dy dτ,

A6 = −
∫ t

0

∫
(b+ yQ2)

d

c
ΦyΦyy dy dτ =

1

2

∫ t

0

bd

c
(0, τ)Φ2

y(0, τ) dτ

(58) +
1

2

∫ t

0

∫ [
(b+ yQ2)

d

c

]
y

Φ2
y dy dτ,

A7 = −
∫ t

0

∫
c(yΦy)ytΦt dy dτ =

∫ t

0

∫
cyΦ2

yt dy dτ +

∫ t

0

∫
cyyΦytΦt dy dτ

(59) +

∫ t

0

c(
√
MΓ, τ)Φ2

t (
√
MΓ, τ) dτ,

A8 = −
∫ t

0

∫
d(yΦy)yyΦt dy dτ =

∫ t

0

∫
dyΦyyΦyt dy dτ

+
1

2

∫
d(y, t)Φ2

y(y, t) dy − 1

2

∫
d(y, 0)Φ2

y(y, 0) dy +

∫ t

0

∫
dy(yΦy)yΦt dy dτ

(60) +

∫ t

0

d(0, τ)f(τ)Φt(0, τ) dτ − 1

2

∫ t

0

∫
dtΦ

2
y dy dτ,

A9 = −
∫ t

0

∫
d(yΦy)ytΦy dy dτ =

∫ t

0

∫
dyΦytΦyy dy dτ
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(61) +

∫ t

0

∫
dyyΦytΦy dy dτ,

A10 = −
∫ t

0

∫
d2

c
(yΦy)yyΦy dy dτ =

∫ t

0

∫
d2

c
yΦ2

yy dy dτ

+

∫ t

0

∫
d2

c
ΦyΦyy dy dτ +

∫ t

0

∫
(
d2

c
)y(yΦy)yΦy dy dτ

(62) +

∫ t

0

d2(0, τ)

c(0, τ)
f2(0, τ) dτ,

(63) A11 =

∫ t

0

∫
Q3

(
Φt +

d

c
Φy

)
dy dτ.

For reasons which will become clear later, we split up Q3 in the form Q3 = A + By.
We can then transform (63) further as follows:

A11 =

∫ t

0

∫
A

(
Φt +

d

c
Φy

)
dy dτ +

∫ t

0

∫ (
Bt +

d

c
By

)
Φy dy dτ

+

∫ t

0

B(
√
MΓ, τ)Φt(

√
MΓ, τ) dτ −

∫ t

0

B(0, τ)Φt(0, τ) dτ

(64) −
∫
B(y, t)Φy(y, t) dy +

∫
B(y, 0)Φy(y, 0) dy.

From
∑
Ai, we can extract the following quadratic terms:

(65)

∫
1

2
Φ2
t (y, t) +

(
d

c
+O(y)

)
ΦtΦy(y, t) +

(
b

2
− ad

2c
+
d

2
+O(y)

)
Φ2
y(y, t) dy,

∫ t

0

∫
cyΦ2

yt + 2dyΦyyΦtt +
d2

c
yΦ2

yy dy dτ

(66) =

∫ t

0

∫
cy

(
Φyt +

d

c
Φyy

)2

dy dτ.

From (47), we find that, at y = 0,

(67)
d

c
= −1

8
σ′(0)(Φn)7/2qn,

(68)
b

2
− ad

2c
+
d

2
=

1

64
σ′(0)2(Φn)7(qn)2.
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As a consequence, the quadratic expression in (65) is positive at least for small y. An
additional positive contribution to the energy equation is given by

(69)

∫ t

0

(
1

2
a(0, τ) +

d(0, τ)

2c(0, τ)

)
Φ2
t (0, τ) dτ.

Most of the remaining terms in the energy identity can be estimated in a fairly straight-
forward fashion. In A7 through A10, there are terms involving the product of a second
and first derivative of Φ; these terms can be integrated by parts in an analogous fash-
ion as we did for A1 through A6; in doing so, we obtain terms involving second
derivatives of c and d. We also note that

(70)

∫ √MΓ

p

Φ2
y(y, t) dy

for p > 0 can be estimated in terms of

(71)

∫ √MΓ

p(0)

Φ2
y(0, t) dy

and

(72)
√
t

∫ t

0

∫ √MΓ

p(τ)

(
Φyt +

d

c
Φyy

)2

(y, τ) dy dτ,

where p(τ) is defined by

(73) p′(τ) = d(p(τ), τ)/c(p(τ), τ), p(t) = p.

Moreover,

(74)

∫ t

0

Φ2
t (
√
MΓ, τ) dτ

has a bound of the form

(75) ε

∫ t

0

∫
y

(
Φyt +

d

c
Φyy

)2

dy dτ + C(ε)

∫ t

0

∫
Φ2
t + Φ2

y dy dτ,

where ε can be chosen arbitrarily small. By using these estimates, one finds, for
sufficiently small t, a bound of the form

‖Φt‖L∞((0,t);L2) + ‖Φy‖L∞((0,t);L2) + ‖√y
(

Φyt +
d

c
Φyy

)
‖L2((0,t);L2)

(76)

+‖Φt(0, ·)‖L2(0,t) ≤ C
(
‖A‖L1((0,t);L2) + ‖B‖L∞((0,t),L2) +

∥∥∥∥Bt +
d

c
By

∥∥∥∥
L1((0,t);L2)

)
+C0.

Here C0 depends only on the initial data, and C depends only on t and on the
coefficients and their derivatives up to second order.
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We can use the energy estimate to establish the existence of a solution to (50)
and (51). For this purpose, we use a Galerkin approximation. Let ψm be a basis for
H1(0,

√
MΓ). We then determine an approximate solution ΦN as follows:

(77) (ΦN )t +
d

c
(ΦN )y =

N∑
m=1

αm(t)ψm(y),

with initial condition

(78) ΦN (y, 0) = Φ(y, 0)

and boundary condition

(79) (ΦN )y(0, t) = f(t).

The αm are determined from the equations∫
[(ΦN )tt − (a+ yQ1)(ΦN )yt + (b+ yQ2)y(ΦN )y + cyy(ΦN )yt − dyyy(ΦN )y]ψm dy

+

∫
[(b+ yQ2)(ΦN )y + c(y(ΦN )y)t + d(y(ΦN )y)y − dyy(ΦN )y](ψm)y dy

+ψm(
√
MΓ)

[
b+ yQ2√

MΓ

ΦN + c(ΦN )t − dyΦN

]
(
√
MΓ, t)

(80) +ψm(0)[b(0, t)f(t) + d(0, t)f(t)] = 0,

which simply become a set of first-order integrodifferential equations. The initial
condition is

(81)

N∑
m=1

αm(0)ψm(y) = ΠN

[
Φt(y, 0) +

d

c
Φy(y, 0)

]
.

Here ΠN is the orthogonal projection in L2(0,
√
MΓ). We can now repeat the energy

estimates above for the discretized system. This leads to a priori estimates which, in
the usual fashion, allow us to extract a weakly convergent subsequence from the ΦN .
The limit is the solution we seek.

To obtain higher regularity of solutions to (50), we need to consider time deriva-
tives of the equation. We shall now demonstrate how to obtain a problem of the same
form as (50), with Φt in place of Φ. Differentiation of (50) with respect to time leads
to

Φttt − (a+ yQ1)Φytt − (b+ yQ2)Φyyt − c(yΦyt)yt − d(yΦyt)yy

(82) −(a+ yQ1)tΦyt − (b+ yQ2)Φyy − ct(yΦy)yt − dt(yΦy)yy + (Q3)t = 0.

This is indeed of the same form as (50), if we can treat the second line as a new
forcing term. The first term presents no problem. To deal with the term involving
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Φyy, we consider (50) as a first-order hyperbolic equation for Φyy for given Φyt and
Φtt; this allows us to bound Φyy in terms of Φyt, Φtt, and the initial data. We next use
(50) to express yΦyyt in terms of yΦyyy and second derivatives of Φ; this allows us to
eliminate the term ctyΦyyt in (82). Finally, we need to deal with the term dt(yΦy)yy.
We write this term as

(83) dt(yΦy)yy = (dt(yΦy)y)y − dyt(yΦy)y.

The second contribution is easily dealt with, and the first is of the form By, where
(50) can be used to express Bt + d

cBy in terms of second derivatives of Φ. After the
transformations just outlined, (82) is now of the same form as (50) and analogous
energy estimates can be applied, with Φt in place of Φ.

We are now ready to state an existence result for the initial-boundary value
problem consisting of (32)–(34) and (38). To define the function spaces, let ‖ · ‖k,p,l
denote the norm in W l,p((0, T );Hk(0,

√
MΓ)). We define ZM as the set of all (q,Φ)

such that

q ∈
k⋂
i=0

W k−i,∞((0, T );Hi(0,
√
MΓ)),

Φ ∈
k+1⋂
i=0

W k+1−i,∞((0, T );Hi(0,
√
MΓ)),

k∑
i=0

‖q‖i,∞,k−i +
k+1∑
i=0

‖Φ‖i,∞,k+1−i ≤M,

q and its first k − 1 time derivatives satisfy the appropriate initial conditions,

Φ and its first k time derivatives satisfy the appropriate initial conditions,

(84) Φ satisfies (34).

By S we denote the mapping from (qn,Φn) to (qn+1,Φn+1) under the iteration defined
above.

The existence of solutions now follows from the following theorem.
Theorem 4.1. Let k ≥ 3, and assume Φ0 and q0 are strictly positive, sufficiently

smooth, and compatible with the boundary conditions. Moreover, assume that the
initial values for time derivatives of Φ and q up to orders k − 1 and, respectively, k
are compatible with the boundary conditions (38) and that the initial values for time
derivatives of Φ up to order k− 1 are compatible with (34) and (41). Finally, assume
that the function Γ → σ(Γ) is smooth and σ′ < 0. If M is chosen sufficiently large
and T is sufficiently small relative to M , then S is a contraction in ZM under the
metric defined by

(85) d((q,Φ), (q̃, Φ̃)) =

k−1∑
i=0

‖q − q̃‖i,∞,k−1−i +
k∑
i=0

‖Φ− Φ̃‖i,∞,k−i.
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The proof follows from the energy estimates given above, and we shall only sketch
an outline. At each step of the iteration, we must first solve the first-order hyperbolic
equation (45). An energy estimate for this equation gives a bound for ‖qn+1‖0,∞,0.
To get bounds on derivatives of qn+1, we differentiate (45) with respect to t and y
and repeat the energy estimate. Note that boundary values for spatial derivatives of
qn+1 at y = 0 can be obtained from the equation (45). We then apply the energy
estimates from above to (47) and its time derivatives. In doing so, we take advantage
of (64) in dealing with terms involving the highest derivatives of qn+1. This yields
bounds for ‖Φn+1‖0,∞,1 + ‖Φn+1‖1,∞,0 and analogous bounds for time derivatives of
Φn+1. Once time derivatives have been estimated, it is easy to get bounds on spatial
derivatives from (47), which can be regarded as a first-order hyperbolic equation for
Φyy, once Φtt and Φyt are known. The result now follows by putting together the
bounds obtained in this fashion.
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1. Introduction. This paper is a continuation of a previous work [5] where
we proved existence and nonexistence results for solitary waves of the generalized
Kadomtsev–Petviashvili (KP) equations

(1.1)

{
ut + upux + uxxx − vy = 0, u = u(x, y, t), (x, y) ∈ R2, t > 0,

vx = uy

in the two-dimensional case, and

(1.2)


ut + upux + uxxx − vy − wz = 0, u = u(x, y, z, t), (x, y, z) ∈ R3, t > 0,

vx = uy,

wx = uz

in the three-dimensional case.
In (1.1) (resp., (1.2)), x is the direction of propagation while y (resp., (y, z)) are

the transverse variables.
Throughout the paper, we will assume that p = m/n, m and n are relatively

prime, and n is odd, so that we can define up for any real-valued function u.
By solitary wave, we mean (see [5]) a solution of (1.1) (resp., (1.2)) of the type

u(x− ct, y) (resp., u(x− ct, y, z)), where c > 0, and u ∈ Y, with

Y = closure of the space ∂x(C∞0 (Rd)), d = 2, 3, for the norm

‖∂xϕ‖Y =
(
‖∇ϕ‖2L2 +

∥∥∂2
xϕ
∥∥2

L2

)1/2

.

We are thus considering “localized” solutions to the systems

(1.3)

{
−cux + upux + uxxx − vy = 0,

vx = uy,

(1.4)


−cux + upux + uxxx − vy − wz = 0,

vx = uy,

wx = uz.

∗Received by the editors January 12, 1996; accepted for publication June 19, 1996.
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Note that we may assume c = 1 by the simple scale change ũ(x, x′) = c−1/pu( x√
c
, x
′

c ),

where x′ = y (resp., x′ = (y, z)). Obviously, (1.3), (1.4) imply that u must solve the
equation in Rd, d = 2, 3,

(1.5) −∆u+ ∂4
xu+

1

p+ 1
(up+1)xx = 0,

where ∆ = ∂2
x + ∂2

y (resp., ∂2
x + ∂2

y + ∂2
z ).

In order to state the results of the present paper we summarize below (and com-
plete slightly) some relevant facts proved in [5] (see also [14] for an existence proof in
the two-dimensional case).

Theorem 1.1.

(i) The system (1.1) (resp., (1.2)) has a nontrivial solitary wave if and only if
1 ≤ p < 4 (resp., 1 ≤ p < 4

3 ).
(ii) Any solitary wave u is continuous and tends to zero at infinity. In the case

where p is an integer,

u ∈ H∞(Rd) =
⋂
k≥0

Hk(Rd), d = 2, 3.

Proof. We refer to [5], except for (ii), when 3 < p < 4 (resp., 1 < p < 4
3 ), which

was not considered there. Note that (ii), when 1 < p < 3, p 6= 2, is contained in the
proof of Theorem 4.1 in [5].

First we treat the case d = 2, and 3 < p < 4.
As in the proof of Lemma 4.1 in [5], we get from (1.5)

(1.6) û(ξ1, ξ2) =
ξ2
1

|ξ|2 + ξ4
1

ĝ(ξ1, ξ2),

where g = − 1
p+1u

p+1 and f̂ denotes the Fourier transform of f with respect to (x, y).

We will use a reiteration argument. Since Y ⊂ L6(R2), g ∈ L6/(p+1). By Lizorkin’s
theorem [11], u, uy, uxx ∈ L6/(p+1) and from [3, Thm. 10.2] we deduce that u ∈
Lp1(R2), p+1

6 −
1
p1

= 2
3 , that is, p1 = 6

p−3 . Assume by induction that u ∈ Lpn(R2)

with pn ≥ pn−1 ≥ p0 = 6 > 3p
2 (since p < 4). Then, g ∈ Lpn/(p+1)(R2), which yields

by Lizorkin’s theorem u, uy, uxx ∈ Lpn/(p+1)(R2) and, again by [3], u ∈ Lpn+1(R2),
where p+1

pn
− 1
pn+1

= 2
3 (or pn+1 = +∞ if p+1

pn
< 2

3 ). Moreover, 1
pn+1
− 1
pn

= p
pn
− 2

3 < 0,

and therefore

pn+1 > pn ≥ p0 >
3p

2
.

Finally, either pn converges to a finite value, or it reaches +∞. The only possible finite
limit being 3p

2 , pn necessarily reaches +∞ in a finite number of steps. Moreover, since

for any n, u, uy, uxx ∈ Lpn/(p+1)(R2), one has ∇u ∈ Lq(R2), ∀ q < +∞ and by the
Sobolev embedding theorem, u(x, y)→ 0 as x2 + y2 → +∞.

The proof for d = 3, 1 < p < 4
3 follows the same lines. One starts with u ∈

Lp0(R3), (p0 = 10
3 ), g ∈ Lp0/(p+1)(R3), u, uy, uz, uxx ∈ Lp0/(p+1)(R3), which implies

by Lizorkin’s theorem u ∈ Lp1(R3), p+1
p0
− 1

p1
= 2

5 . At the nth stage we obtain
p+1
pn
− 1

pn+1
= 2

5 , and one proves again (using p < 4
3 ) that pn must reach +∞ in a

finite number of steps.
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Let us now describe the content of the present paper. In the second section we
prove that the solitary waves constructed in [5] (see Theorem 1.1 above) are cylindri-
cally symmetric, that is, radially symmetric with respect to the transverse coordinates,
up to a translation of the origin. Actually, we give alternate variational characteri-
zations of the solitary waves, and we adapt an argument of Lopes [12] to prove the
symmetry.

In section 3, we establish sharp (algebraic) decay rates for any solitary wave u
of (1.1) (resp., (1.2)), namely, r2u ∈ L∞(R2) (resp., rδu ∈ L2(R3), ∀ δ, 0 < δ < 3

2 ),
where r2 = x2 +y2 (resp., x2 +y2 +z2). The sharpness of this decay rate is put on the
fore by the lump solitary wave of the KP I equation ((1.1) with p = 1) which decays
exactly as 1

r2 at infinity, and by the fact that for “general”p’s, a nontrivial solitary
wave does not belong to L1(Rd). Actually, our decay estimates are obtained for any
solution in Y of the equation (1.5).

The method is reminiscent of that of Bona and Li [4], though we consider here a
“nonsmooth” and multidimensional situation. It consists of a careful analysis of the
decay properties of solutions to the convolution equation equivalent to (1.6).

In section 4 we indicate briefly how similar results can be obtained for equations
having higher dispersion in x.

Finally, we present in an Appendix a global unique continuation theorem which
is a key ingredient in proving the symmetry of the solitary wave (see section 2).

2. Symmetry properties of the ground states. In this section, we prove
that any ground state solution of (1.3) (resp., (1.4)) is cylindrically symmetric, in
the sense that it has radial symmetry with respect to transverse coordinates, up to
a translation of the origin. We recall that by transverse coordinates x′, we mean
coordinates which are transverse to the direction of propagation, that is, x′ = y in
the two-dimensional case (1.3) and x′ = (y, z) in the three-dimensional case (1.4).

A ground state is a solitary wave which minimizes the action

S(u) = E(u) +
c

2

∫
Rd
|u|2, d = 2 or 3

among all the nonzero solutions of (1.3) (resp. (1.4)), where c is the velocity of the
solitary wave and E is the energy, defined for u ∈ Y by

E(u) =
1

2

∫
R2

(
u2
x +

(
D−1
x uy

)2)
dxdy − 1

(p+ 1)(p+ 2)

∫
R2

up+2dxdy

if d = 2, and

E(u) =
1

2

∫
R3

(
u2
x +

(
D−1
x uy

)2
+
(
D−1
x uz

)2)
dxdydz

− 1

(p+ 1)(p+ 2)

∫
R3

up+2dxdydz if d = 3.

Note (see [5]) that D−1
x uy is well defined for u ∈ Y, as the unique element v ∈ L2(Rd)

such that vx = uy. An analogous definition holds for D−1
x uz if d = 3.

Note also that both E(u) and
∫

Rd |u|
2 are conserved quantities for equations (1.1)

and (1.2); i.e., if u(t) is a solution of (1.1) or (1.2), then E(u(t)) and
∫

Rd |u(t)|2 do
not depend on t (see, for example, [13]).

In [5], we proved, for p satisfying the conditions of Theorem 1.1, the existence of
nontrivial solutions of equation (1.3) (resp., (1.4)), by considering the minimization
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problem

Iλ = inf

{∫
R2

[
u2
x + cu2 +

(
D−1
x uy

)2]
, u ∈ Y,

∫
R2

up+2 = λ

}
(

resp., Iλ = inf

{∫
R3

[
u2
x + cu2 +

(
D−1
x uy

)2
+
(
D−1
x uz

)2]
, u ∈ Y,

∫
R3

up+2 = λ

})
.

More precisely, with an appropriate choice of λ, if u∗ is a minimum of Iλ, then u∗ is a
solution of the following equations (depending on whether d = 2 or 3) in Y ′(Rd) (the
dual space of Y in the L2(Rd) duality):

(2.1) −uxx + cu+D−2
x uyy =

up+1

p+ 1
, if d = 2,

(2.2) −uxx + cu+D−2
x uyy +D−2

x uzz =
up+1

p+ 1
, if d = 3,

so that u∗ satisfies equation (1.3) if d = 2 and (1.4) if d = 3, in D′(Rd).
The next lemma shows that the solutions u∗ obtained in this way are exactly the

ground states of equation (1.3) (resp., (1.4)) and also gives two other characterizations
of those solutions, which will appear to be useful in proving the symmetry property.

In order to state the lemma, we define

(2.3) K(u) =
1

2

∫
R2

[
cu2 +

(
D−1
x uy

)2]− 1

(p+ 1)(p+ 2)

∫
R2

up+2, if d = 2

and

(2.4)

K(u) =
1

2

∫
R3

[
cu2 +

(
D−1
x uy

)2
+
(
D−1
x uz

)2]
+

1

6

∫
R3

u2
x

− 1

(p+ 1)(p+ 2)

∫
R3

up+2, if d = 3.

Lemma 2.1. Let d = 3; then there is a real positive numberλ∗ such that for
u∗ ∈ Y, the following assertions are equivalent:

(i)
∫

(u∗)p+2 = λ∗ and u∗ is a minimum of Iλ∗ ,
(ii) u∗ is a ground state,
(iii) K(u∗) = 0 and

∫
(u∗x)2 = inf

{∫
u2
x, u ∈ Y, u 6= 0, K(u) = 0

}
,

(iv) K(u∗) = 0 = inf
{
K(u), u ∈ Y,

∫
u2
x =

∫
(u∗x)2

}
.

Let d = 2 ; then there is a real positive λ∗ such that (i)–(iv) are equivalent modulo
a scale change. More precisely, (i) and (ii) are equivalent and imply (iii) and (iv),
which are also equivalent; conversely, if u∗ satisfies (iii) or (iv), then there is a positive
µ such that u∗( .µ ) is a ground state of equation (1.3).

Proof. To prove Lemma 2.1, we use techniques which are standard for the bound
states of nonlinear Schrödinger equations (see, for example, [6]).

Let u be a minimum of Iλ; then there is a positive Lagrange parameter θλ such
that u satisfies

−uxx + cu+D−2
x uyy = θλ

up+1

p+ 1
, if d = 2, or
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−uxx + cu+D−2
x uyy +D−2

x uzz = θλ
up+1

p+ 1
, if d = 3.

Multiplying these equations by u and integrating by parts yields Iλ = θλ
p+1

∫
up+2 =

λθλ
p+1 for each positive λ. Since Iλ = λ2/(p+2)I1, we get θλ = 1 by choosing λ = λ∗ =

[(p+ 1)I1](p+2)/p.
Let us now prove that Lemma 2.1 holds with this choice of λ.
(i)=⇒(iii): Assume that u∗ satisfies (i). Let u ∈ Y with u 6= 0 and K(u) = 0; let

uµ = u
(
·
µ

)
, with µ =

(∫
(u∗)p+2∫
up+2

)1/d

(note that K(u) = 0 implies
∫
up+2 > 0 unless

u = 0), so that
∫
up+2
µ =

∫
(u∗)p+2, and

(2.5) K(uµ) =

(
1

2
− 1

d

)
µd−2(1− µ2)

∫
u2
x.

Since u∗ is a minimum of Iλ∗ , we have K(u∗) = 0 (see (2.8) and (2.11) in [5] if d = 2
and (2.13)–(2.16) in [5] if d = 3]) and, on the other hand,

K(u∗) +
1

d

∫
(u∗x)2 +

1

(p+ 1)(p+ 2)

∫
(u∗)p+2

≤ K(uµ) +
1

d

∫
(uµ)2

x +
1

(p+ 1)(p+ 2)

∫
(uµ)p+2;

this implies

1

d

∫
(u∗x)

2 ≤ µd−2

2

(
1− d− 2

d
µ2

)∫
u2
x ≤

1

d

∫
u2
x,

and (iii) holds.
(iii)=⇒(ii) (modulo a scale change): if u∗ satisfies (iii), then there is a Lagrange

parameter θ such that u∗ solves the Euler–Lagrange equation

cu+D−2
x uyy −

up+1

p+ 1
= θuxx if d = 2, and

cu+D−2
x uyy +D−2

x uzz −
up+1

p+ 1
=

(
1

3
+ θ

)
uxx if d = 3.

It is easily seen, by multiplying these equations by u∗, integrating by parts, and using
K(u) = 0, that θ is positive. Hence, setting uµ = u∗( .µ ), with µ = 1√

θ
if d = 2 (resp.,

µ = 1/
√

1
3 + θ if d = 3 ), uµ satisfies equation (2.1) (resp., (2.2)).

If d = 3, then by (2.5), K(uµ) = 1
6µ(1 − µ2)

∫
(u∗x)2, but since any solution of

(2.2) satisfies K(u) = 0, this implies µ = 1, i.e., θ = 2
3 .

Now, the identity S(u) = K(u) + 1
d

∫
u2
x shows that if u is a solution of (1.3)

(resp., (1.4)), then

S(u) =
1

d

∫
u2
x ≥

1

d

∫
(u∗x)2 =

1

d

∫
(uµ)2

x = S(uµ);

hence uµ is a ground state.
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(ii) =⇒(i): By the computations in [5, section 2], one has, for any solution u of
equation (1.3) (resp., (1.4)), K(u) = 0 and∫

R2

(
u2
x + cu2 +D−1

x u2
y

)
=

(
1 +

2

p

)∫
R2

u2
x

(
resp.,

∫
R3

(u2
x + cu2 + (D−1

x uy)2 + (D−1
x uz)

2 =

(
4

3p
+

2

3

)∫
R3

u2
x

)
.

Hence if u∗ is a ground state, u∗ minimizes both
∫
u2
x and

∫
R2(u2

x + cu2 + (D−1
x uy)2)

(resp.,
∫

R3(u2
x + cu2 + (D−1

x uy)2 + (D−1
x uz)

2)) among all the solutions of (1.3) (resp.
(1.4)). Let λ =

∫
Rd u

p+2 and ũ be a minimum of Iλ. Then

Iλ =

∫
Rd

(
ũ2
x + cũ2 + (D−1

x ũy)2
)
≤
∫

Rd

(
(u∗x)2 + c(u∗)2 + (D−1

x u∗y)2
)

and there is a positive θ such that

cũ+D−2
x ũyy − ũxx = θ

ũp+1

p+ 1
.

Using the equations satisfied by ũ and u∗, the preceding inequality is written as

Iλ =
θλ

p+ 1
≤ λ

p+ 1
;

hence θ ≤ 1.
On the other hand, ū = θpũ satisfies equation (1.3) (resp., (1.4)), and since u∗ is

a ground state,∫
Rd

(
(u∗x)2 + c(u∗)2 + (D−1

x u∗y)2
)
≤
∫

Rd

(
ū2
x + cū2 + (D−1

x ūy)2
)

≤ θ2p

∫
Rd

(
ũ2
x + cũ2 + (D−1

x ũy)2
)

so that θ ≥ 1.
Hence u∗ = ũ is a minimum of Iλ with λ = λ∗.
(iii)⇐⇒(iv): Assume that (iii) holds; let u ∈ Y with

∫
Rd u

2
x =

∫
Rd (u∗x)

2
. Note

that K(ηu) > 0 for η > 0 sufficiently small, so that if K(u) < 0, then there is an
η0 ∈ (0, 1) such that K(η0u) = 0; then setting ũ = η0u, one has ũ ∈ Y, K(ũ) = 0 and∫

Rd (ũx)
2
<
∫

Rd u
2
x =

∫
Rd (u∗x)

2
, which contradicts (iii), and shows that u∗ satisfies

(iv) since K(u∗) = 0.
On the opposite, assume that u∗ satisfies (iv) and let u ∈ Y with K(u) = 0,

u 6= 0. Then K(ηu) < 0 for η > 1, so if
∫
u2
x <

∫
(u∗x)

2
, one can find η0 > 1 with∫

(η0u)
2
x =

∫
(u∗x)

2
and K(η0u) < 0, contradicting (iv). Hence

∫
u2
x ≥

∫
(u∗x)

2
and

(iii) holds. This ends the proof of Lemma 2.1.
We now state and prove our theorem concerning the symmetry properties of the

ground state solutions of equation (1.3) (resp., (1.4)).
Theorem 2.1. Let x′ = y ∈ R if d = 2 and x′ = (y, z) ∈ R2 if d = 3; then, up

to a translation of the origin of coordinates in x′, any ground state u∗ is radial in x′;
that is, u∗ only depends on x and |x′|.
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Proof of Theorem 2.1. We use an argument of Lopes [12].
Case d = 2. Choose b ∈ R, in order that if ∆ = {(x, y) ∈ R2, y = b}, then∫

∆+

(u∗x)
2

=

∫
∆−

(u∗x)
2

=
1

2

∫
R2

(u∗x)
2
,

where ∆+ and ∆− are the half-planes delimited by ∆. Let u+ be defined by u+ = u∗

in ∆+ and u+ be symmetric with respect to ∆. Then u+ ∈ Y ; indeed, if ϕ ∈ L2
loc is

such that ϕx = u∗ and ϕy = D−1
x u∗y, and if

ϕ+(x, y) =

{
ϕ(x, y) if y > b,

ϕ(x, 2b− y) if y < b,

then ϕ+
x = u+ and

∫
R2

(
ϕ+
y

)2
= 2

∫
∆+ ϕ

2
y < +∞. Since there is a sequence ϕn ∈

C∞0 (R2) such that (ϕn)x converges to ϕx = u∗ in Y, D−1
x u+

y = ϕ+
y . Moreover,

∫
R2 (u+

x )
2

=
∫

R2 (u∗x)
2
. In the same way, if u− = u∗ in ∆− and u− is symmetric with respect

to ∆, then u− ∈ Y and
∫

R2 (u−x )
2

=
∫

R2 (u∗x)
2
. Hence it follows from Lemma 2.1 (iv)

that K(u+) ≥ 0 and K(u−) ≥ 0.
But one easily checks that

K(u+) +K(u−) = 2K(u∗) = 0

so that u+ and u− both satisfy assertion (iv) of Lemma 2.1; it results from this last
lemma that u+ and u− are ground states of equation (1.3); thus u+, u−, and u∗ satisfy

−uxxxx + uxx + uyy =

(
up+1

p+ 1

)
xx

in R2.

At last, since u+ = u∗ in ∆+ and u− = u∗ in ∆−, the unique continuation principle
(see the appendix) applied to u+ − u∗ (resp., u− − u∗) tells us that u+ = u− = u∗,
and u∗ is symmetric with respect to ∆.

Case d = 3. Consider any plane Π parallel to the x axis; then there is a (unique)
plane Π̃ parallel to Π such that∫

Π̃+

(u∗x)
2

=

∫
Π̃−

(u∗x)
2

=
1

2

∫
R2

(u∗x)
2
.

One can then show, exactly as in dimension 2 (by using the unique continuation
principle stated in the appendix) that u∗ is symmetric with respect to Π̃. It follows
that, after a change of origin of transverse coordinates, u∗ is symmetric with respect
to the coordinate planes containing the x-axis.

It remains to show, using the arguments in [12] or [7], that u∗ is symmetric with
respect to any plane containing the x-axis. Suppose this is not the case, and let Π be
a plane containing the x-axis such that u∗ is not symmetric with respect to Π. Let Π̃
be parallel to Π such that u∗ is symmetric with respect to Π̃; then one can construct
as in [12] or [7] a sequence (Cn) of cylinders where C0 is delimited by Π̃ and the
planes of coordinates containing the x-axis, and the other cylinders are obtained by
successive reflexions with respect to the three planes delimiting C0. For each n, one
has

∫
Cn

(u∗)
2

=
∫
C0

(u∗)
2
, and there is a subsequence of (Cn) consisting of disjoint

cylinders; since u∗ is square integrable, this implies u∗ = 0 on C0; hence, u∗ = 0 on
each Cn, but, then, u∗ = 0 everywhere, since ∪n∈NCn = R3.

This ends the proof of Theorem 2.1.
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3. Algebraic decay of the solitary waves. To start, we give an optimal result
for the decay of the solitary wave in the two-dimensional case.

Theorem 3.1. Any nontrivial solitary wave of (1.1) satisfies

(3.1) r2u ∈ L∞(R2), r2 = x2 + y2.

Remark 3.1. Theorem 3.1 is sharp in two ways. First, the lump solution of the
KP I equation ((1.1) with p = 1), namely,

(3.2) u(x− ct, y) =
8c
(

1− c
3 (x− ct)2 + c2

3 y
2
)

(
1 + c

3 (x− ct)2 + c2

3 y
2
)2 ,

shows that in the two-dimensional case one cannot expect a decay rate better than
r−2. On the other hand (and this is valid for d = 2, 3), writing

(3.3) −(p+ 1)û(ξ1, ξ⊥) =
ξ2
1

|ξ|2 + ξ4
1

ûp+1(ξ1, ξ⊥), ξ⊥ = ξ2 (resp., (ξ2, ξ3))

shows that u cannot belong to L1(Rd), when p = m
n , m odd. (Since ξ 7→ ξ21

|ξ|2+ξ41
is not

continuous at the origin, this would lead to the absurd conclusion that
∫

Rd u
p+1 = 0.)

So, in this case, if the solitary wave decays with an algebraic rate r−α, then necessarily
α ≤ d.

Proof of Theorem 3.1. To prove (3.1), we start with a simple integral decay
estimate and then use the convolution equation equivalent to (1.6).

Lemma 3.1. Any solitary wave of (1.1) satisfies

(3.4)

∫
R2

(
x2 + y2

) (
|∇u|2 + u2

xx

)
dxdy < +∞.

Proof of Lemma 3.1. Let χ0 ∈ C∞0 (R), 0 ≤ χ0 ≤ 1, χ0(t) = 1 if 0 ≤ |t| ≤ 1,

χ0(t) = 0, |t| ≥ 2. We set χj(x) = χ0

(
x2

j2

)
, j = 1, 2, .... We multiply (1.5) by

χj(x)x2u and integrate over R2. Using several integrations by parts, the terms in
(1.5) are computed as follows.

−
∫

R2

uxxχj(x)x2u = 2

∫
R2

xχj(x)uux +

∫
R2

χ′j(x)x2uux +

∫
R2

x2χj(x)u2
x

=

∫
R2

x2χj(x)u2
x −

∫
R2

χj(x)u2 −
∫

R2

(
2xχ′j(x) +

1

2
χ′′j (x)

)
u2,

−
∫

R2

uyyx
2χj(x)u =

∫
R2

x2χj(x)u2
y,
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∫
R2

x2χj(x)uuxxxx =

∫
R2

(x2uχj(x))xxuxx

=

∫
R2

(2χj(x) + 4xχ′j(x) + x2χ′′j (x))uuxx

+

∫
R2

(4xχj(x) + 2x2χ′j(x))uxuxx +

∫
R2

x2χj(x)u2
xx

=

∫
R2

x2χj(x)u2
xx − 4

∫
R2

χj(x)u2
x − 2

∫
R2

(4xχ′j(x) + x2χ′′j (x))u2
x

+

∫
R2

(
6χ′′j (x) + 4xχ′′′j (x) +

1

2
x2χ

(4)
j (x)

)
u2,

∫
R2

x2χj(x)u
(
up+1

)
xx

= 2
p+ 1

p+ 2

∫
R2

χj(x)up+2 − (p+ 1)

∫
R2

x2χj(x)upu2
x

+
p+ 1

p+ 2

∫
R2

(x2χ′′j (x) + 4xχ′j(x))up+2.

Finally, we arrive at

(3.5)

∫
R2

x2χj(x)
(
|∇u|2 + u2

xx

)
=

∫
R2

χj(x)

[
u2 + 4u2

x −
2

p+ 2
up+2

]
+

∫
R2

x2χj(x)u2
xu

p + 2

∫
R2

(4xχ′j(x) + x2χ′′j (x))u2
x

− 1

p+ 2

∫
R2

(4xχ′j(x) + x2χ′′j (x))up+2

+

∫
R2

(
2xχ′j(x) +

1

2
x2χ′′j (x)− 6χ′′j (x)− 4xχ′′′j (x)− 1

2
x2χ

(4)
j (x)

)
u2.

In a similar fashion, we multiply (1.5) by χj(y)y2u and integrate over R2 to get,
successively,

−
∫

R2

y2uxxχj(y)u =

∫
R2

y2χj(y)u2
x,

−
∫

R2

y2χj(y)uyyu =

∫
R2

y2χj(y)u2
y −

∫
R2

χj(y)u2

−
∫

R2

(
2yχ′j(y) +

1

2
y2χ′′j (y)

)
u2,

∫
R2

y2χj(y)uxxxxu =

∫
R2

y2χj(y)u2
xx,

1

p+ 1

∫
R2

χj(y)
(
up+1

)
xx
y2u = −

∫
R2

u2
xχj(y)y2up.
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Adding these inequalities yields

(3.6)

∫
R2

y2χj(y)
(
|∇u|2 + u2

xx

)
=

∫
R2

χj(y)u2 +

∫
R2

y2χj(y)upu2
x

+

∫
R2

(
2yχ′j(y) +

1

2
y2χ′′j (y)

)
u2.

Finally, (3.5) and (3.6) imply

(3.7)

∫
R2

[
x2χj(x) + y2χj(y)

] (
|∇u|2 + u2

xx

)
= 4

∫
R2

χj(x)u2
x +

∫
R2

[χj(x) + χj(y)]u2 − 2

p+ 2

∫
R2

χj(x)up+2

+

∫
R2

[
x2χj(x) + y2χj(y)

]
u2
xu

p

+

∫
R2

[
2xχ′j(x) + 2yχ′j(y) +

1

2
x2χ′′j (x) +

1

2
y2χ′′j (y)

]
u2

−
∫

R2

[
6χ′′j (x) + 4xχ′′′j (x) +

1

2
x2χ

(4)
j (x)

]
u2

+ 2

∫
R2

[
4xχ′j(x) + x2χ′′j (x)

]
u2
x −

1

p+ 2

∫
R2

[
4xχ′j(x) + x2χ′′j (x)

]
up+2.

Let us consider the right-hand side of (3.7). The first three terms tend, as

j → +∞, to 2
∫

R2

[
2u2

x + u2 − 1
p+2u

p+2
]

by Lebesgue’s theorem. The terms involving

derivatives of χj tend to zero, again by Lebesgue’s theorem and the properties of χj .
On the other hand, since u→ 0 as r → +∞, there exists R > 0 such that r ≥ R

implies |up| ≤ 1
2 . Thus∫

R2

[
x2χj(x) + y2χj(y)

]
u2
xu

p ≤ C(R) +
1

2

∫
R2

[
x2χj(x) + y2χj(y)

]
u2
x,

and finally, (3.7) implies that∫
R2

[
x2χj(x) + y2χj(y)

] (
|∇u|2 + u2

xx

)
is uniformly bounded in j. Our claim follows from Fatou’s lemma.

As we mentioned previously, our analysis of the decay of the solitary wave is based
on the convolution equation

(3.8) u = ih ∗ (upux),

where

ĥ(ξ1, ξ2) =
ξ1

|ξ|2 + ξ4
1

, |ξ|2 = ξ2
1 + ξ2

2 .

Lemma 3.2. There exists a constant C > 0 such that

|h(x, y)| ≤ C

r
, ∀ (x, y) ∈ R2 where r = (x2 + y2)1/2.



1074 ANNE DE BOUARD AND JEAN-CLAUDE SAUT

Proof. We have

h(x, y) =

∫
R2

ξ1
ξ2
1 + ξ2

2 + ξ4
1

eixξ1+iyξ2dξ1dξ2;

writing

ξ1
ξ2
1 + ξ2

2 + ξ4
1

=
1

ξ2
1 (1 + ξ2

1)
(
ξ22
a2 + 1

) , a2 = ξ2
1 + ξ4

1 ,

the integral is transformed under the change of variable ξ2 = aξ′2 into

∫
R2

sgn ξ1√
1 + ξ2

1

[∫
R2

eiy|ξ1|(1+ξ21)
1/2

ξ′2

1 + ξ′22
dξ′2

]
eixξ1dξ1;

hence, since F
(

1
1+ξ2

)
(y) = e−|y|,

h(x, y) =

∫ ∞
−∞

sgn ξ

(1 + ξ2)
1/2

e−|y||ξ|(1+ξ2)
1/2

eixξ dξ.

Let us consider first the case y 6= 0. Let

h1(x, y) =

∫ ∞
0

1

(1 + ξ2)
1/2

e−|y|ξ(1+ξ2)
1/2

eixξdξ

=

∫ ∞
0

1

(1 + ξ2)
1/2

K ′(ξ)

d

dξ

[
eK(ξ)

]
dξ,

with K(ξ) = ixξ − |y|ξ
(
1 + ξ2

)1/2
. Thus

h1(x, y) =

[
eK(ξ)

ix (1 + ξ2)
1/2 − |y| (1 + 2ξ2)

]∞
0

−
∫ ∞

0

d

dξ

[
1

(1 + ξ2)
1/2

K ′(ξ)

]
eK(ξ)dξ

=
1

|y| − ix −
∫ ∞

0

ixξ − 4|y|ξ
(
1 + ξ2

)1/2
(1 + ξ2)

1/2
[
ix (1 + ξ2)

1/2 − |y| (1 + 2ξ2)
]2 eK(ξ)dξ

≡ 1

|y| − ix −
∫ ∞

0

F (ξ)eK(ξ)dξ.

Now,

|F (ξ)|2 =
x2ξ2 + 16y2ξ2

(
1 + ξ2

)
(1 + ξ2)

[
x2 (1 + ξ2) + y2 (1 + 2ξ2)

2
]2

≤ 16

(1 + ξ2)
[
x2 (1 + ξ2) + y2 (1 + 2ξ2)

2
]

≤ 16

(1 + ξ2)
2

(x2 + y2)
,
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and (since eK(ξ) ≤ 1) ∣∣∣∣∫ ∞
0

F (ξ)eK(ξ)dξ

∣∣∣∣ ≤ 4

r

∫ ∞
0

dξ

1 + ξ2
≤ C

r
.

Finally,

|h1(x, y)| ≤ 1

||y| − ix| +
C

r
=
C + 1

r
, if y 6= 0.

In a similar fashion, one proves that

h2(x, y) = −
∫ 0

−∞

1

(1 + ξ2)
1/2

e|y|ξ(1+ξ2)
1/2

eixξdξ

satisfies

|h2(x, y)| ≤ 1

||y|+ ix| +
C

r
=
C + 1

r
if y 6= 0.

It remains to consider the case where y = 0:

h(x, 0) =

∫ ∞
−∞

sgn ξ

(1 + ξ2)
1/2

eixξdξ = F
(

sgn ξ

(1 + ξ2)
1/2

)
(x).

Let us check that xh(x, 0) is a bounded function. Actually,

d

dξ

(
sgn ξ

(1 + ξ2)
1/2

)
=

1

(1 + ξ2)
1/2

δ + g = δ + g,

where δ is the Dirac mass and g ∈ L1(R); thus xh(x, 0) = 1 + F−1
x g ∈ L∞(R).

We prove now a (nonoptimal) pointwise decay estimate on u.
Lemma 3.3. ru ∈ L∞(R2).
Proof. From (3.8) we obtain

(3.9)

|r(x, y)u(x, y)| ≤ C
∫

R2

|h(x− x′, y − y′)r(x− x′, y − y′)| |upux(x′, y′)| dx′dy′

+ C

∫
R2

|h(x− x′, y − y′)| |r(x′, y′)upux(x′, y′)| dx′dy′.

By Young’s inequality (using Lemma 3.2 and upux ∈ L1(R2)), the first term in
the right-hand side of (3.9) belongs to L∞(R2). On the other hand, as it is eas-

ily checked, ĥ ∈ Lq(R2), 1 < q < 2, so that h ∈ Ls(R2), 2 < s < ∞. Applying
Young’s inequality, the second term in the right-hand side of (3.9) is bounded by
C ‖rux‖L2 ‖h‖Ls‖u‖pL2ps/(s−2) for any s, 2 < s < ∞, and the result follows from
Lemma 3.1.

We continue the proof of Theorem 3.1. We write

(3.10) u = − 1

p+ 1
k ∗ up+1 where k̂(ξ1, ξ2) =

ξ2
1

|ξ|2 + ξ4
1

.

Lemma 3.4. k̂ ∈ Hs(R2), for any s, 0 ≤ s < 1.
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Proof. First we prove that k̂ ∈ L2(R2). Actually,

∫
R2

ξ4
1

(|ξ|2 + ξ4
1)

2 dξ1dξ2 =

∫
R

1

(1 + ξ2
1)

2


∫

R

dξ2[
1 +

ξ22
ξ21(1+ξ21)

]2

 dξ1
=

∫
R

|ξ1|
(1 + ξ2

1)
3/2

dξ1

∫
R

dξ2

(1 + ξ2
2)

2 < +∞.

On the other hand, one easily checks that |∇k̂(ξ1, ξ2)| ≤ C|ĥ(ξ1, ξ2)|, and we already

noticed that ĥ ∈ Lq(R2), for any q such that 1 < q < 2. Thus ∂ξ1 k̂, ∂ξ2 k̂ ∈ Lq(R2),

1 < q < 2; that is, k̂ belongs to the homogeneous Sobolev space Ḣ1
q (R2). By Bergh

and Löfstrom ([2] Thm. 6.5.1), Ḣ1
q (R2) ⊂ Ḣs

2(R2) for s = 2(1 − 1
q ); i.e., k̂ ∈ Ḣ2

s for

any s ∈ [0, 1). Finally, k̂ ∈ Hs(R2), 0 ≤ s < 1.
Now we prove an (optimal) integral decay estimate on u.
Lemma 3.5. For any δ, 0 ≤ δ < 1, one has

(3.11) rδu ∈ L2(R2),

(3.12) r1+δ∇u, r1+δuxx ∈ L2(R2).

Proof of Lemma 3.5. Coming back to (3.10), we estimate for δ > 0

(3.13)
∣∣∣(1 + r2

)δ/2
u
∣∣∣ ≤ C ∣∣∣[(1 + r2

)δ/2
k
]
∗ up+1

∣∣∣+ C
∣∣∣[(1 + r2

)δ/2
up+1

]
∗ k
∣∣∣ .

Thanks to Lemma 3.4, we have for any 0 ≤ δ < 1,∥∥∥(1 + r2
)δ/2

k ∗ up+1
∥∥∥
L2
≤ C

∥∥∥k̂∥∥∥
Hδ
‖u‖p+1

Lp+1 ≤ C.

Observe now that k ∈ Lq(R2), ∀ q, 1 < q ≤ 2. In fact,

(3.14) ‖k‖Lq ≤
∥∥∥(1 + r2

)s/2
k
∥∥∥
L2

∥∥∥∥∥ 1

(1 + r2)
s/2

∥∥∥∥∥
Lα

,
1

q
=

1

2
+

1

α
,

so q ∈ (1, 2]⇐⇒ α ∈ (2,+∞].
For a given q ∈ (1, 2] one can choose s ∈ [0, 1) such that sα > 2 and (3.14) implies

our claims. Thus∥∥∥(1 + r2
)δ/2

up+1 ∗ k
∥∥∥
L2
≤ C

∥∥∥(1 + r2
)δ/2

up+1
∥∥∥
Lβ
‖k‖Lq ,

1

q
+

1

β
=

3

2
, q ∈ (1, 2), β ∈ (1, 2).

But
(
1 + r2

)δ/2
up+1 ∈ Lβ(R2) if and only if

(3.15) rδ/(p+1)u ∈ Lβ(p+1)(R2).

On the other hand,∫
R2

rα|u|γ ≤
∥∥rαuγ−2

∥∥
L∞
‖u‖2L2 ≤

∥∥∥r α
γ−2u

∥∥∥γ−2

L∞
‖u‖2L2

≤ C‖u‖2L2 ,
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provided α ≤ γ − 2, by Lemma 3.3. In particular, r(γ−2)/γu ∈ Lγ(R2), 2 ≤ γ ≤ +∞.
Let γ = β(p+ 1). For any δ ∈ (0, 1) one can choose β ∈ (1, 2) such that

δ

p+ 1
≤ γ − 2

γ
, i.e., δ ≤ p+ 1− 2

β
, since p ≥ 1.

This proves that rδu ∈ L2(R2), 0 < δ < 1.
Let us check briefly that r1+δ∇u, r1+δuxx ∈ L2(R2) for any δ, 0 < δ < 1. The

proof is very similar to that of Lemma 3.1 and we shall sketch it formally, without
the truncation argument. We multiply successively (1.5) by |x|2(1+δ)u, |y|2(1+δ)u, to
get after several integrations by parts

(3.16)

∫
R2

(
|x|2+2δ + |y|2+2δ

) (
|∇u|2 + u2

xx

)
= (1 + 2δ)(2 + 2δ)

∫
R2

|x|2δu2
x − (1 + 2δ)(2 + 2δ)

∫
R2

|x|2δuuxx

+ (1 + 2δ)(1 + δ)

∫
R2

(|x|2δ + |y|2δ)u2 +

∫
R2

(
|x|2+2δ + |y|2+2δ

)
upu2

x

− 1

p+ 2
(1 + 2δ)(2 + 2δ)

∫
R2

|x|2δ|u|p+2.

Consider the right-hand side in (3.16). The first three integrals are bounded by Lemma

3.1 and the fact that rδu ∈ L2(R2). The last one is bounded by C‖u‖pL∞
∥∥rδu∥∥2

L2 .
Finally, ∫ (

|x|2+2δ + |y|2+2δ
) ∣∣upu2

x

∣∣
≤ C +

1

2

∫ (
|x|2+2δ + |y|2+2δ

)
u2
x

for r ≥ R, R large enough since u→ 0 as r → +∞.
We now need a decay estimate on k (see (3.10)).
Lemma 3.6.

(3.17) r2k ∈ L∞(R2).

Proof of Lemma 3.6. By definition,

k(x, y) =

∫
R2

ξ2
1

ξ2
1 + ξ2

2 + ξ4
1

eixξ1+iyξ2dξ1dξ2.

As in the proof of Lemma 3.2, we find

k(x, y) =

∫ ∞
−∞

|ξ|
(1 + ξ2)

1/2
e−|y||ξ|(1+ξ2)

1/2
eixξdξ.

Consider first the case where y 6= 0 and ξ ≥ 0 :

k1(x, y) =

∫ ∞
0

ξ

(1 + ξ2)
1/2

1

K ′(ξ)

d

dξ

[
eK(ξ)

]
dξ,

K(ξ) = ixξ − |y|ξ
(
1 + ξ2

)1/2
.
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By integration by parts,

k1(x, y) = −
∫ ∞

0

d

dξ

[
ξ

(1 + ξ2)
1/2

K ′(ξ)

]
eK(ξ)dξ

= −
∫ ∞

0

eK(ξ)

ix (1 + ξ2)
1/2 − |y| (1 + 2ξ2)

dξ

+

∫ ∞
0

ξ2
[
ix− 4|y|

(
1 + ξ2

)1/2]
eK(ξ)

(1 + ξ2)
1/2
[
ix (1 + ξ2)

1/2 − |y| (1 + 2ξ2)
]2 dξ

= I1 + I2.

We integrate I1 by parts to get

I1 = −

 eK(ξ)
(
1 + ξ2

)1/2[
ix (1 + ξ2)

1/2 − |y| (1 + 2ξ2)
]2

∞

0

+

∫ ∞
0

d

dξ
H1(ξ)eK(ξ)dξ

where

H1(ξ) =

(
1 + ξ2

)1/2[
ix (1 + ξ2)

1/2 − |y| (1 + 2ξ2)
]2 ,

(3.18) I1 =
1

(ix− |y|)2
+

∫ ∞
0

d

dξ
H1(ξ)eK(ξ)dξ.

One finds that

d

dξ
H1(ξ) =

ξ

(1 + ξ2)
1/2

1[
ix (1 + ξ2)

1/2 − |y| (1 + 2ξ2)
]2

− 2
ixξ − 4|y|ξ

(
1 + ξ2

)1/2[
ix (1 + ξ2)

1/2 − |y| (1 + 2ξ2)
]3 = F1 + F2.

Obviously,

|F1(ξ)|2 ≤ 1

(1 + ξ2)
2

(x2 + y2)
2 ,

|F2(ξ)|2 ≤ 64[
x2 (1 + ξ2) + y2 (1 + 2ξ2)

2
]2 ≤ 64

(1 + ξ2)
2

(x2 + y2)
2 .

Finally,

(3.19) |I1| ≤
9π + 2

2(x2 + y2)
.

We now turn to I2. By integration by parts,

I2 = −
∫ ∞

0

d

dξ
[H2(ξ)] eK(ξ)dξ
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where

H2(ξ) =
ξ2
[
ix− 4|y|

(
1 + ξ2

)1/2][
ix (1 + ξ2)

1/2 − |y| (1 + 2ξ2)
]3 ,

H ′2(ξ) =
2ξ
[
ix
(
1 + ξ2

)1/2 − 2|y|
(
2 + 3ξ2

)]
(1 + ξ2)

1/2
[
ix (1 + ξ2)

1/2 − |y| (1 + 2ξ2)
]3

−
3ξ3

[
ix− 4|y|

(
1 + ξ2

)1/2]2
(1 + ξ2)

1/2
[
ix (1 + ξ2)

1/2 − |y| (1 + 2ξ2)
]4 = G1(ξ) +G2(ξ).

One easily checks that

|G1(ξ)|2 ≤ 64[
x2 (1 + ξ2) + y2 (1 + 2ξ2)

2
]2 ≤ 64

(1 + ξ2)
2

(x2 + y2)
2 ,

|G2(ξ)|2 ≤ 9× 162

(1 + ξ2)
2

(x2 + y2)
2 ,

and

(3.20) |I2| ≤
28π

x2 + y2
.

This leads to the estimate

(3.21) |k1(x, y)| ≤ C

x2 + y2
, if y 6= 0.

In a similar way one obtains

(3.22) |k2(x, y)| ≤ C

x2 + y2
for y 6= 0,

where

k2(x, y) = −
∫ 0

−∞

ξ

(1 + ξ2)
1/2

e|y|ξ(1+ξ2)
1/2

+ixξdξ.

It remains to consider the case where y = 0. But

k(x, 0) =

∫ ∞
−∞

|ξ|
(1 + ξ2)

1/2
eixξdξ,

and showing that x2k(x, 0) is bounded amounts to proving that F−1
x [ d

2

dξ2R(ξ)] ∈
L∞(R), where R(ξ) = |ξ|

(1+ξ2)1/2
. A simple computation shows that

R′′(ξ) = 2δ
(
1 + ξ2

)−1/2
+ g(ξ) = 2δ + g(ξ),
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where g ∈ L1(R); this proves our claim. The proof of Lemma 3.6 is complete.
We are now ready to prove (3.1). From (3.10) one has

(3.23)∣∣r2(x, y)u(x, y)
∣∣ ≤ C ∣∣∣∣∫

R2

r2(x− x′, y − y′)k(x− x′, y − y′)up+1(x′, y′)dx′dy′
∣∣∣∣

+ C

∣∣∣∣∫
R2

k(x− x′, y − y′)r2(x′, y′)up+1(x′, y′)dx′dy′
∣∣∣∣ .

By Lemma 3.6 and the fact that u ∈ Lq(R2), q ≥ 2, the first term in the right-hand
side of (3.23) is bounded independently of x and y. The second term is majorized by
‖k‖Lq

∥∥r2up+1
∥∥
Lq′

, 1
q + 1

q′ = 1. Recall that k ∈ Lq(R2), 1 < q ≤ 2 (see the proof of

Lemma 3.5).
If p > 1, we write

∥∥r2up+1
∥∥
Lq′
≤ ‖ru‖2L∞

(∫
R2

uq
′(p−1)

)1/q′

,

which is finite for some q′ ≥ 2.
The case p = 1 needs a different argument. One has |∇(ru)| ≤ r|∇u| + |u|. Let

s ∈ (1, 2). Then, for ε > 0 small,∫
R2

rs|∇u|s =

∫
R2

rs|∇u| 2s
4−ε |∇u|

s(2−ε)
4−ε ,

and by the Hölder inequality∫
R2

rs|∇u|s ≤
(∫

R2

r4−ε|∇u|2
) s

4−ε
(∫

R2

|∇u|
s(2−ε)
4−ε−s

) 4−ε−s
4−ε

≤ C
(∫

R2

|∇u|
s(2−ε)
4−ε−s

) 4−ε−s
4−ε

,

by Lemma 3.5. For, say, s = 2 − ε, one has s(2−ε)
4−ε−s < 2. On the other hand, u,∇u ∈

Lq(R2), 1 < q ≤ 2, as is easily checked from the identity u = −k∗ u2

2 and the fact that
k ∈ Lq(R2), 1 < q ≤ 2. Finally, ∇(ru) ∈ L2−ε(R2), and by the Sobolev embedding

theorem, ru ∈ L
2(2−ε)
ε (R2), i.e., r2u2 ∈ Lq′ , q′ = 2−ε

ε > 2 for ε sufficiently small, and
this proves that r2u ∈ L∞(R2).

In the three-dimensional case we have the slightly less precise result, which follows.
Theorem 3.2. Any nontrivial solitary wave of (1.2) satisfies

(3.24) rδu ∈ L2(R3) ∀ δ, 0 ≤ δ < 3/2, r = (x2 + y2 + z2)1/2.

Proof. As in Lemma 3.1, one first proves that any solitary wave of (1.2) satisfies

(3.25)

∫
R3

(x2 + y2 + z2)(|∇u|2 + u2
xx)dxdydz < +∞.

We still use (3.8), now with

ĥ(ξ1, ξ2, ξ3) =
ξ1

|ξ|2 + ξ4
1

, |ξ|2 = ξ2
1 + ξ2

2 + ξ2
3 .
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The following lemma is the counterpart of Lemma 3.2.
Lemma 3.7.

rh ∈ Lq(R3), 3 < q < 5, r = (x2 + y2 + z2)1/2.

Proof. It suffices to prove that ∇ξĥ ∈ Lq
′
(R3), 5

4 < q′ < 3
2 . Since

∣∣∣∇ξĥ∣∣∣ ≤
C

|ξ|2+ξ41
= g(ξ), we are reduced to proving that g ∈ Lq′(R3), 5

4 < q′ < 3
2 . One finds

readily that

∫
R3

dξ

(|ξ|2 + ξ4
1)
q′

=

∫
R

1

|ξ1|2q
′
(1 + ξ2

1)
q′


∫

R2

dξ1dξ2(
1 +

ξ22+ξ23
ξ21(1+ξ21)

)q′
 dξ1

=

∫
R

dξ1

|ξ1|2(q′−1)
(1 + ξ2

1)
q′−1

∫
R2

dξ2dξ3

(1 + ξ2
2 + ξ2

3)
q′
.

The first integral in the right-hand side is finite if and only if 5
4 < q′ < 3

2 , and the
second one, if and only if q′ > 1.

Lemma 3.8.

ru ∈ L∞(R3).

Proof. From (3.8) we derive

|ru| ≤ C |[rh] ∗ upux|+ C |h ∗ [uprux]| .

By Young’s inequality and Lemma 3.7, we have

‖(rh) ∗ upux‖L∞ ≤ ‖rh‖L4‖u‖pL4p ‖ux‖L2 < +∞.

On the other hand, it is easily seen that ĥ, hence h, belongs to L2(R3), and Young’s
inequality, together with (3.25), implies

‖h ∗ uprux‖L∞ ≤ ‖h‖L2 ‖rux‖L2 ‖u‖pL∞ < +∞.

We now use equation (3.10), still valid in dimension 3, if we set

k̂(ξ1, ξ2, ξ3) =
ξ2
1

|ξ|2 + ξ4
1

.

Lemma 3.9. k̂ belongs to the homogeneous Sobolev space Ḣs
2(R3), for any s with

7
10 < s < 3

2 .

Proof. One checks easily that the second derivatives of k̂ are bounded by C
|ξ|2+ξ41

.

Thus (see the proof of Lemma 3.7) ∂2
ξiξj

k̂ ∈ Lq(R3), i, j = 1, 2, 3, 5
4 < q < 3

2 ; that is,

k̂ belongs to the homogeneous Sobolev space Ḣ2
q (R3). Again from [2], we infer that

Ḣ2
q (R3) ⊂ Ḣs

2(R3) for s = 7
2 −

3
q , i.e., 11

10 < s < 3
2 .

On the other hand, a simple computation also shows that the first derivatives of k̂
are bounded by C|ĥ| and, by using the same argument as in the proof of Lemma 3.7,

it is easily seen that ĥ ∈ Lq(R3), 5
3 < q < 2; hence, reproducing the above reasoning
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yields k̂ ∈ Ḣ1
q (R3) ⊂ Ḣs

2(R3) for s = 5
2 −

3
q and 5

3 < q < 2, i.e., 7
10 < s < 1. The

lemma follows by interpolation.

We are now in position to conclude the proof of Theorem 3.2. We use the pointwise
estimate (3.13). For any δ with 7

10 < δ < 3
2 , one obtains, thanks to Lemma 3.9,

(3.26)
∥∥(rδk) ∗ up+1

∥∥
L2 ≤ C

∥∥∥k̂∥∥∥
Ḣδ2

‖u‖p+1
Lp+1 < +∞.

On the other hand, denoting by F the Fourier transform,

(3.27)

∥∥k ∗ (rδup+1)
∥∥
L2 =

∥∥F(k ∗ rδup+1)
∥∥
L2 =

∥∥∥k̂F(rδup+1)
∥∥∥
L2

≤ C
∥∥rδup+1

∥∥
L2

since k̂ ∈ L∞(R3). But∣∣∣∣∫
R3

r2δu2(p+1)

∣∣∣∣ ≤ ‖ru‖2δL∞ ∫
R3

|u|p+2(1−δ).

Now, u ∈ Lq(R3) for any q > 1, as can be checked from (3.10) and the fact that (by

Lizorkin’s Theorem [11]), k̂ is a Fourier multiplier in Lq, 1 < q < ∞ (see [5]). Since
p ≥ 1, we conclude that rδup+1 ∈ L2(R3) for any δ < 1. Together with (3.26), this
implies that

(3.28) rδu ∈ L2(R3),
7

10
< δ < 1.

Let us finally prove that (3.28) is also true for δ < 3
2 . Let δ = 3

2 −
ε
2 , ε > 0 small.

Then ∣∣∣∣∫
R3

r2δu2(p+1)

∣∣∣∣ ≤ ∥∥r1−εu
∥∥
L2 ‖ru‖2L∞

∥∥u2p−1
∥∥
L2 ,

and the right-hand side is finite by (3.28) and Lemma 3.8.

Remarks 3.2.

1. One proves similarly to (3.12) that r1+δ∇u, r1+δuxx ∈ L2(R3) for any δ,
0 ≤ δ < 3

2 .

2. We do not know whether or not r3u ∈ L∞(R3). Note that the assertion
corresponding to (3.17) (that is, r3k ∈ L∞(R3)) is not true.

3. It is worth noting that all the results of sections 2 and 3, as those of [5], are
valid mutatis mutandi for the BBM version of the generalized KP equations considered
here, namely, when the uxxx term in (1.1) or (1.2) is replaced by −uxxt.

4. An extension. A natural question is whether or not the results in Chapter 3
are modified by adding to (1.1) or (1.2) a higher order dispersive term in x. Essentially,
they are not. To keep this paper short we will restrict ourselves to the two-dimensional
and three-dimensional versions of a fifth-order KdV equation introduced by Abramyan
and Stepanyants [1] and Karpman and Belashov [9], [10].

(4.1)

{
ut + upux + uxxx + δuxxxxx − vy = 0,

vx = uy
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in the 2-dimensional case and

(4.2)

{
ut + upux + uxxx + δuxxxxx − vy − wz = 0,

vx = uy, wx = uz

in the 3-dimensional case.
A solitary wave of (4.1) (resp., (4.2)) is a solution of the form u(x− ct, y) (resp.,

u(x− ct, y, z)) where c > 0 and u ∈ Z = {u ∈ Y, ∂2
xu ∈ L2(Rd)}, d = 2, 3.

In [5], we proved that when δ = −1 (which we will assume from now on), (4.1)
(resp., (4.2)) has a nontrivial solitary wave for arbitrary p’s (resp., 1 ≤ p < 8

3 ), which
belongs to H∞(Rd), d = 2, 3, when p is an integer.

Concerning the properties of such solitary waves, we have the following theorem.
Theorem 4.1.

(i) The solitary waves of (4.1) satisfy

r2u ∈ L∞(R2), r2 = x2 + y2.

(ii) The solitary waves of (4.2) satisfy

rδu ∈ L2(R3), r2 = x2 + y2 + z2, for any δ, 0 ≤ δ < 3

2
.

The proof of Theorem 4.1 follows, with some technical differences, the correspond-
ing ones in sections 2 and 3 and will be omitted. Note that the decay estimates are
sharp (Remark 3.1 is still valid in this context); they are essentially imposed by the

singularity of k̂ at 0, namely, k̂(ξ) ∼ ξ21
|ξ|2 .

Appendix. We state here the unique continuation result we have used in section
2. We consider first the two-dimensional situation.

Theorem A.1. Let a, b, c ∈ L∞(R2) and u satisfy

(A.1) u, uy, uxy, uxx, uxxx ∈ L2(R2),

(A.2) uyy − uxxxx = a(x, y)u+ b(x, y)ux + c(x, y)uxx in R2.

Then, if u vanishes on a half-plane Π in R2, it vanishes everywhere in R2.
Proof. If the line delimiting Π is not characteristic (that is, not parallel to the

x-axis), the result is an easy consequence of Isakov’s unique continuation theorem [8].
If ∂Π is parallel to the x-axis (which is the case we need in section 2), we have to
use a different (global) argument which we only sketch here. It suffices obviously to
prove that if u satisfying (A.1) and (A.2) is such that u ≡ 0 on {(x, y), y ≤ 0} then it
vanishes on ΠT = {(x, y), 0 ≤ y ≤ T} for any T > 0.

We write (A.2) as

(A.3)
∂v

∂y
−Av = −v + au+ bux + cuxx,

where

v = uy − uxx,

A = I − ∂2

∂x2
.
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A is a self-adjoint operator from V = H1(R) to H−1(R), which satisfies the hypothesis
of Proposition II.1 in [15]. In order to apply the backward uniqueness result (Theorem
II.1) of [15] (note that the “time” variable y is reversed in our problem), proving that
v vanishes on ΠT , it suffices that the right-hand side of (A.3) defines an operator
B(y) ∈ L2

y(0, T,L(H1
x(R), L2

x(R))). This is easily checked by using (A.1) and the fact
that u solves the heat equation in ΠT

(A.4)

{
uy − uxx = v,
u(x, 0) = 0.

Then, by the uniqueness of the Cauchy problem (A.4), u vanishes on ΠT .

For the three-dimensional situation we state the following theorem.

Theorem A.2. Let a, b, c ∈ L∞(R3) and u satisfy

(A.5) u, uy, uz, uxy, uxz, uyz, uyy, uzz, uxxx, uxxy, uxxz ∈ L2(R3),

(A.6) uyy + uzz − uxxxx = a(x, y, z)u+ b(x, y, z)ux + c(x, y, z)uxx.

Then, if u vanishes on one side of a hyperplane H, it vanishes everywhere in R3.

Proof. Again, if H is not characteristic (that is, not parallel to the x-axis) the
result follows from Isakov’s theorem [8]. If H is parallel to the x-axis (which is the case
of interest in section 2), we use a global argument. First, by the invariance of ∂2

y + ∂2
z

by rotations in the (y, z) plane, it suffices to consider the case where H is parallel to
a plane of coordinates containing the x-axis; for instance, H = {(x, y, z), y = 0}. Let
us assume that u vanishes on {(x, y, z), y ≤ 0} and let us prove that u vanishes on

ΠT = {(x, y, z), 0 ≤ y ≤ T}

for any T > 0. We factorize (A.6) as

(A.7)
∂v

∂y
−Av = −v + au+ bux + cuxx,

where

v = uy +Au,A = I +A,

A being the operator (in R2) defined in Fourier variables by

Âu(ξ1, ξ3) = (ξ2
3 + ξ4

1)1/2û(ξ1, ξ3).

Obviously, A is a self-adjoint operator, continuous from V into V ′, where

V = {v ∈ L2(R2), vx ∈ L2(R2), |ξ3|1/2v̂ ∈ L2(R2)}.

Again, it is easily checked that the hypothesis of Theorem II.1 in [15] is satisfied,
yielding v ≡ 0 on ΠT and, therefore, u ≡ 0 on ΠT .

Acknowledgment. We thank Thierry Colin, who suggested that we use [12] to
obtain the symmetry of the solitary waves.
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Abstract. A two-point boundary value problem with a positive parameter Q arising in the
study of surface-tension–induced flows of a liquid metal or semiconductor is studied. On the basis
of the upper–lower solution method and Schauder’s fixed-point theorem, it is proved that when
0 ≤ Q ≤ 13.213, the problem admits a solution. This improves a recent result where 0 ≤ Q < 1.

Key words. two-point boundary value problem, the upper–lower solution method, Schauder’s
fixed-point theorem
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1. Introduction. Consider the following nonautonomous two-point boundary
value problem (BVP) on [0,1]:
(1.1a)

[
x

(
f ′

x

)′]′
+Q

[
f

(
f ′

x

)′
− x

(
f ′

x

)2
]

= βx,

(1.1b) f(0) = f(1) =
(
f ′

x

)′ ∣∣
x=0

=
(
f ′

x

)′ ∣∣
x=1
− 1 = 0,

where ′ = d/dx. This problem arises in the study of surface-tension–induced flows of
a liquid metal or semiconductor in a cylindrical floating zone of length 2L and radius
R. Here the parameter Q = 2L3R−3(Re), Re is the Reynolds number, and β is a
constant to determine.

Numerical solutions of (1.1) have been found [1] for 0 ≤ Q ≤ 32.7 and Q ≥ 1749.
However, a theoretical proof of the existence of solutions of (1.1) has been done only
for 0 ≤ Q < 1 in [2]. Hence, there is still a large gap between numerical experiments
and theoretical results. In the present paper, on the basis of the upper–lower solution
method and Schauder’s fixed-point theorem, we prove the existence of solutions for
(1.1) with 0 ≤ Q ≤ 13.213. Thereby we greatly improve the existing results [2].

Our main result is the following.

Theorem 1. For 0 ≤ Q ≤ 13.213, there exists a constant β such that (1.1)
admits a solution f = f(x) satisfying, on (0, 1),

−0.039064 ≤ f(x) ≤ 0, −0.089647 ≤ f ′(x) ≤ 1

3
, −0.388320 ≤ f ′′(x) ≤ 4

3
.

2. A technical treatment of (1.1). We observe that in (1.1), (1.1a) is a third-
order equation with an unknown constant β, while the boundary value condition
(1.1b) contains four equalities. Hence, following [2], we make the following technical
treatment of (1.1).
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Differentiating (1.1a) with respect to x, we obtain
(2.1a)

[(
f ′

x

)′]′′
+

[
1 +Qf

x

](
f ′

x

)′′
−
[

1 +Q(xf)′

x2

](
f ′

x

)′
= 0,

(2.1b) f(0) = f(1) =
(
f ′

x

)′ ∣∣
x=0

=
(
f ′

x

)′ ∣∣
x=1
− 1 = 0.

Let (f ′/x)′ = g. Then (2.1) has the form(2.2a) g′′ +

[
1 +Qf

x

]
g′ −

[
1 +Q(xf)′

x2

]
g = 0,

(2.2b) g(0) = g(1)− 1 = 0.

To prove the existence of solutions for (1.1), we reduce it to a problem of finding
a fixed point. On the basis of the differential inequality technique, to construct upper
and lower solutions of (2.2), we consider the following set:

D = {f |f ∈ C1[0, 1], f(0) = f(1) = 0, h(x) ≤ f(x) ≤ 0,
m(x) ≤ f ′(x) ≤ n(x)},

where

h(x) =
(25)2

3219
x2(x

37
25 − 1), n(x) =

1

3
x4,

m(x) = 25x

(
1

126
x

126
25 − 1

87
x

87
25 +

1

37
x

37
25 − 50

3219

)
.

For any f ∈ D, if (1) eq. (2.2) has a unique solution g(x) and (2) the problem(2.3a)
(
f∗′

x

)′
= g,

(2.3b) f∗(0) = f∗(1) = 0

also has a unique solution f∗(x), then we may define an operator

T : f 7−→ f∗, f ∈ D,

where f∗ is the solution of (2.3). Thus, given Q ∈ [0, 13.213], if we can prove that
(3)T has a fixed point, namely, there exists f ∈ D such that Tf = f , then f is a
solution of (2.1). Integrating (2.1a) from 1 to x and using (2.1b), we obtain (1.1a) at

once; here β = [( f
′

x )′′ + 1+Qf
x ( f

′

x )′ − Q( f
′

x )2]
∣∣
x=1

. Therefore, f must be the solution
of (1.1).

In the following, we shall carry out the above three processes, respectively.

3. The solution of the problem (2.2). We consider the boundary value prob-
lem on [x1, x2]

y′′ = a(x)y′ + b(x)y,(3.1a)

y(x1) = A1, y(x2) = A2,(3.1b)
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where a(x), b(x) ∈ C1[x1, x2] and b(x) > 0.
Lemma 1. Suppose that there exist functions ω(x), ω(x) ∈ C2[x1, x2] such that

for x1 ≤ x ≤ x2,

ω(x) ≤ ω(x),
ω′′(x) ≤ a(x)ω′(x) + b(x)ω(x),
ω′′(x) ≥ a(x)ω′(x) + b(x)ω(x),

and

ω(xi) ≤ Ai ≤ ω(xi), i = 1, 2.

Then the problem (3.1) has a unique solution y = y(x), and

ω(x) ≤ y(x) ≤ ω(x), x1 ≤ x ≤ x2.

Moreover, there exists a positive number N which depends only on interval [x1, x2]
and the function pairs ω(x), ω(x) such that

|y′(x)| ≤ N, x1 ≤ x ≤ x2.

Since b(x) > 0, we use the maximal value principle, it is easy to prove the
uniqueness of solutions of (3.1), and other aspects of Lemma 1 are generalizations
of Nagumo’s theorem (see [3, Thm. 1.5.1]).

Theorem 2. Assume f ∈ D and 0 ≤ Q ≤ 13.213. Then the boundary value
problem (2.2) has a unique solution g = g(x).

Proof. Notice for f ∈ D,x ∈ (0, 1], we have

1 +Q(xf)′

x2
=

1

x2
[1 +Q(xf ′ + f)] ≥ 1

x2
[1 +Q(xm(x) + h(x))]

=
1

x2
[1 +QF (x)],

where

F (x) = xm(x) + h(x) = 25x2

(
1

126
x

126
25 − 1

87
x

87
25 +

112

3219
x

37
25 − 75

3219

)
.

By a simple argument, we show that F (x) is decreasing on [0, c] and increasing
on [c, 1], where c = 0.565711027 . . .. Hence F (x) takes a minimum at x = c, i.e.,

min
x∈[0,1]

F (x) = F (c) = −0.0756773788 · · · ≥ −0.075678.

Therefore, for 0 ≤ Q ≤ 13.213, we have

1 +Q(xf)′

x2
> 0, x ∈ (0, 1].(3.2)

For any positive integer n ≥ 2, consider the boundary value problem(3.3a) g′′ = −
[

1 +Qf

x

]
g′ +

[
1 +Q(xf)′

x2

]
g,

(3.3b) g( 1
n ) = 0, g(1) = 1.
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We set ω(x) ≡ 0, ω(x) = xα, where α > 0 is sufficiently small, so that

α2 + αQf ≤ 1 +Q(xf)′.

Then

ω′′(x) ≤ −
[

1 +Qf

x

]
ω′(x) +

[
1 +Q(xf)′

x2

]
ω(x),

ω′′(x) ≥ −
[

1 +Qf

x

]
ω′(x) +

[
1 +Q(xf)′

x2

]
ω(x)

for all x ∈ [ 1
n , 1], n ≥ 2, ω(1) = 0 < 1 = ω(1), and ω( 1

n ) = 0 < 1
nα = ω( 1

n ). By
Lemma 1, we obtain that (3.3) has only one solution, gn = gn(x), which satisfies

0 ≤ gn(x) ≤ xα, x ∈
[

1

n
, 1

]
.

Since gn(x), n = 2, 3, . . . are all solutions of (3.3a) and o ≤ gn(x) ≤ xα, x ∈ [ 12 , 1],
applying the part related to the estimate of the derivative in Lemma 1, we have that
{g′n(x)} is uniformly bounded on [12 , 1] and hence that {g′n(1)} is bounded. Without
loss of generality, we let {g′n(1)} → α0 as n→∞.

We consider the solution of (3.3a) satisfying the initial conditions g(1) = 1, g′(1) =
α0. Obviously, it exists on [0, 1] and satisfies

0 ≤ g(x) ≤ xα;

namely, g(x) is the solution of (2.2). The uniqueness of the solution is easy to obtain
by (3.2). The proof of the theorem is completed.

To prove Theorem 1, we give the bound of g(x) and g′(x) on [0, 1].
Theorem 3. For f ∈ D, 0 ≤ Q ≤ 13.213, the solution g(x) of (2.2) satisfies

(i) g(x) > 0, g′(x) > 0, 0 < x < 1,(3.4)

(ii) limx→0+xg
′(x) = 0,(3.5)

(iii) x
51
25 ≤ g(x) ≤ x 12

25 ,(3.6)

(iv)
12

25
x

51
25 ≤ xg′(x) ≤ 51

25
x

12
25 .(3.7)

Proof. (i) Since 1+Q(xf)′ > 0, x ∈ [0, 1], we see easily that g(x) > 0, g′(x) ≥ 0 on
(0, 1) by the maximal value principle. Next we assert that g′(x) 6= 0 for any x ∈ (0, 1).
If not, then there exists x0 ∈ (0, 1) such that g′(x0) = 0. We have g′′(x0) > 0 from
(2.2a), namely, g(x) takes a minimum at x = x0. Hence g(x) must have a maximum
at some x1 ∈ (0, x0). This is impossible because we have g′′(x1) > 0 from (2.2a), a
contradiction.

(ii) Rewrite (2.2a) as follows:

x(xg′)′ = −Qfg′ + [1 +Q(xf)′]g.

Owing to 0 ≤ x ≤ 1, f ≤ 0, 1 + Q(xf)′ > 0, and g > 0, we have x(xg′)′ > 0; i.e.,
(xg′)′ > 0, and hence xg′ is increasing on (0, 1). Using (3.4), we obtain xg′ > 0
for x ∈ (0, 1), and therefore limx→0+ xg

′(x) exists and limx→0+ xg
′(x) ≥ 0. If there

exists α > 0 such that limx→0+ xg
′(x) = α, then for α

2 , there is a δ > 0 so that
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α
2 < xg′(x) < g′(1) for x ∈ (0, δ), or α

2x < g′(x) < 1
xg
′(1). Integrating it from x to δ,

we have

α

2
ln
δ

x
< g(δ)− g(x) < g′(1) ln

δ

x
.

This means g(x)→ −∞ as x→ 0+, contradicting g(0) = 0. Thus limx→0+xg
′(x) = 0.

(iii) Equation (2.2a) can be converted to the following form:

(x2g′)′ − (xg)′ −Q(xfg)′ = −2Qxfg′.

Integrating the above equation from 0 to x, using (3.5) and g(0) = 0, we obtain

g′ =

[
1 +Qf

x

]
g − 2Q

x2

∫ x

0

tfg′ dt, 0 < x < 1.

Hence, as −0.039064 ≤ f(x) ≤ 0, g′(x) ≥ 0, and 0 ≤ Q ≤ 13.213, we have Qf > −13
25 .

This implies

12

25x
g(x) ≤ g′(x) ≤ 1

x
g(x) +

26

25x

∫ x

0

g′ dt

=
51

25x
g(x).

(3.8)

We integrate (3.8) from 1 to x and obtain (3.6).
(iv) We combine (3.6) with (3.8) and yield (3.7).
The theorem is proved.

4. The solution of boundary value problem (2.3). Integrating (2.3a) from
0 to x and using (2.3b), we see

f∗′(x) = kx+ x

∫ x

0

g(t) dt(4.1)

and

f∗(x) =
1

2
kx2 +

∫ x

0

(
s

∫ s

0

g(t) dt

)
ds,(4.2)

where k = −2
∫ 1

0
(s
∫ s
0
g(t) dt) ds. By Theorem 2, we know that g(x) exists and is

unique, so (2.3) has a unique solution f∗ = f∗(x) on [0, 1].
In the following, we estimate the bound of f∗ and f∗′.
Since

k = −2

∫ 1

0

(
s

∫ s

0

g(t) dt

)
ds = −2

∫ 1

0

(
g(t)

∫ 1

t

s ds

)
dt = −

∫ 1

0

(1− t2)g(t) dt,

(4.1) and (4.2) become

f∗′(x) = −x
∫ 1

0

(1− t2)g(t) dt+ x

∫ x

0

g(t) dt,(4.3)

f∗(x) = −1

2
x2

∫ 1

0

(1− t2)g(t) dt+
1

2

∫ x

0

(x2 − t2)g(t) dt.(4.4)
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From (4.3), we have

f∗′(x) = −x
∫ x

0

(1− t2)g(t) dt− x
∫ 1

x

(1− t2)g(t) dt+ x

∫ x

0

g(t) dt

= −x
∫ 1

x

(1− t2)g(t) dt+ x

∫ x

0

t2g(t) dt.

By (3.4) and (3.6), we have the following inequalities:

f∗′(x) ≤ x
∫ x

0

t2 dt =
1

3
x4 = n(x) ≤ 1

3
,

f∗′(x) ≥ −x
∫ 1

x

(1− t2)t
12
25 dt+ x

∫ x

0

t2t
51
25 dt

= 25x

(
1

126
x

126
25 − 1

87
x

87
25 +

1

37
x

37
25 − 50

3219

)
= m(x) ≥ −0.089647.

From (4.4), it follows that

f∗(x) =
1

2
(x2 − 1)

∫ x

0

t2g(t) dt− 1

2
x2

∫ 1

x

(1− t2)g(t) dt.

By (3.4) and (3.6), we obtain

0 ≥ f∗(x) ≥ 1

2
(x2 − 1)

∫ x

0

t2t
12
25 dt− 1

2
x2

∫ 1

x

(1− t2)t
12
25 dt

=
(25)2

3219
x2(x

37
25 − 1)

= h(x) ≥ −
(

25

87

)2(
50

87

) 50
37

≥ −0.039064.

Using similar arguments, we have

−0.388320 ≤ f∗′′(x) ≤ 4

3
.

In summary, we get the following inequalities:

−0.039064 ≤ f∗(x) ≤ 0,

−0.089647 ≤ f∗′(x) ≤ 1

3
,

−0.388320 ≤ f∗′′(x) ≤ 4

3
.

5. T has a fixed point. We define the norm on C1[0, 1] by

||f || := max |f |+ max |f ′|, x ∈ [0, 1].

Then C1[0, 1] is a Banach space. It is easy to check that D in section 2 is a nonempty,
closed, bounded, convex subset of C1[0, 1]. By sections 3 and 4, we see that T is well



1092 YONGDONG SHI, QINDE ZHOU, AND YONG LI

defined and TD ⊆ D. In addition, T maps a bounded subset of D into a compact
subset of D. (For details, see [2].)

Now we prove that the operator T is continuous.
By the definition of T and (4.2), we only need prove that for any given f0 ∈ D

and any ε > 0, there exists δ > 0 such that as ||f − f0|| < δ and f ∈ D,

max
x∈[0,1]

|g(x)− g0(x)| < ε,(5.1)

where g and g0 are solutions of (5.2) and (5.3), respectively: g′′ +

[
1 +Qf

x

]
g′ −

[
1 +Q(xf)′

x2

]
g = 0,

g(0) = g(1) = 0, x ∈ [0, 1].
(5.2)

 g′′ +

[
1 +Qf0

x

]
g′ −

[
1 +Q(xf0)′

x2

]
g = 0,

g(0) = g(1) = 0, x ∈ [0, 1].
(5.3)

Let p(x) = g(x)− g0(x). Then by (5.2) and (5.3), we have

L[p] = p′′ + [1 +Qf0] p′ −
[

1 +Q(xf0)′

x2

]
p

= −
(
Q
x2

)
[(f − f0)(xg′ − g)− (f ′ − f ′0)xg]

= −G(x),

(5.4)

with p(0) = p(1) = 0. For any 0 ≤ x ≤ ε, f ∈ D, and 0 ≤ Q ≤ 13.213, by using (3.6)
we obtain

|p(x)| = |g(x)− g0(x)| ≤ 2x
12
25 ≤ 2ε

12
25 = ε1.(5.5)

For x ∈ [ε, 1], ||f − f0|| → 0, and 0 ≤ Q ≤ 13.213, we claim that |p(x)| < ε1.
Set

ε∗ = (1− 0.075678Q)ε1.(5.6)

If ||f − f0|| is sufficiently small, x ∈ [ε, 1], and 0 ≤ Q ≤ 13.213, then, by (3.6) and
(3.7), we have

|G(x)| ≤ Q
ε2 [max{|xg′|+ |xg|+ |g|}]||f − f0||

≤ Q
ε2 ( 51

25 + 1 + 1)||f − f0||

= 101Q
25ε2 ||f − f0|| < ε∗.

(5.7)

For fixed f0, let p be a solution of (5.4) with the boundary conditions |p(ε)| ≤ ε1 and
p(1) = 0. By (5.7), we have

L[p]− ε∗ ≤ L[p] + F (x) ≤ L[p] + ε∗, ε ≤ x ≤ 1.(5.8)

Let p± be solutions of the following problems:{
L[p]± ε∗ = 0,
p±(1) = 0, p±(ε) = p(ε).
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Then, using the comparison theorem, we show that

p−(x) ≤ p(x) ≤ p+(x), x ∈ [ε, 1].

Now we prove that for any x ∈ [ε, 1], there is p+(ε) ≤ ε1. In fact, we see that
p+(x) ≤ ε1 as |p(ε)| ≤ ε1. If not, then there exists a point x+ ∈ (ε, 1) such that
p+(x+) > ε1. By p+(ε) = p(ε) ≤ ε1, there must be a point y+ ∈ (ε, 1) such that
p+(x) takes maximum at y+, namely,

p+(y+) > ε1, p+′(y+) = 0, p+′′(y+) < 0.

But by (5.6) and (5.9), we see that the following holds:

p+′′(y+) + ε∗ =

[
1 +Qf0(y+) +Qf ′0(y+)y+

y2
+

]
p+(y+)

> (1− 0.075678Q)ε1.

Hence, using (5.6), we get

p+′′(y+) > (1− 0.075678Q)ε1 − ε∗ = 0,

a contradiction. For x ∈ [ε, 1] and |p(ε)| ≤ ε1, we argue similarly and obtain p−(x) ≥
−ε1. Thus, when x ∈ [ε, 1] and |p(ε)| ≤ ε1, there exists |p(x)| ≤ ε1.

Therefore, for any given ε > 0, if we choose

δ =
ε∗

101Q
25ε2

,

where ε∗ satisfies (5.6), then for f ∈ D, maxx∈[0,1] |g(x) − g0(x)| = ε1 = 2ε
12
25 as

||f − f0|| < δ, and the continuity of T is proved.
To sum up, we see that the operator T satisfies the conditions of Schauder’s

fixed-point theorem [4], and thus T has at least one fixed point in D.
By sections 2, 3, 4, and 5, Theorem 1 is proved.

Acknowledgment. The authors thank the referees for their valuable sugges-
tions.
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Abstract. Consideration is devoted to travelling multiple-front (back) wave solutions of the
FitzHugh–Nagumo equations of bistable type. In particular, stability of the 1-front (back) wave is
proven. In the proof, the eigenvalue problem for the 1-front wave bifurcating from coexisting simple
front and back waves is regarded as a bifurcation problem for projectivized eigenvalue equations,
rather than treated as a linear eigenvalue problem for each fixed wave.

Key words. travelling wave, eigenvalue problem, bifurcation
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1. Introduction. The following system is called the FitzHugh–Nagumo equa-
tions: {

ut = uxx + f(u)− w,
wt = ε(u− γw),

(1.1)

where x, t ∈ R and u(x, t), w(x, t) ∈ R, and 1� ε > 0, γ > 0 are parameters. In this
system, the nonlinear term f(u) is assumed to be a smooth cubic-like function of u
satisfying the conditions below.

f(0) = f(a) = f(1) = 0,

f ′(0) < 0, f ′(1) < 0,

f(u)

{
> 0 if u ∈ (−∞, 0) ∪ (a, 1),

< 0 if u ∈ (0, a) ∪ (1,+∞),∫ 1

0
f(u)du > 0,

(1.2)

where 0 < a < 1 is a constant.
In this paper we shall restrict our attention to large γ > 0 so that the system

(1.1) has three spatially homogeneous stationary solutions (u,w) ≡ (u1, w1) := (0, 0),
(u†, w†), and (u2, w2). Here u∗ and w∗ (∗ = 1, 2 or †) are constants which satisfy{

f(u∗)− w∗ = 0
u∗ − γw∗ = 0,

∗ = 1, 2 or †
0 = u1 < u† < u2 < 1.

(1.3)

(See Figure 1.1.)
The system (1.1) has spatial solutions called travelling waves which are explained

below.
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Fig. 1.1. The nullclines of equations (1.1).

Let ξ = x + ct be a moving frame for some constant c > 0; then in the (ξ, t)
coordinate, (1.1) is expressed as{

ut = uξξ − cuξ + f(u)− w,
wt = −cwξ + ε(u− γw).

(1.4)

A travelling wave solution (u(x, t), w(x, t)) = (u(ξ), w(ξ)) of (1.1) at velocity c is a
steady state solution of (1.4); i.e., (u(ξ), w(ξ)) satisfies the equations{

uξξ − cuξ + f(u)− w = 0,
−cwξ + ε(u− γw) = 0.

(1.5)

Often, (1.5) is treated in the form of first-order equations,
u′ = v,
v′ = cv − f(u) + w ( ′ = d

dξ ),

w′ = ε
c (u− γw).

(1.6)

This system shall be simply written as

z′ = X(z;µ),(1.7)

where z = (u, v, w) and µ = (γ, c; ε). a1 := (u1, 0, w1) = (0, 0, 0) and a2 := (u2, 0, w2)
are equilibria of (1.6).

It is well known that (1.6) has a heteroclinic solution z∗1(ξ) from a1 to a2 (z∗2(ξ)
from a2 to a1) for certain parameter values. This solution corresponds to a travelling
wave of (1.1), which satisfies

lim
ξ→−∞

z∗1(ξ) = a1, lim
ξ→+∞

z∗1(ξ) = a2(1.8)

(
lim

ξ→−∞
z∗2(ξ) = a2, lim

ξ→+∞
z∗2(ξ) = a1, respectively

)
.(1.9)
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This wave is called travelling front, or simple front, in the terminology in Deng [7]
(travelling back or simple back, respectively). Deng [7] proved that for certain pa-
rameter values, the system (1.6) has heteroclinic solutions z∗1 and z∗2 simultaneously,
forming what is called a heteroclinic loop. Furthermore, there is a sequence of N -
heteroclinic solutions from a1 to a2 (from a2 to a1) which correspond to travelling
waves called N -fronts (N -backs, respectively) bifurcating from the heteroclinic loop,
together with homoclinic solutions to a1 and a2 which correspond to travelling pulses
(simple impulses, in Deng’s terminology). Here a heteroclinic solution from a1 to a2

(from a2 to a1) which rounds N times and a half in some tubular neighborhood of
the heteroclinic loop is referred to as an N -heteroclinic solution from a1 to a2 (from
a2 to a1). (See Figure 1.2.)

Fig. 1.2. The bifurcation diagram of N-heteroclinic solutions of the system (1.6).

We are concerned with the stability of these travelling waves. The eigenvalue
problem for (1.4) along the travelling wave under study is often investigated to de-
termine the stability of the wave, as stability for the linear problem implies the same
for the full nonlinear problem. See Evans [8].

The linear stability is established as follows. Consider the linearization of (1.4)
along the travelling wave (u(ξ), v(ξ)) that is under consideration:

{
Pt = Pξξ − cPξ +Df (u(ξ))P −R,
Rt = −cRξ + ε(P − γR).

(1.10)
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The right-hand side of (1.10) defines a densely defined closed operator

L

(
P
R

)
:=

(
Pξξ − cPξ +Df (u(ξ))P −R

−cRξ + ε(P − γR)

)
(1.11)

on the space BU(R,R2) :=
{
φ: R→ R2| bounded uniformly continuous

}
with supre-

mum norm. Then, the following fact is well known (Evans [8], Bates and Jones [5]).
Fact . Let σ(L) be the spectrum of L; then the travelling wave (u(ξ), v(ξ)) is

stable if the conditions below are satisfied.
1. There exist β < 0 so that σ(L) \ {0} ⊂ {λ|Reλ < β}.
2. 0 is a simple eigenvalue.

Remark 1.1.

1. L has as an eigenvalue 0 corresponding to spatial translation of the wave.
2. Concerning a wave that connects stable steady states, there exists β < 0 so that
σ(L)∩ {λ|Reλ > β} consists only of eigenvalues with finite multiplicity. (See
Jones [11] for FitzHugh–Nagumo equations, Henry [10] for general cases.)

Thus we prove the stability of a given wave by showing that zero is a simple
eigenvalue of L and that there is no other eigenvalue with zero or positive real part.

The stability of the simple front (back) was proven by Yanagida [17] by showing
that the critical eigenvalue was only simple at the origin. The stability of simple
impulses can be verified in the same manner as in Jones [11] or Yanagida [16], in
which the problem was treated as a singular limit problem for ε when γ was not large,
or by applying Nii [12] when it is regarded as a bifurcation problem. In this case
the operator L for a simple impulse possesses two critical eigenvalues; one is at the
origin, and the sign of the other determines stability. Either way, the Evans function
explained below plays a conclusive role.

The eigenvalue problem{
Pξξ − cPξ +Df (u(ξ))P −R = λP,

−cRξ + ε(P − γR) = λR
(1.12)

can be regarded as a system of second-order linear ordinary differential equations.
This system shall also be treated in the form of a first-order system,

P ′ = Q,
Q′ = cQ−Df (u(ξ))P + λP +R ( ′ = d

dξ ),

R′ = ε
c (P − γR)− λ

cR,

(1.13)

or simply

p′ = A (u(ξ);λ) p,(1.14)

where p = (P,Q,R) and

A (u(ξ);λ) =

 0 1 0
λ−Df (u(ξ)) c 1

ε
c 0 − 1

c (εγ + λ)

 .

For Reλ > β the matrices

A±(λ) := A(ai± ;λ) =

 0 1 0
λ−Df(ai±) c 1

ε
c 0 − 1

c (εγ + λ)
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in both ends (ξ → ±∞) of (1.13) have one unstable eigenvalue and two stable ones,
where we assume that limξ→±∞ (u(ξ), w(ξ)) = ai± . This means (1.13) has one solution
p1(ξ;λ) which is bounded as ξ → −∞ up to multiplication of a nonzero constant and
two independent solutions p2(ξ;λ), p3(ξ;λ) which are bounded as ξ → +∞ up to a
nontrivial linear combination of them.

The Evans function Ev(λ) is defined as

Ev(λ) = det (p1(ξ;λ)p2(ξ;λ)p3(ξ;λ))|ξ=0 .(1.15)

Here, as we are working on small ε, p1(ξ;λ), p2(ξ, λ), and p3(ξ, λ) can be chosen so
that they depend analytically on λ, and Ev(λ) can be defined as an analytic function
of λ. By definition, Ev(λ) vanishes if and only if p1(ξ;λ), p2(ξ;λ), and p3(ξ;λ) are
linearly dependent. This is equivalent to existence of a bounded solution of (1.13),
which means that the λ is an eigenvalue of L. If Ev(λ) is normalized so that Ev(λ) > 0
for large λ ∈ R, the sign of dEv

dλ

∣∣
λ=0

determines the sign of the eigenvalue other than
zero. This sign is determined by the geometric structure of the single impulse or
corresponding homoclinic orbit. In fact, it is positive and the sign of the eigenvalue
is negative. Thus the impulse is stable. In the case of N -front (back) waves, we
know that there are 2N+1 critical eigenvalues near the origin by an argument similar
to those in Alexander and Jones [2] or Nii [12]. However, we can only know by an
argument similar to that used above that the number of the eigenvalues with positive
real part is even. Consequently, we need more analysis to determine their stability.

In this paper, we deal with this eigenvalue problem as a “full” bifurcation problem.
Consider the coupled system of (1.6) and (1.13):{

z′ = X(z;µ),
p′ = A(z;λ, µ)p.

(1.16)

This system on R3 × C3 induces a system on R3 × CP2:{
z′ = X(z;µ),
p̂′ = Y (z, p̂;λ, µ)

(1.17)

as it is linear in p-component.
Let ei,1(λ) (i = 1, 2) be an eigenvector associated with the unstable eigenvalue

of A(ai;λ) and ei,2(λ) and ei,3(λ) be eigenvectors associated with the stable eigen-
values. Furthermore, we assume that ei,2(λ) belongs to the eigenspace correspond-
ing to the principal stable eigenvalue, which is the stable eigenvalue with its real
part larger than the other. The points in CP2 representing eigenspaces spanned by
ei,j(λ) shall be denoted as êi,j(λ). Then for each i = 1, 2, {ai} × CP2 is an invari-
ant set of (1.17), which consists of equilibria (ai, êi,j(λ)) (j = 1, 2, 3) and hetero-
clinic orbits between them. For the parameter value µ at which (1.6) has a hete-
roclinic solution from ai− to ai+ , the system (1.17) should have a heteroclinic solu-
tion from

(
ai− , êi−,1(λ)

)
to
(
ai+ , êi+,j(λ)

)
for some j depending on λ. For generic λ

this solution should be from
(
ai− , êi−,1(λ)

)
to
(
ai+ , êi+,1(λ)

)
, because

(
ai+ , êi+,1(λ)

)
is an attracting equilibrium in the invariant set {ai+} × CP2 and the complemen-
tary repeller consists of

(
ai+ , êi+,2(λ)

)
,
(
ai+ , êi+,3(λ)

)
, and the heteroclinic orbits

from
(
ai+ , êi+,3(λ)

)
to
(
ai+ , êi+,3(λ)

)
. In fact, the existence of the solution from(

ai− , êi−,1(λ)
)

to
(
ai+ , êi+,2(λ)

)
or
(
ai+ , êi+,3(λ)

)
means that λ is an eigenvalue of L

and vice versa.
Let µ0 be a parameter value at which (1.6) has a heteroclinic loop consisting

of heteroclinic solutions z∗1(ξ) from a1 to a2 and z∗2(ξ) from a2 to a1. Then, for
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(λ, µ) = (0, µ0), (1.17) has heteroclinic solutions from (a1, ê1,1(0)) to (a2, ê2,2(0)) and
from (a2, ê2,1(0)) to (a1, ê1,2(0)) simultaneously. We interpret the eigenvalue problem
associated with an N -front wave which corresponds to an N -heteroclinic solution from
ai− to ai+ as a bifurcation problem of finding an N -heteroclinic solution of (1.17) from(
ai− , êi−,1(λ)

)
to
(
ai+ , êi+,2(λ)

)
or
(
ai+ , êi+,3(λ)

)
.

The purpose of this paper is to prove the following theorem about the stability
of the travelling 1-front (back) wave solutions of (1.1), with the strategy explained
above. The stability of N -fronts for N ≥ 2 shall be proven in the forthcoming paper
using a topological method (Nii [13]).

Theorem. Assume that the system (1.6) is Cr-diffeomorphic (r ≥ 2) to linear
systems in some neighborhoods of equilibria ai and ε is small; then the travelling
1-front (back) wave solution of FitzHugh–Nagumo equations (1.1) bifurcating from
simple front and back travelling wave solutions is stable.

Remark 1.2. The assumption that the system is diffeomorphic to linear systems
shall also be discussed for strictly cubic nonlinearity.

Remark 1.3. Recently, Sandstede [15] proved stability of N -fronts (backs) for all
N ≥ 1 by Lin’s method.

2. Existence of travelling N-front wave solutions. In this section we briefly
summarize the result in Deng [7] concerning the existence of travelling N -front (back)
wave solutions of (1.1) and give analysis of the parameter dependence of the 1-
heteroclinic orbit of (1.6) around equilibria.

Proposition 2.1 (Deng [7]). There exists a small ε0 and two smooth functions
γ(ε) and δ(ε) for 0 ≤ ε ≤ ε0 such that the following is satisfied for all 0 < ε < ε0.

1. On the relevant (γ, c) parameter space there are two smooth curves c = ci,0(γ)
(i = 1, 2) defined on the interval |γ−γ(ε)| < δ(ε) such that (1.1) has a simple
front wave of speed c1,0(γ) and a simple back wave of speed c2,0(γ).

2. There is a sequence {c1,N (γ)}∞N=1 of smooth curves of the left half-interval
0 < γ(ε)− γ < δ(ε) such that (1.1) has an N -front wave of speed c1,N (γ) for
γ in this half-interval for every N = 1, 2, . . .. Similarly, there is a sequence
{c2,N (γ)}∞N=1 of smooth curves of the right half-interval 0 < γ − γ(ε) < δ(ε)
such that (1.1) has an N -back wave of speed c2,N (γ) for γ in this half-interval
for every N = 1, 2, . . ..

3. There is a smooth curve c1,∞(γ) of the left half-interval 0 < γ(ε)− γ < δ(ε)
such that (1.1) has an impulse wave to a1 with speed c1,∞(γ). Similarly, there
is a smooth curve c2,∞(γ) of the right half-interval 0 < γ − γ(ε) < δ(ε) such
that (1.1) has an impulse wave to a2 with speed c2,∞(γ).

4. The simple front and back wave curves ci,0(γ) intersect transversely at γ(ε).
The intersection point (γ(ε), c(ε)) is smooth in ε. At ε = 0, c(0) > 0. More-
over, the sequence {ci,N (γ)} is monotone decreasing in N = 1, 2, . . . and
converges to the corresponding impulse curve ci,∞(γ) as N → ∞ for each
i = 1, 2 and fixed ε > 0 and γ.

(See Figure 2.1.)

Remark 2.1. This result is proven in Deng [7] for cubic nonlinearity f(u) =
u(u − a)(1 − u) for (1.1); the proof given there, however, is valid for f(u), which is
not necessarily cubic. The condition 0 < a < 1

2 in [7] corresponds to the condition∫ 1

0
f(u)du > 0 in this paper.

We need more detailed information about the heteroclinic orbit of (1.6) corre-
sponding to the 1-front wave around equilibria.

In what follows, we assume that the system (1.6) is linear in some small neigh-
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Fig. 2.1. The bifurcation diagram of the travelling N-front (back) wave solutions.

borhood of equilibria ai (i = 1, 2). This assumption can be satisfied for strictly cubic
nonlinearity for suitable parameter values. In fact, the following holds.

Proposition 2.2. Let f(u) = u(u− a)(1− u); then there are uncountably many
pairs of (a, ε) (0 < a < 1

2 , 0 < ε < ε0) such that for all r there is a neighborhood N of
(γ(ε), c(ε)) in the γ–c plane depending on a, ε, and r which has the following property.
There are small neighborhoods of equilibria ai in which (1.6) can be transformed into
a linear system by a local Cr-coordinate change in the neighborhoods.

The proof shall be given in the Appendix.
Through suitable local coordinate changes, let us assume that in some neighbor-

hood of each equilibrium ai the system (1.6) is expressed in the form

z′i = Di(µ)zi,(2.1)

where zi = (z
(1)
i , z

(2)
i , z

(3)
i ) and

Di(µ) =

 λi,u(µ) 0 0
0 −λi,s(µ) 0
0 0 −λi,ss(µ)

 ,

with −λi,ss(µ) < −λi,s(µ) < 0 < λi,u(µ). Moreover, the cube maxk=1,2,3 |z(k)
i | ≤ 1

is assumed to be in each neighborhood, and the orientation of axes is chosen so that

{zi|z(1)
i > 0, z

(2)
i = 0, z

(3)
i = 0} ⊂ {z∗i (ξ)|ξ ∈ R} and {zi|z(1)

i = 0, z
(2)
i > 0, z

(3)
i = 0} ⊂

{z∗j (ξ)|ξ ∈ R} (i 6= j) holds for (γ, c) = (γ(ε), c(ε)).
With this coordinate in z and through a suitable analytic transformation in the

p component, (1.16) is written as{
z′i = Di(µ)zi,
p′i = Ai(λ, µ)pi

(2.2)
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for small |λ|, where pi = (p
(1)
i , p

(2)
i , p

(3)
i ) and

Ai(λ, µ) =

 νi,u(λ, µ) 0 0
0 −νi,s(λ, µ) 0
0 0 −νi,ss(λ, µ)

 ,

with νi,∗(0, µ) = λi,∗(µ) (∗ = u, s, ss). The projectivized version of this system shall
be denoted by {

z′i = Di(µ)zi,

p̂′i = Âi(p̂i;λ, µ).
(2.3)

A solution of (2.2) with initial condition (zi, pi) = (δ, 1, δ̄, p(1), p(2), p(3))
(0 < δ, δ̄ < 1) hits (1, δΛi,s , δ̄δΛi,ss , p(1)δ−(νi,u/λi,u), p(2)δνi,s/λi,u , p(3)δνi,ss/λi,u), where

Λi,s =
λi,s
λi,u

and Λi,ss =
λi,ss
λi,u

. As for (2.3), we employ inhomogeneous coordinates

on CP2. More precisely, the initial point (zi, p̂i) = (δ, 1, δ̄, [p
(1)
i : p

(2)
i : p(3)]) in ho-

mogeneous coordinates shall be expressed as (δ, 1, δ̄,
p

(1)
i

p
(2)
i

,
p

(3)
i

p
(2)
i

), whereas the end point

(1, δΛi,s , δ̄δΛi,ss , [p
(1)
i δ−(νi,u/λi,u) : p

(2)
i δνi,s/λi,u : p

(3)
i δνi,ss/λi,u ]) shall be denoted by

(1, δΛi,s , δ̄δΛi,ss , p
(2)

p(1) δ
1+Λ̂i,s , p

(3)

p(1) δ
1+Λ̂i,ss). Notice that the two expressions above are

based on different coordinates for the CP2 component. Here, Λ̂i,s =
νi,s+νi,u−λi,u

λi,u

and Λ̂i,ss =
νi,ss+νi,u−λi,u

λi,u
, which coincide with Λi,s and Λi,ss for λ = 0, and thus

Λi,s < Λi,ss and 0 < Λi,s < 1 for small λ for small ε. We restate this calculation as a
lemma.

Lemma 2.1. The solution of (2.3) with initial condition (z,
p

(1)
i

p
(2)
i

,
p

(3)
i

p
(2)
i

) = (δ, 1, δ̄, π1, π3)

reaches (z,
p

(2)
i

p
(1)
i

,
p

(3)
i

p
(1)
i

) = (1, δΛi,s , δ̄δΛi,ss , 1
π1
δ1+Λ̂i,s , π3

π1
δ1+Λ̂i,ss).

Next, we consider connections between a1 and a2.
Let Σi,s and Σi,u be the local sections near ai defined as

Σi,s :=
{
z

(2)
i = 1,max{|z(1)

i |, |z
(3)
i |} ≤ 1

}
,

Σi,u :=
{
z

(1)
i = 1,max{|z(2)

i |, |z
(3)
i |} ≤ 1

}
,

(2.4)

and let

Πi : Σi,s → Σi,u : (z
(2)
i , z

(3)
i ) =

(
Π

(2)
i (z

(1)
i , z

(3)
i ),Π

(3)
i (z

(1)
i , z

(3)
i )
)
,

Πi,j : Σi,u → Σj,s : (z
(1)
j , z

(3)
j ) =

(
Π

(1)
i,j (z

(2)
i , z

(3)
i ),Π

(3)
i,j (z

(2)
i , z

(3)
i )
)(2.5)

be the Poincaré maps between them, where (i, j) = (1, 2) or (2, 1). (See Figure 2.2.)
By Proposition 2.1, the system (1.6) has heteroclinic solutions z∗1(ξ) from a1 to

a2 and z∗2(ξ) from a2 to a1 for µ = (γ(ε), c(ε); ε), which means

Π
(1)
i,j (0, 0; γ(ε), c(ε); ε) = 0 for (i, j) = (1, 2), (2, 1).(2.6)

The twisting condition of the heteroclinic loop in Deng [6], [7] is equivalent to the
inequality

∂Π
(1)
i,j

∂z
(2)
i

(0, 0; γ(ε), c(ε); ε) < 0.(2.7)
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Fig. 2.2. The local sections and Poincaré maps.

The following transversality condition was also proven in Deng [7]:(
∂Π

(1)
i,j

∂γ
(0, 0),

∂Π
(1)
i,j

∂c
(0, 0)

)
6= (0, 0) ((i, j) = (1, 2) or (2, 1), ε > 0) .(2.8)

Moreover, (
∂Π

(1)
1,2

∂γ (0, 0),
∂Π

(1)
1,2

∂c (0, 0)) and (
∂Π

(1)
2,1

∂γ (0, 0),
∂Π

(1)
2,1

∂c (0, 0)) are linearly indepen-

dent, and thus we can employ (Π
(1)
1,2(0, 0),Π

(1)
2,1(0, 0)) as parameters instead of (γ, c)

near (γ, c) = (γ(ε), c(ε)). In what follows, we shall write (Π
(1)
2,1(0, 0),Π

(1)
1,2(0, 0)) =

(δ1, δ2) and regard ε > 0 as a fixed constant. Then, for zi and δi small, Πi and Πi,j

are written as(
Π

(2)
i (z

(1)
i , z

(3)
i ),Π

(3)
i (z

(1)
i , z

(3)
i )
)

=

({
z

(1)
i

}Λi,s
, z

(3)
i

{
z

(1)
i

}Λi,ss
)

(2.9)

and (
Π

(1)
i,j (z

(2)
i , z

(3)
i ; δ1, δ2)

Π
(3)
i,j (z

(2)
i , z

(3)
i ; δ1, δ2)

)
=

(
d

(1)
j z

(2)
i + d̄

(1)
j z

(3)
i + δj

d
(3)
j z

(2)
i + d̄

(3)
j z

(3)
i + e1

jδ1 + e2
jδ2

)
+(higher order terms),

(2.10)
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where d
(k)
j =

∂Π
(k)
i,j

∂z
(2)
i

(0, 0; 0, 0), d̄
(k)
j =

∂Π
(k)
i,j

∂z
(3)
i

(0, 0; 0, 0), and elj =
∂Π

(3)
i,j

∂δl
(0, 0; 0, 0).

The existence of a 1-heteroclinic solution from a1 to a2 is expressed as

Π
(1)
1,2(0, 0) > 0, Π

(1)
2,1 ◦Π2 ◦Π1,2(0, 0) > 0,

Π
(1)
1,2 ◦Π1 ◦Π2,1 ◦Π2 ◦Π1,2(0, 0) = 0.

(2.11)

Put (δ
(1)
1 , δ

(3)
1 ) := Π2,1 ◦Π2 ◦Π1,2(0, 0); then

Π1(δ
(1)
1 , δ

(3)
1 ) =

({
δ

(1)
1

}Λ1,s

, δ
(3)
1

{
δ

(1)
1

}Λ1,ss
)

(2.12)

and

Π
(1)
1,2 ◦Π1

(
δ

(1)
1 , δ

(3)
1

)
=

{
δ

(1)
1

}Λ1,s
(
d

(1)
2 + d̄

(1)
2 δ

(3)
1

{
δ

(1)
1

}Λ1,ss−Λ1,s
)

+ o

({
δ

(1)
1

}Λ1,s
)

+ δ2 + o (δ2) ,
(2.13)

so the last equation of (2.11) is{
δ

(1)
1

}Λ1,s
(
d

(1)
2 + d̄

(1)
2 δ

(3)
1

{
δ

(1)
1

}Λ1,ss−Λ1,s
)

+o

({
δ

(1)
1

}Λ1,s
)

+ δ2 + o (δ2) = 0.
(2.14)

By (2.10) we have the following expressions:

δ
(1)
1 = d

(1)
1 δ

Λ2,s

2 + d̄
(1)
1

(
e1

2δ1 + e2
2δ2
)
δ

Λ2,ss

2 + δ1

+higher order terms,

δ
(3)
1 = d

(3)
1 δ

Λ2,s

2 + d̄
(3)
1

(
e1

2δ1 + e2
2δ2
)
δ

Λ2,ss

2 + e1
1δ1 + e2

1δ2

+higher order terms.

(2.15)

Here, the bifurcation curve {(γ, c1,1(γ))} is expressed as δ1 = het1(δ2) with a smooth
function het1: (0,∆2)→ (0,∆1) in the (δ1, δ2)-coordinates for some (∆1,∆2 > 0), and
this function satisfies

lim
δ2↓0

het1(δ2) = 0.(2.16)

Therefore, δ
(1)
1 , δ

(1)
2 → 0 as δ2 → 0. Then, (2.14) means{

δ
(1)
1

}Λ1,s

δ2
(1 + o(1)) +

1

d
(1)
2

= o(1) (δ2 → 0),(2.17)

i.e., {
δ

(1)
1

}Λ1,s

δ2
→ 1

−d(1)
2

as δ2 → 0.(2.18)

Thus the following holds.
Lemma 2.2.

δ
(1)
1 =

(
δ2

−d(1)
2

) 1
Λ1,s

+ o

(
δ

1
Λ1,s

2

)
.(2.19)
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Fig. 3.1. The orbit of z(ξ; γ, c).

3. λ-dependence of the eigenvalue system. In this section, we investigate
λ-dependence of the eigenvalue system (1.17).

Let us assume that the system (1.6) has a heteroclinic orbit from ai to aj (i 6= j)
for (γ, c) = (γ0, c0), and let zi(ξ; γ0, c0) = (u(ξ; γ0, c0), v(ξ; γ0, c0), w(ξ; γ0, c0)) be the
solution with initial condition zi(0; γ0, c0) ∈ Σj,s, or equivalently, {zi(0; γ0, c0)} =
Σj,s ∩Wu(ai, γ0, c0), where Wu(ai, γ0, c0) is the unstable manifold of the equilibrium
ai. Similarly, let z(ξ; γ, c) be the solution of (1.6) with initial condition {z(0; γ, c)} =
Σj,s ∩ Wu(ai, γ, c) for (γ, c) near (γ0, c0); then z(ξ; γ, c) is smooth in γ and c and
coincides with zi(ξ; γ0, c0) for (γ, c) = (γ0, c0). (See Figure 3.1.)

By differentiating (1.6) in c at (γ, c) = (γ0, c0), ∂zi
∂c =: zic = (uc, vc, wc) satisfies

u′c = vc,
v′c = v − c0vc −Df (u(ξ))uc + wc,
w′c = ε

c0
(uc − γ0wc)− 1

c0
w′,

(3.1)

where (u, v, w) = (u(ξ; γ0, c0), v(ξ; γ0, c0), w(ξ; γ0, c0)) and w′ = dw
dξ .

Next consider the restriction of (1.16) to R3 × R3 for (γ, c) = (γ0, c0). The
equilibrium (ai, 0) of (1.16) has two-dimensional unstable manifold W̃u(ai, λ, γ0, c0),
and W̃u(ai, λ, γ0, c0)∩

(
{zi(0, γ0, c0)} × R3

)
is a one-dimensional subspace of R3. For

λ = 0, (z(0; γ0, c0), zξ(0; γ0, c0)) ∈ W̃u(ai, 0, γ0, c0)∩
(
{z(0, γ0, c0)} × R3

)
, where zξ =



STABILITY OF TRAVELLING MULTIPLE-FRONT WAVE SOLUTIONS 1105

dz
dξ . Let (z(ξ; γ0, c0), pi(ξ;λ, γ0, c0)) be the solution of (1.16) with initial condition

(z(0), p(0)) = W̃u(ai, λ, γ0, c0) ∩
(
{z(0, γ0, c0)} × R3

)
∩ {|p| = |zξ(0)|} ;

then pi(ξ;λ, γ0, c0) coincides with zξ(ξ; γ0, c0) for λ = 0 and is smooth in small λ.
This pi(ξ;λ, γ0, c0) satisfies (1.13), and by differentiating (1.13) with respect to λ at
λ = 0, ∂pi

∂λ =: piλ = (Pλ, Qλ, Rλ) satisfies the following equations:
P ′λ = Qλ,
Q′λ = c0Qλ −Df (u(ξ))Pλ +Rλ + P,
R′λ = ε

c0
(Pλ − γ0Rλ)− 1

c0
R′,

(3.2)

where (P,Q,R) = pi(ξ; 0, γ0, c0) = zξ(ξ; γ0, c0) = (u′, v′, w′). Subtracting (3.1) from
(3.2), we have

(Pλ − uc)′ = (Qλ − vc),
(Qλ − vc)′ = c0(Qλ − vc)−Df (u(ξ)) (Pλ − uc) + (Rλ − wc),
(Rλ − wc)′ = ε

c0
((Pλ − uc)− γ0(Rλ − wc)) ,

(3.3)

as P = u′ = v and R = w′. That is, piλ(ξ; 0, γ0, c0) − zc(ξ; γ0, c0) satisfies the
eigenvalue equations (1.13) for λ = 0. Because piλ, zc → 0 as ξ → −∞, we have the
next lemma.

Lemma 3.1. There exists a constant α so that

piλ(ξ; 0, γ0, c0) = zc(ξ; γ0, c0) + αziξ(ξ; γ0, c0).

Similarly, let (zi(ξ; γ0, c0), qi(ξ;λ, γ0, c0)) be the solution of (2.2) (see (1.16)) with
initial condition

(z(0), q(0)) = W̃ s(aj , λ, γ0, c0)∩
(
{zi(0, γ0, c0)} × R3

)
∩
{
p

(2)
j = z

(2)
iξ (0), p

(3)
j = z

(3)
iξ (0)

}
,

where W̃ s(aj , λ, γ0, c0) is the stable manifold of the equilibrium (aj , 0) of (2.2) and

the pi component of (2.2) is written as pi = (p
(1)
i , p

(2)
i , p

(3)
i ) ∈ R3. Then qi(ξ;λ, γ0, c0)

coincides with ziξ(ξ; γ0, c0) for λ = 0 and is smooth in small λ. Through a similar
argument as above, we have the following as z(ξ; γ, c) with initial condition z(0; γ, c) ≡
zi(0; γ0, c0) in the zj coordinate of (2.2) is a smooth extension of zi(ξ; γ0, c0) in the
stable manifold W s(aj , γ, c).

Lemma 3.2.

(zi(ξ; γ0, c0), qiλ(ξ; 0, γ0, c0)) ∈ W̃ s(aj , 0, γ0, c0).

From now on, we consider the projectivized version of eigenvalue systems (1.17)
and (2.3).

At first we only consider real λ and consider the system (1.17) as the system
on R3 × RP2. Let Σ̂i,s and Σ̂i,u be local sections defined by Σ̂i,s := Σi,s × RP2,

Σ̂i,u := Σi,u × RP2, and let

Π̂i : Σ̂i,s → Σ̂i,u

: (z
(2)
i , z

(3)
i ,

p
(2)
i

p
(1)
i

,
p

(3)
i

p
(1)
i

) =
(

Π
(2)
i (zi),Π

(3)
i (zi), Π̂

(2)
i (zi, pi), Π̂

(3)
i (zi, pi)

)
,

Π̂i,j : Σ̂i,u → Σ̂j,s

: (z
(1)
j , z

(3)
j ,

p
(1)
j

p
(2)
j

,
p

(3)
j

p
(2)
j

) =
(

Π
(1)
i,j (zi),Π

(3)
i,j (zi), Π̂

(1)
i,j (zi, pi), Π̂

(3)
i,j (zi, pi)

)(3.4)
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be Poincaré maps between them. Then, from Lemma 2.1,

Π̂i(z
(1)
i , z

(3)
i , π1, π3)

=

({
z

(1)
i

}Λi,s
, z

(3)
i {zi(1)}Λi,ss , 1

π1

{
z

(1)
i

}1+Λ̂i,s
, π3

π1

{
z

(1)
i

}1+Λ̂i,ss
)
.

(3.5)

As for Π̂i,j , the following holds.
Lemma 3.3.

Π̂
(1)
i,j (0, 0; 0) = 0,

∂Π̂
(1)
i,j

∂π2
(0, 0; 0) > 0, and

∂Π̂
(1)
i,j

∂λ
(0, 0; 0) > 0,(3.6)

where (zi, π;λ) = (z
(2)
i , z

(3)
i , π2 =

p
(2)
i

p
(1)
i

, π3 =
p

(3)
i

p
(1)
i

;λ).

Proof. The first equality is obvious from the definition. As for the second inequal-
ity, it is easy to see that

∂Π̂
(1)
i,j

∂π2
(0, 0; 0) = −λi,u

λj,s

∂Π
(1)
i,j

∂z
(2)
i

(0, 0);

thus the inequality follows from inequality (2.7).
A proof of the last inequality shall be given below.
Let

pi(ξ, λ, γ0, c0) =
(
p

(1)
i (ξ, λ), p

(2)
i (ξ, λ), p

(3)
i (ξ, λ)

)
and

qi(ξ, λ, γ0, c0) =
(
q

(1)
i (ξ, λ), q

(2)
i (ξ, λ), q

(3)
i (ξ, λ)

)
.

Then,

∂p
(1)
i

∂λ
(0, λ) = z

(1)
ic ,(3.7)

from Lemma 3.1, as z
(1)
iξ (0) = 0. Thus,

∂Π̂
(1)
i,j

∂λ (0, 0; 0) = ∂
∂λ

{
p

(1)
i

(0,λ)

p
(2)
i

(0,λ)

}∣∣∣∣
λ=0

=
p

(1)

iλ

p
(2)
i

∣∣∣∣
λ=0

− p
(1)
i
p

(2)

iλ{
p

(2)
i

}2

∣∣∣∣∣
λ=0

=
z

(1)
ic

(0)

p
(2)
i

(0,0)
(as p

(1)
i (0, 0) = 0)

= − z
(1)
ic

(0)

λj,s
(as p

(2)
i (0, 0) = z

(2)
iξ (0) = −λi,s).

(3.8)

The last expression is not zero from the transversality condition (2.8) and the fact
that the bifurcation curve is expressed as the graph of a smooth function c1,1(γ).
Moreover, the bifurcation diagram (Figure 1.2) shows that it is positive.
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4. The eigenvalue equation. With Π̂i and Π̂i,j , the condition for λ being an
eigenvalue is expressed as follows.

Lemma 4.1.

E(λ) := Π̂
(1)
1,2 ◦ Π̂1 ◦ Π̂2,1 ◦ Π̂2 ◦ Π̂1,2(0, 0;λ) = 0(4.1)

if and only if λ is an eigenvalue of the linearization operator L along the travelling
1-front wave solution corresponding to the 1-heteroclinic solution from a1 to a2.

Proof. E(λ) corresponds to the p(1) component of the intersection W̃u(a1, λ, γ, c)∩
Σ̂2,s, and this is zero if and only if W̃u(a1, λ, γ, c) ⊂ W̃ s(a2, λ, γ, c). Thus E(λ) = 0 if
and only if (1.16) has a bounded solution for the p component along the 1-heteroclinic
solution for the z component. This means the lemma holds.

Let us calculate the leading terms of E(λ). For later use, let λ̃ = λ
δ2

and expand

E(λ) in λ̃.

First, notice that Π̂
(1)
1,2(0, 0; 0) = − δ2

Λ2,s
, as Π

(1)
1,2(0, 0) = δ2 and Π̂1,2(0, 0; 0) cor-

responds to the tangent vector for the 1-heteroclinic solution z1(ξ) at z1(ξ) ∈ Σ2,s.

Similarly, Π̂
(3)
1,2(0, 0; 0) = fδ2 +O(δ2), where f =

∂Π̂
(3)
1,2

∂δ2
(0, 0; 0). Thus(

Π̂
(1)
1,2(0, 0; δ2λ̃)

Π̂
(3)
1,2(0, 0; δ2λ̃)

)
=

(
c
(1)
2 δ2λ̃− δ2

Λ2,s
+O(δ2

2 λ̃
2)

fδ2 + c
(3)
2 δ2λ̃+O(δ2

2 , δ
2
2 λ̃

2)

)
(4.2)

where c
(k)
j =

∂Π̂
(k)
i,j

∂λ (0, 0; 0). Then,

(
Π̂

(2)
2 ◦ Π̂1,2(0, 0; δ2λ̃)

Π̂
(3)
2 ◦ Π̂1,2(0, 0; δ2λ̃)

)
=


δ
Λ̂2,s
2

c
(1)
2 λ̃− 1

Λ2,s
+O(δ2λ̃2)

c
(3)
2 λ̃+f+O(δ2,δ2λ̃

2)

c
(1)
2 λ̃− 1

Λ2,s
+O(δ2λ̃2)

δ
1+Λ̂2,ss

2

 .(4.3)

Similarly,

Π̂
(1)
2,1 ◦ Π̂2 ◦ Π̂1,2(0, 0; 0) = − δ

(1)
1

Λ1,s
,(4.4)

Π̂
(1)
2,1 ◦ Π̂2 ◦ Π̂1,2(0, 0; δ2λ̃)

= − δ
(1)
1

Λ1,s
+ c

(1)
1 λ̃+ d̂

(1)
1

{
Π̂

(2)
2 ◦ Π̂1,2(0, 0; δ2λ̃)− Π̂

(2)
2 ◦ Π̂1,2(0, 0; 0)

}
+ê

(1)
1

{
Π̂

(3)
2 ◦ Π̂1,2(0, 0; δ2λ̃)− Π̂

(3)
2 ◦ Π̂1,2(0, 0; 0)

}
+O(δ2

2 λ̃
2, δ2Λ̂2,s , δ

2+2Λ̂2,ss

2 , δ
1+Λ̂2,s

2 λ̃, δ
2+Λ2,ss

2 λ̃)

= − 1
Λ1,s

(
δ2
−d(1)

2

) 1
Λ1,s

+ c
(1)
1 δ2λ̃+

d̂
(1)
1 δ

Λ̂2,s
2

c
(1)
2 λ̃− 1

Λ2,s
+O(δ2λ̃2)

+ d̂
(1)
1 Λ2,sδ

Λ2,s

2

+O
(
δ

min{2Λ̂2,s,1}
2

)
,

(4.5)

where d̂
(k)
j =

∂Π̂
(k)
i,j

∂π2
(0, 0; 0) and ê

(k)
j =

∂Π̂
(k)
i,j

∂π3
(0, 0; 0), and

Π̂
(3)
2,1 ◦ Π̂2 ◦ Π̂1,2(0, 0; 0) = o(1) (δ2 → 0),(4.6)
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Π̂
(3)
2,1 ◦ Π̂2 ◦ Π̂1,2(0, 0; δ2λ̃) = o(1) (δ2 → 0).(4.7)

This means the following.

Π̂
(1)
1 ◦ Π̂2,1 ◦ Π̂2 ◦ Π̂1,2(0, 0; δ2λ̃)

=

{
δ
(1)
1

}1+Λ̂1,s

− 1
Λ1,s

(
δ2

−d(1)
2

) 1
Λ1,s

+c
(1)
1 δ2λ̃+

d̂
(1)
1

δ
Λ̂2,s
2

c
(1)
2

λ̃− 1
Λ2,s

+O(δ2λ̃
2)

+d̂
(1)
1 Λ2,sδ

Λ2,s
2 +O

(
δ
min{2Λ̂2,s,1}
2

)

=

(
c
(1)
2 λ̃− 1

Λ2,s
+O(δ2λ̃

2)
){(

δ2

−d(1)
2

) 1
Λ1,s

+O

(
δ

1
Λ1,s

+∆

2

)}1+Λ̂1,s

{
c
(1)
1 δ2λ̃+d̂

(1)
1 Λ2,sδ

Λ2,s
2 +O

(
δ
min{2Λ̂2,s,1}
2

)}(
c
(1)
2 λ̃− 1

Λ2,s
+O(δ2λ̃2)

)
+d̂

(1)
1 δ

Λ̂2,s
2

=

(
c
(1)
2 λ̃− 1

Λ2,s
+o(1)

)(
1

−d(1)
2

) 1+Λ̂1,s
Λ1,s

δ

1+Λ̂1,s
Λ1,s

−Λ2,s

2 (1+o(1)){
d̂

(1)
1 Λ2,s+o(1)

}(
c
(1)
2 λ̃− 1

Λ2,s
+o(1)

)
+d̂

(1)
1

as δ2 → 0.

(4.8)

Finally,

E(δ2λ̃) = c
(1)
2 δ2λ̃

+d̂
(1)
2

(
Π̂

(1)
1 ◦ Π̂2,1 ◦ Π̂2 ◦ Π̂1,2(0, 0; δ2λ̃)− Π̂

(1)
1 ◦ Π̂2,1 ◦ Π̂2 ◦ Π̂1,2(0, 0; 0)

)
+ê

(1)
2

(
Π̂

(3)
1 ◦ Π̂2,1 ◦ Π̂2 ◦ Π̂1,2(0, 0; δ2λ̃)− Π̂

(3)
1 ◦ Π̂2,1 ◦ Π̂2 ◦ Π̂1,2(0, 0; 0)

)
+O

(
δ2
2

)

= c
(1)
2 δ2λ̃

+d̂
(1)
2

(
c
(1)
2 λ̃− 1

Λ2,s
+o(1)

)(
1

−d(1)
2

) 1+Λ̂1,s
Λ1,s

δ

1+Λ̂1,s
Λ1,s

−Λ2,s

2 (1+o(1)){
d̂

(1)
1 Λ2,s+o(1)

}(
c
(1)
2 λ̃− 1

Λ2,s
+o(1)

)
+d̂

(1)
1

+d̂
(1)
2

Λ1,sδ2

−d(1)
2

+ê
(1)
2 Π̂

(3)
2,1 ◦ Π̂2 ◦ Π̂1,2(0, 0; δ2λ̃)

×

(
c
(1)
2 λ̃− 1

Λ2,s
+o(1)

)(
1

−d(1)
2

) 1+Λ̂1,ss
Λ1,s

δ

1+Λ̂1,ss
Λ1,s

−Λ2,s

2 (1+o(1)){
d̂

(1)
1 Λ2,s+o(1)

}(
c
(1)
2 λ̃− 1

Λ2,s
+o(1)

)
+d̂

(1)
1

+ê
(1)
2 Λ1,s

(
δ2
−d(1)

2

)1+
Λ̂1,ss−Λ̂1,s

Λ1,s
(1 + o(1))

+O
(
δ2
2

)

(4.9)
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as E(0) = 0 and

Π̂
(3)
1 ◦ Π̂2,1 ◦ Π̂2 ◦ Π̂1,2(0, 0; ∗)

= Π̂
(3)
2,1 ◦ Π̂2 ◦ Π̂1,2(0, 0; ∗)× Π̂

(1)
1 ◦ Π̂2,1 ◦ Π̂2 ◦ Π̂1,2(0, 0; ∗)

×
(
δ

(1)
1

)Λ̂1,ss−Λ̂1,s

.

(4.10)

5. Proof of the theorem. In this section we prove the following theorem.
Theorem. Assume that the system (1.6) is Cr-diffeomorphic (r ≥ 2) to linear

systems in some neighborhoods of equilibria ai, and ε is small; then the travelling
1-front (back) wave solution of FitzHugh–Nagumo equations (1.1) bifurcating from
simple front and back travelling wave solutions is stable.

We give the proof for the 1-front wave; the proof for the 1-back wave is similar.
First, let L be the linearization operator with respect to the 1-front wave solution

z1(ξ); then we have the following for spectrum σ(L) of L.
Proposition 5.1. For some negative constant β,

] (σ(L) ∩ {λ|Reλ > β}) = 3,(5.1)

counting their multiplicity.
Proof. Let z∗1(ξ) be the simple front wave and z∗2(ξ) be the simple back wave, and

let Li (i = 1, 2) be the linearization operator with respect to them. Then it is well
known (see Evans [8] or Jones [11]) that there exists a negative constant β so that
σ(L)∩{λ|Reλ > β} and σ(Li)∩{λ|Reλ > β} consist of isolated eigenvalues with finite
multiplicity. Moreover, this β can be chosen so that σ(Li)∩{λ|Reλ > β} = {0} holds
(see Yanagida [17]). Thus, simply applying the additive formula for eigenvalues (see
Alexander and Jones [2] or Nii [12]), we conclude that ] (σ(L) ∩ {λ|Reλ > β}) = 3 for
the 1-front wave.

Proposition 5.2. L has even eigenvalues with positive real part.
Proof. First, we remark that if L has an eigenvalue which is not real, then L also

has an eigenvalue which is complex conjugate to it.
Let Ev(λ) be the Evans function for the 1-front wave z1(ξ); i.e.,

Ev(λ) = det (p1(ξ;λ)p2(ξ;λ)p3(ξ;λ))|ξ=0 ,

where p1(ξ;λ) is a solution of (1.13) along z1(ξ) which is bounded as ξ → −∞, and
p2(ξ;λ) and p3(ξ;λ) are solutions which are bounded as ξ → +∞. This function is
analytic in λ and vanishes at the eigenvalues of L, and each order of each vanishing
point is equal to the multiplicity of the eigenvalue. See Alexander, Gardner, and
Jones [1] for more detail. If we choose p1 and p2 so that p1(ξ; 0) = p2(ξ; 0) = z1ξ(ξ)
then, by Lemmas 3.1 and 3.2, the derivative of Ev(λ) with respect to λ at λ = 0 is
expressed as follows:

∂Ev
∂λ (0) = det ((p1λ(ξ; 0)− p2λ(ξ; 0)) z1ξ(ξ)p3(ξ; 0))|ξ=0

= det (z1c(ξ)z1ξ(ξ)p3(ξ; 0))|ξ=0 .
(5.2)

The same expression holds for the Evans function Ev∗(λ) corresponding to the simple
front z∗1(ξ). Moreover, z1(ξ) and z∗1(ξ) can be taken so that z1c(0) and z∗1c(0), z1ξ(0)
and z∗1ξ(0), and p3(0;λ) for both cases coincide in the limit of (γ, c)→ (γ0, c0). Thus

the signs of ∂Ev
∂λ (0) and ∂Ev∗

∂λ (0) agree.
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Here if Ev and Ev∗ are normalized so that they are positive for large λ, then
∂Ev∗
∂λ (0) > 0 because the simple front is stable (Yanagida [17]) and Ev∗(λ) does not

vanish for λ > 0. This means ∂Ev
∂λ (0) > 0, so Ev(λ) = 0 for even λ > 0; thus the

proposition holds.
By the propositions above, for proof of the stability, it suffices to find one eigen-

value with negative real part which is near 0. This is achieved by proving existence
of a negative solution of (4.1).

First, the right-hand side of (4.3) tends to zero as δ2 tends to zero, provided that
λ̃ is negative. Similarly, the last expression of (4.8) converges to zero uniformly in
λ̃ < −λ̃0 for arbitrary small λ̃0 > 0, and at the same time

Π̂
(1)
1 ◦ Π̂2,1 ◦ Π̂2 ◦ Π̂1,2(0, 0; 0)→ 0 (δ2 → 0).(5.3)

Therefore, the expansion (4.5) and (4.8) is valid for λ̃ < −λ̃0 when δ2 tends to zero.
Here, (4.9) implies

E(δ2λ̃) = c
(1)
2 δ2λ̃+ d̂

(1)
2

Λ1,sδ2

−d(1)
2

+ o(δ2) (δ2 → 0).(5.4)

Thus

1

δ2
E(δ2λ̃)→ c

(1)
2 λ̃− d̂

(1)
2

d
(1)
2

Λ1,s as δ2 → 0.(5.5)

This means 1
δ2
E(δ2λ̃) = 0 has a solution λ̃ = d̂

(1)
2 Λ1,s/d

(1)
2 c

(1)
2 +O(δ2) for small δ2 > 0;

i.e., E(λ) = 0 has a solution λ = (d̂
(1)
2 Λ1,s/d

(1)
2 c

(1)
2 )δ2 + o(δ2). By the inequality (2.7)

and Lemma 3.3, c
(1)
2 > 0, d

(1)
2 < 0, and d̂

(1)
2 > 0, so this solution is negative. As a

result, the 1-front wave solution is stable by the argument above. This completes the
proof of the theorem.

Appendix. Proof of Proposition 2.2. Let V(n) be the vector space of germs
of the C∞-vector fields at 0 in Rn and let E(n) be the algebra of C∞-germs of functions
on Rn at 0. The maximal ideal of E(n) generated by arbitrary C∞-functions f1, . . . , fk
shall be denoted byM(f1, . . . , fk), and a subspace V(n; s) of V(n+s) shall be defined
by

V(n; s) =M(x1, . . . , xn)span

{
∂

∂x1
, . . . ,

∂

∂xn

}
.(A.1)

For the sake of convenience we write the coordinate of Rn+s as x1, . . . , xn, y1, . . . , ys.
The vector field pr1 ◦X(x, y) is expressed as Xy for a given vector field X ∈ V(n; s),
where pr1 is the projection onto the first n coordinates. Hence Xy ∈ V(n) for every
y ∈ Rs sufficiently small.

Let λ1(y), . . . , λn(y) be the eigenvalues of DXy(0) and assume that Reλi > 0 for
i = 1, . . . , p and Reλi < 0 for i = p+ 1, . . . , n.

We introduce two constants depending on eigenvalues:

A+ =
max

p+1≤i≤n
|Reλi(0)|

min
1≤i≤p

|Reλi(0)| ,

A− =
max

1≤i≤p
|Reλi(0)|

min
p+1≤i≤n

|Reλi(0)| ,

(A.2)



STABILITY OF TRAVELLING MULTIPLE-FRONT WAVE SOLUTIONS 1111

and let k± be two integers which satisfy the condition below for some integer r:

k± > r(1 +A±).(A.3)

Then, the following holds.
Proposition A.1 (Rychlic [14]). Let X ∈ V(n; s) and k = k+ + k−, and let X ′

be the Taylor expansion of X of degree k − 1. Then X and X ′ are Cr-equivalent.
By this proposition X can be linearized through a Cr-coordinate change if the

Taylor expansion of X vanishes up to degree k − 1.
Here, by the Poincaré–Dulac theorem (see, for example, Arnol’d [4]), this can be

achieved through polynomial transformation provided that {λ1(y), . . . , λn(y)} satisfies
nonresonant condition up to order k−1. Thus the proof of the Proposition 2.2 amounts
to the proof the following lemma.

Lemma A.1. There are uncountably many pairs of (a, ε) (0 < a < 1
2 , 0 < ε < ε0)

such that for all k > 0, {λi,u(µ),−λi,s(µ),−λi,ss(µ)} satisfies a nonresonant condition
up to order k for µ = (γ(ε), c(ε), ε) and (i = 1, 2).

Proof. The bifurcation point (γ(ε), c(ε)) in the γ–c plane is smooth in ε and thus
λi,u (γ(ε), c(ε), ε) ,−λi,s (γ(ε), c(ε), ε) ,−λi,ss (γ(ε), c(ε), ε) (i = 1, 2) are also smooth
in ε. Moreover, λi,u (γ(0), c(0), 0) = 1√

2
, −λi,s (γ(0), c(0), 0) = 0, −λi,ss (γ(0), c(0), 0) =

−
√

2a (i = 1, 2), and −λi,s (γ(ε), c(ε), ε) < 0 for small ε > 0.
Notice that the system (1.6) is symmetric with respect to the coordinate change

(u, v, w) 7→
(
−u+

2(a+ 1)

3
,−v,−w +

2(2− a)(1− 2a)(a+ 1)

27

)
(A.4)

for γ = 9
(2−a)(1−2a) = γ(0) for any ε > 0. Then γ(ε) = γ(0) for ε > 0 as (γ(ε), c(ε))

is the only parameter value at which z∗1(ξ) and z∗2(ξ) coexist. Thus λ1,u = λ2,u,
−λ1,s = −λ2,s, and −λ1,ss = −λ2,ss holds for (γ(ε), c(ε)) because of the symmetry.

For each m = (mu,ms,mss) ∈ Z3 (m∗ ≥ 0, mu + ms + mss ≥ 2), let Ium be a
union of intervals such that ε ∈ Ium if and only if

λi,u = muλi,u +ms (−λi,s) +mss (−λi,ss) .(A.5)

Similarly, ε ∈ Ism if and only if

−λi,s = muλi,u +ms (−λi,s) +mss (−λi,ss)(A.6)

and ε ∈ Issm if and only if

−λi,ss = muλi,u +ms (−λi,s) +mss (−λi,ss)(A.7)

for ε ≥ 0. Then I∗m =
∐
j I
∗(j)
m (∗ = u, s, ss), where I

∗(j)
m is a closed interval, and if

int(I
∗(j)
m ) 6= ∅ and int(I

∗(j′)
m′ ) 6= ∅ then I

∗(j)
m ∩I∗(j

′)
m′ = ∅ because λi,u, −λi,s, and −λi,ss

are smooth in ε.
At ε = 0, the only resonances are of the form

−λi,s (γ(0), c(0), 0) = m {−λi,s (γ(0), c(0), 0)} (m ≥ 2);(A.8)

i.e., −λi,s (γ(0), c(0), 0) = 0 if a is irrational. This means there is no interval with

0 ∈ I∗(j)m and int(I
∗(j)
m ) 6= ∅. Thus, for each fixed irrational a, there exist infinitely

many ε such that none of (A.5), (A.6), or (A.7) holds for any m = (mu,ms,mss).
This completes the proof.
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ON THE ASYMPTOTIC SOLUTION OF LAMINAR CHANNEL
FLOW WITH LARGE SUCTION∗
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Abstract. The equation considered is

εf iv = ff ′′′ − f ′f ′′,

with boundary conditions

f(0) = f ′′(0) = 0, f(1) = 1, f ′(1) = 0.

When 0 < ε � 1, the boundary value problem corresponds to the laminar flow of a viscous fluid
through a porous channel under large suction. It is known that there are three solutions in this case:
two of them are monotone increasing (types I and II), and the third is nonmonotone (type III). Let
(1−∆) be the turning point of f(η) in (0, 1). This paper presents a rigorous proof of the asymptotic
behavior of type III solutions, which is

f(η) ∼ κ sin
πη

1−∆
, where κ ∼ 1−∆

π∆
and

∆

ε
e∆/ε ∼ 1

2eπ9ε8
,

uniformly on [0, 1−∆] as ε→ 0+, and provides detailed information at the turning point.

Key words. laminar flow, turning point, exponential terms

AMS subject classification. 34B15

PII. S0036141096297704

1. Introduction. Assuming that the fluid is incompressible and is injected or
sucked through the walls of a rectangular channel, Berman [1], in 1953, reduced the
boundary value problem for the Navier–Stokes equations to a nonlinear fourth-order
ordinary differential equation

εf iv = ff ′′′ − f ′f ′′.(1.1)

If the flow is assumed to be symmetric, then f is an odd function and the boundary
conditions

f(0) = f ′′(0) = 0,(1.2)

f ′(1) = 0, f(1) = 1(1.3)

are imposed, where f(η) is the unknown function related to the stream function and
η is the normalized transverse coordinate (η = ±1 are the walls). The parameter ε
equals 1

R where R is the Reynolds number of the flow. The case ε < 0 corresponds
to the injection problem arising in transpiration cooling, and ε > 0 to the suction
problem for the isotope separation.

The boundary value problem (1.1)–(1.2)–(1.3) admits at least three solutions,
which were classified as type I, the increasing concave down function, type II, the
increasing function with a reflection point, and type III, the nonmonotone function
with a turning point [12]. Here the turning point, denoted by zε = 1−∆ε, is defined as

∗Received by the editors January 26, 1996; accepted for publication May 29, 1996.
http://www.siam.org/journals/sima/28-5/29770.html
†Department of Mathematics and Statistics, Southern Illinois University at Edwardsville, Ed-

wardsville, IL 62026 (clu@daisy.ac.siue.edu).
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the value of η ∈ (0, 1) at which the solution vanishes. There have been many published
numerical results and formally asymptotic analyses [2], [3], [8], [10], [11], [13], [14],
[15]; see [7] and the references listed there. The existence of the three solutions for
sufficiently small ε > 0 can be found in [4]. As far as rigorous asymptotic results,
Hastings, Lu, and MacGillivray studied the behavior of type I and type II solutions
as |R| → ∞ in [4] and [6], and McLeod proved the asymptotic formula of f ′′′(0) for
type I and type II solutions [9]. As for type III solutions, Robinson [12], Zaturska,
Drazin, and Banks [16], and MacGillivray and Lu [7] presented formal asymptotic
results in different ways. But from the rigorous analysis point of view, only very
little was known about type III solutions. This paper presents a rigorous proof of the
asymptotic formula for type III solutions of (1.1)–(1.2)–(1.3) as ε→ 0+.

The paper is organized as follows. Section 2 contains the main result of the paper.

In section 3, we study the function g(η, ε) ≡ f(η,ε)
f ′(0,ε) for η ∈ [0, zε], which turns out

to behave like a sine function on that interval. This implies that the investigation of
f ′(0, ε) is crucial. In section 4, another rescaled function u(t, ε∗) = f(zε+ ∆εt), where
t = η−zε

∆ε
and ε∗ = ε

∆ε
, is introduced. Using the boundary conditions at t = 1 (η = 1)

and t = 0 (η = zε), we prove that as ε → 0+, (1) ε∗ → 0+, (2) |f ′(0, ε)|∆ε → 1,
and (3) the limit function of u(t, ε∗) for t ∈ [0, 1] is linear. Since u′′′(0) ∼ ∆2

επ
2, it is

necessary to approximate u′′′(0) in order to find the asymptotic value for f ′(0, ε). In
section 5, we prove the asymptotic behavior of u(t) for t > 0, including the boundary
layer on the right side, as well as one asymptotic formula linking u′′′(0) and uiv(0).
In section 6, we return to the left side of the turning point and prove, with the results
from section 1, another asymptotic formula linking u′′′(0) and uiv(0). In section 7, the
leading terms for u′′′(0), uiv(0), and u′′(0) are determined. These and the asymptotic
formula of u′(0) given in section 5 completely provide the asymptotic behavior of the
solution at the turning point. The asymptotic relation between ∆ε and ε is finally
determined at the end of section 7.

Since some previous rigorous results on the nonmonotone solutions are applied
repeatedly, they should be listed here.

(I) f iv(η) < 0 for all η ∈ (0, 1].

(II) For any given sufficiently small ε > 0, a type III solution exists, which means
that there exists a pair α < 0 and β > 0 depending on ε such that the initial value
problem of (1.1) with (1.2) and f ′(0) = α, f ′′′(0) = β has a solution satisfying (1.3).

(III) Let zε ≡ 1 −∆ε be the turning point of the solution, and yε the reflection
point of f(η). Then, yε > zε, and hence, f ′′ > 0 in (0, yε ) and f ′′ < 0 in (yε, 1). Also,
f ′(zε) > 0, f ′′(zε) > 0, zε → 1, and yε → 1 as ε→ 0+.

(IV) As ε→ 0+, α→ −∞, f(η)→ −∞, and f ′′(η)→∞ for each η ∈ (0, 1).

Proofs of (I)–(IV) can be found in [4] and [7]. Since a type III solution exists for
only sufficiently small ε > 0, throughout the rest of the paper the expression ε → 0
means ε → 0+. Also, for briefness, the dependence on ε is often dropped, such as
f(η, ε) ≡ f(η), g(η, ε̃) ≡ g(η), h(η, ε̃) ≡ h(η),∆ε ≡ ∆, u(t, ε∗) ≡ u(t), and so on,
except for cases where the appearance of ε is necessary.

2. Main result. The main result of the paper is stated in the following theorem.

Theorem 2.1. As ε→ 0+, the nonmonotone solution f(η, ε) of (1.1)–(1.2)–(1.3)
satisfies

f(η, ε) ∼ −1−∆

π∆
sin

πη

1−∆
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uniformly on [0, 1−∆], where f(1−∆, ε) = 0, and ∆ satisfies

∆

ε
e

∆
ε ∼ 1

2eπ9ε8
.

Note from Theorem 2.1 that the domain of validity for the asymptotic solution
includes the moving right endpoint of the interval. The uniform convergence on the
closed moving interval, which is needed in the paper, is defined in the same way
that one defines uniform convergence for a fixed closed interval [5]. The theorem,
of course, implies that the asymptotic formula for f(η, ε) holds not only uniformly
on any compact subinterval of [0, 1 − ∆), but also at the turning point η = 1 − ∆.
Let φ(η, ε) ≡ 1−∆

π∆ sin πη
1−∆ . The first asymptotic formula of the theorem means that

limε→0
f(η,ε)
φ(η,ε) = 1 uniformly for η ∈ [0, 1−∆]. Since f(0, ε) = h (0, ε) = 0 for all ε, the

ratio f(η,ε)
φ(η,ε) evaluated at η = 0 is defined, as usual, by limη→0+

f(η,ε)
φ(η,ε) , and hence is

equal to f ′(0,ε)
φ′(0,ε) . Similarly, at η = 1−∆, the ratio is defined as limη→(1−∆)−

f(η,ε)
φ(η,ε) =

f ′(1−∆,ε)
φ′(1−∆,ε) .

The theorem is a consequence of Theorems 3.1, 4.1, and 4.5 in the remainder of
the paper.

3. Approximation on [0, zε]. Because of the unboundedness of the solution
and the singularity of the boundary value problem, it is necessary to rescale the
solution f(η). Since f ′(0) = α→ −∞ as ε→ 0, we first introduce

g(η) ≡ f(η)

|α| and ε̃ ≡ ε

|α| .

Equation (1.1) then takes the form

ε̃giv = gg′′′ − g′g′′,(3.1)

with initial conditions

g(0) = g′′(0) = 0, g′(0) = −1, g′′′(0) =
β

|α| .(3.2)

It is clear that the process ε→ 0 implies ε̃→ 0. In this section, the following theorem
will be proved.

Theorem 3.1. Let h(η) = − sin(πη/(1−∆))
π/(1−∆) . Then f(η)

|α| −h→ 0 in C4 on [0, 1−∆],

and f(η)
|α| ∼ h uniformly on [0, 1−∆] as ε̃→ 0.

The proof of Theorem 3.1 consists of Lemmas 3.3, 3.5, 3.7, 3.8, and 3.10–3.12.
Throughout the paper the following two propositions are applied repeatedly.
Proposition 3.2. Let {y(x, s)} be a sequence of C1 functions defined on [a, b]

with a = a(s), b = b(s), and [a, b] ⊆ [c, d] for all s ∈ (0, 1) where s is a parameter.
Assume that y(x, s) is uniformly bounded on [a, b]. Then, (1) if y′(x, s) is nonnegative
and concave down on [a, b] for all s, then y′(x, s) is uniformly bounded on [a, b]; (2)
if y′(x, s) is nonpositive and concave up on [a, b] for all s, then y′(x, s) is uniformly
bounded on [a, b].

Proof. We only give a proof of (1), since the proof of (2) is similar. Suppose,
for contradiction, that the sequence {y′(x, s)} is not uniformly bounded. Then there
would be a subsequence of {s}, say {sn}, and a sequence {xn} ⊆ [a, b] such that
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y′(xn, sn) = max{y′(x, sn)} → ∞ as n → ∞. Without loss of generality, one can
assume xn → p ∈ [c, d] as n → ∞. Then the concavity of y′ leads to, for sufficiently

large integer n, either y′(x, sn) > y′(xn,sn)−y′(a,sn)
xn−a (x− a) + y′(a, sn) for x ∈ (a, xn) if

p 6= a, or y′(x, sn) > y′(xn,sn)−y′(b,sn)
b−xn (b− x) + y′(b, sn) for x ∈ (xn, b) if p = a. In the

former case, integrating the first inequality over (a, xn), we see that y(xn, εn) becomes
unbounded as n → ∞. Similarly, in the latter case y(b, sn) becomes unbounded as
n→∞. These contradict the uniform boundedness of {y(x, ε)}.

Lemma 3.3. For any given positive δ � 1, g − (−(sin πη
zε
/ πzε )) → 0 in C1 on

[0, 1− δ] and in C2 on [δ, 1− δ] as ε̃→ 0.
Proof. Noting that g′′ > 0 on (0, zε), g

′(0) = −1, and g′ > 0 on [zε, 1), one sees
that g′ > −1; hence g ≥ −η for η ∈ (0, zε), and 0 ≤ g ≤ 1

|α| for η ∈ [zε, 1]. Thus,

g(η) is uniformly bounded on [0, 1] as ε̃ → 0. Let a positive number δ � 1 be fixed.
Since g′′ > 0 on [0, zε] (in particular, on [1 − δ, 1 − δ

2 ]), g′(1 − δ) must be bounded

as ε̃→ 0; otherwise, g(1− δ
2 ) would be unbounded. Using the boundedness of g′ and

the concavity of g′′ (giv < 0), we conclude that g′′ is uniformly bounded on [0, 1− δ]
by Proposition 3.2. Applying the property giv < 0, we obtain that g′′′ is uniformly
bounded on [δ, 1− δ] (otherwise, g′′ would not be bounded uniformly on [ δ2 , δ]).

Now, let us consider any sequence {ε̃n} of ε̃ with ε̃n → 0. Since g, g′, and g′′

are all uniformly bounded on [0, 1− δ], the Arzela–Ascoli theorem can be applied to
conclude that there exist a subsequence, again denoted by {g(η, ε̃n)}, and a function
h̃(η) such that g(η, ε̃n)→ h̃(η) in C1

[0,1−δ] and g′′(η, ε̃n)→ h̃′′(η) uniformly on [δ, 1−δ]
as n→∞. Our first goal is to show h̃(η) = − sin(πη)

π .
An integration of (3.1) with respect to η yields

ε̃g′′′ = gg′′ − (g′)2 + 1 + ε̃β̃,(3.3)

where β̃ = β
|α| > 0. Applying the uniform boundedness of g′′′ on [δ, 1 − δ], together

with the Arzela–Ascoli theorem, one sees that g′′(η, ε̃n)→ h̃′′(η) on that interval and
h̃ satisfies

h̃h̃′′ − (h̃′)2 + c = 0,(3.4)

where c = limε̃→0(1 + ε̃β̃) ≥ 1 is a constant. Since δ is arbitrarily given, we see that
h̃(η) is defined in (0, 1). From (3.4),

h̃′′ =
(h̃′)2 − c

h̃
.

Then h̃′′′ is well defined for any η ∈ (0, 1). A differentiation of (3.4) shows

h̃h̃′′′ − h̃′h̃′′ = 0,(3.5)

for η ∈ (0, 1). Solving (3.5) for η ∈ [δ, 1 − δ], one obtains h̃′′ = Ah̃ which is valid for
any η ∈ [δ, 1− δ], where A is a constant independent of δ. Thus, h̃′′ is well defined at
η = 0 and h̃′′(0) = 0. It then follows from (3.4) that c = 1. All possible solutions of
equation h̃′′ = Ah̃ with h̃(0) = 0, h̃′(0) = −1 are

h̃(η) = −h̃, h̃(η) = − sin(aη)

a
, h̃(η) = − sinh(aη)

a
,

where a =
√
|A| > 0 is a constant. Considering the fact that h̃′′ must have the

same concavity as g′′ does, we may eliminate the third possibility. Suppose h̃ = −η.
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Then, g′ ≈ −1, g′′ ≈ 0 in [δ, 1 − δ]. Applying the mean value theorem on (δ, 1 − δ),
we see that g′′′ ≈ 0 for some η0 < 1 − δ. Since g′(1) = 0 and g′(1 − δ) ≈ −1, there
exists an η1 ∈ (1 − δ, 1) such that g′′(η1) ≈ 1

δ by the mean value theorem. Hence,

g′′′(η2) = g′′(η1)−g′′(1−δ)
η1−(1−δ) > 1

2δ2 for some η2 ∈ (1 − δ, η1). This implies that giv > 0

for some η < 1, a contradiction. Therefore, h̃(η) = − sin(aη)
a . Next, we claim a = π.

Recall that h̃ is the limit function of a subsequence of {g(η, ε̃)} on [0, 1 − δ] and
that the value of a does not depend upon the choice of δ. It is then observed that
a ≤ π; otherwise, g(1 −∆) < 0 for sufficiently small ε̃, a contradiction. Similarly, it
is impossible to have a < π. Thus, a = π.

Summarizing the above discussion, we have shown that any sequence {g(η, ε̃n)}
has a subsequence converging to h̃ in C1 on [0, 1 − δ] and in C2 on [δ, 1 − δ] for any

given positive δ � 1. Since g(1−∆) = 0 and sin(πη)
π / sin[πη/(1−∆)]

π/(1−∆) → 1 uniformly on

[0, 1 − ∆] as ∆ → 0, we can set the limit function h(η) = h(η, ε̃) = − sin[πη/(1−∆)]
π/(1−∆)

for the purpose of asymptotic analysis. Since {g(η, ε̃n)} is arbitrarily chosen, we
conclude that g − h→ 0 in C1

[0,1−δ] and C2
[δ,1−δ] as ε̃→ 0. The proof of Lemma 3.3 is

complete.
Proposition 3.4. Let g(η, ε̃) be a solution of (3.1) and k ≥ 2 be an integer. If

g, g′, g′′, ..., g(k+1) are all uniformly bounded on any compact subinterval [0, 1 − δ] of
[0, 1), then there exists a unique Ck function h̃(η) defined on [0, 1) such that g → h̃
in Ck[0,1−δ] as ε̃→ 0.

Proof. If k = 2, the proof of the proposition is similar to that of Lemma 3.3. For
k > 2, a simple application of mathematical induction derives the proposition.

At this moment, Lemma 3.3 does not automatically imply g ∼ h(η) (hence

f(η, ε) ∼ α sin[πη/(1−∆)]
π/(1−∆) ) uniformly on any compact subinterval of [0, 1 − ∆). This

is because, from the proof of Lemma 3.3, the choice of the convergent subsequences
may depend on δ. Therefore, to obtain the desired asymptotic result, more work is
needed.

An interesting question arising from Proposition 3.4 is this: what is the largest
number that k may assume? In other words, how close are g and h? An inspection of
g and h at η = 0 shows that gv(0) = 0 and hv (0) ≈ −π4. Therefore, k ≤ 4. In fact, we
can prove the maximum value of k is 4. To do so, we need the uniform boundedness
of higher derivatives of g(η) on [0,1−∆].

Lemma 3.5. g′′′ is uniformly bounded and g − h→ 0 in C2 on [0, 1− δ] for any
given positive δ � 1.

Proof. We first prove that gv < 0 as long as g′ < 0 and g′′′ > 0; i.e., g′′′ is
positive and concave down as long as g′ < 0, so Proposition 3.2 can be applied. Since
g′ → − cosπη on [0, 1−δ] uniformly as ε̃→ 0, g′ and h′ must have the same concavity
for sufficiently small ε̃ > 0. Noting that h′′′ has exactly one zero, η = 1−∆

2 , which is
the reflection point of the function h′, we see that g′ must have a unique reflection
point η3 → 1

2 as ε̃→ 0. Also, g′ is concave up for η < η3 and concave down for η > η3.
The uniqueness of η3 follows from giv < 0. Differentiating (3.1) with respect to η once
yields

ε̃gv = ggiv − (g′′)2,(3.6)

which can be rewritten as(
e−

1
ε̃

∫
g(s)dsgiv

)′
= −1

ε̃
(g′′)2e−

1
ε̃

∫
g(s)ds.(3.7)
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Integrating (3.7) and multiplying the exponential function on both sides leads to

giv(η) = −1

ε̃

∫ η

0

(g′′(s))2e
1
ε̃

∫ η
s
g(r)dr

ds.(3.8)

Differentiating (3.1) with respect to η twice gives

ε̃gvi = ggv + g′giv − 2g′′g′′′,(3.9)

from which

gv(η) =
1

ε̃

∫ η

0

(g′giv − 2g′′g′′′)e
1
ε̃

∫ η
s
g(r)dr

ds.(3.10)

The same technique applied to (3.1) shows

g′′′(η) = −1

ε̃

∫ η

0

g′g′′e
1
ε̃

∫ η
s
g(r)dr

ds+ g′′′(0)e
1
ε̃

∫ η
0
g(s)ds

.(3.11)

In order to determine the sign of giv with (3.10), we use (3.8) and (3.11) to estimate

g′giv − 2g′′g′′′(3.12)

<
1

ε̃

(
−g′(η)

∫ η

0

(g′′)2e
1
ε̃

∫ η
s
gdr
ds+ 2g′′(η)

∫ η

0

g′g′′e
1
ε̃

∫ η
s
gdr
ds

)
,

since g′′ > 0 for η ∈ (0, 1 − δ) and g′′′(0) > 0. Let η < min{η3, η1}, where η1 is the
zero point of g′, which also approaches 1

2 as ε̃→ 0. Since g′ < 0, g′′ > 0, and g′′′ > 0,

g′′(η)

∫ η

0

g′g′′e
1
ε̃

∫ η
s
gdr
ds <

∫ η

0

g′(g′′)2e
1
ε̃

∫ η
s
gdr
ds

< g′(η)

∫ η

0

(g′′)2e
1
ε̃

∫ η
s
gdr
ds.(3.13)

Applying (3.13) in (3.12), we have

g′giv − 2g′′g′′′ <
1

ε̃
g′(η)

∫ η

0

(g′′)2e
1
ε̃

∫ η
s
gdr
ds < 0.(3.14)

From (3.14) and (3.10), we see that gv < 0 as long as g′′′ > 0 and g′ < 0.
Since g′′′ is concave down and g′′ is uniformly bounded on [0, 1

2 −σ], the function
g′′′ is uniformly bounded on [0, 1

2 − σ], by Proposition 3.2, where 0 < σ � 1. By
Proposition 3.4, the second conclusion holds.

Corollary 3.6. As ε̃ → 0, g ∼ h uniformly on [0, 1 − δ] for any given positive
δ � 1.

Proof. For the given δ, g(η) and h(η) are nonzero on the interval [δ, 1− δ]; then,
from the convergence of g on [0, 1 − δ], we see that g ∼ h on [δ, 1 − δ], namely,
lim g

h = 1 uniformly on [δ, 1− δ] as ε̃→ 0. Since g′ − h′ → 0 uniformly on [0, δ] (from
Lemma 3.5), we see that lim g

h = 1 for η ∈ (0, δ] uniformly. Therefore, g ∼ h on
[0, 1− δ].

One of our goals in this section is to see how close g and h can be on [0, 1 − δ].
The result is given in Lemma 3.8, whose proof depends on Lemma 3.7.

Lemma 3.7. For any given positive δ � 1, g′′′ − h′′′ → 0 uniformly on [0, 1− δ],
and g′′ ∼ h′′ on [0, 1− δ] for sufficiently small ε̃ > 0.
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Proof. First, we prove that giv(η) is uniformly bounded on [0, 1−δ]. By Corollary
3.6, for a fixed positive σ � 1, the inequality

−1 + σ

π
sinπη ≤ g(η) ≤ −1− σ

π
sinπη(3.15)

holds for sufficiently small ε̃ > 0. From (3.15) and (3.8),

|giv| ≤ π2

1−∆

∫ η

0

(g′′)2

sinπs
d(e
− 1−σ

ε̃π

∫ η
s

sinπtdt
)

=
π2

1− σ
(g′′(ξ))2

sinπξ

[
1− e

1−σ
ε̃π2 (cosπη−1)

]
≤ π2

1− σ
(g′′(ξ))2

sinπξ
,(3.16)

where ξ ∈ (0, η). Rewriting (3.16) as

|giv| ≤ π2

1− σg
′′(ξ)

g′′(ξ)

ξ

ξ

sinπξ
,

one sees that giv is bounded because g′′ and g′′(ξ)/ξ are bounded. Here, the bound-
edness of g′′(ξ)/ξ follows from that of g′′′ on [0, 1 − δ]. Then, the first conclusion of
Lemma 3.7 follows from Proposition 3.4 since g, g′, g′′, g′′′, and giv are all uniformly
bounded on [0, 1− δ].

To prove the second conclusion of Lemma 3.7, we use contradiction. If g′′

h′′ does
not converge to 1 uniformly on [0, 1 − δ], then there would be sequences {ε̃n} and

{ηn} with ε̃n → 0 and {ηn} ⊆ [0, 1− δ] such that | g
′′(ηn)
h′′(ηn) − 1| > σ for some constant

σ > 0 and for all n. In addition, we can assume ηn → x ∈ [0, 1 − δ]. Since δ > 0 is
fixed and g′′(1− δ)h′′(1− δ) 6= 0, the only possibility is x = 0. This is also impossible,
for otherwise, it would imply the divergence of (g′′′ − h′′′) at η = 0.

An immediate consequence from Lemma 3.7 is that g′′′(0) = β̃ → π2 as ε̃ → 0.

This shows the relationship between f ′(0) and f ′′′(0): f ′′′(0)
f ′(0) → −π2 as ε̃ → 0. With

Lemma 3.7 and the expression of giv in (3.8), we can now prove the following lemma.
Lemma 3.8. For any sufficiently small δ > 0, g − h→ 0 in C4 on [0, 1− δ], and

g ∼ h, g′′ ∼ h′′ uniformly on [0, 1− δ], and giv ∼ hiv uniformly on [δ, 1− δ].
Proof. Substituting the asymptotic formulas for g and g′′ in (3.8), we obtain, by

integration by parts,

(3.17)

giv(η) ∼ −
(

π

1−∆

)3(
sin

πη

1−∆
+

π

1−∆

∫ η

0

cos
πs

1−∆
e

(1−σ)2

ε̃π2 (cos πη
1−∆−cos πs

1−∆ )ds

)
uniformly on [0, 1− δ]. Since∫ 1−δ

0

∣∣∣∣cos
πs

1−∆

∣∣∣∣ e (1−σ)2

ε̃π2 (cos πη
1−∆−cos πs

1−∆ )ds→ 0

as ε̃ → 0 by the dominated convergence theorem, we see that giv → hiv uniformly
on [0, 1 − δ]. In addition, it follows from (3.17) that giv ∼ hiv uniformly on
[δ, 1− δ].
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Remark 1. It is false that giv ∼ hiv uniformly on [0, 1 − δ], for otherwise, if
giv(η,ε̃)
hiv(η,ε̃) → 1 as ε̃ → 0 uniformly on [0, 1 − δ], then gv(0,ε̃)

hv(0,ε) → 1, a contradiction. In

fact, for sufficiently small η the integral term in (3.18) is the leading term. Also, we
cannot say that g′ ∼ h′, g′′′ ∼ h′′′ on the interval because they do not vanish at the
same points. Most importantly, we cannot have g′′ ∼ h′′ at η = 1−∆ either, because
h′′ = 0 while g′′ 6= 0 at 1−∆.

Next, we extend the results of Lemma 3.8 from [0, 1− δ] to [0, 1−∆].
The following proposition is a generalization of Proposition 3.4, which is applied to

prove Theorem 3.1. Let t2 ≡ yε denote the zero point of g′′ in (0, 1). Then, t2 > 1−∆,
g′′(η) > 0 for η ∈ (0, t2), and t2 → 1 as ε̃ → 0, which is one of the previous results
listed in section 1.

Proposition 3.9. Suppose that θ = θε̃ ∈ [1 − ∆, t2] and that g, g′, g′′, g′′′,and
givare all uniformly bounded on [0, θ]. Then, as ε̃→ 0, all g − h, g′ − h′, g′′ − h′′, and
g′′′ − h′′′ converge to 0 uniformly on [0, θ].

Remark 2. The uniform convergence on this “moving interval” is required for
proving Lemma 6.1.

Proof. First, we see from (3.3) that g′(θ) → 1 since g(θ) → 0. Hence, g′′(θ) → 0
from (3.1). By Lemmas 3.3, 3.5, 3.7, and 3.8, we see that only interval [1− δ, θ] needs
to be considered where 0 < δ � 1 is fixed.

Suppose, on the contrary, that the proposition is false for g − h. Then, there
is a positive number σ and two sequences {ε̃n} and {ηn}, n = 1, 2, 3, ..., such that
ηn ≤ θ(n)(= θε̃n), |g(ηn, ε̃n)− h(ηn, ε̃n)| > σ for all n, and ηn − θ(n) → 0 as n →∞.
Noting that h(θ)→ 0 as n→∞ and g ≥ 0 for η ≥ 1−∆, we see that g(ηn, εn) > δ

2 ,
and hence,

g′(ξn,ε̃n) =
g(ηn, ε̃n)− g(θ(n),ε̃n)

ηn − θ(n)
>

σ

3(ηn − θ(n))
,

which implies that g′ is unbounded, a contradiction. The case g′′−h′′ → 0 is handled
the same way. To see g′ − h′ → 0 uniformly on [0, θ], we assume, for contradiction,
that |g′(ηn, ε̃n)− h′(ηn, ε̃n)| > σ for n = 1, 2, 3, ... and ηn− θ(n)→ 0. Then, g′(ηn) is
either greater than 1 + σ

2 or less than 1− σ
2 . Choose δ = σ

M with M > 4B, where B
is an upper bound for g′′ on [0, θ]. In the former case, there is a point ξn ∈ (1− δ, ηn)

with g′′(ξn) > 1+σ/2−g′(1−δ)
ηn−(1−δ) > σ

2(ηn−1+σ/M) > M
3 > B, a contradiction. Here,

we have applied g′(1 − δ) ≈ h′(1 − δ) ≈ 1 − δ by Lemma 3.8. The latter case is
impossible, because g′′ > 0. Similarly, g′′′−h′′′ → 0 uniformly on [0, θ], which implies
g′′′(θ)→ −π2.

It is clear that we need to show the uniform boundedness of g, g′, g′′, g′′′, and giv

on [0, 1−∆] so that Proposition 3.9 can be applied.
Lemma 3.10. g, g′, and g′′ are uniformly bounded on [0, 1−∆], g(k) − h(k) → 0

for k = 0, 1, and g(η) ∼ − sin[πη/(1−∆)]
π/(1−∆) uniformly on [0, 1−∆] as ε̃→ 0.

Proof. Recall that g is uniformly bounded and g′ > −η on [0, 1], and that g′′ > 0
on [0, 1 − ∆]. Again, we assume a positive number δ � 1 to be fixed. Since the
convergence preserves the concavity of the solutions, g′′′ < 0 on [ 1

2 + δ, 1 − δ], and
hence, on [ 1

2 + δ, 1]. Then g′ is concave down on [ 1
2 + δ, 1−∆], which implies that g′

must be bounded on the interval by Proposition 3.2. Furthermore, the concavity of
g′′ and the boundedness of g′ on [0, 1−∆] yield that g′′ is bounded on [0, 1−∆]. The
uniform convergence of g and g′ follows from the proof of Proposition 3.9 because
only the uniform boundedness of g′′ is needed.
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To prove the last conclusion of the lemma, we use contradiction again. Suppose
it is false. Then, similar to above, there would be two sequences {ηn} and {ε̃n} such

that as n → ∞, ηn − (1 − ∆) → 0, ε̃n → 0, and | g(ηn,ε̃n)
h(ηn,ε̃n) − 1| > σ for some σ > 0.

Then, ∣∣∣∣ [g(ηn, ε̃n)− g(1−∆,ε̃n)]/(ηn − 1 + ∆)

[h(ηn, ε̃n)− h(1−∆,ε̃n)]/(ηn − 1 + ∆)
− 1

∣∣∣∣ > σ.(3.18)

Applying the mean value theorem on both the numerator and denominator in (3.18),
we see that for each n, there exist two numbers ξn and ζn such that∣∣∣∣ g′(ξn, ε̃n)

h′(ζn, ε̃n)
− 1

∣∣∣∣ > σ,

which implies either g′(ξn, ε̃n) > 1 + σ
2 or g′(ξn, ε̃n) < 1− σ

2 since h′(ζn,ε̃n) ≈ 1. This
would lead to g′′ being unbounded, a contradiction.

By Lemma 3.7, g′′′(0)→ π2. It suffices to prove the uniform boundedness of giv on
[0, 1−∆] in order to get the uniform boundedness for g′′′ on [0, 1−∆]. Let 0 < δ � 1
be fixed. Since hv > 0 on [1

2 +δ, 1−δ] and the convergence preserves the monotonicity,
gv ≥ 0 on [ 1

2 + δ, 1 − δ]. From (3.6), we see gv(1 −∆) < 0 since g′′(1 −∆) 6= 0. It is
then observed that gv must have a zero in [1−δ, 1−∆). Let t5 = t5(ε̃) denote the first
zero of gv in [1− δ, 1−∆). The structure of the function giv is given by the following
lemma.

Lemma 3.11. gv, gvi ≤ 0 on [t5,1−∆]. Also, g′′′ and giv are uniformly bounded
on [0, 1−∆], and giv(1−∆)→ 0 as ε̃→ 0.

Proof. Since gv(1 − δ) ≥ 0 and t5 is the first zero of gv in [1 − δ, 1 −∆), we see
that gvi(t5) ≤ 0, and giv(t5) ≥ giv(1 − δ) for sufficiently small δ > 0. Hence, giv is
uniformly bounded on [0, t5] because giv(1− δ) is uniformly bounded by Lemma 3.8.
Therefore, g′′′, g′′, and g′ are all uniformly bounded on [0, t5]. Next, we claim that
gvi(η) ≤ 0 for η ∈ [t5, 1−∆]. To see this, we assume that there is a first zero point t6
of gvi in (t5,1−∆). Then, it suffices to prove gvii(t6) < 0, which is given as follows.

Differentiating (3.9) with respect to η once yields

ε̃gvii = ggvi + 2g′gv − g′′giv − 2(g′′′)2.(3.19)

From (3.9), we see at η = t6, gg
v + g′giv − 2g′′g′′′ = 0, and therefore,

giv =
2g′′g′′′ − ggv

g′
.(3.20)

Substituting (3.20) into (3.19) leads to

ε̃gvii =
[2(g′)2 + gg′′]gv − 2g′′′[(g′′)2 + g′g′′′]

g′
(3.21)

at η = t6. Since g′′ > 0, g′(1− δ) ≈ 1, and g′(1−∆)→ 1, it must be that g′(t6) ≈ 1.
Also, since g′′(1 − δ) ≈ 0, g′′′ < 0, and g′′ > 0 for η > 1 − δ, we see g′′(t6) ≈ 0.
Thus, the first term in the numerator of (3.21) is negative because gv(t6) < 0, and the
second term is approximately equal to −2[g′′′(t6)]2 because g′′′(1 − δ) ≈ −π2(1 − δ)
and giv < 0. This shows

ε̃gvii(t6) < −[g′′′(t6)]2 < 0.
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Now, the picture is clear: gv > 0 on [ 1
2 + δ, t5) and gv < 0, gvi < 0 on the interval

(t5, 1−∆], in which giv reaches its local maximum at t5 and then decreases. So, the
bounds of |giv| on [1−δ, 1−∆] are determined by the two ending points of the interval.
By Lemma 3.8, giv(1 − δ) ≈ −π3 sinπ(1 − δ). Since t5 > 1 − δ, giv(t5) > giv(1 − δ),
and δ > 0 is arbitrarily chosen, it follows that t5 → 1 and giv(t5) → 0 as ε̃ → 0.
Therefore, to show the uniform boundedness of giv on [0, 1 − ∆], we only need to
prove the boundedness of giv(1 − ∆). In fact, we can prove more: giv(1 − ∆) → 0
as ε̃ → 0. Suppose it is not so. Then, there exists a subsequence of {ε̃}, denoted by
{ε̃n}, n = 1, 2, ..., such that giv(1−∆) < −σ for all ε̃n. From (3.1),

giv(1−∆) =
−g′(1−∆)g′′(1−∆)

ε̃n
,(3.22)

and from (3.6),

gv(1−∆) =
−[g′′(1−∆)]2

ε̃n
.(3.23)

Since gvi < 0 and giv(t5) < 0, we see from (3.22) that

gv(1−∆) <
giv(1−∆)− giv(t5)

1−∆− t5
<
−g′(1−∆)g′′(1−∆)

(1−∆− t5)ε̃n
,(3.24)

which, from (3.23), implies

−[g′′(1−∆)]2

ε̃n
<
−g′(1−∆)g′′(1−∆)

(1−∆− t5)ε̃n
.

It turns out that

g′′(1−∆) >
g′(1−∆)

1−∆− t5
,

which leads to g′′(1−∆) being unbounded, a contradiction of Lemma 3.10. The proof
of Lemma 3.11 is complete.

Lemma 3.12. As ε̃→ 0, g − h→ 0 in C4 and g ∼ h uniformly on [0, 1−∆]. In
particular, at η = 1−∆, g′ → 1, g′′ → 0, g′′′ → −π2, and giv → 0, as ε̃→ 0.

Proof. Let 1 − ∆ = θ, and apply Lemmas 3.10 and 3.11 and Proposition 3.9.
Then, g ∼ h uniformly on [0, 1 − ∆], and the convergence holds up to C3 on that
interval. To prove the C4 convergence, we apply the information about giv(η) for
η ∈ [1− δ, 1−∆] obtained in the proof of Lemma 3.11: the extreme values of giv on
[1 − δ, 1 − ∆] are determined at the two ending points. Since giv(1 − δ) − hiv(1 −
δ) → 0 and giv(1 − ∆) → 0, the uniform convergence of giv − hiv on [1 − δ, 1 − ∆]
follows.

The proof of Theorem 3.1 is complete.
Our goal is to find the asymptotic behavior of the functions f(η). It is seen from

Theorem 3.1 that f ′(0) and ∆ are to be determined. To do so, we first study the
relation between these two quantities in the next section.

4. Relations among ε,∆ε, and f ′(0, ε). To study the asymptotic behavior
of the solution at the turning point, it is convenient to introduce a new independent
variable

t ≡ η − zε
∆

,
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and define f(η) = f(zε+∆t) ≡ u(t) and ε∗ ≡ ε
∆ . Then, the turning point is t = 0, and

u = |α|g, u′ = |α|∆g′, u′′ = |α|∆2g′′, u′′′ = |α|∆3g′′′, uiv = |α|∆4giv. The original
equation (3.1), in terms of u and t, takes the form

ε∗uiv = uu′′′ − u′u′′.(4.1)

Lemma 3.12 applied to u(t) at t = 0 implies that as ε → 0, u − 1−∆
π sin π∆t

1−∆ → 0 in

Civ
[− 1−∆

∆ ,0]
, and

u′(0)

|α|∆ → 1,
u′′(0)

|α|∆2
→ 0,

u′′′(0)

|α|∆3
→ −π2,

uiv(0)

|α|∆4
→ 0.(4.2)

The boundary conditions (1.3) now become

u(1) = 1, u′(1) = 0.(4.3)

In addition, from the preliminary results listed in section 1, we see that uiv(t) < 0 on
[− 1−∆

∆ , 1], and that u(t) ≥ 0, u′(t) ≥ 0 on [0, 1]. Also, u′′(0) > 0 for all ε∗ > 0. From
(3.6), uv(t) < 0 for t ∈ [0, 1]. In this section we prove the following theorem.

Theorem 4.1. As ε → 0, the following conclusions hold: (1) ε∗ → 0, (2)
f ′(0, ε) ∼ − 1

∆ , and (3) u(t, ε∗) ∼ t uniformly on [0, 1].
The proof of Theorem 4.1 consists of Lemmas 4.2, 4.3, and 4.4.
Lemma 4.2. There exists a positive number l such that l ≤ |α|∆ < 2 for all

ε > 0.
Proof. Since u′′′(0) < 0 and uiv < 0, we see u′′′ < 0 on [0, 1]. An application of the

concavity of u′(t) for t > 0 shows u′(t) ≥ u′(0)(1− t) for t ∈ [0, 1]. An integration of

this inequality yields u(1) ≥ 1
2u
′(0). From (3.3), g′(zε) = f ′(zε)

|α| = u′(0)
|α|∆ >

√
1 + ε̃β̃ > 1

because g′′′(zε) < 0. Thus, u′(0) > |α|∆, and hence, |α|∆ < 2. Since u(t) is uniformly
bounded on [0, 1] for all ε > 0 and u′(t) ≥ 0, u′′′(t) < 0 on [0, 1], Proposition 3.2 can
be applied. This concludes that u′ is uniformly bounded above by a positive number
1
l . The proof of Lemma 4.2 is complete.

Since the behavior of the function g(η) at the turning point has been found, we
can now prove ε

∆ → 0 as ε→ 0, which was a crucial working assumption in [7], using
(4.2) and Lemma 4.2.

Lemma 4.3. ε∗ → 0 as ε→ 0.
Proof. Suppose not. Then, there would be a sequence {ε∗n}, n = 1, 2, ..., such that

either ε∗n →∞ or ε∗n → c > 0 as n→∞. In the former case,

uiv = λn(uu′′′ − u′u′′),(4.4)

where λn = 1
ε∗n
→ 0 as n→∞. Let un ≡ u(t, ε∗n) be solutions of (4.4). By Lemma 4.2,

one can assume that u′n(0) → γ where γ > 0 is a constant. Then, u′′n(0) = o(∆) and
u′′′(0) = O

(
∆2
)
. Using the theorem that solutions continuously depend on initial

conditions and parameters, we see un(t) ≈ γt (since the limit equation uiv = 0 with
u′(0) = γ, u(0) = u′′(0) = u′′′(0) = 0 has the unique solution u(t) = γt). This
contradicts the boundary condition of u(t) at t = 1. If ε∗n → 1

b > 0 and u′n(0)→ µ ≥
1
l > 0 as n→∞, then λn = 1

ε∗n
→ b > 0. Since the limit equation

uiv = b(uu′′′ − u′u′′)(4.5)
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with the initial condition u′(0) = µ, u(0) = u′′(0) = u′′′(0) = 0 has a unique so-
lution u(t) = µt, we see un(t) ≈ µt, again, a contradiction. Therefore, Lemma 4.3
holds.

Applying Lemma 4.3 and the information about u(t) for t ∈ [0, 1], we find the
asymptotic behavior of u(t) on [0, 1−δ] and the asymptotic relation between α ≡ f ′(0)
and ∆ as follows.

Lemma 4.4. As ε∗ → 0, |α|∆→ 1, u(t)− t→ 0 in C3
[0,1−δ] for any given positive

δ � 1, and u(t) ∼ t uniformly on [0, 1].
Proof. From the proof of Lemma 4.2, u′(t) is uniformly bounded on [0, 1]. Since

u′′(0) = o(∆) and u′′′ < 0, we see that u′′ is uniformly bounded on [0, 1−δ]; otherwise
u′ would be unbounded on [0, 1 − δ

2 ]. Similarly, u′′′ and uiv are uniformly bounded
on [0, 1 − δ] because uiv, uv < 0 for t ∈ [0, 1]. Then, applying an argument similar
to the proof of Lemma 3.3 (mainly, an application of the Arzela–Ascoli theorem),
we conclude that there exists a function w(t) such that u(t) → w(t) in C[0,1] and in
C3

[0,1−δ] as ε∗ → 0, and that w(t) is neither the sine function nor the hyperbolic sine

function because their fourth derivatives are positive. It turns out that w(t) = t.
Then, the fact that u(1) = 1 forces u′(0) ∼ |α|∆→ 1. Furthermore, we claim that

u(t, ε∗)

t
→ 1

uniformly on [0, 1]. Suppose, on the contrary, that there exists a number σ > 0 and two

sequences {ε∗n} and {tn} with ε∗n → 0 and tn → 0 as n→∞, such that |u(tn,ε
∗
n)

tn
−1| > σ

for all n = 1, 2, 3, .... Then, by the mean value theorem, |u′(ξn, ε∗n) − 1|̇ > σ for all
n = 1, 2, 3, .... This contradicts the proved C3 convergence.

The proof of Theorem 4.1 is complete.
By Lemma 4.4, u′′′(0) ∼ −∆2π2 as ε → 0. Therefore, we will be focusing on the

approximation of u′′′(0) in order to find the asymptotic formula of ∆.
In the rest of the paper, the asymptotic behavior of the solution at the boundary

layer t = 1 and at the turning point t = 0 is analyzed. The result is the following
theorem.

Theorem 4.5. As ε∗ → 0,

u′′(1) ∼ 1

ε∗
, u′′′(1) ∼ − 1

ε∗2
, uiv(1) ∼ − 1

ε∗3
,(4.6)

u′(0) = 1 + ε∗ + o(ε∗),(4.7)

u′′′(0) ∼ −(2eπ)−
1
4 ε∗−

7
4 e−

1
4ε∗ ,(4.8)

and

uiv(0) ∼ −π
√
eε∗−3e−

1
2ε∗ , u′′(0) ∼ π

√
eε∗−2e−

1
2ε∗ ,(4.9)

where ε∗ satisfies

π2∆2 ∼ (2eπ)−
1
4 ε∗−

7
4 e−

1
4ε∗ .(4.10)

The proof of Theorem 4.5 is given in the remaining three sections. The first part
of section 5 contains proofs of (4.6) and (4.7). Formulas (4.8), (4.9), and (4.10) are
proved in the second part of section 5, and sections 6 and 7.
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5. On u(t) for t ≥ 0. Differentiate (4.1) with respect to t once to get

ε∗uv = uuiv − (u′′)
2
.

Then, as in (3.7), (
uive−

1
ε∗
∫
u(s)ds

)′
= − 1

ε∗
(u′′)2e−

1
ε∗
∫
u(s)ds,(5.1)

which shows that the function uiv(t)e−
1
ε∗
∫ t

u(s)ds is negative decreasing. Thus, for
t ∈ [0, 1], ∣∣uiv(t)∣∣ ≤ |uiv(1)|e−

1
ε∗
∫ 1

t
u(s)ds

.(5.2)

Therefore, to get the asymptotic behavior of u(t) in a region including the right
boundary layer, we need to estimate uiv(1).

Lemma 5.1. As ε∗ → 0,

u′′(1) ∼ − 1

ε∗
, u′′′(1) ∼ − 1

ε∗2
, uiv(1) ∼ − 1

ε∗3
.

Proof. Successively integrating (4.1) yields

ε∗u′′′ = uu′′ − (u′)2 + [u′(0)]2 + ε∗u′′′(0),(5.3)

and

ε∗u′′ = uu′ − 2

∫ t

0

(u′)2ds+ {[u′(0)]2 + ε∗u′′′(0)}t+ ε∗u′′(0).(5.4)

Since limε∗→0 u
′(t) = 1 pointwise in [0, 1) and u′′′(0) ∼ −π2∆2 → 0, u′′(0) = o(∆)

as ε∗ → 0, we see from (5.4) that ε∗u′′(1) + 1 → 0, by the dominated convergence
theorem. This implies u′′(1) ∼ − 1

ε∗ . It then follows from (5.3) and (4.1) that u′′′(1) ∼
− 1
ε∗2 and uiv(1) ∼ − 1

ε∗3 as ε∗ → 0.
The asymptotic behavior of u(t) for t > 0 in the outer region has been given by

Lemma 4.4 already. The asymptotic formulas for u′′ and u on the interval including
the right boundary layer are presented in Lemma 5.3, whose proof requires Lemma
5.2.

Lemma 5.2. For sufficiently small ε∗ > 0,

|u′′′(0)| ≤ 2e16ε∗−
7
4 e
− 1

2ε∗
∫ 1

0
u(s)ds

.

Proof. Since uv < 0 for t > 0, uiv(t) ≤ uiv(0) for t ∈ [0, 1]. Thus, u′′′(t) ≤
uiv (0) t + u′′′(0) and u′′(t) ≤ 1

2u
iv(0)t2 + u′′′(0)t + u′′(0) for t ∈ [0, 1]. Let a > 0 be

the zero of u′′. It follows from the last inequality that

1

2
uiv(0)a2 + u′′′(0)a+ u′′(0) ≥ 0.(5.5)

Note from (4.1) that u′′(0) = −ε∗uiv(0)
u′(0) , and substitute this equation into (5.5) to get

1

2
uiv(0)u′(0)a2 − ε∗uiv(0) ≥ 1

2
uiv(0)u′(0)a2 + u′(0)u′′′(0)a− ε∗uiv(0) ≥ 0.
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Then, a2 < 2ε∗

u′(0) , and hence, a < 2
√
ε∗ for sufficiently small ε∗ since u′ (0) → 1 as

ε∗ → 0. Thus u′′, u′′′, uiv < 0 for t > a. Since u′′ is concave down, u′′(t) < u′′′(a)(t−a)
for t ≥ a. On the other hand, integrating (5.1) and solving the resulting equation
produces for any t ∈ [− 1−∆

∆ , 1]

uiv(t) = − 1

ε∗

∫ t

0

[u′′(s)]2e
1
ε∗
∫ t
s
u(r)dr

+ uiv(0)e
1
ε∗
∫ t

0
u(r)dr

.(5.6)

Since uiv(0) < 0,

|uiv(t)| > 1

ε∗
e

1
ε∗
∫ t

0
u(s)ds

∫ t

a

(u′′(s))2e
− 1
ε∗
∫ s

0
u(r)dr

ds

≥ 1

ε∗
e

1
ε∗
∫ t

0
u(s)ds

[u′′′(a)]2
∫ a+δ2

a+δ1

(s− a)2e
− 1
ε∗
∫ s

0
u(r)dr

ds

≥ 1

ε∗
e

1
ε∗
∫ t

0
u(s)ds

[u′′′(a)]2(δ2 − δ1)δ2
1e
− 1
ε∗
∫ a+δ2

0
u(r)dr

(5.7)

for any two δ1 and δ2 with t > δ2 > δ1 > 0, which implies

|u′′′(a)|2 ≤ ε∗|uiv(t)|
(δ2 − δ1)δ2

1

e
− 1
ε∗
∫ t
a+δ2

u(s)ds
.(5.8)

Setting t = 1, δ1 =
√
ε∗, δ2 = 2δ1 in (5.8), we have, for sufficiently small ε∗ > 0,

|u′′′(a)|2 ≤ e−
1
ε∗
∫ 1

0
u(s)ds |uiv(1)|√

ε∗
e

1
ε∗
∫ a+2

√
ε∗

0
u(s)ds

.(5.9)

Since a < 2
√
ε∗, u(s) ≤ 2s, and |uiv(1)| ≤ 2

ε∗ for sufficiently small ε∗ > 0, we see from
(5.9) that

|u′′′(0)| ≤ 2e16ε∗−
7
4 e
− 1

2ε∗
∫ 1

0
u(s)ds

.(5.10)

This completes the proof of the lemma.
Lemma 5.3. For any given 0 < δ � 1, as ε∗ → 0,

u(t) ∼ u(δ) + u′(δ)(t− δ) +
ε∗4uiv(1)

u4(t)
e
− 1
ε∗
∫ 1

t
u(s)ds

,(5.11)

u′′(t) ∼ u′′ (δ) + u′′′(δ)(t− δ) +
ε∗2uiv(1)

u2(t)
e
− 1
ε∗
∫ 1

t
u(s)ds

(5.12)

uniformly on [δ, 1].
Proof. Since |uiv(1)| ≤ 2ε∗−3, we see from (5.2) that

|uiv(t)| ≤ 2ε∗
−3

e
− 1
ε∗
∫ 1

t
u(s)ds

(5.13)

for all t ∈ [0, 1]. Integrating (5.13) from 0 to t and applying Lemma 5.2, we find that

|u′′′(t)| ≤ |u′′′(0)|+ 2ε∗
−3

∫ 1
4

0

e
− 1
ε∗
∫ 1

x
u(s)ds

dx

≤ |u′′′(0)|+ 2ε∗
−3

e
− 1
ε∗
∫ 1

1
4

u(s)ds

≤ Qε∗− 7
4 e
− 1

2ε∗
∫ 1

0
u(s)ds

(5.14)
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for t ≤ 1
4 , where Q = 2e16 + 1, and that

|u′′′(t)| = |u′′′(0)|+ 4ε∗−3

(∫ 1
4

0

+

∫ t

1
4

)
e
− 1
ε∗
∫ 1

x
u(s)ds

dx

≤ Q1ε
∗− 7

4 e
− 1

2ε∗
∫ 1

0
u(s)ds

+ 4ε∗−3

∫ t

1
4

e
− 1
ε∗
∫ 1

x
u(s)ds

dx

≤ Q1ε
∗− 7

4 e
− 1

2ε∗
∫ 1

0
u(s)ds

+N1ε
∗−2e

− 1
ε∗
∫ 1

t
u(s)ds

(5.15)

for t > 1
4 , where N1 > 0 is a constant and Q1 = 1+Q. Here, the method of integration

by parts has been utilized when we estimate the leading term of
∫ t

1
4
e
− 1
ε∗
∫ 1

x
u(s)ds

dx.

Similarly, integrating (5.14) and (5.15) from 0 to t, respectively, we find that

|u′′(t)| ≤ |u′′(0)|+Qε∗−
7
4 e
− 1

2ε∗
∫ 1

0
u(s)ds

for t ≤ 1
4 , and

|u′′(t)| ≤ |u′′(0)|+Q1ε
∗− 7

4 e
− 1

2ε∗
∫ 1

0
u(s)ds

+N2ε
∗−1e

− 1
ε∗
∫ 1

t
u(s)ds

(5.16)

for t > 1
4 , where N2 > 0 is a constant. Since u′′(0) = −ε∗uiv(0), we see from (5.2)

and Lemma 5.1 that

|u′′(t)| ≤ 2ε∗
−2

e
− 1
ε∗
∫ 1

0
u(s)ds

+Qε∗−
7
4 e
− 1

2ε∗
∫ 1

0
u(s)ds

< M1ε
∗− 7

4 e
− 1

2ε∗
∫ 1

0
u(s)ds

(5.17)

for t ≤ 1
4 , and

|u′′(t)| ≤ Q1ε
∗− 7

4 e
− 1

2ε∗
∫ 1

0
u(s)ds

+N2ε
∗−1e

− 1
ε∗
∫ 1

t
u(s)ds

(5.18)

for t > 1
4 . Thus, for all t ∈ [0, 1], the inequality (5.18) holds.

An integration of (5.1) from t to 1 gives

uiv(1)− uiv(t)e−
1
ε∗
∫ t

1
u(s)ds

= − 1

ε∗

∫ 1

t

(u′′)2e
− 1
ε∗
∫ t

1
u(s)ds

dt,

which implies

uiv(t) =

(
uiv(1)− 1

ε∗

∫ 1

t

(u′′)2e
1
ε∗
∫ 1

r
u(s)ds

dr

)
e
− 1
ε∗
∫ 1

t
u(s)ds

.(5.19)

Substituting (5.18) into (5.19), we obtain

|uiv(t) − uiv(1)e
− 1
ε∗
∫ 1

t
u(s)ds| ≤ 2

ε∗

(∫ 1

t

[Q2
1ε
∗− 7

2 e
− 1
ε∗
∫ 1

0
u(s)ds

+ N2
2 ε
∗−2e

− 2
ε∗
∫ 1

x
u(s)ds

]e
1
ε∗
∫ 1

x
u(s)ds

dx

)
e
− 1
ε∗
∫ 1

t
u(s)ds

≤ 2Q2
1ε
∗− 9

2 e
− 1
ε∗
∫ 1

0
u(s)ds

(5.20)

+ 2N2
2 ε
∗−3e

− 1
ε∗
∫ 1

t
u(s)ds

∫ 1

t

e
− 1
ε∗
∫ 1

x
u(s)ds

dx.
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Again, using integration by parts on the second term on the right-hand side of (5.20),
we find that for any t ∈ [δ, 1],∣∣∣∣uiv(t)− uiv(1)e

− 1
ε∗
∫ 1

t
u(s)ds

∣∣∣∣ ≤ 2Q2
1ε
∗− 9

2 e
− 1
ε∗
∫ 1

0
u(s)ds

(5.21)

+N3ε
∗−2e

− 1
ε∗
∫ 1

t
u(s)ds

,

where N3 is a constant depending only on δ. An integration of (5.21) over (δ, t), where
0 < δ � 1 is fixed, shows that for t ∈ [δ, 1],

u′′′(t) = u′′′(δ) +
ε∗uiv(1)

u(t)
e
− 1
ε∗
∫ 1

t
u(s)ds

(1 +O(ε∗)) +R(t, ε∗),(5.22)

where R(t, ε∗) is an exponentially small term. Successively integrating (5.22) over
[δ, t] yields

u′′(t) = u′′(δ) + u′′′(δ)(t− δ)(5.23)

+
ε∗2uiv(1)

u2(t)
e
− 1
ε∗
∫ 1

t
u(s)ds

(1 +O(ε∗)) +R2(t, ε∗),

and

u(t) = u(δ) + u′(δ)(t− δ) + u′′(δ)
(t− δ)2

2
+
u′′′(δ)(t− δ)3

3
(5.24)

+
ε∗4uiv(1)

u4(t)
e
− 1
ε∗
∫ 1

t
u(s)ds

(1 +O(ε∗)) +R0(t, ε∗),

where R0 and R2 are exponentially small terms. Since u′′(δ) and u′′′(δ) are of smaller

order than that of e
− 1
ε∗
∫ 1

t
u(s)ds

for the fixed δ < 1
4 , from (5.17) and (5.14), Lemma

5.3 follows immediately.
Corollary 5.4. For sufficiently small ε∗ > 0,

u′(0) = 1 + ε∗ + o(ε∗)

and

1

ε∗

∫ 1

0

u(s)ds =
1

2ε∗
+

1

2
+O(ε∗).

Proof. Applying Lemma 5.3 for t = 1, one finds from (5.11) that for a fixed
positive δ � 1,

1 ∼ u(δ) + u′(δ)(1− δ) + ε∗4uiv(1).(5.25)

Since u′(δ) = u′ (0) + u′′(ξ1)δ and u(δ) = u′(0)δ + u′′(ξ2) δ
2

2 , where ξi ∈ (0, δ) and
u′′(ξi) is exponentially small for i = 1, 2 from (5.17), we see that

1 ∼ u′(0) + ε∗4uiv(1),

which implies the first conclusion of the corollary. To obtain the second conclusion,
we integrate (5.11) over [δ, t]. Then,∫ t

δ

u(s)ds ∼ u(δ) (t− δ) + u′(δ)
(t− δ)2

2
+
ε5uiv(1)

u5(t)
e
− 1
ε∗
∫ 1

t
u(s)ds

(1 +O(ε∗)).



ASYMPTOTIC SOLUTION OF LAMINAR FLOW 1129

Since u′(δ) ∼ u′(0) and u(s) ∼ u′(0)s for s ∈ [0, δ],∫ t

0

u(s)ds =

(∫ δ

0

+

∫ t

δ

)
uds ∼ 1

2
{[u′(0)δ]2 +[2u′(0)δ(t−δ)+u′(0)(t−δ)]2}+O(ε∗2)

for any t > δ. Thus, for all t ∈ [δ, 1],∫ t

0

u(s)ds ∼ 1

2
(1 + ε∗)t2 +O(ε∗2)(5.26)

and

1

ε∗

∫ 1

0

u(s)ds ∼ 1

2ε∗
+

1

2
+O(ε∗).(5.27)

In addition, if 0 ≤ t ≤ δ, then u′(t) ∼ 1+ε∗, and hence, u(t) ∼ (1+ε∗)t. Therefore,
(5.26) still holds for t ∈ [0, δ).

The investigation of the asymptotic behavior of u(t) on (0, 1], and, in particular,
at the right boundary layer, is complete. This enables us to prove the first asymptotic
formula linking uiv(0) and u′′′(0) given in the following lemma.

Lemma 5.5. As ε∗ → 0, uiv(0) ∼ [u′′′(0)]2
√

πε∗

2 − ε∗−3e−( 1
2 + 1

2ε∗ ).

Proof. Evaluating (5.6) at t = 1, we obtain

uiv(1) = − 1

ε∗

∫ t

0

[u′′(s)]2e
1
ε∗
∫ 1

s
u(r)dr

+ uiv(0)e
1
ε∗
∫ 1

0
u(r)dr

.(5.28)

From (5.28) and (5.27), and by Lemma 5.1,

− 1

ε∗3
∼ − 1

ε∗

∫ δ

0

[u′′(s)]2e
1
ε∗
∫ 1

s
u(r)dr− 1

ε∗

∫ 1

δ

[u′′(s)]2e
1
ε∗
∫ 1

s
u(r)dr

+uiv(0)e
1

2ε∗+ 1
2 +O(ε∗),

(5.29)
where 0 < δ � 1 is fixed. Substituting (5.23) into the second term on the right-hand
side of (5.29), we find

1

ε∗

∫ 1

δ

[u′′(s)]2e
1
ε∗
∫ 1

s
u(r)dr ∼ 1

ε∗

∫ 1

δ

{u′′(δ) + u′′′(δ)(s− δ)}2e
1
ε∗
∫ 1

s
u(r)dr

ds

+
1

ε∗

∫ 1

δ

ε∗4(uiv(1))2

u4(s)
e
− 1
ε∗
∫ 1

s
u(r)dr

ds,(5.30)

where the cross product terms in the expansion of [u(s)]2 disappeared because they
are negligible, for example, for the fixed δ,

1

ε∗

∫ 1

δ

ε∗2uiv(1)

u2(s)
e
− 1
ε∗
∫ 1

s
u(r)dr

ds ∼ − 1

ε∗2

∫ 1

δ

1

u2(s)
e
− 1
ε∗
∫ 1

s
u(r)dr

ds = O(ε∗−2).

Similarly, the last term on the right-hand side of (5.30) is negligible. Thus,

− 1

ε∗3
∼− 1

ε∗

∫ δ

0

[u′′(s)]2e
1
ε∗
∫ 1

s
u(r)dr

ds(5.31)

− 1

ε∗

∫ 1

δ

[u′′(δ) + u′′′(δ)(s− δ)]2e
1
ε∗
∫ 1

s
u(r)dr

ds

+ uiv(0)e
1

2ε∗+ 1
2 +O(ε∗).
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Apply Taylor’s theorem to get u′′(s) = u′′(0)+u′′′(0)s+uiv(x) s
2

2 where x ∈ (0, s).
From (5.13), and since u′′(0) ∼ ε∗uiv(0), the first integral in (5.31) admits

− 1

ε∗

∫ δ

0

[u′′(s)]2e
1
ε∗
∫ 1

s
u(r)dr

ds ∼ − 1

ε∗
[u′′′(0)]2

∫ δ

0

s2e
1
ε∗
∫ 1

s
u(r)dr

ds.

Here, the terms having the fourth derivative uiv(x) are neglected because they are
of smaller order than ε∗−3. Similarly, since u′′(δ) = u′′(0) + u′′′(0)δ + uiv(b)δ2/2 and
u′′′(δ) = u′′′(0) + uiv(c)δ where b, c ∈ (0, δ),

1

ε∗

∫ 1

δ

[u′′(δ) + u′′′(δ)(s− δ)]2e
1
ε∗
∫ 1

s
u(r)dr

ds

∼ 1

ε∗
[u′′′(0)]2

∫ 1

δ

s2e
1
ε∗
∫ 1

s
u(r)dr

ds.

Finally,

− 1

ε∗3
∼ − [u′′′(0)]2

ε∗
e

1
ε∗
∫ 1

0
u(r)dr

∫ 1

0

s2e
− 1
ε∗
∫ s

0
u(r)dr

ds+ uiv(0)e
1

2ε∗+ 1
2 +O(ε∗)

∼ − [u′′′(0)]2

ε∗
e

1
2ε∗+ 1

2

∫ 1

0

s2e−( 1
2ε∗+ 1

2 )s2ds+ uiv(0)e
1

2ε∗+ 1
2 .(5.32)

Make a substitution x = ( 1
2ε∗ + 1

2 )s2 in the integral of (5.32). Then,

∫ 1

0

s2e−( 1
2ε∗+ 1

2 )s2ds =
1

2

(
2ε∗

1 + ε∗

) 3
2
∫ 1+ε∗

2ε∗

0

x
1
2 e−xdx ∼

√
2

(
ε∗

1 + ε∗

)3/2

Γ

(
3

2

)
,

and hence,

− 1

ε∗3
∼ −

{
ε∗−1
√

2

(
ε∗

1 + ε∗

)3/2

Γ

(
3

2

)
[u′′′(0)]2 − uiv(0)

}
e

1
2 + 1

2ε∗ ,

from which the lemma follows.
Our goal is to determine the asymptotic value of u′′′(0). Therefore, another asymp-

totic formula linking u′′′(0) and uiv(0) is needed. Since Lemma 5.5 is obtained using
only information about u(t) for t ≥ 0, we must return to the left side of the turning
point in section 6 to find how these two quantities are related for t ≤ 0.

6. On u(t) for t ≤ 0. For convenience, we rewrite Lemma 3.12 as the following
in terms of the function u(t).

Lemma 6.1. ∆u(t) − (− 1−∆
π sin π∆t

1−∆ ) → 0 in C4 and |u(k)(t)| = O(∆k−1) for

k = 1, 2, 3, 4 on [− 1−∆
∆ , 0], and u(t) ∼ − 1−∆

∆π sin π∆t
1−∆ uniformly on [− 1−∆

∆ , 0].
From (5.6),

uiv(0) = uiv(−M)e
− 1
ε∗
∫ −M

0
u(r)dr

+
1

ε∗

∫ −M
0

[u′′(s)]2e
− 1
ε∗
∫ s

0
u(r)dr

ds(6.1)

for any M ∈ [0, 1−∆
∆ ]. To determine the leading term of uiv(0), we must find an

asymptotic formula for the integrals of u(r) in (6.1).
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Lemma 6.2. As ε∗ → 0,∫ r

0

u(t)dt ∼ 2

(
1−∆

∆π

)2

sin2 π∆r

2(1−∆)
,(6.2)

and ∫ r

0

[u(s)]2e
− 1
ε∗
∫ s

0
u(t)dt ∼

√
π

2
ε∗

3
2 [u′′′(0)]2(6.3)

uniformly for all r ∈ [− 1−∆
∆ ,−ρ] where ρ > 0 is a constant.

Proof. Recall from section 1 that g(η) ∼ h(η) = − 1−∆
π sin πη

1−∆ uniformly on
[0, 1−∆] as ε̃→ 0. Hence,∫ τ

1−∆

g(η)dη ∼
∫ τ

1−∆

h(η)dη =

(
1−∆

π

)2(
1 + cos

πτ

1−∆

)
(6.4)

uniformly for τ ∈ [0, 1 −∆]. Let η = 1 −∆ + ∆t and r = (τ − 1 + ∆)/∆. If follows
that

∆

|α|

∫ r

0

u(t)dt ∼ 2

(
1−∆

π

)2

sin2 π∆r

2(1−∆)
,

which implies (6.2) by Lemma 4.4. To prove the asymptotic formula (6.3), we directly
apply the definition. For any given σ > 0, from (6.2), there exists an ε∗0 such that if
ε∗ < ε∗0, then for all r ∈ [− 1−∆

∆ , 0],

e−
2(1+σ)
ε∗ ( 1−∆

∆π )
2

sin2 π∆r
2(1−∆) ≤ e−

1
ε∗
∫ r

0
u(t)dt ≤ e−

2(1−σ)
ε∗ ( 1−∆

∆π )
2

sin2 π∆r
2(1−∆) ,(6.5)

and ∫ |r|
0

(u′′)2e−
2(1+σ)

ε∗ ( 1−∆
∆π )

2
sin2 π∆s

2(1−∆) ds ≤
∫ |r|

0

(u′′)2e
−
∫ s

0

u(t)
ε∗ dtds

≤
∫ |r|

0

(u′′)2e−
2(1−σ)
ε∗ ( 1−∆

∆π )
2

sin2 π∆s
2(1−∆) ds.(6.6)

Set an r ≥ ρ. A substitution of the expression u′′(s) = u′′(0) + u′′′(0)s + uiv(ξ)s2/2,
where ξ ∈ (0, s) depending on s, into the right integral of (6.6) leads to∫ |r|

0

(u′′)2e−
2(1−σ)
ε∗ ( 1−∆

∆π )
2

sin2 π∆s
2(1−∆) ds(6.7)

∼ [u′′′(0)]2
∫ |r|

0

s2e−
2(1−σ)
ε∗ ( 1−∆

∆π )
2

sin2 π∆s
2(1−∆) ds,

for all ε∗ < ε∗1, where ε∗1 ∈ (0, ε∗0) depending only on ρ and σ. The terms including
u′′(0) and uiv(z) in the resulting expansion are neglected because uiv(t)| = ∆3|giv| =
O(∆3) � |u′′′(0)|, u′′(0) ∼ −ε∗uiv(0) = o(∆3) � |u′′′(0)|. To see that ε∗1 is indepen-
dent of r, we rewrite the integral on the right-hand side of (6.7) as∫ |r|

0

s2e−
2(1−σ)
ε∗ ( 1−∆

∆π )
2

sin2 π∆s
2(1−∆) ds(6.8)

=

{∫ ρ

0

+

∫ |r|
ρ

}
s2e−

2(1−σ)
ε∗ ( 1−∆

∆π )
2

sin2 π∆s
2(1−∆) ds.
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Since 2
π ≤ sin θ ≤ θ for all θ ∈ (0, π2 ),∫ |r|

ρ

s2e−
2(1−σ)
ε∗ ( 1−∆

∆π )
2

sin2 π∆s
2(1−∆) ds ≤

∫ |r|
ρ

s2e−
2(1−σ)

ε∗π2 s2ds = M1ε
∗ 3

2

∫ k1(r,ε∗)

k2(ρ,ε∗)

x
1
2 e−xdx,

where k1(ε∗) = 2(1−σ)
ε∗π2 r2 → ∞, k2(ε∗) = 2(1−σ)

ε∗π2 ρ2 → ∞, and M1 = 2−
5
2π3(1− σ)−

3
2 .

This shows that the second integral on the right-hand side of (6.8) is of order o(ε∗
3
2 )

for all r ∈ [− 1−∆
∆ ,−ρ] as ε∗ → 0. On the other hand, noting from Lemma 5.2 that ∆

is exponentially small as ε∗ → 0, we see that

2(1− σ)

ε∗

(
1−∆

∆π

)2

sin2 π∆s

2(1−∆)
∼ (1− σ) s2

2ε∗

uniformly on [0, ρ], and∫ ρ

0

s2e−
2(1−σ)
ε∗ ( 1−∆

∆π )
2

sin2 π∆s
2(1−∆) ds ∼

∫ ρ

0

s2e−
(1−σ)s2

2ε∗ ds

=
√

2

(
ε∗

1− σ

) 3
2
∫ ρ2(1−σ)

2ε∗

0

x
1
2 e−xdx

∼
√

2

(
ε∗

1− σ

) 3
2

Γ

(
3

2

)
,(6.9)

which implies that the first integral on the right-hand side of (6.8) contributes the
leading term for (6.7). This also proves∫ |r|

0

[u′′(s)]2e−
2(1−σ)
ε∗ ( 1−∆

∆π )
2

sin2 π∆s
2(1−∆) ds ∼

√
2

(
ε∗

1− σ

) 3
2

Γ

(
3

2

)
.(6.10)

Similarly, ∫ |r|
0

[u′′(s)]2e−
2(1+σ)
ε∗ ( 1−∆

∆π )
2

sin2 π∆s
2(1−∆) ds ∼

√
2

(
ε∗

1 + σ

) 3
2

Γ

(
3

2

)
.(6.11)

From (6.6) and these last two formulas, we conclude that for the given σ > 0, there
is an ε∗1 > 0 such that

√
2

(
ε∗

1 + 2σ

) 3
2

Γ

(
3

2

)
<

∫ |r|
0

(u′′)2e
−
∫ s

0

u(t)
ε∗ dtds <

√
2

(
ε∗

1− 2σ

) 3
2

Γ

(
3

2

)
.

Therefore, (6.3) holds, and the proof of Lemma 6.2 is complete.
We can now prove the second asymptotic relation between u′′′(0) and uiv(0) as

follows.

Lemma 6.3. As ε∗ → 0, uiv(0) ∼ −
√

πε∗

2 [u′′′(0)]2.

Proof. Set M = 1−∆
∆ in (6.1). By Lemma 6.2,

uiv(0) ∼ uiv(−M)e
− 1
ε∗
∫ −M

0
u(r)dr − [u′′′(0)]2

ε∗

√
2ε∗

3
2 Γ

(
3

2

)
.(6.12)

From (6.5), we see that for ε∗ < ε∗1, where ε∗1 is given in the proof of Lemma 6.2,

|uiv(−M)|e−
1
ε∗
∫ −M

0
u(r)dr ≤ |uiv(−M)|e−

1−σ
ε∗ ( 1−∆

∆π )
2

.
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Since uiv(−M) = O(∆3), u′′′ (0) ∼ π2∆2, and ∆ is exponentially small, the second
term on the right-hand side of (6.12) provides the leading term for uiv(0), i.e.,

uiv(0) ∼ − [u′′′(0)]2

ε∗

√
2ε∗

3
2 Γ

(
3

2

)
.(6.13)

The proof of Lemma 6.3 is complete.

7. At the turning point. The two asymptotic formulas linking u′′′(0) and
uiv(0) have been determined in sections 5 and 6. In this final section, we combine them
to determine the asymptotic values of these two quantities. The asymptotic value of
∆ε is then determined in terms of the original parameter ε, which will complete the
proof of the main result of the paper.

Lemma 7.1. As ε∗ → 0,

u′′′(0) ∼ −(2eπ)−
1
4 ε∗−

7
4 e−

1
4ε∗

and

uiv(0) ∼ −π
√
eε∗−3e−

1
2ε∗ , u′′(0) ∼ π

√
eε∗−2e−

1
2ε∗ .

Proof. From Lemmas 5.5 and 6.3,

−[u′′′(0)]2
√
πε∗

2
∼ [u′′′(0)]2

√
πε∗

2
− ε∗−3e−( 1

2 + 1
2ε∗ ).

Then

u′′′(0) ∼ −(2eπ)−
1
4 ε∗−

7
4 e−

1
4ε∗ .

A simple application of Lemma 6.3 gives the asymptotic formula of uiv(0). The
asymptotic formula of u′′(0) follows from ε∗uiv(0) = −u′(0)u′′(0).

Recall from Corollary 5.4 of section 5 that u′(0) ∼ 1 + ε∗ as ε∗ → 0. This and
Lemma 7.1 provide the complete information on u(t), and therefore, on f(η, ε) at the
turning point.

Since also u′′′(0) ∼ −π2∆2 and ε∗ = ε
∆ , we have

π2∆2 ∼ (2eπ)−
1
4 ε∗−

7
4 e−

1
4ε∗ .

It turns out that ∆ satisfies

∆

ε
e

∆
ε ∼ 1

2eπ9ε8
.(7.1)

This completes the proof of Theorem 4.5. Thus, from Theorem 3.1,

f(η) ∼
sin πη

1−∆
π∆

1−∆

uniformly on [0, 1−∆]. The proof of Theorem 2.1 is complete.
Remark 3. The proved asymptotic relation (7.1) between ε and ∆ is not exactly

the same as the formula formally obtained in [7]. Therefore, the formal asymptotic
technique used in [7] needs to be modified. This will be given in another paper.



1134 CHUNQING LU

Acknowledgment. The author thanks Professor J. B. McLeod for showing him
the details of [9].

REFERENCES

[1] A. S. Berman, Laminar flow in channels with porous walls, J. Appl. Phys., 24 (1953), pp. 232–
1235.

[2] J. F. Brady, Flow development in a porous channel and tube. Phys. Fluids, 27 (1984), pp. 1061–
1067.

[3] S. M. Cox, Two-dimensional flow of a viscous fluid in a channel with porous walls, J. Fluid
Mech., 227 (1991), pp. 1–33.

[4] S. P. Hastings, C. Lu, and A. D. MacGillivray, A boundary value problem with multiple
solutions from the theory of laminar flow, SIAM J. Math. Anal., 23 (1992), pp. 201–208.

[5] P. A. Lagerstrom, Matched Asymptotic Expansions, Springer-Verlag, New York, 1989.
[6] C. Lu and A. D. MacGillivray, Asymptotic behavior of solutions for a similarity equation for

laminar flows in rectangular channels with porous walls, IMA J. Appl. Math., 49 (1992),
pp. 139–162.

[7] A. D. MacGillivray and C. Lu, Asymptotic solution of a laminar flow in a porous chan-
nel with large suction: A nonlinear turning point problem, Meth. Appl. Anal., 1 (1994),
pp. 229–248.

[8] C. Lu, On existence of multiple solutions of a boundary value problem from pipe flow, Canad.
Quart. Appl. Math., 2 (1994), pp. 361–393.

[9] J. B. McLeod, Laminar flow in a porous channel, in Asymptotic Beyond All Orders, #284
NATO ASI Series, H. Segur, S. Tanveer, and H. Levine, eds., Plenum Press, New York,
1991.

[10] M. Morduchow, On laminar flow through a channel or tube with injection: Applications of
method of averages, Quart. Appl. Math., XIV (1957), pp. 361–368.

[11] I. Proudman and K. Johnson, Boundary-layer growth near a rear stagnation point, J. Fluid
Mech., 12 (1962), pp. 161–168.

[12] W. A. Robinson, The existence of multiple solutions for the laminar flow in a uniformly porous
channel with suction at both walls, J. Engrg. Math., 10 (1876), pp. 23–40.

[13] F. M. Skalak and C.-Y. Wang, On the nonunique solutions of laminar flow through a porous
tube or channel, SIAM J. Appl. Math., 34 (1978), pp. 535–544.

[14] K.-G. Shih, On the existence of solutions of an equation arising in the theory of laminar flow
in a uniformly porous channel, SIAM J. Appl. Math., 47 (1987), pp. 526–533.

[15] R. M. Terrill, Laminar flow in a uniformly porous channel with large injection, Aeronaut
Q., 16 (1965), pp. 323–332, 26 (1973), pp. 47–354.

[16] M. B. Zaturska, P. G. Drazin, and W. H. H. Banks, On the flow of a viscous fluid driven
along a channel by suction at porous walls, Fluid Dyn. Res., 4 (1988), pp. 151–178.



FREE BOUNDARY FLUID SYSTEMS IN A SEMIGROUP
APPROACH AND OSCILLATORY BEHAVIOR∗

BEN SCHWEIZER†

SIAM J. MATH. ANAL. c© 1997 Society for Industrial and Applied Mathematics
Vol. 28, No. 5, pp. 1135–1157, September 1997 008

Abstract. We consider the free boundary problem of a liquid drop with viscosity and surface
tension. We study the linearized equations with semigroup methods to get existence results for
the nonlinear problem. The spectrum of the generator is computed. Large surface tension creates
nonreal eigenvalues, and an exterior force results in a Hopf bifurcation. The methods are used to
study wind-generated surface waves.

Key words. Hopf bifurcation, viscous fluid, free boundary
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1. Introduction. We consider two examples of a finite mass of viscous fluid
with a free boundary. In contrast to the case of a fixed domain, the fluid is capable of
showing damped oscillations. Due to surface tension the surface area carries potential
energy, and oscillations correspond to an exchange of energy between its kinetic and its
potential form. The time-dependent problem has parabolic and hyperbolic features,
and Beale calls it “mixed in character.” The work at hand contributes to the study
of this dynamical system.

We assume the system to be close to a stationary solution. The theory is written
down for an almost spherical liquid drop but applies also to water in a container with
periodic lateral boundaries. We rewrite the equations in semigroup form; the study
of the generator reveals some nonstandard properties regarding the choice of function
spaces, the spectrum, and the resolvent.

In sections 2–4 we derive an existence theory using the language of semigroup
theory and maximal regularity results. In sections 5–7 we study qualitative proper-
ties of the spectrum of the generator, such as nonreal or (with an external forcing)
imaginary eigenvalues. The two parts interact: the existence theory allows the proof
of a Hopf bifurcation in two examples.

The existence theory begins with a proof that the spectrum of the generator
consists of eigenvalues and is contained in a sector of the complex plane. Therefore,
a natural idea is to apply the semigroup theory for sectorial operators. But the
analysis of the resolvent shows that the problem does not fit into this framework: the
estimates are valid only on a subspace. On the other hand, due to the kinematic
boundary condition, the nonlinearity is always contained in the same subspace. We
show that the methods of semigroup theory can be adapted and derive an existence
result for the linear problem in section 3 and for the nonlinear problem in section
4. The solutions provide differentiable flows on a Banach manifold. This will be the
setting to prove a Hopf bifurcation in section 6.
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Regarding other works, we wish to mention first Beale [2], who studied infinite
domains. He derives the resolvent estimate with the help of Fourier transforms. His
proof is considerably longer than ours, since the infinite domain corresponds to a
continuous spectrum.

Concerning finite domains, we refer to the numerous works of Solonnikov, who
gave the first existence result. He derives estimates with methods from potential
theory, after having transformed the equations in a half-space [15]. We mention a
related article on Hopf bifurcation in a two-phase fluid system by Renardy and Joseph
[13]. In their more physical model the transversal crossing of eigenvalues appears as
an assumption. They do not treat the initial value problem. For a more geometric
approach, see Bemelmans [4] and Wagner [17].

In the second part of this article we prove qualitative properties of the spectrum.
We describe the basic idea for the case where we have only one physical parameter,
a nondimensional surface tension β. We are interested in how an eigenvalue λ of the
operator Lβ depends on β. We do this indirectly. For some function β̃ every complex

number λ is an eigenvalue of the operator Lβ̃(λ). The study of the function β̃ on the

real axis gives us insight into the behavior of λ(β).
In section 5, we see that for vanishing surface tension the spectrum of L consists

of both the Stokes eigenvalues in a fixed domain and the interfacial eigenvalue 0. For
a fixed interfacial eigenmode with increasing β, the first two eigenvalues move towards
each other and must leave the real axis, while the other eigenvalues remain trapped
in fixed intervals.

We use the same general idea in two examples with an exterior force. In section
6, we assume that the liquid drop experiences negative damping. We can count the
eigenvalues inside a ball and prove that if the force reaches a critical strength a pair
of eigenvalues crosses transversally the imaginary axis. Using the existence results,
we can prove a Hopf bifurcation.

In section 7 we apply the idea to a model for the generation of water waves by
wind. A strong wind leads to a Hopf bifurcation. We also gain insight into the shape
of the eigenfunctions for strong wind: two of them show the structure of an ideal fluid;
the other, approximate Stokes eigenfunctions. There are works (e.g., [10], [11]) that
give asymptotic formulas for the eigenvalues for a vanishing exterior force. Our results
confirm their qualitative properties and provide additional mathematical insight and
proofs.

2. The liquid-drop equations. We first collect the nonlinear equations de-
scribing a liquid drop. Let Ω be the subdomain of R3 occupied by liquid. The velocity
field and the pressure within the liquid drop are denoted by u and p, respectively. The
exterior normal vector of ∂Ω is denoted by nΩ; tangential vectors are denoted by τΩ

i .
We use the dimensionless viscosity ν.

The surface tension will become important. The physical quantity is a number
β > 0: if the surface has a mean curvature H(η), then the surface tension creates a
pressure 2βH(η).

We introduce the strain-tensor

(Su)ij =
1

2
(∂iuj + ∂jui)

and the product (Su) : (Sw) :=
∑
i,j(Su)ij(Sw)ij , and we define additionally

Snu := n · Su · n.
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We deal with a free boundary problem. The unknown functions are not only u and
p but also the domain Ω. We assume small perturbations of the unit sphere and
parametrize the surface of the liquid drop with a function η : S2 → R. The domain
occupied by liquid is

Ω(t) = {rξ ∈ R3| ξ ∈ S2, 0 ≤ r < 1 + η(ξ)}.

The velocity field is a function

u(t, .) : Ω(t)→ R3.

In the interior, the following Navier–Stokes equations hold:

∂tu+ (u · ∇)u− ν∆u+∇p = 0,(1)

∇ · u = 0.(2)

The boundary conditions are the geometric condition that η always parametrizes the
surface, the additional pressure created by surface tension, the condition of vanishing
tangential stress, plus initial conditions:

∂tη + (∂ϕη)uϕ + (∂ϑη)uϑ = ur,(3)

p− 2νnΩ · Su · nΩ = 2β H(η),(4)

τΩ
i · Su · nΩ = 0,(5)

(u, η)(t = 0) = (u0, η0).(6)

Equation (3) can be derived by considering a particle at the boundary with position
(r(t), ϕ(t), ϑ(t)) in spherical coordinates using η(t, ϕ(t), ϑ(t)) = r(t).

We will return to these nonlinear equations in section 4. We now give the lin-
earization of the problem in u = 0, η = 0. We replace the domain Ω by the unit ball
B3. nΩ and τΩ

i are replaced by the normal and tangential vectors of the unit sphere,
n(ξ) = ξ and τi. The radial velocity will now be written as un|∂ = n · u|∂ .

The linearization of the mean curvature of ∂Ω = {ξ(1 + η(ξ))| ξ ∈ S2} is denoted
by − 1

2∆η. With the Laplace–Beltrami operator of the sphere ∆B , there holds

∆ = ∆B + 2 · id.

The linearized equations are

u : B3 → R3, p : B3 → R, η : S2 → R,
d

dt
u− ν∆u+∇p = 0,

∇ · u = 0,

d

dt
η = un|∂ ,

(−p+ 2νSnu )|∂ = β∆η,

(τi · Su · n)|∂ = 0.

In the equation for the pressure, we omitted the constant pressure induced by the
surface tension of the unit sphere.

Before we start the analysis of the linearized liquid-drop equations, we collect
some facts concerning the Stokes equation. We write Hr = Hr,2 for Sobolev spaces.
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If the domain is the unit ball B = B3, we often omit this argument: Hr = Hr(B3).
The Stokes operator A : (u, p) 7→ (−ν∆u+∇p,∇·u) is elliptic in the sense of Agmon,
Douglis, and Nirenberg [1] with any of the boundary conditions

u|∂ = 0,

or un|∂ = 0, τ · Su|∂ · n = 0,

or (p− 2νSnu )|∂ = 0, τ · Su|∂ · n = 0.

Solutions to inhomogeneous boundary data have maximal regularity.
We introduce the operator

H : Hr−1/2(S2)→ Hr(B3),

which maps a function to its harmonic extension.
We will use integration by parts in the following form.
Lemma 2.1. For smooth functions u,w : B3 → R3 with ∇ · u = ∇ · w = 0 and

τ · Su · n = 0,

2

∫
B

Su : Sw =

∫
B

{−∆u+∇H(2Snu )} · w.

We now return to the liquid-drop equations. Our aim is to write the linear liquid-
drop equations in the form d

dtx + Lx = 0 and to satisfy the boundary conditions by
the choice of appropriate function spaces.

We start by rewriting the boundary condition for the pressure. The pressure p is
a harmonic function; therefore

p = H(2νSnu |∂)−H(β∆η).

The physical quantities volume, momentum, and angular momentum are conserved.
We use this fact in the definition of the function spaces.

The following point of view is useful: the first eigenspace of ∆B corresponds to
constant functions Φ(x) = a; the second eigenspace, to translations Φ(x) = b · x. The
physical conditions imply that the projection of η onto the first two eigenspaces of
∆B vanishes.

Definition 2.2. Define the Hilbert spaces

Y r :=

{
u ∈ Hr(B3)3|∇ · u = 0;

∫
B3

u = 0;

∫
B3

u ∧ γ = 0 ∀γ ∈ R3

}
,

Xr :=

{
(u, η) ∈ Y r ×Hr+1−1/2(S2)|

∫
S2

η = 0;

∫
S2

n · η = 0

}
,

X̃r := {(u, η) ∈ Xr|n · Su(z) · τ |∂ = 0 ∀τ ∈ TzS2},

and the operator

L : Xr → Xr, X̃r ⊃ D(L) ⊃ X̃r+2

by

L
(
u
η

)
:=

(
−ν∆u+∇H(2νSnu |∂)−∇H(β∆η)

−un|∂

)
.
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Easy calculations show that L maps to X: the liquid drop does not start to move
its center of mass, it does not start to rotate, and it keeps its volume.

The linearized liquid-drop equation reads

d

dt
x+ Lx = 0, x ∈ X̃.(7)

In the case of a pure rotation the integral
∫
B
|Su|2 vanishes without u being a

constant. But in our function spaces a Korn inequality holds: there exists a constant
CK such that for all u ∈ Y

1

CK
‖Du‖2L2 ≤ 2ν

∫
B3

|Su|2 ≤ CK‖Du‖2L2 .(8)

See, e.g., [16]. Here ‖Du‖L2 may be replaced by ‖u‖H1 because the mean of u vanishes.
Definition 2.3 (energy norms). For functions u, v : B3 → R3 and η, σ : S2 → R

we define

〈u, v〉E :=

∫
B

ū · v,

〈η, σ〉E := β

∫
S

(−∆η̄) · σ,〈(
u
η

)
,

(
v
σ

)〉
E

:= 〈u, v〉E + 〈η, σ〉E .

The corresponding norms are denoted by ‖.‖E.
Lemma 2.4 (position of eigenvalues of L). Let (u, η) ∈ X̃2 be an eigenvector of

L with eigenvalue µ. Then

Re(µ)‖(u, η)‖2E = 2ν

∫
B

|Su|2,

Im(µ)‖(u, η)‖2E = 2βIm

(∫
S

un|∂∆η̄

)
.

In the case of Im(µ) 6= 0 the following energy equality holds:

‖u‖2E = ‖η‖2E =
1

2
‖(u, η)‖2E .

Proof.

µ

∥∥∥∥( u
η

)∥∥∥∥2

E

=

〈(
u
η

)
,L
(
u
η

)〉
E

=

〈(
u
η

)
,

(
−ν∆u+∇H(2νSnu )−∇H(β∆η)

−un|∂

)〉
E

=

∫
B

{ū · (−ν∆u+∇H(2νSnu ))}

−
∫
B

ū∇H(β∆η)− β
∫
S

(−∆η̄)(un)|∂

= 2ν

∫
B

|Su|2 + β

∫
S

{un|∂∆η̄ − ūn|∂∆η}.
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This implies the assertion on the real and the imaginary part of µ.
To prove the energy equality we use the second part of the eigenvalue equation,

−un|∂ = µη:

Im(µ)

∥∥∥∥( u
η

)∥∥∥∥2

E

= 2βIm

(∫
S

un|∂∆η̄

)
= 2Im(µ)‖η‖2E .

Using the properties of the Stokes operator one easily proves the following lemma
for β 6= 0.

Lemma 2.5. The operator L−1 : Xr → X̃r+1 is bounded.
We point out that L−1 : X0 → X̃2 is not bounded: let (u, η) solve L(u, η) =

(0, g). A bound for ‖u‖H2 would imply g = un|∂ ∈ H3/2,2(S2). But a priori, only
g ∈ H1/2,2(S2) holds.

The Lumer–Phillips theorem implies the following lemma.
Lemma 2.6. L generates a C0-semigroup in the space XE corresponding to the

energy norms.
We want to split X into a direct sum of L-invariant subspaces (Xn)n∈N according

to spherical harmonics. The functions {ψn,k|n ∈ N, k ∈ {−n, ..., n}} shall span Ψn, the
nth eigenspace of the Laplace–Beltrami operator of S2. We denote the corresponding
eigenvalue by Λn > 0 and the eigenvalue of −∆ by Λn = Λn − 2. Let ν be the
normal vector, ∇T the tangential gradient, and ∇⊥T = ν∧∇ the orthogonal tangential
gradient.

A vector field is in Xn if on any sphere of radius r the function can be represented
by ψn,k ν, ∇Tψn,k, and ∇⊥T ψn,k, k ∈ {−n, ..., n}.

Proposition 2.7. The spectrum of L consists only of eigenvalues which are
contained in a sector

SC := {µ| |Im(µ)| < CRe(µ)}.(9)

Proof. By Lemma 2.5, L has a compact resolvent and therefore a pure point
spectrum. We prove that eigenvalues are contained in a sector SC . Let µ be an
eigenvalue with eigenvector (u, η) ∈ X̃k. If Im(µ) = 0, then µ is contained in any
sector SC . We can therefore assume Im(µ) 6= 0.

We use Lemma 2.4 and the fact that u depends on the radius r like e
√

Λk+|µ| r.

|Im(µ)|
∥∥∥∥( u

η

)∥∥∥∥2

E

= 2β

∣∣∣∣Im(∫
S

un|∂∆η̄

)∣∣∣∣
≤ β

∫
S

|∆η|2 + β

∫
S

|un|∂ |2

≤ |Λk|‖η‖2E + βCT

√
Λk + |µ| ‖u‖2L2(B).

Therefore,

|Im(µ)| ≤ C1|Λk|+ βC2Re(µ).

Using Lemma 2.4 and the Korn inequality yields

Re(µ)

∥∥∥∥( u
η

)∥∥∥∥2

E

= 2ν

∫
B

|Su|2
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≥ 1

CK
‖∇Tu‖2L2

≥ 1

2CK
|Λk|

∥∥∥∥( u
η

)∥∥∥∥2

E

.

The assertion follows with the constant C = 2C1CK + βC2.

3. An estimate for resolvents and the time-dependent problem. In this
section we collect estimates for the resolvent. A first type of estimate concerns solu-
tions (u, η) of (λ−L)(u, η) = (f, 0). Such estimates are known in similar contexts [2],
[13]. We indicate how they can be derived more easily in our case of only one fluid in
a compact domain.

As a corollary, we get a second type of estimate concerning the resolvent on the
full space: we show that L is a sectorial operator.

To solve nonlinear equations, it will be necessary to increase the regularity of the
function spaces. In this section we use X = Xr and X̃++ = X̃2+r with r = 0 or
r = 2.

Theorem 3.1. There exists CR > 0 such that solutions (u, η) ∈ X̃++ of

(λ− L)

(
u
η

)
=

(
f
0

)
with λ ∈ C \ SC satisfy the regularity

‖(u, η)‖X++ ≤ CR‖(f, 0)‖X(10)

and the resolvents estimate

‖(u, η)‖X ≤ CR
1

|λ| ‖(f, 0)‖X .(11)

Proof. We indicate the ideas of the proof. One writes the equation as

λu+ ν∆u−∇H(2νSnu )− 1

λ
∇H(β∆un|∂) = f.(12)

Testing with ∆Bū and taking real and imaginary parts shows that β 1
|λ|
∫
S2 |∆un|∂ |2

and ‖u‖2H2 can be estimated by ‖f‖L2 and |λ|2‖u‖2L2 .
Testing (12) with ū and taking the imaginary part yields

|λ|2‖u‖2L2 ≤ β
∫
S2

ūn∆un + const‖f‖L2 |λ|‖u‖L2

≤ βCc‖u‖1/2L2 ‖u‖3/2H2 + const‖f‖2L2 +
1

2
|λ|2‖u‖2L2 .

This yields the estimates for u. Equation (12) provides the estimates for η.
Corollary 3.2. L is a sectorial operator on Xr+2, r ≥ 0. The spectrum σ(L)

is contained in a sector SC , and with a constant M > 0, for every λ ∈ C \ SC ,

(λ− L)

(
u
η

)
=

(
f
g

)
⇒

∥∥∥∥( u
η

)∥∥∥∥
Xr+2

≤ M

|λ|

∥∥∥∥( f
g

)∥∥∥∥
Xr+2

.
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Proof. Instead of (12),

λu+ ν∆u−∇H(2νSnu )− 1

λ
∇H(β∆un|∂) = f − 1

λ
∇H(β∆g|∂).(13)

For f = 0 Theorem 3.1 yields

‖(u, η)‖Xr+2 + |λ| ‖(u, η)‖Xr ≤ const
1

|λ| ‖g‖Hr+3−1/2(S2)

≤ const
1

|λ| ‖(0, g)‖Xr+2 .

The preceding corollary verifies one of the assumptions in the Hopf bifurcation
theorem of [5]; nevertheless, that theorem cannot be applied since it assumes the
nonlinearity to be of lower order.

Using Theorem 3.1 we can solve the initial value problem with the ideas of semi-
group theory. Unlike in other approaches, this will provide a time-t map for the
nonlinear evolution system. In particular, this tool allows an elementary proof of a
Hopf bifurcation theorem.

Definition 3.3. Let I := [0, T ] be a fixed time interval, T > 0. We introduce
the spaces

Z := Cα(I,X),

Z̃++ := C1,α(I,X) ∩ Cα(I, X̃++).

For the regularity of the initial values we define

DL,α := {x ∈ X| ‖x‖K,α := ‖t 7→ e−tLx‖Z++ <∞}.

As in the semigroup theory, we choose a path of integration Γ in the complex plane
containing SC and write functions in L as integrals over Γ. Following the standard
lines we get the special semigroup estimates

‖e−tL(f, 0)‖X + ‖tLe−tL(f, 0)‖X + ‖(tL)2e−tL(f, 0)‖X ≤ C‖(f, 0)‖X ,
‖L−1e−tL(f, 0)‖X++ + ‖te−tL(f, 0)‖X++ + ‖t2Le−tL(f, 0)‖X++ ≤ C‖(f, 0)‖X .

We can now prove a result of maximal regularity, i.e., solutions of ∂tx+ Lx = F are
in Z++ if F is in Z. The underlying idea is taken from [6], which proves a regularity
result in the case when the resolvent of the generator has optimal regularity properties.

Theorem 3.4. Let F ∈ Z = Cα(I,X) be of the form F =
(

f
0

)
and let

x0 ∈ X̃++ satisfy the compatibility condition

x0 − L−1F (0) ∈ DL,α.

Then the equation

∂tx+ Lx =

(
f
0

)
,

x(0) = x0
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has a unique solution x ∈ Z̃++ bounded by

‖x‖Z++ ≤ C1(T,M,α){‖x0‖X++ + ‖x0 − L−1F (0)‖K,α + ‖F‖Z}.

The compatibility condition is always satisfied:

‖x(t)− L−1F (t)‖K,α ≤ C2(T,M,α) · {‖x0‖X++ + ‖x0 − L−1F (0)‖K,α + ‖F‖Z}.

Proof. One proves that x(.) is in Cα(I,X++) by decomposing x(t) as

x(t) = e−tLx0 +

∫ t

0

e−(t−s)LF (s)ds

= e−tL(x0 − L−1F (0)) + e−tLL−1(F (0)− F (t))

+

∫ t

0

e−(t−s)L(F (s)− F (t))ds+ L−1F (t).

The first term is in Cα(I,X++) by the compatibility condition; for the other terms we
can use the special semigroup estimates. The compatibility condition in t is proved
in a similar manner.

We complete our analysis of the nonstationary equation with a remark about the
size of the space DL,α. The preceding theorem shows that it contains all functions
(u(t), η(t)) that can be reached with solutions starting from 0. It furthermore contains
all smooth functions with appropriate boundary data. By writing e−tLx0 − x0 as a
complex integral one proves, for X = Xr,

{x0 ∈ X̃|Lx0 ∈ X̃r+4} ⊂ DL,α.

Concerning the time-dependent problem, we finally remark that the equations for the
center of mass and rotations can now be solved with one additional integration.

4. The nonlinear liquid-drop equation. We now consider the full free bound-
ary problem. We will need high orders of regularity and set X = X2, X++ = X4. In
this section we do not impose the conditions of vanishing momentum and vanishing
angular momentum and extend L−1 trivially.

The transformation of the equations (1)–(6) to a fixed domain is done in the
standard way, as in Beale [2]. Using the operator L, the transformed equations read

∂t

(
v
η

)
+ L

(
v
η

)
=

(
F (v, η)

0

)
(14)

with the boundary condition

τi · Sv · n = Gi(v, η).(15)

In the case r ≥ 1,

F : Xr+2 → Hr(B3)3, F (0, 0) = 0, DF exists, and DF (0, 0) = 0,

G : Xr+2 → Hr+1− 1
2 (S2)2, G(0, 0) = 0, DG exists, and DG(0, 0) = 0.

We solve the time-dependent problem by means of an iteration. The boundary
condition (15) is satisfied with the help of a function Φ.
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Definition 4.1. For functions gi we define a vector field Φ(g) : B3 → R3 which
has the correct boundary values. With the help of the Stokes operator A we define
Φ(g) : B3 → R3 as the solution of

AΦ(g) = 0 in B3,

Φn(g) = 0 on S2,

τi · SΦ(g) · n = gi on S
2.

We consider new variables, namely,

x̃ = x−
(

Φ(G(x))
0

)
(16)

with inverse x = ξ(x̃). The boundary condition (15) is satisfied if we construct x̃ ∈ X̃.
In the x̃-variable the equations read

(∂t + L)x̃ =

(
F̃ (x̃)

0

)
:=

(
F ◦ ξ(x̃)

0

)
− (∂t + L)

(
Φ ◦G ◦ ξ(x̃)

0

)
,

x̃(0) = ξ−1(x0) = x0 − (Φ ◦G(x0), 0).(17)

We remark that we have a vanishing second component in the right-hand side.
In the following, we impose the conditions that initial values satisfy (5) and that

the formal time derivative at 0 has the appropriate regularity.
Definition 4.2. x0 satisfies the nonlinear compatibility conditions in X++ if

x̃0 := x0 −
(

Φ(G(x0))
0

)
∈ X̃++,(18)

z := x̃0 − L−1(F̃ (x̃0), 0) ∈ DL,α.(19)

Before we state the theorem of local existence and uniqueness, we investigate the
compatibility conditions in more detail. The following proposition states that the
permitted small initial values form a Banach manifold. We will use this fact to prove
a Hopf bifurcation; the idea is taken from Koch [9].

Proposition 4.3. There exists U = Bε(0) ⊂ DL,α and a mapping ζ : U → X++

such that every x0 = ζ(z) satisfies the nonlinear compatibility conditions with small
norms. We denote the manifold ζ(U) by M. ζ can be constructed with Dζ(0) = id.

Proof. We only have to invert the equation (19) with x0 ∈ X̃++. We use the
contraction mapping principle for the map

X̃++ 3 x̃0 7→ z + L−1(F̃ (x̃0), 0) ∈ X̃++.

This yields the fixed point x̃0 = ζ̃(z). We define ζ := ξ ◦ ζ̃.
Theorem 4.4. According to small initial values x0 satisfying the compatibility

conditions, i.e.,

x0 = ζ(z) ∈M, ‖z‖K,α small,

there exists a unique small solution of the nonlinear liquid-drop equation in

Z++ = C1,α(I,X2) ∩ Cα(I,X4).

As a map on the Banach manifold M, the flow is differentiable.
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Proof. We construct the solution with the help of an iteration map T : Z̃++ →
Z̃++. Let (v, σ) ∈ Z̃++ be given. We define f̃ = F̃ (v, σ) and solve

(∂t + L)x̃ = (f̃ , 0),

x̃(0) = x0 − (Φ ◦G(x0), 0) = ζ̃(z)

for x̃ ∈ Z̃++ with the help of Theorem 3.4. Because of DF (0, 0) = 0 and DG(0, 0) = 0,
the solution operator is contracting in a small ball Bε(0) ⊂ Z++ and there exists a
unique fixed point x̃. The function ξ(x̃) is a solution of the nonlinear equation.

We have to take care that in the iteration the right-hand side is contained in the
function space. The condition of vanishing divergence can be assured with the usual
projection. This yields an additional pressure that vanishes at the boundary.

It remains to show the differentiability of the flow x0 7→ x(t) on the manifold, i.e.,
the differentiability of

Φt : x̄0 7→ζ−1x(t) = x(t)− L−1F̃ (x(t)) with

x̄0 = ζ−1(x0) = x0 − L−1F̃ (x0) = x̄0.

We omit the straightforward calculation, proving that the derivative of Φt can be
written as

DΦt : w̄0 7→ (id− L−1 ◦DF̃ |x(t))w(t),

where w(.) solves

(∂t + L)w(.) = DF̃ |x(.) · w(.),

w(0) = w0 = (id− L−1 ◦DF̃ |x(t))
−1w̄0.

5. The spectrum of L. The eigenvalues of L can be calculated explicitly for
β = 0. We investigate the movement of the eigenvalues in the complex plane as
β → ∞. We prove the qualitative behavior that has been observed numerically
(compare [3]).

We will make fundamental use of the fact that the liquid-drop problem has an
O(3) symmetry, in other words, that L is O(3)-equivariant. The group action will be
denoted by *. We use the decomposition X =

⊕
Xn, and we describe the spectrum

on Xn for n ≥ 2.
The nth eigenspace of ∆B , Ψn has the standard basis (ψn,−n, ..., ψn,n) with

ψn,k(θ, ϕ) = Pn,k(cos(θ))eikϕ.

The function Φ0 := ψn,0 has an isotropy subgroup Γ isomorphic to O(2). Any function
ψ : S2 → R can be Γ-symmetrized by

ψ̄(ξ) := −
∫

Γ

γ ∗ ψ(ξ)dγ.

The same can be done with functions v : B3 → R3.
In this and the following section we consider only eigenfunctions (u, η) ∈ Xn

with η = Φ0. This is no restriction since every eigenfunction can be projected and
symmetrized such that the second component is a multiple of Φ0.
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We make constant use of the following observation: given an eigenvalue z of L,
we can construct the eigenfunction (u,Φ0) as the solution of a Stokes problem.

Definition 5.1. By AN we denote the Stokes operator in the space of functions
with vanishing normal component at the boundary. The eigenvalues of AN are de-
noted by {κj}j∈N. The corresponding eigenfunctions with symmetry Γ are denoted by
{uj}j∈N; and the pressure, by {pj}j∈N. Their signs are determined in (24).

For z ∈ C \ {κj |j ∈ N} we define (ũ(z), p̃(z)) as the unique solution of the system

zũ(z) + ν∆ũ(z)−∇p̃(z)= 0,
∇ · ũ(z)= 0,

τ · Sũ(z)|∂ · n= 0,
ũn(z)|∂= −zΦ0.

(20)

The solution has the same symmetry as Φ0, i.e., Γ. In particular, (p̃(z)− 2νSnũ(z))|∂
has the symmetry Γ and is a multiple of Φ0. We define r̃(z) ∈ C by

(p̃(z)− 2νn · Sũ(z) · n)|∂ =: r̃(z)Φ0.(21)

We remark that z ∈ R implies r̃(z) ∈ R.
Any z ∈ C \ {κj |j ∈ N} is an eigenvalue of L with eigenfunction (ũ(z),Φ0) if it

satisfies

r̃(z) = Λkβ.(22)

We remark that the functions ũ(z) and p̃(z) can be computed explicitly in terms of
Bessel functions; this can be used to analyze the function r̃(z) numerically. In the
following, ‖.‖ denotes the L2-norm.

Proposition 5.2 (properties of ũ(z)). ũ(z) is a differentiable family of functions
for z ∈ C \ {κj |j ∈ N}. In κj,

‖ũ(z)‖ → ∞ for z → κj .(23)

The rescaled functions approximate the Stokes eigenfunctions

uj = lim
R3z↗κj

ũ(z)

‖ũ(z)‖ = lim
R3z↘κj

−ũ(z)

‖ũ(z)‖ .(24)

Furthermore,

‖ũ(z)‖ → ∞ for |z| → ∞.(25)

Proof. We define a family of functions (u(z), p(z)) which depends smoothly on z
in a neighborhood of κj by solving

zu(z) + ν∆u(z)−∇p(z) = 0,

∇ · u = 0,

τ · Su(z) · n|∂ = 0, (p(z)− 2νSnu(z))|∂ = Φ0.

The solution is unique; therefore, u(κj) is a multiple of uj . With the notation

un(z)|∂ =: s(z)Φ0,
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s(.) is continuous and s(κj) = 0. (23) is proved by observing

ũ(z) =
−z
s(z)

u(z).

(24) is proved by showing that the function s(.)|R changes sign in κj .
Assume ∂zs(κj) = 0. Then v := ∂zu(κj), q := ∂zp(κj) satisfies the boundary

conditions

τ · Sv|∂ · n = 0, vn|∂ = 0, (q − 2νSnv )|∂ = 0.

Additionally,

κjv + ν∆v −∇q = −u(κj).

Multiplying with u(κj) and integrating yields 0 = −‖u(κj)‖2—a contradiction.
(25) can be proved directly. As the solution of the Stokes system (20), ũ satisfies

an estimate

‖ũ(z)‖H2 ≤ CS {|z| ‖ũ(z)‖L2 + |z| ‖Φ0‖H3/2(S2)}.

We now use ũn(z)|∂ = −zΦ0, a trace formula, and an interpolation to calculate

|z|2‖Φ0‖2L2(S2) = ‖ũn(z)|∂‖2L2(S2)

≤ CT ‖ũ(z)‖2H1

≤ CTCc‖ũ(z)‖L2‖ũ(z)‖H2

≤ CTCcCS‖ũ(z)‖L2{|z|‖ũ(z)‖L2 + |z|‖Φ0‖H3/2(S2)}.

This yields ‖ũ(z)‖2L2 ≥ const · |z|, and the proposition is proved.
Proposition 5.3 (properties of r̃(z)). The function r̃(z) satisfies

r̃(z)→ 0 for R 3 z ↘ 0,
r̃(z)→ −∞ for R 3 z ↗ κj ,
r̃(z)→ +∞ for R 3 z ↘ κj .

(26)

r̃(z) is positive for small z > 0,

∂z r̃(0) > 0.(27)

Between κj and κj+1, there is at most one turning point. Critical values of r̃(z) are
positive.

Proof. The assertion of (26) for z → 0 is trivial. uj satisfies

uj = lim
z↗κj

ũ(z)

‖ũ(z)‖ .

We test the eigenvalue equation of uj with v :=
ũ(κj−ε)
‖ũ(κj−ε)‖ to get

0 = 〈(κj −A)uj , v〉

= 〈uj , (κj −A)v〉 −
∫
S

(pj − 2νSnuj )|∂vn|∂

= ε 〈uj , v〉 −
∫
S

(pj − 2νSnuj )|∂vn|∂ .
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By (24) the first term is positive for small |ε|; the second has the sign of r̃(κj − |ε|).
To prove (27) we consider the functions v := ∂zũ(0), q = ∂z p̃(0). They solve

ν∆v −∇q = 0,

τ · Sv|∂ · n = 0, vn|∂ = −Φ0, (q − 2νSnv )|∂ = ∂z r̃(0)Φ0.

Multiplying this equation with v yields

−
∫
B3

|Sv|2 + ∂z r̃(0)‖Φ0‖2 = 0,

which proves (27).
We claim that turning points of r̃(z), z ∈ R, are the critical points of ‖ũ(z)‖,

z ∈ R. We consider the functions v(z) := ∂zũ(z), q(z) := ∂z p̃(z), which solve

ũ(z) + zv(z) + ν∆v(z)−∇q(z) = 0,(28)

τ · Sv(z)|∂ · n = 0, vn(z)|∂ = −Φ0,

(q(z)− 2νSnv(z))|∂ = ∂z r̃(z)Φ0.

Multiplying (28) by ũ(z) yields

‖ũ(z)‖2 + z∂z r̃(z)‖Φ0‖2 − r̃(z)‖Φ0‖2 = 0,(29)

and differentiating gives

∂z‖ũ(z)‖2 + z∂2
z r̃(z)‖Φ0‖2 = 0.(30)

Consider w := ∂2
z ũ(z0), r := ∂2

z p̃(z0), which solve

2v + κjw + ν∆w −∇r = 0,(31)

τ · Sw|∂ · n = 0, wn|∂ = 0,

(r − 2νSnw)|∂ = ∂2
z r̃(z0)Φ0.

Multiplying (31) with v yields

2‖v‖2 − 〈ũ(z0), w〉+ ∂2
z r̃(z0)‖Φ0‖2 = 0.(32)

Assume there is more than one point with ∂2
z r̃ = 0. By (30) they coincide with critical

points of ‖ũ(z)‖. At least one of them satisfies ∂2
z‖ũ(z)‖2 ≤ 0. This contradicts

equation (32), which implies

∂2
z‖ũ(z)‖2 = 2 〈ũ(z0), w〉+ 2‖v‖2 = 6‖v‖2 > 0.

The last assertion of the proposition follows from (29).
We denote the Stokes operator with boundary condition (p− 2νSnu )|∂ = 0 by AS

and the eigenvalues of AS by {ρj}j∈N.
Theorem 5.4 (the spectrum of L in dependence of β). It holds that

ρ0 < κ0 < ρ1 < · · · < ρj < κj < · · · .

For β = 0 all the eigenvalues of Lβ are real. Denoting them by (µj)j∈N,

µ0 = 0, µj+1 = ρj .
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For small β the eigenvalues stay real. With increasing β the first eigenvalue moves to
the right while the other eigenvalues move to the left. For some β0 > 0 the first two
eigenvalues merge and leave the real axis.

Given a radius k there exists βk > 0 such that for β > βk the following is true.
The norm of nonreal eigenvalues of Lβ is larger than k. Every interval [κj , κj+1] with
κj+1 < k contains one and only one eigenvalue µ(β) of Lβ. This eigenvalue satisfies

µ(β)↘ κj for β →∞.

Proof. The numbers ρj , j ∈ N are the zeros of r̃(z). The shape of r̃ implies
the assertion on the position of the Stokes eigenvalues. For β = 0 we can compute a
complete set of eigenfunctions in Xk: µ0 = 0 with eigenfunction (0,Φ0) and µj+1 = ρj
with eigenfunctions (ũ(ρj),Φ0). By the shape of r̃(z) and (22) the first two eigenvalues
meet at the maximum of r̃ and must leave the real axis. Eigenfunctions (u(β),Φ0) of
Lβ with nonreal eigenvalues µ(β) satisfy the energy equality

‖u‖L2 = βΛk‖Φ0‖2L2(S2).

Therefore, nonreal eigenvalues cannot stay bounded for β → ∞. The shape of r̃
together with (22) prescribes the movement of the real eigenvalues as stated. The
theorem is proved.

Remark 5.5. Eigenvalues leave the real axis with an infinite speed. The qualita-
tive shape of r̃ν(z) is independent of the viscosity ν:

r̃αν(αz) = α2r̃ν(z).

Proof. Eigenvalues leave the real axis in a critical point z0 of r̃, an analytic

function in C \ {κj |j ∈ N}. It holds that ∂Re(r̃(z0))
∂Imz = 0, and (22) implies

Λk =
∂Re(r̃(z(β)))

∂β
=
∂Re(r̃(z))

∂z

∂z

∂β
.

The speed of z(β) gets infinite.
The statement on the shape of r̃ν(z) is proved by multiplying the equation for ũ

by α2:

(αz)(αu) + (αν)∆(αu)−∇(α2p) = 0,

(αu)n|∂ = −(αz)Φ0,

(α2p− 2(αν)Snαu)|∂ = α2r̃ν(z).

By definition of r̃ the last line coincides with r̃αν(αz).

6. A Hopf bifurcation for liquid drops. In this section we show how our
analysis can be used to study the effect of an exterior force. In the previous section,
we achieved a complete picture of the spectrum of L. On a fixed subspace Xk, the
spectrum consists of a countable number of eigenvalues that correspond to eigenvalues
of the Stokes operator and two additional eigenvalues (interfacial eigenvalues) that are
real for small surface tension and nonreal for large surface tension.

Starting from this situation, a Hopf bifurcation can occur if an exterior force
moves the additional eigenvalues across the imaginary axis. We prove this behavior
in the case of a force that preserves symmetry. A more physical force will not preserve
symmetry; we study that case in section 7.
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In this section we assume that the force acts on the surface and that its strength
depends linearly on the position and the speed of the boundary. The symmetric force
has only two parts; the one proportional to η acts as the surface tension, and we
restrict our analysis to a force proportional to ∂tη(x, t) = un|∂ . We introduce the real
number λ for its strength and have the boundary condition

(p− νSnu )|∂ + β∆η = λun|∂ .

We write the linear equations again as

d

dt
x+ Lλx = 0, x ∈ X̃,

now with the operator

Lλ
(
u
η

)
:=

(
−ν∆u+∇H(2νSnu )−∇H(β∆η)−∇H(λun|∂)

−un|∂

)
.

This operator is a lower order perturbation of L; its spectrum consists of eigenvalues
and we have the local existence results as before. The following analogue of Lemma
2.4 holds.

Lemma 6.1. Let (u, η) ∈ X̃2 be an eigenvector of Lλ with eigenvalue µ. Then

Re(µ)‖(u, η)‖2E = 2ν

(∫
B

|Su|2
)
− λ|µ|2‖η‖2L2(S2),(33)

Im(µ)‖(u, η)‖2E = 2βIm

(∫
S

un|∂∆η̄

)
.

In the case of nonreal eigenvalues, Im(µ) 6= 0, the following energy equality holds:

‖u‖2E = ‖η‖2E =
1

2
‖(u, η)‖2E .(34)

Proof. This lemma is proved as Lemma 2.4.
We again want to get a global picture of the position of eigenvalues, now in de-

pendence of the parameter λ. There are two important differences from the previous
section:

— the eigenvalues may have a negative real part and
— the energy equality for eigenvectors implies that nonreal eigenvalues are bounded

independent of λ.
For any z ∈ R+ \ {κj |j ∈ N} we have defined the function ũ(z). The pair (ũ(z),Φ0)

is an eigenfunction of Lλ̃, with λ̃(z) defined by

r̃(z)Φ0 = (p̃(z)− 2νSnũ(z))|∂ = βΛkΦ0 + λ̃(z)zΦ0.(35)

Proposition 6.2 (properties of λ̃(z)). There exists a constant λ0 > 0 such that

|λ| > λ0 ⇒ all eigenvalues of Lλare real ,(36)

λ̃(z)→ −∞ for R 3 z → 0,(37)

λ̃(z)→ −∞ for R 3 z ↗ κj ,(38)

λ̃(z)→ +∞ for R 3 z ↘ κj .(39)
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Proof. Equation (33) implies, for nonreal eigenvalues, |λ| → ∞ ⇒
∫
|Su|2 → ∞

or |µ| → ∞ or |µ| → 0. Therefore, |µ| → ∞ or |µ| → 0. (25) implies ‖u‖ → ∞ or
‖u‖ → 0. This contradicts (34). (37)–(39) follow from λ̃(z) = 1

z (r̃(z)− βΛk).
Theorem 6.3 (the spectrum of L in dependence of λ). For λ < −λ0, all ei-

genvalues of Lλ are real. Denoting the ordered sequence of them by (µj(λ))j∈N, they
satisfy

0 < µ0(λ) < µ1(λ) < κ0, κj < µj+2 < κj+1,

µ0(λ)↘ 0 for λ→ −∞ and

µj+2(λ)↗ κj+1 for λ→ −∞.

For λ > λ0 the ordered eigenvalues satisfy

µ0(λ), µ1(λ) < 0, κj < µj+2 < κj+1,

µj+2(λ)↘ κj for λ→∞.

In a point λ̄ ∈ [−λ0, λ0], a pair of conjugate complex eigenvalues crosses the imaginary
axis transversally. The imaginary axis can be crossed only from right to left.

Proof. Proposition 6.2 implies the assertion for the position of positive real eigen-
values for |λ| → ∞. We have to prove the existence of the pair of negative eigenvalues.
We do this by counting eigenvalues. (25), together with the energy equality (34), im-
plies that nonreal eigenvalues are bounded independent of λ. Let κJ be larger than
this bound. We restrict ourselves to the J + 2 eigenvalues of L−λ0

with norm smaller
than κJ .

For λ → +∞ (and, in particular, λ > λ0) there are J eigenvalues with positive
real part and norm less than κJ . The two remaining eigenvalues must be negative.

To count the eigenvalues, we used the fact that geometric and algebraic multi-
plicity coincide for |λ| → ∞. We now prove this fact.

Assumption. There exist normed functions (u, η), (v, σ) satisfying

L
(
u
η

)
= µ

(
u
η

)
, L

(
v
σ

)
= µ

(
v
σ

)
+ α

(
u
η

)
, v⊥u.

Let p denote the pressure function corresponding to u. We know (u, η) → (uj , 0) for
λ→∞. We define (v0, σ0) = limλ→∞(v, σ). It holds that

−ν∆v +∇H(2νSnv )−∇H(β∆σ + λvn|∂) = µv + αu,(40)

−vn = µσ + αη.(41)

To prove that α is bounded we multiply (40) by uj and integrate to get

α 〈u, uj〉 = 〈−µv − ν∆v +∇H(2νSnv )−∇H(β∆σ + λvn|∂), uj〉

= 〈v, (AN − µ)uj〉+

∫
S2

vn(pj − 2νSnuj )

= (κj − µ) 〈v, uj〉+

∫
S2

vn(pj − 2νSnuj ).

Using η → 0, this implies that α is bounded. Equation (40) implies (v0)n = 0, and
we get, from equation (41), σ0 = 0. With α0 := limα,

(AN − κj)v0 = α0uj ,
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a contradiction to the simplicity of the Stokes eigenvalues.
We now derive explicit equations for the velocity of eigenvalues. We consider a

differentiable family of eigenvalues µ(λ) ∈ C \ R with eigenfunctions (u(λ),Φ0).
We first need an equation for Im〈u, ∂λu〉. We multiply the eigenvalue equation

by ∂λu to get, with the help of ∂λun|∂ = −∂λµ(λ)Φ0,

〈µ(λ)u(λ), ∂λu(λ)〉 = 2ν

∫
B3

Su : S∂λū − (βΛk + λµ(λ))∂λµ̄(λ)‖Φ0‖2L2 .

Taking the real part and using Lemma 6.1 yields

Re 〈µu, ∂λu〉 =
1

2
∂λ

(
2ν

∫
B3

Su(λ) : Sū(λ)

)
−βΛk‖Φ0‖2L2Re(∂λµ(λ))− λ1

2
∂λ|µ(λ)|2‖Φ0‖2L2

=
1

2
∂λ{Re(µ(λ))2βΛk‖Φ0‖2L2 + λ|µ(λ)|2‖Φ0‖2L2}

−βΛk‖Φ0‖2L2Re(∂λµ(λ))− λ1

2
∂λ|µ(λ)|2‖Φ0‖2L2

=
1

2
|µ(λ)|2‖Φ0‖2L2 .

Using Re 〈u, ∂λu〉 = 0, we arrive at

Im 〈u, ∂λu〉 Im(µ) = −1

2
|µ(λ)|2‖Φ0‖2L2 .(42)

Now we differentiate the eigenvalue equation with respect to λ, multiply with ∂λu,
and take the imaginary part:

0 = Im 〈∂λ(−µu), ∂λu〉+ Im 〈−ν∆∂λu+∇∂λp, ∂λu〉
= −Re(∂λµ)Im 〈u, ∂λu〉 − Im(µ)‖∂λu‖2 − Im{∂λ(βΛk + λµ)∂λµ̄}‖Φ0‖2L2 .

Multiplying with 2Im(µ) and inserting (42) yields

Re(∂λµ)|µ|2‖Φ0‖2L2 − 2|Im(µ)|2‖∂λu‖2 = 2Im(µ)Im(µ∂λµ̄)‖Φ0‖2L2 .

On the imaginary axis, Re(µ) = 0, this formula simplifies to

−Re(∂λµ)‖Φ0‖2L2 = 2‖∂λu‖2.

It proves transversality and the direction of the crossing.
The above results lead to a Hopf bifurcation. Due to the restricted regularity,

one has to avoid the implicit function theorem in the proof and use degree theory. It
allows us to replace the assumption of transversality by the following. The eigenvalue
cannot follow the imaginary axis, i.e.,

µ(λ̄) ∈ iR⇒ ∀ε > 0 : Re(µ(λ̄− ε)) > 0, Re(µ(λ̄+ ε)) < 0.(43)

Theorem 6.4. For fixed wave number k0, there exists a critical value for λ such
that a pair of eigenvalues µ± of Lλ are purely imaginary. Assume that there is no
resonance, i.e., the eigenvalues for different k are no integer multiples of µ+. Then
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a Hopf bifurcation occurs and there exists a continuous branch of O(2)-symmetric,
periodic solutions of the nonlinear equations.

Proof. In Proposition 4.3 we parametrized small initial values for the nonlinear
equation over U = Bε(0) ⊂ DL,α with a mapping ζ : U → X4. We want to restrict
ourselves to functions of the prescribed symmetry group Γ ' O(2). We parametrize
small compatible initial values with symmetry Γ over V := U ∩ Fix(Γ) with a map
ζΓ : V → Fix(Γ) ⊂ X4 and consider the flow

Φ : V × R× R 3 (z, t, λ) 7→ ζ−1
Γ x(t)− z ∈ V.

Here x(t) is the solution of the nonlinear equation with parameter λ to the initial
value ζΓ(z). We used the fact that the nonlinear equation preserves the Γ-symmetry.
We want to solve Φ(z, t, λ) = z with nontrivial z. The linearization of Φ in (0, t̄ =

2π
Im(µ0(λ̄))

, λ̄) is

DzΦ : V → V, z 7→ e−Lλ̄ t̄z,

and the kernel of DzΦ(., t̄, λ̄)− id is two-dimensional. One can perform a Liapunov–
Schmidt reduction and solve the bifurcation equation with degree theory.

7. Water waves generated by wind. We analyze a simple two-dimensional
model for a wind-generated instability of a water surface. The wind changes the
pressure along the surface. We assume that the pressure profile follows the sinusoidal
profile of the surface and is shifted by an angle φ. Measurements of Elliott [7] justify
this assumption and give the value of 135◦ for φ.

We mention the two major simplifications of this model: it neglects the tangential
stress, and we linearize about the zero-solution instead of assuming an underlying
shear flow. The method could be extended, but the desirable further development
would be a two-phase model to explore the dependence of the force of the wave
number. For qualitative studies we refer to [12] and references therein.

With a surface elevation η we write the additional pressure as eiφβ∗η. This is
equivalent to saying that we treat the complex surface tension β + eiφβ∗Λ−1

k . We fix
the direction of the wind by setting 0 < φ < π. The eigenvalue equations are

λu+ ν∆u−∇p = 0,(44)

∇ · u = 0,(45)

un|∂ = −λη,(46)

(p− 2νSnu )|∂ = −β∆η + eiφβ∗η.(47)

Every eigenspace is (at least) two-dimensional due to the equivariance under trans-
lations. Choosing η(x) = Φ0(x) = eikx, we select one of the eigenfunctions. On the
other hand, a positive β∗ destroys the symmetry of reflections x 7→ −x. The conjugate
complex of an eigenvalue need not be an eigenvalue for the same η.

Lemma 7.1. For positive β∗ there is precisely one eigenvalue with positive imag-
inary part. The other eigenvalues are below the real axis and have a positive real
part.

Proof. As in section 5 we can write the eigenvalue equation as

r̃(z) = Λkβ + eiφβ∗.(48)

The proof of the lemma is based on the study of r̃ in Proposition 5.3.
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For β∗ = 0 we consider two cases.
Case 1. The surface tension is above its critical value. Then there are two nonreal

eigenvalues with multiplicity 2. Due to the reflection symmetry, they can both be
represented with an eigenfunction with η(x) = Φ0(x).

The function r̃ : R → R was shown to have a negative derivative in the real
eigenvalues. Since the function r̃ is analytic in a neighborhood of the eigenvalue and
β∗ acts like an imaginary component of the surface tension, we conclude that for
small, positive β∗ the eigenvalues get a negative imaginary part.

Case 2. The surface tension is below its critical value. Then the derivative of
r̃ : R → R is positive in the first eigenvalue, negative in all other eigenvalues. The
same reasoning as before proves that for small positive β∗ the first eigenvalue gets a
positive imaginary part, and the other eigenvalues get a negative imaginary part.

In both cases a return to the real axis is not possible for finite β∗ since real
eigenvalues correspond to real surface tension or β∗ = 0.

We derive an equation for λ by testing the eigenvalue equation with (u, η) in the
energy space and using the integration by parts:∫

(−ν∆u+∇p)ū = 2ν

∫
|Su|2 +

∫
∂

(p− 2νSnu )ūn

= 2ν

∫
|Su|2 −

∫
∂

(−β∆η + eiφβ∗η)λ̄η̄.

In analogy to Lemma 2.4, we get

λ{‖u‖2 + ‖η‖2E} = 2ν

∫
|Su|2 + 2iImλ‖η‖2E − eiφβ∗λ̄‖η‖2L2 .(49)

Taking the real part of this equation, we get

Reλ = 0⇒ 0 < Re(e−iφλ)⇒ Im(λ) > 0.

This proves that the eigenvalues with negative imaginary part cannot cross the imag-
inary axis.

The only eigenvalue that can create an instability is the one with positive imagi-
nary part, further denoted by λ+. We turn to an analysis of this eigenvalue.

We know that for eigenvalues λ in a compact subset of C − {κj |j ∈ N} the
corresponding values of β∗ = e−iφ(r̃(λ)− Λkβ) are finite. Therefore, for β∗ →∞,

∃j : λ+(β∗)→ κj

or |λ+(β∗)| → ∞.

We take the imaginary part of (49) and get

Imλ+{‖u‖2 − ‖η‖2E} = −β∗Im(eiφλ̄+)‖η‖2L2 .(50)

Assume that Im(λ+) stays bounded. Then we know |Re(λ+)| → ∞. The left-hand
side of (50) is bounded from below. We conclude that Re(λ+)→ −∞.

The eigenvalue must cross the imaginary axis, by the following lemma.
Lemma 7.2. An eigenvalue λ with |Imλ| → ∞ or Re(λ) → −∞ as β∗ → ∞

satisfies

arg(λ)→ φ± π
2

for β∗ →∞.
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Proof. To prove this proposition we use the explicit formulas for eigenfunctions.
We introduce

v = u− 1

λ
∇p,(51)

which solves λv + ν∆v = 0. With constants A = (A1, A2), B = (B1, B2), P , and Q
we write

p(x, y) = Pekyeikx +Qe−kyeikx,

v(x, y) = Aeµyeikx +Be−µyeikx,

µ2 = k2 − λ

ν
,

where we take µ as the root with positive real part, Reµ→∞.
The incompressibility reads

ikA1 + µA2 = 0, ikB1 − µB2 = 0.(52)

We get an equation for P and Q if we construct

0 = iku1(−h) + µu2(−h)

=
k2

λ
(Pe−kh +Qekh)− kµ

λ
(Pe−kh −Qekh),

which proves that |Q/P | is bounded, and then(
1− Q

P
e2kh

)
=

1

P
(P −Qe2kh)→ 0.(53)

Using u(x,−h) = 0, this implies

B1

|A1|+ |P |
→ 0 and

B2

|A2|+ |P |
→ 0 exponentially in µ.

We use the boundary condition of vanishing tangential stress,

0 = A1µ−B1µ+A2ik +B2ik +
2ik2

λ
(P −Q),

to conclude that

A1µλ

ik2(P −Q)
→ −1.(54)

The boundary condition for the normal stress reads

0 = (P +Q)− 2ν(A2 −B2)µ− 2ν

λ
k2(P +Q)− βΛk − eiφβ∗.

Collecting the dominant terms yields

P +Q

β∗
→ eiφ.(55)
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The kinematic boundary equation is

A2 +B2 +
k

λ
(P −Q) = −λ.

Using (54), this implies

k

λ2
(P −Q)→ −1.(56)

Combining (53), (55), and (56) gives

λ2

eiφβ∗
→ −k 1− e−2kh

1 + e−2kh
.(57)

Remark 7.3. The basic idea in the above proof was to show that the dominat-
ing term in the stress equation is the pressure. In this sense the following formal
calculation for infinite height and vanishing viscosity is justified:

∆p = 0, p|∂ = eiφβ∗η, u =
1

λ
∇p,

−λη = un|∂ =
1

λ
∂np =

k

λ
eiφβ∗η.

Remark 7.4. To reduce the formula to the case of vanishing wind but variable
surface tension T , one can insert β∗ = ΛkT = k2T to get the asymptotic formula

(−iλ)2 = Tk3 1− e−2kh

1 + e−2kh
.(58)

Formulas that include the viscous effect and give a similar expression for the real part
of λ can be found in [11].

In this example it is not easy to prove transversality of the crossing. On the other
hand, we can easily verify property (43). If the eigenvalue followed the imaginary axis
then e−iφr̃(z) were real on an interval of the imaginary axis. By analyticity, it would
be real on the whole of the imaginary axis, which contradicts the last lemma.

With the proof of the last section we arrived at the following theorem.
Theorem 7.5. Assuming the nonresonance condition, for some critical value of

β∗ a Hopf bifurcation occurs and periodic solutions of the nonlinear evolution equations
exist.

We remark that the constructed solution is a propagating wave but not necessarily
a travelling wave.
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1. Introduction. There are two main descriptions of coagulation and fragmen-
tation processes, a “continuous” integral version and a “discrete” summation version.
In the continuous version it is assumed that the number of particles is large enough
to justify the use of a density function u(x, t); u(x, t)dx is then the average number of
particles with mass in the interval (x, x + dx) at time t. (This average and all other
averages are calculated with respect to a unit volume.)

This paper is the first in a series of planned papers reporting our investigation of
the continuous coagulation and multiple-fragmentation equation, namely,

∂

∂t
u(x, t)=

1

2

∫ x

0

K(x−y, y, t)u(x−y, t)u(y, t) dy−u(x, t)

∫ ∞
0

K(x, y, t)u(y, t) dy

+

∫ ∞
x

γ(y, x, t)u(y, t) dy−u(x, t)

∫ x

0

y

x
γ(x, y, t) dy, a.e. x > 0, t > 0,(1)

via semigroup and evolution system techniques.
In the first instance we shall deal simply with the pure fragmentation equation

(K ≡ 0) for time-independent kernels γ(x, y, t) = γ(x, y), for all t > 0. Therefore, we
consider the equation

(2)
∂

∂t
u(x, t) =

∫ ∞
x

γ(y, x)u(y, t) dy−u(x, t)

∫ x

0

y

x
γ(x, y) dy, a.e. x > 0, t > 0.

Future papers will extend this work to the coagulation and fragmentation equation
(1) for both time-independent and time-dependent kernels. We begin by discussing
the interpretation of the terms on the right-hand side of (2) and delay comment on
the terms involved in (1) until the need arises.

Equation (2) models fragmentation processes in which particles may split into
more than two pieces. Hence we refer to the latter as the multiple-fragmentation
equation. When all of the fragmenting particles in the system each produce only two
particles, the binary fragmentation equation,

(3)
∂

∂t
u(x, t) =

∫ ∞
0

F (x, y)u(x+ y, t) dy−1

2
u(x, t)

∫ x

0

F (x− y, y) dy,
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provides an alternative description. As expected, (3) is a special case of (2), obtained
by setting

(4) γ(x, y) = F (x− y, y), 0 ≤ y ≤ x <∞,

where F (x, y) is symmetric; i.e., F (x, y) = F (y, x) for all x, y ≥ 0. Using the substi-
tution y′ = x− y and the symmetry of F , it is not difficult to show that∫ x

0

y

x
F (x− y, y) dy =

1

2

∫ x

0

F (x− y, y) dy.

We develop our theory in terms of the multiple-fragmentation model (2) but note
that, as a consequence of the foregoing discussion, our results immediately carry over
to the binary-fragmentation model (3).

The multiple-fragmentation kernel γ(x, y), 0 ≤ y ≤ x <∞, is the formation rate
of particles of mass y due to the fragmentation of particles of mass x. We assume that
γ(x, y)u(x, t) dx dy dt is the average number of particles of mass in the range (y, y+dy)
created from the break-up of particles of mass in (x, x+ dx) during the time interval
(t, t + dt). The interpretation of the binary-fragmentation kernel F (x, y) is slightly
different. The binary-fragmentation kernel F (x, y) is the rate at which particles of
mass x + y fragment to produce particles of mass x and of mass y. However, we
can interpret the binary-fragmentation kernel F (x − y, y) in terms of the multiple-
fragmentation kernel γ(x, y) using (4).

Note that a : (0,∞)→ [0,∞) defined by

(5) a(x) =

∫ x

0

y

x
γ(x, y) dy, x > 0,

is the overall rate of break-up of an x-particle. The factor y/x is introduced so that
each resulting fragment is counted once only. By writing γ(x, y) = a(x)b(y, x) we
obtain precisely the derivation of the fragmentation terms by Ziff and McGrady [20],
where a(x) is the overall break-up rate and b(y, x) is the distribution of products
formed from a particle of mass x splitting.

Thus the terms on the right-hand side of (2) represent, respectively, a gain in
particles of mass x as a result of the break-up of larger particles of mass y (x ≤ y <∞)
and a loss of particles of mass x because they have broken up into smaller pieces of
mass y (0 ≤ y ≤ x). Equation (2) is formulated so that the total mass of the particles
is formally conserved. Thus ∂u

∂t (x, t) equals the sum of the two terms described above.
Many authors have already contributed to the study of existence and uniqueness

theorems for the various coagulation and fragmentation models. Aizenman and Bak
[1] consider the case when both K and F are constant. The semigroup and fixed
point mapping techniques used in [1] form the basis of our work. Melzak [13, 14]
deals with certain bounded time-independent kernels by assuming solutions are of the
form u(x, t) = Σ∞k=0ak(x)tk and extends the results to time-dependent kernels via
Cauchy–Peano approximations. The pure coagulation equation (γ ≡ 0 or F ≡ 0) and
the pure fragmentation equation (K ≡ 0) have also received attention. Stewart [18,
19] deals simultaneously with unbounded coagulation and unbounded fragmentation
kernels satisfying the growth conditions

K(x, y) ≤ C1[(1 + x)α + (1 + y)α] (x, y > 0, 0 < α < 1),

F (x, y) ≤ C2(1 + x+ y)β (x, y > 0, 0 < β < 1).

For physical reasons, solutions are required to satisfy∫ ∞
0

xu(x, t) dx =

∫ ∞
0

xf(x) dx for all t ≥ 0,
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where f is the initial mass distribution of particles. This corresponds to mass conser-
vation. The semigroup approach that we adopt here will be seen to lead to unique,
mass-conserving solutions; the possibility of adapting this approach to cater to other,
non-mass-conserving, solutions is a topic for future research. Although we shall con-
centrate on models derived from (1) and use the theory of semigroups, other ap-
proaches have been adopted which rely on different formulations. One instance is [4],
where Filippov discusses multiple fragmentation via the theory of Markov processes.
The equations used involve expectations of masses, based on the probability of a par-
ticle of a certain size splitting. Filippov obtains explicit solutions in particular cases
and also considers the possibility of mass loss or “disintegration.”

2. A reformulation of the problem. To apply the theory of semigroups of
linear operators we must recast (2), subject to the initial mass distribution

(6) u(x, 0) = f(x), a.e. x > 0,

as an abstract Cauchy problem (ACP). For each fixed t ≥ 0, we define a function
u(t): (0,∞) → R of the “mass” variable x by u(t)(x) = u(x, t), for a.e. x > 0, t ≥ 0.
Hence we can define a vector-valued function ũ,

(7) ũ(t) = u(t), t ≥ 0,

from [0,∞) into an appropriate class of functions X.
For our purposes X will be a Banach space so that dũ/dt can be interpreted as

the strong derivative of the vector-valued function ũ. As we are interested in mass-
conserving solutions, a natural space to work in is the L1,−1-space of equivalence
classes of measurable, real-valued functions φ such that

‖φ‖1,−1 =

∫ ∞
0

x|φ(x)| dx <∞.

Note that this is a Banach space of type L [6, pp. 69–70] enabling us to reinterpret (2)
as follows. The left-hand side, ∂u/∂t, can be thought of as the derivative with respect
to t of the function ũ : [0,∞)→ L1,−1 defined by (7). For fixed t > 0, we can write
the right-hand side of (2) as Aũ(t), where the operator A : L1,−1 ⊇ Dmax(A)→ L1,−1

is defined on its maximal domain Dmax(A) by

(8) [Aφ](x) =

∫ ∞
x

γ(y, x)φ(y)dy − φ(x)

∫ x

0

y

x
γ(x, y) dy, φ ∈ Dmax(A).

The initial condition (6) becomes ũ(0) = f .
Hence the pure fragmentation equation (2), subject to the initial mass distribution

(6), can be recast as the ACP

(9)

d

dt
u(t) = Au(t), t > 0,

u(0) = f.

(For ease of notation we have omitted the tilde.)
As indicated, we follow closely the approach used in [1]. However, instead of

working in the subspaces Ln (n > 0) defined by

(10) Ln = {φ ∈ L1,−1:φ ≡ 0 on [n,∞)},
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we make use of the projection operators Pn (n > 0) on L1,−1 defined by

(11) (Pnφ)(x) =

{
φ(x), 0 < x < n,
0, x ≥ n.

Details of a subspace approach adopted in the preliminary stages of our work can be
found in [10, 11, 12]. The results contained therein are summarized in [8].

Throughout this paper we assume that the fragmentation kernel γ(x, y) satisfies
the following hypotheses:

(H1) γ(x, y) is a nonnegative function on (0,∞)× (0,∞);
(H2) γ(x, y) = 0 whenever y > x;
(H3) the function a: (0,∞)→ [0,∞) defined by (5) is such that a(x) ≤ Cn for all

x ∈ (0, n], n > 0, where the sequence {cn} may be unbounded.

3. The truncated problem. The truncated problem consists of finding a so-
lution to the truncated ACP

(12)

d

dt
u(t) = Anu(t), t > 0,

u(0) = f,

where An is used to denote APn. Therefore, for φ ∈ L1,−1,

(Anφ)(x) =

{∫ n
x
γ(y, x)φ(y) dy − φ(x)

∫ x
0

y

x
γ(x, y) dy, 0 < x < n,

0, x ≥ n.

We can write this as

(13) (Anφ)(x) =

{∫ n
x
γ(y, x)φ(y) dy − a(x)φ(x), 0 < x < n,

0, x ≥ n,

where a : (0,∞)→ [0,∞) is defined by (5).
Lemma 3.1. The operator An, given by (13), generates a C0-semigroup {Sn(t)}t≥0

on L1,−1. Furthermore, for all t ≥ 0,

(i) Sn(t) = I +
∑∞
i=1

(tA)i

i! Pn;
(ii) for m > 0 the space Lm defined by (10) is invariant under Sn(t);
(iii) Sn(t)φ ≥ 0 whenever φ ≥ 0, i.e., the operators are nonnegative;
(iv) ‖Sn(t)φ‖1,−1 = ‖φ‖1,−1, i.e., {Sn(t)}t≥0 is a C0-semigroup of isometries;

(v)
∫∞

0
x[Sn(t)φ](x) dx =

∫∞
0
xφ(x) dx, i.e., mass is conserved.

Proof. Using Fubini’s theorem we can show that for all φ ∈ L1,−1,

‖Anφ‖1,−1 =

∫ ∞
0

x|(Anφ)(x)| dx =

∫ n

0

x|(Anφ)(x)| dx ≤ 2Cn ‖φ‖1,−1 ,

by (5) and (H3). Therefore An is a bounded operator on L1,−1 and as such generates
a uniformly (and hence strongly) continuous semigroup.

(i) The usual power series definition is used to define Sn(t) = exp(tAn). By
induction, (An)i = (APn)i = AiPn for i = 1, 2, . . ., from which the result follows.

(ii) We note that

Anφ =

{
Amφ, if m ≤ n,
Anφ, if m > n,

and An : L1,−1 → Ln. The result follows from (i).



1162 D. J. McLAUGHLIN, W. LAMB, AND A. C. McBRIDE

(iii) We can write Anφ = B1,nφ+B2,nφ where

(B1,nφ)(x) =

{∫ n
x
γ(y, x)φ(y) dy, if x < n,

0, if x ≥ n,

and

(14) (B2,nφ)(x) =

{
−a(x)φ(x), if x < n,
0, if x ≥ n.

From the calculations for ‖Anφ‖1,−1, we can show that the operators Bi,n (i = 1, 2)
are bounded separately on L1,−1 and hence generate C0-semigroups on L1,−1.

(a) The operator B1,n generates the C0-semigroup, T1,n(t) = exp(tB1,n), t ≥ 0,
where again the usual power series is used to define the exponential. Since B1,n is
nonnegative, the semigroup {T1,n(t)}t≥0 is nonnegative. Moreover, {T1,n(t)}t≥0 is of
class C(1, ω1,n), for some ω1,n > 0.

(b) Consider B2,n defined by (14) and let φ ∈ L1,−1. Then

(λI −B2,n)φ = 0⇒ φ(x)[λ+ a(x)] = 0 for a.e. x > 0.

Since γ(x, y) is nonnegative, it follows that a(x) is nonnegative and hence that
[λ + a(x)] ≥ λ > 0 for all λ > 0. We deduce that for all λ > 0, (λI − B2,n) is
injective. To find the resolvent operator R(λ,B2,n), let ψ ∈ L1,−1. Then

(λI −B2,n)φ = ψ ⇒ λφ(x) + a(x)φ(x) = ψ(x) a.e.

⇒ φ(x) =
ψ(x)

[λ+ a(x)]
a.e.

and φ belongs to L1,−1 since |φ(x)| ≤ 1
λ |ψ(x)| for all λ > 0. Hence B2,n gener-

ates a contraction semigroup (that is, of class C(1, 0)), by the Hille–Yosida theorem.
If ψ ≥ 0, then φ(x) = R(λ,B2,n)ψ(x) ≥ 0 almost everywhere. Therefore, R(λ,B2,n)
is nonnegative and B2,n, like B1,n, generates a nonnegative semigroup, which we call
{T2,n(t)}t≥0.

(c) From part (a) and the Hille–Yosida theorem, the resolvent set of B1,n contains
the set {λ:λ > ω1,n} and for all such λ, ‖R(λ,B1,n)‖1,−1 ≤ 1/(λ− ω1,n). Likewise,

from (b), the resolvent set of B2,n contains the set {λ:λ > 0} and for all such λ,
‖R(λ,B2,n)‖1,−1 ≤ 1/λ. By [15, Cor. 5.5, pp. 92–93], An generates a C0(1, ω1,n)-

semigroup, {Sn(t)}t≥0 say, where

[Sn(t)]φ = lim
m→∞

[
T1,n

(
t

m

)
T2,n

(
t

m

)]m
φ, for all φ ∈ L1,−1,

and the limit is uniform on bounded time intervals. The terms in the sequence are
nonnegative since T1,n(t) and T2,n(t) are nonnegative. By [16, Cor. 5.11, p. 72]
there exists a subsequence {mk}∞k=1 such that we have pointwise convergence almost
everywhere. We deduce that the limit (and hence the semigroup generated by An) is
nonnegative.

(iv) Assume φ ≥ 0 and φ ∈
⋃
m Lm. Then φ ∈ Lm for some fixed m > 0.

Since Sn(t) is nonnegative and Sn(t)φ ∈ Lm by part (ii),

d

dt
‖Sn(t)φ‖1,−1 =

d

dt

∫ m

0

x[Sn(t)φ](x) dx

=

∫ m

0

x
d

dt
[Sn(t)φ](x) dx
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=

∫ m

0

x[AnSn(t)φ](x)dx

=

∫ n

0

x[AnSn(t)φ](x) dx (since An:L1,−1 → Ln)

=

∫ n

0

∫ y

0

x

y
γ(y, x) dx y[Sn(t)φ](y)dy −

∫ n

0

xa(x)[Sn(t)φ](x) dx

= 0 (by (5)).

It follows that ‖Sn(t)φ‖1,−1 = ‖φ‖1,−1 for all φ ∈ Lm, φ ≥ 0. Since the operators
{Sn(t)}t≥0 are linear and nonnegative, we can use the decomposition of φ into positive
and negative parts to extend this result to all φ ∈ Lm. Then, since

⋃
m Lm is dense

in L1,−1, we can extend again to all φ ∈ L1,−1 by the continuity of Sn(t).
(v) Since Sn(t) is a nonnegative isometry, we can use positive and negative parts

once more and hence remove the |.|-sign from the result of part (iv).
Theorem 3.2. The truncated problem (12) has a unique, strongly continuously

differentiable, nonnegative, mass-conserving solution for all initial data f ∈ L1,−1.
The solution is given by u(t) = Sn(t)f , t ≥ 0.

Proof. This follows by Lemma 3.1 and [15, Thm. 1.3, pp. 102–103].

4. The limit semigroup. In this section we show that the strong limit as
n → ∞ of the semigroups {Sn(t)}t≥0, obtained in the previous section, exists and
inherits the appropriate properties from {Sn(t)}t≥0.

Lemma 4.1.

(i) The operator S(t) defined by

(15) S(t)φ = s-lim
n→∞

Sn(t)φ, φ ∈ L1,−1,

exists for all t ≥ 0 and {S(t)}t≥0 forms a nonnegative, C0-semigroup of isometries
on L1,−1.

(ii) For each t ≥ 0, the operator S(t) satisfies∫ ∞
0

x[S(t)φ](x)dx =

∫ ∞
0

xφ(x)dx, for all φ ∈ L1,−1.

(iii) For all t ≥ 0 and m > 0, S(t)Pmφ = Sm(t)φ+ Pmφ− φ.
(iv) The spaces Lm (m > 0) and

⋃
m Lm, where Lm is defined by (10), are

invariant under S(t).
Proof. Let φ ∈ L1,−1.
(i) and (ii). Assume without loss of generality that n ≥ m. Using Lemma 3.1(i),

we can show that

(16) Sn(t)Pmφ = Sm(t)φ+ Pmφ− φ.
It is then not difficult to show that {Sn(t)φ}n>0 is a Cauchy sequence in L1,−1 and
hence the limit, which is uniform in t, exists, and S(t) maps L1,−1 into L1,−1.

We can show that S(t) inherits the properties of Sn(t). For example, by definition,

S(t+ s)φ = s-lim
n→∞

Sn(t+ s)φ = s-lim
n→∞

Sn(t)Sn(s)φ.

Consider

‖Sn(t)Sn(s)φ− S(t)S(s)φ‖1,−1

≤ ‖Sn(t){Sn(s)φ− S(s)φ}‖1,−1 + ‖{Sn(t)− S(t)}S(s)φ‖1,−1

= ‖{Sn(s)φ− S(s)φ}‖1,−1 + ‖{Sn(t)− S(t)}{S(s)φ}‖1,−1

(since {Sn(t)} is a semigroup of isometries on L1,−1)

→ 0 (by the definition of S(t), t ≥ 0).
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Hence S(t+ s)φ = S(t)S(s)φ for all φ ∈ L1,−1, and so S(t+ s) = S(t)S(s).
Similarly, we can prove that S(0) = I and s-limt→0+S(t)φ = φ. The latter result

involves interchanging two limits. This is permissible since the limit in (15) exists
uniformly in t. We can also show that for each t ≥ 0, S(t) is a nonnegative isometry
which satisfies the condition in part (ii). (See [9, pp. 48–51] for details.)

(iii) We let n→∞ in (16) to obtain the result.
(iv) From part (iii), S(t)φ = Sm(t)φ for all φ ∈ Lm. By Lemma 3.1(ii), we note

that Sm(t) : Lm → Lm is invariant under Sm(t), and so Lm (m > 0) and
⋃
m Lm are

invariant under S(t).

5. The infinitesimal generator of the limit semigroup. The infinitesi-
mal generator, A, of the limit semigroup, {S(t)}t≥0, is not necessarily the same
as the operator A defined by (8). The limit semigroup gives rise to a solution
u(t) = S(t)f, t ≥ 0, of the ACP

(17)

d

dt
u(t) = Au(t), t > 0,

u(0) = f,

for A, but this solution u need not be a solution of our original ACP (9) for A. In
this section, we show that A and A coincide on a dense domain. We begin by defining
two spaces that we shall require in the following analysis.

Definition 5.1. Let the function a and the operators A and Pn be defined by
(5), (8), and (11), respectively. We define the space Da by

(18) Da =

{
φ ∈ L1,−1:

∫ ∞
0

xa(x)|φ(x)| dx <∞
}

and the space D by

(19) D = {φ ∈ L1,−1: s-lim
n→∞

APnφ exists in L1,−1}.

Lemma 5.2.

(i) For all φ ∈ D, s-lim
n→∞

APnφ = Aφ.

(ii) Let Lm be defined by (10). Then
⋃
m Lm ⊆ Da ⊆ D.

Proof.
(i) Let φ ∈ D. Then s-limn→∞APnφ exists and equals ψ, say. Since APnφ → ψ

in L1,−1, there exists a subsequence such that [APnkφ](x)→ ψ(x) a.e. Now

[APnkφ](x) =

{∫ nk
x

γ(y, x)φ(y)dy − a(x)φ(x), if x < nk,
0, if x ≥ nk,

and so limnk→∞[APnkφ](x) = [Aφ](x). The pointwise limit is unique. Thus ψ ≡ Aφ
and s-limn→∞APnφ = Aφ, for all φ ∈ D.

(ii) Let φ ∈
⋃
m Lm. Then φ ∈ Lm for some m and∫ ∞
0

xa(x)|φ(x)|dx ≤ sup
x∈[0,m]

a(x)

∫ m

0

x|φ(x)|dx

<∞ (since a satisfies (H3)).

Hence φ ∈ Da and so
⋃
m Lm ⊆ Da.
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Now let φ ∈ Da. Using Fubini’s theorem, we can show that

‖Aφ‖1,−1 ≤ 2

∫ ∞
0

xa(x)|φ(x)| dx <∞,

and so

‖Aφ−APnφ‖1,−1 ≤ 2

∫ ∞
0

xa(x)|φ(x)− (Pnφ)(x)| dx

→ 0 as n→∞.

Therefore, for φ ∈ Da, s-limn→∞APnφ exists and equals Aφ. Hence Da ⊆ D.
Theorem 5.3. Let A be the generator of the limit semigroup {S(t)}t≥0 and let

A be the operator defined by (8).
(i) The operators A and A are equivalent on the space

⋃
m Lm, where Lm is given

by (10). Moreover,
⋃
m Lm is a core for A, i.e.,

A = A|⋃
m
Lm .

(ii) The generator A and the operator A coincide on D.
(iii) The spaces Da and D are also cores for A. So

A = A|⋃
m
Lm = A|Da = A|D.

(iv) The family {S(t)}t≥0 is the unique C0-semigroup such that Aφ = Aφ for all
φ ∈ D, and S(t)Lm ⊂ Lm for all m > 0, t ≥ 0.

Proof.
(i) From Lemma 4.1(iii), S(t)φ = Sm(t)φ for all φ ∈ Lm, m > 0. By definition,

for all φ ∈ Lm, m > 0,

Aφ = s-lim
t→0+

S(t)φ− φ
t

= s-lim
t→0+

Sm(t)φ− φ
t

= APmφ (since APm generates {Sm(t)}t≥0 by Lemma 3.1)

= Aφ.

Hence A = A on
⋃
m Lm.

Now,
⋃
m Lm is a dense subspace of L1,−1,

⋃
m Lm ⊆ D(A), and (by Lemma

4.1(iv)) S(t) :
⋃
m Lm →

⋃
m Lm. Applying the core theorem [17, Thm. X.49,

pp. 241–242], we obtain the required result.
(ii) Let φ ∈ D. Then s-limn→∞APnφ exists and equals Aφ (by Lemma 5.2(i)).

Since Pnφ ∈ Ln, by part (i), we note that

s-lim
n→∞

APnφ = s-lim
n→∞

APnφ = Aφ.

Therefore we have that Pnφ → φ and APnφ → Aφ, as n → ∞. Since the generator
A is closed, we deduce that D ⊆ D(A) and A ≡ A on D.

(iii) Let G(A) denote the graph of A. Then

G(A|D) ⊆ G(A) = G(A),

since D ⊆ D(A). However, because D ⊇
⋃
m Lm, we obtain

G(A|D) ⊇ G(A|⋃
m
Lm) = G(A)
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by part (i). Thus G(A) = G(A|D). By the definition of closure, G(A|D) = G(A|D),
and so A = A|D. Hence D is a core for A. A similar argument holds for Da, since⋃
m Lm ⊆ Da ⊆ D ⊆ D(A).

(iv) By [15, Thm. 2.6, p. 6], {S(t)}t≥0 is the unique semigroup generated by
A. Suppose there exists another generator B, which gives rise to the C0-semigroup
{T (t)}t≥0, such that B 6= A, B = A on D, and T (t)Lm ⊆ Lm, for all m > 0, t ≥ 0.
By the core theorem applied to B and

⋃
m Lm, we obtain

B = B|⋃
m
Lm .

Since
⋃
m Lm ⊆ D, by the above assumptions on B, we note that Bφ = Aφ = Aφ for

all φ ∈
⋃
m Lm. So

B = A|⋃
m
Lm = A.

This is a contradiction. Thus {S(t)}t≥0 is the only semigroup that leaves Lm (m > 0)
invariant and whose generator A coincides with the operator A on D.

We have shown that the generator A and the operator A, defined by (8), coincide
on the dense space D. Ideally we would like A and A to coincide on D(A) so that
if we considered A to be defined on D(A) instead of on its maximal domain the
ACPs (9) and (17) would become the same problem and for suitable initial data,
u(t) = S(t)f, t ≥ 0, would be the solution. However, so far, we have been unable
to determine the precise nature of D(A) and whether D(A) ⊆ Dmax(A) without
imposing extra conditions on the fragmentation kernel γ(x, y), as in the next theorem.

Theorem 5.4. Let X be a Banach space of functions on (0,∞) with the property
that strong convergence in X implies pointwise convergence almost everywhere. In
addition to the hypotheses (H1)–(H3), let the fragmentation kernel γ(x, y) be such
that the operator A defined by (8) is a bounded operator from L1,−1 into X. Then the
operator A coincides with the infinitesimal generator, A, of the limit semigroup on
the domain, D(A), of the generator. Hence A is a restriction of A.

Proof. Let φ ∈ D(A). Since D is a core for A, there exists a sequence {φn} ⊆ D
such that ‖φn − φ‖1,−1 → 0 and ‖Aφn −Aφ‖1,−1 → 0 as n→∞. Hence there exists
a subsequence {φnk} such that [Aφnk ](x) = [Aφnk ](x) → [Aφ](x) for a.e. x > 0, as
nk →∞, where we have used the fact that A ≡ A on D.

Since A ∈ B(L1,−1, X),

Aφ = s-lim
nk→∞

Aφnk ,

where the strong limit is with respect to the norm on X. By the assumptions on X,
there exists a subsequence of the subsequence (which we also denote by φnk) such
that [Aφnk ](x) → [Aφ](x) for a.e. x > 0, as nk → ∞. Since the pointwise limit is
unique, A ≡ A on D(A), and hence A = A|D(A).

Sufficient conditions on γ for the above theorem to be applicable are now given.
Example 5.5. Using the generalized Young’s inequality [5, pp. 13–14], it is not

difficult to show that for fragmentation kernels γ satisfying∫ ∞
x

1

y
γ(y, x) dy ≤ C, for all x > 0,

and ∫ y

0

1

y
γ(y, x) dx ≤ C, for all y > 0,
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for some constant C > 0, the operator A ∈ B(L1,−1, L1). An example of such a γ is
γ(y, x) = x/y. Note that the above conditions imply that (H3) is valid.

Theorem 5.6. Let the fragmentation kernel γ satisfy (H1) and (H2) and be such
that

(20) γ(x, y) ≤ Cxβ−1Ψ
(y
x

)
,

where β > 0 and the function Ψ is such that

(21)

∫ 1

0

t1−βΨ(t) dt = C ′ <∞.

Then A ∈ B(L1,−1, L1,β−1), where L1,β−1 is defined as in [7, p. 2].
Proof. From (8) and (5), the operator A can be expressed as the sum B1 + B2,

where for φ ∈ Dmax(A) and x > 0,

(B1φ)(x) =

∫ ∞
x

γ(y, x)φ(y) dy and (B2φ)(x) = −a(x)φ(x).

We consider ‖B1φ‖1,−1 and ‖B2φ‖1,−1 separately. The result follows from the es-
timates (20) and (21) on making a suitable substitution or changing the order of
integration, as appropriate.

Example 5.7. The following examples are special cases of the above theorem.
(i) Let Ψ(t) = tλ and β = 2λ + 1 so that γ(x, y) ≤ C(xy)λ. If − 1

2 < λ < 1 then
A ∈ B(L1,−1, L1,2λ). In particular, choosing λ = 0, we see that A ∈ B(L1,−1, L1,0)
whenever γ(x, y) ≤ C for some constant C < ∞. Also, when γ(x, y) = (xy)λ, the

operator B1 (defined above) reduces to x2λ+1K−λ−1,1
1 φ where K−λ−1,1

1 is an Erdélyi–
Kober operator; see [7, p. 39].

(ii) Let Ψ(t) = (1 − t)α−1 (0 < α < 2) and β = α. Then γ(x, y) ≤ C(x− y)α−1

and A ∈ B(L1,−1, L1,α−1). If γ(x, y) = 1
Γ(α) (x − y)α−1, then the operator B1 is the

Weyl fractional integral Kα
1 of order α; see [7, p. 36].

6. Existence and uniqueness results. We investigate the existence and unique-
ness of solutions to the ACP (17) for A and the ACP (9) for A. We also consider the
ACP

(22)

d

dt
u(t) = Au(t) + q(t), t > 0,

u(0) = f,

where q is a vector-valued function. The inhomogeneous term q(t) can be interpreted
as arising from a source term q(x, t) being introduced on the right-hand side of the
pure fragmentation equation (2).

Theorem 6.1. Let f ∈ D(A), f ≥ 0. Then the ACP (17) has a unique, strongly
differentiable, nonnegative, mass-conserving solution given by u(t) = S(t)f for all
t ≥ 0.

Proof. The result follows by [15, Thm. 1.3, pp. 102–103] and Lemma 4.1(i), (ii)
since, by definition, A generates {S(t)}t≥0.

Corollary 6.2. Suppose that one or both of the following conditions is valid:
(i) the generator A coincides with A on D(A);
(ii) f ∈ D and is such that S(t)f ∈ D for all t ≥ 0.

Then Theorem 6.1 is also valid for the ACP (9).
Proof. This is an immediate consequence of the previous theorem since, respec-

tively,
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(i) u(t) ∈ D(A) for all time and A ≡ A on D(A);
(ii) u(t) ∈ D for all time and A ≡ A on D (by Theorem 5.3(ii)).
Note. For arbitrary initial data f ∈ D, there is no guarantee that S(t)f ∈ D

for all time. Consequently, for such data, we can only assert that the ACP (9) has
at most one strongly differentiable, nonnegative, mass-conserving solution given by
u(t) = S(t)f, t ≥ 0.

Corollary 6.3. Let f ∈
⋃
m Lm, f ≥ 0. Then there exists a unique strongly

differentiable, nonnegative, mass-conserving solution to the ACP (9) such that u(t) ∈⋃
m Lm for all t ≥ 0. This strong solution is given by u(t) = S(t)f, t ≥ 0.

Proof. By Lemma 4.1(iv),
⋃
m Lm is invariant under S(t). The result follows from

Corollary 6.2 since
⋃
m Lm ⊆ D.

The above analysis established the existence and uniqueness of a C0-semigroup
{S(t)}t≥0 with infinitesimal generator A that coincides with the operator A on a
dense set D, such that Lm is invariant under S(t), t ≥ 0. This C0-semigroup gives
rise to a strong solution of the ACP (17) for A. However, in general, we do not have
a precise form for A, and so it is difficult to interpret (meaningfully) the abstract
problem we are actually solving. In certain circumstances (see Theorem 5.4) A is a
restriction of the operator A defined by (8), and so, by taking A to be defined on the
set D(A) instead of its maximal domain, results relating to the ACP (17) are also
valid for the ACP (9).

In the remainder of this section, we state results for the ACPs (17) and (22),
involving the “abstract” operator A. We note that in certain cases these results apply
to the operator A and hence to the abstract formulation of the pure fragmentation
equation (2) with a source term q(x, t).

Definition 6.4. Fix T < ∞. A function u ∈ C([0, T ], X) is a weak solution of
(22) on [0, T ] if for every v ∈ D(A∗) the function 〈u(t), v〉 is absolutely continuous
on [0, T ] and

d

dt
〈u(t), v〉 = 〈u(t),A∗v〉+ 〈q(t), v〉, for almost all t ∈ [0, T ],

and u(0) = f .
Theorem 6.5 (existence and uniqueness of a weak solution). Let the initial data

f ∈ L1,−1, f ≥ 0.
(i) The ACP (17) has a unique weak solution u satisfying u(0) = f . The weak

solution is given by u(t) = S(t)f, t ≥ 0, is nonnegative, and conserves mass.
(ii) For each fixed T > 0, if q ∈ L1([0, T ), L1,−1), then the ACP (22) has a unique

weak solution u on [0, T ] satisfying u(0) = f . This weak solution is given by

u(t) = S(t)f +

∫ t

0

S(t− s)q(s) ds, t ∈ [0, T ].

If q ≥ 0, then the weak solution to (22) is nonnegative.
Proof. The existence and uniqueness results follow immediately from [3], since

A generates the C0-semigroup {S(t)}t≥0. The weak solution of the ACP (17) is
nonnegative and mass conserving because the operators S(t), t ≥ 0, are nonnegative
isometries. Likewise, the weak solution of (22) on [0, T ] is nonnegative whenever
q ≥ 0.

7. Existence and uniqueness of solutions to the pure fragmentation
equation. We consider the implications on the original rate equation (2) of having
existence and uniqueness of solutions to the ACP (17). We also compare our definition
of a solution with that adopted in [18, 19]. This enables us to make comparisons
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between the existence and uniqueness results obtained here and those obtained in [18,
19] under a different set of hypotheses.

Theorem 7.1. Let γ satisfy (H1)–(H3) and let f ∈
⋃
m Lm, f ≥ 0. Then there

exists a function u, measurable on the product set (0,∞)× [0,∞), such that
(i) u(x, t) ≥ 0 for all t ≥ 0 and a.e. x > 0;
(ii) u(x, 0) = f(x) for a.e. x > 0;
(iii) for each fixed t ≥ 0,

∫∞
0
xu(x, t) dx <∞;

(iv)
∫∞

0
xu(x, t) dx =

∫∞
0
xf(x) dx for all t ≥ 0;

(v) u(x, t) satisfies the pure fragmentation equation (2) almost everywhere.
Proof. By Corollary 6.3, the ACP (17) has a strongly continuously differentiable

solution u(t), t ≥ 0. By [6, Thm. 3.4.2, pp. 70–71], since L1,−1 is of type L, there
exists a function u measurable on the product set (0,∞)× [0,∞) such that

(a) u(x, t) is absolutely continuous for each x ∈ (0,∞) and u(x, t) = [u(t)](x) for
each t ≥ 0;

(b) ∂
∂tu(x, t) exists a.e. in (0,∞)× [0,∞) and ∂

∂tu(x, t) =
[
d
dtu(t)

]
(x) for all t ≥ 0.

Now, [
d

dt
u(t)

]
(x) = [Au(t)](x) = [Au(t)](x)

since u(t) ∈
⋃
m Lm (Corollary 6.3) and A ≡ A on D ⊇

⋃
m Lm (Theorem 5.3(ii)).

By definition, for t > 0,

[Au(t)](x) =

∫ ∞
x

γ(y, x)[u(t)](y)dy − [u(t)](x)

∫ x

0

y

x
γ(x, y) dy

=

∫ ∞
x

γ(y, x)u(y, t)dy − u(x, t)

∫ x

0

y

x
γ(x, y) dy.

Thus

∂

∂t
u(x, t) =

∫ ∞
x

γ(y, x)u(y, t)dy − u(x, t)

∫ x

0

y

x
γ(x, y) dy, a.e. x > 0, t > 0;

i.e., u(x, t) satisfies (2) almost everywhere.
On setting u(x, t) = [u(t)](x), for a.e. x > 0, t ≥ 0, parts (i)–(iv) follow immedi-

ately from the corresponding properties of u(t).
Corollary 7.2. Let f ∈

⋃
m Lm, f ≥ 0, and let u be a solution of the pure

fragmentation equation (2) in the sense described in Theorem 7.1. Then this is the
only such solution which is also a solution in the strong sense, i.e., such that the
vector-valued function u defined by u(t) = u(., t), t ≥ 0, is a strong solution of the
ACP (17).

Proof. This is a direct consequence of the uniqueness of the strong solution for
f ∈

⋃
m Lm (Corollary 6.3).

The additional requirement that a solution of the pure fragmentation equation
(2) should also satisfy the equation in a strong sense provides one means of uniquely
identifying a solution to (2) for initial data f ∈

⋃
m Lm. For arbitrary initial data

f ∈ L1,−1, f ≥ 0, we have the existence and uniqueness of a weak solution to the
ACP (17) (but not so, in general, for the ACP (9)) given by u(t) = S(t)f, t ≥ 0. Note
that for all t ≥ 0,

S(t)f = s-lim
n→∞

S(t)Pnf.

Therefore, the solution u is a limit of solutions {un}, given by

un(t) = S(t)Pnf, t ≥ 0,
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which satisfy the ACP (17) strongly (since Pnf ∈
⋃
m Lm ⊆ D(A)). We now show

that for arbitrary initial data f ∈ L1,−1, f ≥ 0, the function u(x, t) = [u(t)](x), x >
0, t ≥ 0, satisfies an integral version of the pure fragmentation equation (2).

Theorem 7.3. Let the initial data f ∈ L1,−1, f ≥ 0. Then the function
u: (0,∞)× [0,∞)→ R defined by u(x, t) = [S(t)f ](x), x > 0, t ≥ 0 satisfies

u(x, t) = f(x) +

∫ t

0

∫ ∞
x

γ(y, x)u(y, σ) dy dσ −
∫ t

0

a(x)u(x, σ) dσ(23)

for all t ≥ 0 and a.e. x > 0. Moreover, u is nonnegative and∫ ∞
0

xu(x, t) dx =

∫ ∞
0

xf(x) dx for all t ≥ 0.

Proof. Let un(t) = S(t)Pnf and u(t) = S(t)f . By [6, pp. 69–71], for each fixed
t ≥ 0, we can write [unk(t)](x) = unk(x, t) and [u(t)](x) = u(x, t), where the scalar-
valued functions unk and u appearing on the right-hand sides are measurable on the
product set (0,∞) × [0,∞). Since un(t) → u(t) strongly in L1,−1 uniformly with
respect to t, for each fixed t ≥ 0 there exists a subsequence {nk} independent of t
such that

unk(x, t)→ u(x, t) as nk →∞ for a.e. x > 0,

where the set of measure zero may depend on t. However, the uniform convergence
of the sequence {unk(t)} in L1,−1 also means that∫ T

0

∫ ∞
0

x|unk(x, t)− u(x, t)| dx dt→ 0 as nk →∞

for each finite T > 0, and from this we deduce that there exists a subsequence of the
subsequence, which we also denote by {unk(t)}, such that

unk(x, t)→ u(x, t) as nk →∞ for a.e. (x, t) ∈ (0,∞)× [0, T ].

By Theorem 7.1, because Pnkf ∈ Lnk ⊂
⋃
m Lm, we deduce that unk(x, t) satisfies

(24) unk(x, t) = (Pnkf)(x) +

∫ t

0

∫ ∞
x

γ(y, x)unk(y, σ) dy dσ−a(x)

∫ t

0

unk(x, σ) dσ

for each fixed t ≥ 0 and a.e. x > 0. Note that unk(x, t) = 0 for x ≥ nk, since Lnk is
invariant under S(t) (by Lemma 4.1(iv)).

Taking limits as nk →∞ on both sides of (24), we get

(25) u(x, t)=f(x)+ lim
nk→∞

{∫ t

0

∫ ∞
x

γ(y, x)unk(y, σ)dydσ−a(x)

∫ t

0

unk(x, σ)dσ

}
for each fixed t ≥ 0 and a.e. x > 0, where we know that the limit on the right exists
because the limit on the left exists.

Now fix t ≥ 0. For almost all fixed x > 0, we can show that the sequence
{a(x)unk(x, . )} is monotonic increasing, is bounded above by the L1[0, t]-function
a(x)u(x, . ), and converges pointwise a.e. on [0, t] to a(x)u(x, σ). By the Lebesgue
dominated convergence theorem, for each fixed t ≥ 0 and almost all fixed x > 0,

lim
nk→∞

∫ t

0

a(x)unk(x, σ) dσ =

∫ t

0

a(x)u(x, σ) dσ.
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Returning to (25), we know now that limnk→∞
∫ t

0

∫∞
x
γ(y, x)unk(y, σ) dy dσ exists for

each fixed t ≥ 0 and almost all fixed x > 0. For fixed y ∈ (x,∞) and σ ∈ [0, t],
the sequence {γ(y, x)unk(y, σ)} is monotonic and converges a.e. on (x,∞) × [0, t] to
γ(y, x)u(y, σ). Hence, by the Fubini–Tonelli–Hobson theorem and the Levi theorem
for sequences of Lebesgue integrable functions [2, Thm. 10.24, pp. 267–268 and p. 407],

lim
nk→∞

∫ t

0

∫ ∞
x

γ(y, x)unk(y, σ) dy dσ =

∫ t

0

∫ ∞
x

γ(y, x)u(y, σ) dy dσ.

We have thus shown that u satisfies (19). The nonnegativity and mass conservation
follow from Lemma 4.1(i)–(ii).

Corollary 7.4. There is only one solution u of the integral version of the rate
equation (19) such that the vector-valued function u(t) defined by u(t) = u(., t), t ≥ 0,
is a weak solution of the ACP (17). This solution is given by

u(x, t) = [S(t)f ](x), for a.e. x > 0, t ≥ 0.

Proof. This follows since the weak solution is unique (Theorem 6.5).
Corollary 7.5. The solution u of the integral version (23) satisfies the pure

fragmentation equation (2) for a.e. t > 0, x > 0 and satisfies the initial condition
u(x, 0) = f(x).

Proof. Since u(x, t) satisfies (23) for all t ≥ 0 and a.e. x > 0, u(x, .) is absolutely
continuous on [0,∞) and so u(x, t) satisfies (2) for a.e. t > 0, x > 0.

Remark 7.6.
1. We are able to obtain existence and uniqueness results for the pure fragmen-

tation equation (2) regardless of whether or not the abstract problems for A and A
coincide.

2. In [1], although use is made of the pointwise solution u(x, t) = [u(t)](x),
x > 0, t ≥ 0, no justification is provided. The above discussion makes this step
rigorous.

3. Comparisons can now be made with Stewart’s existence and uniqueness results
[18, 19] (see section 1) for the case of pure fragmentation (K ≡ 0). Under the
hypotheses (H1)–(H3) on the fragmentation kernel, we have established the existence
of a solution u(x, t) = [S(t)f ](x), x > 0, t ≥ 0, which is also a solution in the sense
described in [18]. By restricting our solution of (2) to satisfy (9) in a weak sense,
we obtain uniqueness without imposing further conditions on the kernels (compare
with [19]). Thus, in the pure fragmentation case, our results extend those in [18,
19]. However, it should be noted that unbounded fragmentation and unbounded
coagulation are dealt with simultaneously in [18], and so it is possible that the same
approach applied separately to the pure fragmentation equation would lead to less
restrictive conditions on the fragmentation kernel.
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Abstract. Prior knowledge regarding the existence and uniqueness of nonnegative, mass-
conserving solutions to a multiple-fragmentation equation is utilized to study a combined coagu-
lation and fragmentation model. The coagulation and fragmentation equation is first recast as an
abstract integral equation involving the solution operator associated with the fragmentation part. A
contraction mapping argument is then used to prove the existence and uniqueness of a local solution.
Detailed investigation of the related iteration scheme yields nonnegativity and mass conservation.
The solution is shown to be global.
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1. Introduction. In this paper, we continue our investigation of the continuous
coagulation and multiple-fragmentation equation,

∂

∂t
u(x, t) =

1

2

∫ x

0

K(x− y, y)u(x− y, t)u(y, t) dy − u(x, t)

∫ ∞
0

K(x, y)u(y, t) dy

+

∫ ∞
x

γ(y, x)u(y, t) dy − u(x, t)

∫ x

0

y

x
γ(x, y) dy, a.e. x > 0, t > 0,(1)

for time-independent kernels γ and K. Results obtained in our earlier paper [5] for the
pure fragmentation equation (K ≡ 0) are now extended to models where coagulation
is also taken into account. Future papers will deal with time-dependent kernels.

We recall that the fragmentation kernel γ(x, y) represents the rate at which par-
ticles of mass y are produced from fragmenting particles of mass x. This formulation
of the fragmentation kernel allows for particles splitting into more than two pieces,
yet incorporates the special case of binary fragmentation. The latter case can be
described by a symmetric fragmentation kernel F (x, y), obtained from γ by setting
F (x, y) = γ(x+ y, y) for x, y ≥ 0.

The coagulation kernel K(x, y) is the rate at which particles of mass x coalesce
with particles of mass y. We introduce this kernel by assuming that the average
number of coalescences between particles having mass in (x, x+ dx) and those having
mass in (y, y+dy) isK(x, y)u(x, t)u(y, t) dx dy dt during the time interval (t, t+dt). We
assume this kernel is symmetric since the rate at which a particle of mass x coalesces
with a particle of mass y is the same as that for a particle of mass y coalescing with
one of mass x.

The first term on the right-hand side of equation (1) represents the increase in
the number of particles of mass x as the result of particles of mass x − y and mass
y (y ≤ x) merging to form a particle of mass x. The factor 1/2 takes into account
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that either a particle of mass x − y coalesces with one of mass y or vice versa. The
second term accounts for the loss of particles of mass x because they have coalesced
with particles of mass y, y ≥ 0. The remaining terms are attributed to fragmentation
and arise as described in [5].

Again, the first step is to recast the rate equation, subject to the initial mass
distribution u(x, 0) = f(x), as an abstract Cauchy problem (ACP). Arguing as in [5],
we arrive at the ACP

(2)

d

dt
u(t) = Au(t) +Nu(t), t > 0,

u(0) = f,

where the linear fragmentation operator A and the nonlinear coagulation operator N
are defined on suitable domains by

(3) [Aφ](x) =

∫ ∞
x

γ(y, x)φ(y) dy − φ(x)

∫ x

0

y

x
γ(x, y) dy

and

(4) [Nφ](x) =
1

2

∫ x

0

K(x− y, y)φ(x− y)φ(y) dy − φ(x)

∫ ∞
0

K(x, y)φ(y) dy,

respectively. By treating the initial-value problem (2) as a nonlinear perturbation of
the linear ACP

(5)

d

dt
u(t) = Au(t), t > 0,

u(0) = f,

which corresponds to the pure fragmentation equation (K ≡ 0), we are able to make
use of the results obtained in [5].

We recall from [5] that, for suitable f ∈ L1,−1, the ACP (5) has a strong solution

u(t) = S(t)f, t ≥ 0,

in the weighted L1-space

L1,−1 =

{
φ : ‖φ‖1,−1 =

∫ ∞
0

x|φ(x)| dx <∞
}
.

The solution operators

(6) {S(t)}t≥0

form a nonnegative, C0-semigroup of isometries on L1,−1. Moreover, if f is any
function in L1,−1 with f ≥ 0, then

(7) u(x, t) = [S(t)f ](x) for all t ≥ 0, a.e. x > 0,

is a nonnegative solution of the integral version of the fragmentation equation,

u(x, t) = f(x) +

∫ t

0

∫ ∞
x

γ(y, x)u(y, σ) dy dσ −
∫ t

0

∫ x

0

y

x
γ(x, y) dy u(x, σ) dσ,
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and satisfies

(8)

∫ ∞
0

xu(x, t) dx =

∫ ∞
0

xf(x) dx for all t ≥ 0.

These results are valid provided that the fragmentation kernel γ satisfies the following
hypotheses:

(H1) γ(x, y) is a nonnegative function on (0,∞)× (0,∞);
(H2) γ(x, y) = 0 whenever y > x;
(H3) the function a : (0,∞)→ [0,∞) defined by

(9) a(x) =

∫ x

0

y

x
γ(x, y) dy, x > 0,

is such that a(x) ≤ Cn for all x ∈ (0, n], n > 0.
Connections between the operator A, defined by (3), and the infinitesimal gener-

ator, A, of the semigroup {S(t)}t≥0 on L1,−1 are also given in [5]. For example, A
and A coincide on the subspace

⋃
m Lm, where

(10) Lm = {φ ∈ L1,−1 : φ ≡ 0 on [m,∞)}.

Although our treatment of (5) was carried out in the space L1,−1, we now choose
the Banach space X defined by

(11) X = {φ ∈ L1,−1 ∩ L1: |||φ||| = ‖φ‖1 + ‖φ‖1,−1 <∞}

for our analysis of the full equation (2). This space provides a more convenient setting
for establishing that the nonlinear coagulation operator N is locally Lipschitz. We
obtain the local existence and uniqueness of a mild solution of (2) via a contraction
mapping argument. Then, by applying [2, Thm. 2.6, pp. 90–91], we show that the
solution is global.

In the first instance, the work presented here extends the results of Aizenman and
Bak [1] for constant coagulation and fragmentation kernels to bounded coagulation
and bounded, unsymmetric fragmentation kernels. However, in order to prove that
the solutions are nonnegative, it has been necessary to restrict attention to constant
coagulation kernels and bounded, unsymmetric fragmentation kernels.

Throughout, the following hypotheses are imposed on the kernels K and γ, with
the further restriction, K constant, being added only as it is required.

The fragmentation kernel γ satisfies (H1), (H2), and
(H3)′ γ ∈ L∞((0,∞)× (0,∞)).
The coagulation kernel K satisfies the following hypotheses:
(H4) K(x, y) is a nonnegative function on (0,∞)× (0,∞);
(H5) K is symmetric, i.e., K(x, y) = K(y, x) for all x, y ∈ (0,∞);
(H6) K ∈ L∞((0,∞)× (0,∞)).

As a consequence of (H3)′ and (H6), for all Ω ⊆ (0,∞)× (0,∞),

(12) ess sup
(x,y)∈Ω

|γ(x, y)| ≤ 2

3
CF <∞ where

2

3
CF = ‖γ(x, y)‖∞

and

ess sup
(x,y)∈Ω

|K(x, y)| ≤ CK <∞ where CK = ‖K(x, y)‖∞.
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(The factor 2/3 is chosen for its convenience in later calculations.) We note that
hypothesis (H3) is automatically satisfied since

a(x) :=

∫ x

0

y

x
γ(x, y) dy ≤ 1

3
CFx ≤

1

3
CFn for all x ∈ (0, n].

Therefore, the analysis in [5] is also valid for fragmentation kernels γ satisfying (H1),
(H2), and (H3)′. Also, it follows by [5, Thm. 5.6 and Ex. 5.7(i)] that whenever the
fragmentation kernel γ satisfies (H3)′, the generator A of the semigroup {S(t)}t≥0 on
L1,−1 is a restriction of the operator A.

2. The pure fragmentation semigroup on X. We begin by showing that the
pure fragmentation semigroup {S(t)}t≥0 introduced in (6) also forms a C0-semigroup
on X. We need only verify that

lim
t→0+

|||S(t)φ− φ||| = 0 for all φ ∈ X,

since S(t+ s) = S(t)S(s) for all t, s ≥ 0, and S(0) = I hold automatically.
Theorem 2.1. For each t ≥ 0, let S(t) be the operator introduced in (6). Then

{S(t)}t≥0 forms a C0-semigroup on X and

(13) |||S(t)φ||| ≤ (1 + tCF ) |||φ||| for all φ ∈ X.

Proof. Let φ ∈
⋃
m Lm, where Lm is defined by (10). By [5, Cor. 6.3], S(t)φ is a

strong solution of the ACP (5) with initial data f = φ, and hence

(14) S(t)φ = φ+

∫ t

0

AS(τ)φdτ.

By Fubini’s theorem and (H3)′, ‖[Aψ]‖1 ≤ CF ‖ψ‖1,−1 for all ψ ∈ X. Since the
operators {S(t)}t≥0 form a C0-semigroup of isometries on L1,−1 (by [5, Lem. 4.1]), it
is then not difficult to show that for all φ ∈

⋃
m Lm,

|||S(t)φ||| = ‖S(t)φ‖1 + ‖S(t)φ‖1,−1 ≤ |||φ|||+
∫ t

0

‖[AS(τ)φ]‖1 dτ ≤ (1 + CF t) |||φ||| .

The latter result extends to all φ ∈ X, since for each fixed t ≥ 0, S(t) is a bounded
operator on X.

From (14), we also obtain that ‖S(t)φ − φ‖1 ≤ CF t ‖φ‖1,−1 for φ ∈
⋃
m Lm.

Therefore, for all φ ∈
⋃
m Lm ⊆ X, we deduce that S(t)φ → φ with respect to the

|||.|||-norm as t→ 0+. This result extends to all φ ∈ X by continuity since
⋃
m Lm is

dense in X and, for all t ≤ 1, ‖S(t)‖B(X) ≤ (1 + CF ).
It should be noted that the infinitesimal generator, A, of {S(t)}t≥0 on X is not

necessarily the same as the infinitesimal generator, A, of {S(t)}t≥0 on L1,−1 because
now

(15) s-lim
t→0+

S(t)φ− φ
t

is with respect to the |||.|||-norm instead of with respect to the ‖.‖1,−1-norm. However,
it is possible to prove that A is a restriction of A.
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Theorem 2.2. Let A denote the generator of the semigroup {S(t)}t≥0 on X,
and let A denote the generator of {S(t)}t≥0 on L1,−1. Then A is a restriction of A
and hence is also a restriction of the operator A defined by (3).

Proof. Let φ ∈ D(A). By definition, the limit (15) with respect to the |||.|||-norm
exists and equals Aφ. Hence the limit (15) with respect to the ‖.‖1,−1-norm exists
and equals Aφ. The latter implies that φ ∈ D(A) and Aφ = Aφ. Thus A is a
restriction of A, which in turn is a restriction of A by our earlier discussion.

The previous result shows that we may write Aφ = Aφ for all φ ∈ D(A). More-
over, the operator A restricted to D(A) generates the semigroup {S(t)}t≥0 on X.

3. Existence and uniqueness of solutions to the coagulation and frag-
mentation equation. Our first step is to establish that the operator N which ap-
pears in the inhomogeneous term Nu(t) on the right-hand side of (2) is locally Lips-
chitz on X.

Lemma 3.1. Let the coagulation kernel K satisfy (H4)–(H6). Then the operator
N : X → X defined by (4) is continuous and satisfies the Lipschitz condition

(16) |||Nφ−Nψ||| ≤ 2CK (|||φ|||+ |||ψ|||) |||φ− ψ|||

whenever φ, ψ ∈ X, i.e., N is locally Lipschitz on X.
Proof. The proof is not difficult and makes use of Fubini’s Theorem, (H6), and

the simple result that ‖φ‖1 ≤ |||φ||| and ‖φ‖1,−1 ≤ |||φ||| for all φ ∈ X. See [4, Lem.
4.3, pp. 76–77] for details.

To obtain the local existence and uniqueness of a mild solution to the initial-value
problem (2), we use a contraction mapping argument in the Banach space Yb,T defined
by

(17) Yb,T = {y ∈ C([0, T ], X) : |||y|||∞ < b},

where

|||y|||∞ = sup
t∈[0,T ]

|||y(t)||| .

For given initial data f ∈ X, the constant b is chosen such that |||f ||| < b, and then T
is chosen sufficiently small in order to satisfy the inequalities that arise in subsequent
proofs.

Theorem 3.2. Let f ∈ X. For a suitable choice of T and b, the map u→ Wfu
defined by

(18) [Wfu](t) = S(t)f +

∫ t

0

S(t− σ)N(u(σ)) dσ, t ∈ [0, T ],

has a unique fixed point ũ in the space Yb,T defined by (17). Moreover, ũ(0) = f .
Proof.
(i) Our first step is to prove that Wf (Yb,T ) ⊆ Yb,T . Let u ∈ Yb,T . Then, for all

t ∈ [0, T ], N(u(t)) ∈ X and

|||N(u(t))||| ≤ 2CK |||u(t)|||2 ≤ 2CKb
2 <∞,

by (16) with φ = u(t) and ψ ≡ 0. Therefore, using (13), we obtain

(19) |||[Wfu](t)||| ≤ |||f |||+ TCF b+

(
T +

T 2

2
CF

)
2CKb

2.
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Since the right-hand side of (19) is finite, [Wfu](t) ∈ X for all t ∈ [0, T ]. Now let
t1, t2 ∈ [0, T ] with t1 = t2 + t, t > 0. Then

|||[Wfu](t1)− [Wfu](t2)|||

≤ |||(S(t)− I)S(t2)f |||+
∫ t1

t2

|||S(t1−t2)S(t2−σ)N(u(σ))||| dσ

+

∫ t2

0

|||(S(t)−I)S(t2−σ)N(u(σ))||| dσ.

Since S(t) is strongly continuous on X (by Theorem 2.1), we deduce that Wfu ∈
C([0, T ], X). Moreover, using (19) and choosing T sufficiently small, we arrive at

|||Wfu|||∞ ≤ |||f |||+ TCF b+

(
T +

T 2

2
CF

)
2CKb

2 < b.

(Note that such a choice of T is possible by continuity since the strict inequality holds
for T = 0 and hence for T sufficiently close to zero.) Hence |||Wfu|||∞ < b, and so
Wfu ∈ Yb,T whenever u ∈ Yb,T .

(ii) We now show that the map u→ Wfu is a contraction mapping on Yb,T . Let
u, v ∈ Yb,T . By (13), (16), and (18),

|||Wfu−Wfv|||∞ ≤ sup
t∈[0,T ]

4CKb

∫ t

0

(1+(t−σ)CF ) |||u(σ)−v(σ)||| dσ

≤ 4CKb

(
T +

T 2

2
CF

)
|||u− v|||∞ .

We now choose T sufficiently small so that, in addition to the previous requirement
on T ,

|||Wfu−Wfv|||∞ ≤ λ |||u− v|||∞ for some constant λ ∈ (0, 1);

i.e., we choose T such that

4CKb

(
T +

T 2

2
CF

)
≤ λ

is also valid. Then, by the contraction mapping principle, there exists a unique fixed
point ũ ∈ Yb,T . Finally, we note that ũ(0) = [Wf ũ](0) = f .

Theorem 3.3. Let u be the unique fixed point of the map u→ Wfu obtained in
Theorem 3.2. Then∫ ∞

0

x[u(t)](x) dx =

∫ ∞
0

xf(x) dx for all t ∈ [0, T ].

Proof. By definition,

u(t) = S(t)f +

∫ t

0

S(t− σ)N(u(σ)) dσ, 0 ≤ t ≤ T.

Therefore, by (7) and (8) (see [5, Lem. 4.1(ii)]),∫ ∞
0

x[u(t)](x) dx =

∫ ∞
0

xf(x) dx+ I(t),
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where

I(t) =

∫ ∞
0

x

[∫ t

0

S(t− σ)N(u(σ)) dσ

]
(x) dx.

Thus, it remains to prove that I(t) = 0 for all t ∈ [0, T ].
It follows from Theorem 2.1 and Lemma 3.1 that N(u(.)) and S(t− .)N(u(.)) are

strongly continuous on X. Since X is a Banach space of type L [3, pp. 69–71], we
note that [∫ t

0

S(t− σ)N(u(σ)) dσ

]
(x) =

∫ t

0

[S(t− σ)N(u(σ))] (x) dσ.

By Fubini’s theorem, (7), and (8),

I(t) =

∫ t

0

∫ ∞
0

x[N(u(σ))](x) dx dσ.

By interchanging orders of integration and making a change of variable x′ = x− y on
the left-hand side, it is not difficult to show that

1

2

∫ ∞
0

∫ x

0

xK(x− y, y)φ(x− y)φ(y) dy dx =

∫ ∞
0

xφ(x)

∫ ∞
0

K(x, y)φ(y) dy dx,

and so from (4),∫ ∞
0

x[N(u(σ))](x) dx = 0, 0 ≤ σ ≤ t ≤ T.

Theorem 3.4 (existence and uniqueness of a mild solution). Let f ∈ X. Then
there exists T ∈ (0,∞] such that for t ∈ [0, T ) equation (2) has a unique mild solution

with u(0) = f and u(t) ∈ X for all t ∈ [0, T ). The maximal T , T̂ , with this property
is finite only if lim

t→T̂− |||u(t)||| =∞.
Proof. The mild solution of equation (2) on [0, T ] is given by the unique fixed

point of the map u→Wfu obtained in Theorem 3.2. The result follows directly from
[2, Thm. 2.6, pp. 90–91].

Corollary 3.5. Let u be the mild solution of (2) on [0, T̂ ). Then∫ ∞
0

x[u(t)](x) dx =

∫ ∞
0

xf(x) dx for all t ∈ [0, T̂ ).

Proof. The result follows from Theorems 3.3 and 3.4.

4. A nonnegative solution to the coagulation and fragmentation equa-
tion. In this section we prove that the mild solution obtained in Theorem 3.4 is
nonnegative whenever the initial data f is nonnegative. This result is analogous to
that given in [1] for the case of constant fragmentation kernels and is established
by a similar argument. However, as the justification provided in [1] is somewhat
incomplete, we feel it is desirable to include more detail here.

We now assume that the coagulation kernel K satisfies
(H7) K(x, y) = CK > 0 for all (x, y) ∈ (0,∞)× (0,∞),
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in which case (H4)–(H6) are immediately satisfied. The operator N defined by (4)
now reduces to

(20) [Nφ](x) =
CK
2

∫ x

0

φ(x− y)φ(y) dy − CKφ(x)

∫ ∞
0

φ(y) dy,

and the map u(t)→ [Wfu](t), defined by (18), becomes

u(t)→ S(t)f +

∫ t

0

S(t− σ)

{
CK
2

∫ .

0

[u(σ)](.− y)[u(σ)](y) dy(21)

−CK [u(σ)]

∫ ∞
0

[u(σ)](y) dy

}
dσ.

In the previous section we proved, via a contraction mapping argument on the space
Yb,T (defined by (17)), that the map u→Wfu has a unique fixed point ũ ∈ Yb,T . The
contraction mapping theorem also tells us that for any initial estimate u(1) ∈ Yb,T ,
the successive approximations u(n+1) = Wfu(n) (n = 1, 2, . . .) converge to ũ.

We assume that ũ is known and consider the successive approximation scheme

u(n+1)(t) = S(t)f +

∫ t

0

S(t− σ)

{
CK
2

∫ .

0

[ũ(σ)](.− y)[ũ(σ)](y) dy(22)

+ CK

(
−
∫ ∞

0

[ũ(σ)](y) dy

)
u(n)(σ)

}
dσ,

n = 1, 2, . . ., with a suitable u(1)(t). Notice that we substitute into only one term.
We note that ũ is a fixed point of the associated map

φ(t)→ S(t)f +

∫ t

0

S(t− σ)

{
CK
2

∫ .

0

[ũ(σ)](.− y)[ũ(σ)](y) dy(23)

+ CK

(
−
∫ ∞

0

[ũ(σ)](y) dy

)
φ(σ)

}
dσ.

We can show that the map (23) is also a contraction mapping on the space Yb,T , and
so ũ is the unique fixed point in Yb,T . From the contraction mapping principle applied
to the map (23) we obtain that the successive approximations (22) converge to ũ.

We now use the successive approximation scheme (22) to prove that ũ is nonneg-
ative. We begin by introducing some additional notation to ease computation.

Notation 4.1. Let {S(t)}t≥0 be the C0-semigroup on X introduced in (6). Let
ũ be the unique fixed point of the map u→Wfu (defined by (21)) and suppose that ũ
is known. Then we define

(i) h: [0, T ]→ X by h(t) := S(t)f , t ∈ [0, T ];
(ii) g: (t, σ)→ g(t, σ) ∈ X, 0 ≤ σ ≤ t ≤ T , by

g(t, σ) := S(t− σ)

[
CK
2

∫ .

0

[ũ(σ)](.− y)[ũ(σ)](y) dy

]
= S(t− σ)N1(ũ(σ)),

where N1 is defined for φ ∈ X by

(24) (N1φ)(x) :=
CK
2

∫ x

0

φ(x− y)φ(y) dy, a.e. x > 0;

(iii) ξ: [0, T ]→ R by ξ(t) := −CK
∫∞

0
[ũ(t)](y) dy;
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(iv) β: [0, T ]× [0, T ]→ R by β(t, σ) :=
∫ t
σ
ξ(τ) dτ ;

(v) α : [0, T ]→ R by α(t) := β(t, 0).
On using the above notation, we can write the successive approximation scheme

(22) as

(25) u(n+1)(t) = h(t) +

∫ t

0

g(t, σ) dσ +

∫ t

0

ξ(σ)S(t− σ)u(n)(σ) dσ,

n = 1, 2, . . .. We can take ξ(s) (also α(t) and β(t, σ)) outside the operator S(t), t ≥ 0,
because the operators {S(t)}t≥0 are linear and ξ(σ), α(t), and β(t, σ) are real num-
bers.

Lemma 4.2. For all 0 ≤ r ≤ σ ≤ t ≤ T ,

S(t− σ)h(σ) = h(t) and S(t− σ)g(σ, r) = g(t, r).

Proof. This follows from the semigroup properties of {S(t)}t≥0; see [4, Lem. 4.9,
p. 86] for details.

Lemma 4.3. For 0 ≤ σ ≤ t ≤ T , n ∈ N,∫ t

σ

ξ(τ)
β(τ, σ)n

n!
dτ =

β(t, σ)n+1

(n+ 1)!
.

Proof. This is a simple proof by induction. See [4, Lem. 4.10, pp. 86–87] for
details.

Lemma 4.4. For all t ∈ [0, T ] and n ∈ N,∫ t

0

ξ(σ)

∫ σ

0

g(t, τ)
β(σ, τ)n

n!
dτ dσ =

∫ t

0

g(t, σ)
β(t, σ)n+1

(n+ 1)!
dσ.

Proof. This follows from Lemma 4.3 on changing the order of integration.
Lemma 4.5. Let u(1)(t) be defined by

(26) u(1)(t) = h(t) +

∫ t

0

g(t, σ) dσ, t ∈ [0, T ].

Then u(1) ∈ Yb,T .
Proof. The details are similar to the proof of Theorem 3.2, part (i). See [4, Lem.

4.13, pp. 87–89] for details.
Lemma 4.6. Let u(1)(t) be defined by (26). Then

u(n)(t) =

[
n−1∑
i=0

α(t)i

i!

]
h(t) +

∫ t

0

[
n−1∑
i=0

β(t, σ)i

i!

]
g(t, σ) dσ, n = 1, 2, 3, . . . ,

is the general formula for the nth iterate of the successive approximation scheme (25).
Proof. This proof by induction uses Lemma 4.3, with σ = 0, and Lemma 4.4. We

note that we can take S(t− σ) under the integral sign because it is a bounded linear
operator on X.

Lemma 4.7. The fixed point ũ of the map u→Wfu, where Wfu is given by (21),
also satisfies

(27) ũ(t) = [expα(t)]h(t) +

∫ t

0

[expβ(t, σ)]g(t, σ) dσ, t ∈ [0, T ].
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(Recall that α(t), β(t, σ), and g(t, σ) depend on ũ.)
Proof. This follows immediately by letting n→∞ in Lemma 4.6.
The mild solution u(t) of (2) (with K(x, y) = CK) can be obtained as the fixed

point of the map u→ Wfu or as the fixed point of the map (23). The above lemma
suggests that this mild solution can also be obtained as a fixed point of the map
u→ V u on Yb,T defined by

(28) (V u)(t) = [expα(t)]h(t) +

∫ t

0

[expβ(t, σ)]S(t− σ)[N1(u(σ))] dσ

where N1(u(σ)) is given by (24). The map u→ V u is obtained from (27) by keeping
ũ in the definition of α(t) and β(t, σ) but not so in the definition of g(t, σ). Therefore,
now g(t, σ) = S(t− σ)N1(u(σ)).

Lemma 4.8. For a suitable choice of T and b, the map u→ V u defined by (28) is
a contraction mapping on the space Yb,T (defined by (17)) and therefore has a unique
fixed point û ∈ Yb,T . Moreover, for suitable T and b, the fixed point û of the map
u→ V u coincides with the fixed point ũ of the map u→Wfu.

Proof. As the proof is analogous to the proof of Theorem 3.2, we provide only a
brief outline. For further details see [4, Lem. 4.16, pp. 90–93].

(i) We note that for all u ∈ Yb,T , |ξ(τ)| ≤ CK |||ũ(τ)||| < CKb. Hence, for
all t, σ ∈ [0, T ], expβ(t, σ) ≤ exp(CKbT ), and expα(t) ≤ exp(CKbT ). So for all
t ∈ [0, T ], we find

(29) |||(V u)(t)||| ≤ exp(CKbT )

[
(1+TCF ) |||f |||+

(
T +

T 2

2
CF

)
CKb

2

]
.

To prove (V u)(t) is a continuous function of t we let t1, t2 ∈ [0, T ], with t1 > t2, and
consider

(30) |||(V u)(t1)− (V u)(t2)||| .

Now (30) can be shown to be bounded by

|||{expα(t1)}h(t1)− {expα(t2)}h(t2)|||

+

∫ t1

t2

expβ(t1, σ) |||S(t1 − t2)S(t2 − σ)N1(u(σ))||| dσ

−
∫ t2

0

|||{expβ(t1, σ)S(t1 − t2)− expβ(t2, σ)}S(t2 − σ)N1(u(σ))||| dσ,

and since

|||expβ(t1, t2)S(t1 − t2)f − f ||| → 0 as t1 → t+2 ,

for any f ∈ X, the required continuity of (V u)(t) follows.
(ii) Using (29) and choosing T appropriately, we obtain

|||(V u)(t)||| ≤ exp(CKbT )(1+TCF ) |||f |||+ exp(CKbT )

(
T+

T 2

2
CF

)
CKb

2 < b

for all t ∈ [0, T ], and so V (Yb,T ) ⊆ Yb,T .
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(iii) We can show that for u, v ∈ Yb,T , λ ∈ (0, 1),

|||(V u)(t)−(V v)(t)|||≤2CKb exp(CKbT )

(
T+

T 2

2
CF

)
|||u−v|||∞≤λ |||u− v|||∞ ,

provided T is such that

2CKb exp(CKbT )

(
T +

T 2

2
CF

)
≤ λ.

(iv) We recall that the map u→ V u is obtained from (27) by replacing ũ by u in
the definition of g(t, σ). Therefore ũ is a fixed point of u→ V u. Since the fixed point
of the map u→ V u in the space Yb,T is unique, it follows that ũ ≡ û.

The above lemma enables us to state that, for a suitable choice of T and any
u(1) ∈ Yb,T , the successive approximations u(n+1) = V u(n) converge to the fixed point
of the map u→Wfu.

Theorem 4.9 (nonnegative solution). The mild solution u of (2) on [0, T ] is
nonnegative whenever the initial data f ∈ X is nonnegative.

Proof. From the above discussion and Theorem 3.4, the mild solution u can be
found from the nonnegative preserving iterations u(n+1) = V u(n), u(1) = f .

5. A global solution. By Theorem 3.4, we have the existence and uniqueness
of a global mild solution, u, unless there exists a T̂ <∞, such that

lim
t→T̂−

|||u(t)||| =∞.

We shall prove that there is no such finite T̂ and so establish that there exists a unique,
global, nonnegative, mild solution to the ACP formulation (2) of the full coagulation
and fragmentation equation (1) with K constant and γ bounded.

Let u be the mild solution of (2) on [0, T̂ ) and consider the functions Mi (i = 0, 1)
defined by

(31) Mi(t) =

∫ ∞
0

xi[u(t)](x) dx, t ∈ [0, T̂ ).

For nonnegative u(t),

|||u(t)||| = M0(t) +M1(t).

By Corollary 3.5,

M1(t) =

∫ ∞
0

xf(x) dx for all t ∈ [0, T̂ ),

and so it follows that

(32) lim
t→T̂−

|||u(t)||| =∞ only if lim
t→T̂−

M0(t) =∞.

To prove that lim
t→T̂−M0(t) = ∞ cannot hold for any finite T̂ , we make use of the

following proposition.
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Proposition 5.1. Let u(t) be the mild solution of (2) on [0, T̂ ). Then u(x, t) =
[u(t)](x) satisfies

u(x, t) =f(x) +

∫ t

0

{∫ ∞
x

γ(y, x)u(y, σ) dy−u(x, σ)

∫ x

0

y

x
γ(x, y) dy

+
1

2

∫ x

0

K(x−y, y)u(x−y, σ)u(y, σ) dy−u(x, σ)

∫ ∞
0

K(x, y)u(y, σ)dy

}
dσ

for all t ∈ [0, T̂ ), a.e. x > 0.
Proof. The argument is somewhat involved because we must consider a truncated

version of the full equation, even though this step was not necessary to prove exis-
tence and uniqueness of a local solution. We postpone this proof until the end of
section 6.

Theorem 5.2. Let M0(t) be defined by (31) (with i = 0) and suppose that for all

t ∈ [0, T̂ ), u(t) ≥ 0. Then

M0(t) ≤
∫ ∞

0

f(x) dx+
2

3
tCF

∫ ∞
0

xf(x) dx.

Proof. For all t ∈ [0, T̂ ), by Proposition 5.1 and repeated use of Fubini’s theorem,∫ ∞
0

[u(t)](x) dx =

∫ ∞
0

f(x) dx+

∫ t

0

[
−1

2

∫ ∞
0

∫ ∞
0

K(x, y)u(y, σ)u(x, σ) dy dx

+

∫ ∞
0

∫ x

0

(
1− y

x

)
γ(x, y) dy u(x, σ) dx

]
dσ

≤
∫ ∞

0

f(x) dx+

∫ t

0

∫ ∞
0

∫ x

0

γ(x, y) dy u(x, σ) dx dσ

(since u(σ) ≥ 0 for all σ ∈ [0, t], t ∈ [0, T̂ ) )

≤
∫ ∞

0

f(x) dx+

∫ t

0

∫ ∞
0

2

3
CFxu(x, σ) dx dσ (by (12))

=

∫ ∞
0

f(x) dx+
2

3
tCF

∫ ∞
0

xf(x) dx.

Corollary 5.3. There does not exist a finite T̂ such that

lim
t→T̂−

|||u(t)||| =∞.

Proof. This follows immediately from Theorem 5.2 and (32).
Thus, by the above discussion, we have established the following theorem.
Theorem 5.4. Let the fragmentation kernel γ satisfy (H1), (H2), and (H3)′, and

let the coagulation kernel K satisfy (H7). Then the ACP (2) has a unique, global,
nonnegative, mass-conserving mild solution.

We remark that Proposition 5.1 enables us to relate the mild solution of the ACP
(2) to a solution of the coagulation and fragmentation equation (1).

Theorem 5.5. Let γ and K be as in Theorem 5.4. Then the coagulation and
fragmentation equation (1) has a nonnegative mass-conserving solution u given by

u(x, t) = [u(t)](x) for a.e. (x, t) ∈ (0,∞)× [0,∞),
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where u(t) (t ≥ 0) is the unique mild solution of the ACP (2) obtained in Theorem
5.4. Moreover, this is the only solution of (1) such that the vector-valued function
u(., t), t ≥ 0, is a mild solution of the ACP (2).

Proof. By Proposition 5.1, the scalar-valued function u, constructed via

u(x, t) = [u(t)](x) for all t ≥ 0 and a.e. x ∈ (0,∞),

is absolutely continuous and satisfies (1) for a.e. (x, t) ∈ (0,∞)× [0,∞). The scalar-
valued function inherits the nonnegativity and mass conservation from the vector-
valued function. Uniqueness of the mild solution of (2) implies the uniqueness state-
ment in the theorem.

6. A truncated coagulation and fragmentation equation. We now inves-
tigate a truncated version of the full coagulation and fragmentation equation (1) and
an associated truncated version of the ACP (2). The truncated coagulation and frag-
mentation equation is given by
(33)

∂

∂t
u(x, t)=


1
2

∫ x
0
K(x−y, y)u(x−y, t)u(y, t)dy−u(x, t)

∫m−x
0

K(x, y)u(y, t)dy

+
∫m
x
γ(y, x)u(y, t)dy−a(x)u(x, t), for a.e. x < m,

0, for a.e. x ≥ m,

where a is defined by (9). We make use of the projection operator Pm (m > 0) on X
defined by

(Pmφ)(x) =

{
φ(x), 0 < x < m,
0, x ≥ m.

We seek a sequence {um(t)}m>0 of approximating solutions satisfying the truncated
ACP,

(34)

d

dt
um(t) = Amum(t) +Nmum(t), t > 0,

um(0) = fm,

where Am ≡ APm and where
(35)

(Nmφ)(x)=

{
1
2

∫ x
0
K(x−y, y)φ(x−y)φ(y)dy−φ(x)

∫m−x
0

K(x, y)φ(y)dy, x<m,
0, x≥m.

Note that Nmφ 6≡ NPmφ. The initial data fm for the truncated problem is chosen
so that |||fm − f ||| → 0 as m → ∞, where f is the initial data for the nontruncated
problem in X. At this point, we do not state the form that fm takes, but note that
fm could equal Pmf .

For each fixed m > 0, a mild solution um of (34) satisfies the integral equation

(36) um(t) = Sm(t)fm +

∫ t

0

Sm(t− s)Nm(um(s)) ds, t ≥ 0,

where {Sm(t)}t≥0 is the linear semigroup generated by Am on the space X defined
by (11). So, we consider the map u→Wm,fmu where, for each fixed t ∈ [0, T ],

(37) [Wm,fmu](t) = Sm(t)fm +

∫ t

0

Sm(t− s)[(Nmu)(s)] ds.
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(Compare (37) with the definition of Wfu given by (18).) By repeating the argu-
ment used for the map u → Wfu in sections 2 and 3, we can prove the existence
and uniqueness of a mild solution of (34). The appropriate norm estimates for the
truncated operators are stated in the next two lemmas.

Lemma 6.1. Let {S(t)}t≥0 and {Sm(t)}t≥0 be the linear semigroups generated by
A and Am, respectively, on X. Then for all m > 0, t ≥ 0, and φ ∈ X,

(i) Sm(t)φ = (I − Pm)φ+ S(t)Pmφ;

(ii) |||Sm(t)φ||| ≤ (1 + tCF ) |||φ|||;
(iii) |||S(t)φ− Sm(t)φ||| ≤ (2 + tCF ) |||φ|||.
Proof. Part (i) is a rewrite of [5, Lem. 4.1(iii)]. For parts (ii) and (iii), we use

(12) in conjunction with part (i).

Lemma 6.2. The operator Nm:X → X, defined by (35), is continuous and
satisfies the Lipschitz condition

(38) |||Nmφ−Nmψ||| ≤ 2CK (|||φ|||+ |||ψ|||) |||φ− ψ|||

whenever φ, ψ ∈ X. (Compare (38) with the inequality (16) for N .)

Proof. The proof is almost identical to that for Lemma 3.1. See [4, Lem. 4.24,
pp. 99–100] for details.

The next theorem is analogous to the combined results of Theorems 3.2 and 3.4.

Theorem 6.3. For each fixed m > 0, let fm ∈ X. Then, for a suitable choice
of T and b, the map u → Wm,fmu has a unique fixed point um in the space Yb,T
defined by (17), where now the choice of b is such that b > max(|||fm||| , |||f |||). Fur-
thermore, there exists T ∈ (0,∞] such that the ACP (34) has a unique mild solution

um(t) ∈ X for all t ∈ [0, T ). The maximal T , T̂ , with this property is finite only if
lim

t→T̂− |||um(t)||| =∞.

Proof. The argument follows from that outlined in the proof of Theorem 3.2
for the fixed point of the map u → Wfu. We replace u, S(t), Nu, and Wfu by
um, Sm(t), Nmum, and Wm,fmu, respectively. Note that Sm(t) is uniformly continu-
ous with respect to the |||.|||-norm since the generator Am of {Sm(t)}t≥0 is a bounded
linear operator on X.

Remark 6.4. The truncated data fm is chosen such that fm → f in X. Therefore,
there exists b > 0 such that b > max(|||fm||| , |||f |||) for all m > 0, and it may be
assumed that the choice of b and T in the above theorem coincides with the choice of
b and T in Theorem 3.2. Thus the contraction constant λ ∈ (0, 1) such that

|||Wm,fmu−Wm,fmv||| ≤ λ |||u− v|||

is independent of m.

Corollary 6.5. The mild solution um of (34) obtained in Theorem 6.3 is also
a strong solution.

Proof. Note that Am is a bounded operator on X. Also, Sm(t− .)Nm(um(.)) can
be shown to be strongly continuous. Therefore, differentiating the integral equation
(36), we see that the mild solution also satisfies (34) in a strong sense.

Corollary 6.6. Let um(x, t) = [um(t)](x) for a.e. x > 0, t ∈ [0, T ]. Then for
all t > 0, um( . , . ) satisfies the truncated coagulation and fragmentation equation (33)
a.e. and um(x, 0) = fm(x) a.e.

Proof. By Corollary 6.5, um(t) is a strong solution of (34). The proof now follows
along similar lines to the proof of [5, Thm. 7.1]. Since X is a Banach space of type L
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[3, pp. 69–70], for t ∈ (0, T ] and a.e. x ∈ (0,∞),

∂

∂t
um(x, t) =

[
d

dt
um(t)

]
(x) = [Amum(t)](x) + [Nmum(t)](x),

and the right-hand side of the latter equals the right-hand side of (33), as
required.

We can use this pointwise version of the solution to the truncated problem to
prove Proposition 5.1. We shall require the following two lemmas.

Lemma 6.7. Let φ ∈ X and let the operators N and Nm be defined by (4) and
(35), respectively. Then

|||Nmφ−Nφ||| → 0, as m→∞.

Proof. Let vm(x) = (Nmφ)(x) − (Nφ)(x), x > 0. For a given x > 0, we can
always choose m sufficiently large so that

vm(x) = φ(x)

∫ ∞
m−x

K(x, y)φ(y) dy.

Since K(x, y) ≤ CK and φ ∈ X ⊆ L1, it follows that vm(x) → 0 for a.e. x > 0 as
m→∞. Also, for all x > 0,

|(1 + x)vm(x)| ≤ CK |||φ||| (1 + x)|φ(x)|+ CK
2

(1 + x)

∫ x

0

|φ(x− y)||φ(y)| dy,

and the right-hand side is an integrable function over (0,∞). By the Lebesgue domi-
nated convergence theorem,∫ ∞

0

(1 + x)|vm(x)| dx→
∫ ∞

0

(1 + x).0 dx = 0 as m→∞;

i.e., |||Nmu−Nu||| → 0 as m→∞.
Lemma 6.8. Let fm ∈ Lm. For a suitable choice of T and b, let u be the mild

solution of (2) on [0, T ], and let um be the mild solution of (34) on the same time-
interval. Then, for all t ∈ [0, T ],

|||um(t)− u(t)||| → 0 whenever |||fm − f ||| → 0,

and the convergence is uniform in t.
Proof. We choose T so that the contraction mapping principle can be applied

simultaneously to the maps u→Wfu and u→Wm,fmu on the space Yb,T defined by
(17). (See Theorems 3.2 and 6.3.) Such a choice of T is possible by Remark 6.4. The
contraction mapping principle tells us that

|||W k
m,fmu− um|||∞ → 0 as k →∞,

since the mild solution u ∈ Yb,T is a suitable choice for the initial estimate. Using a
telescoping series we obtain

|||um − u|||∞ ≤
∞∑
k=0

λk |||Wm,fmu− u|||∞
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where the contraction constant λ < 1 is independent of m (Remark 6.4). Hence

|||um − u|||∞ ≤ (1− λ)−1 |||Wm,fmu− u|||∞ .

Now

|||[Wm,fmu](t)− u(t)|||

≤ |||Sm(t)fm−S(t)f |||+
∫ t

0

|||Sm(t−s)[Nm(u(s))]− S(t−s)[N(u(s))]||| ds

= |||S(t)[fm − f ]|||+
∫ t

0

|||S(t− s)[Nm(u(s))−N(u(s))]||| ds,

since for all t ∈ [0, T ], Nm(u(t)) ∈ Lm (see (35)) and S(t)φ = Sm(t)φ whenever
φ ∈ Lm (from Lemma 6.1(i)). Therefore, by (12),

|||Wm,fmu− u|||∞ ≤ (1+TCF ) |||fm − f |||+(1+TCF )

∫ T

0

|||Nm(u(s))−N(u(s))||| ds.

By the bounded convergence theorem and Lemma 6.7,∫ T

0

|||Nm(u(s))−N(u(s))||| ds→ 0 as m→∞.

Hence, finally, as m→∞,

|||um − u|||∞ → 0 whenever |||fm − f ||| → 0.

Proof of Proposition 5.1. The idea behind this proof is similar to that of [5,
Thm. 7.3]. We know that the solution um(t) of the truncated problem converges
strongly in X, uniformly with respect to t ∈ [0, T ], to the solution u(t) of the full
equation whenever the truncated data fm ∈

⋃
n Ln converges strongly to f . Therefore,

repeating the argument used in the proof of [5, Thm. 7.3], we obtain the existence
of a subsequence {mk} such that whenever fmk

→ f strongly in X as mk → ∞,
umk

(x, t) → u(x, t) for all t ∈ [0, T ] and a.e. x ∈ (0,∞), and also for a.e. (x, t) ∈
(0,∞)× (0,∞).

By Corollary 6.6, umk
(x, t) satisfies (33) and hence satisfies the integral equation

obtained by integrating both sides of (33) over s ∈ [0, t]. As before, we take limits as
k → ∞ on both sides of this integrated version of (33) to obtain the corresponding
integral equation satisfied by u(x, t).

We choose fm = Pmf so that fmk
(x)→ f(x) for a.e. x > 0. Applying the above

procedure we find that

u(x, t)=f(x)+ lim
mk→∞

{∫ t

0

∫ ∞
x

γ(y, x)umk
(y, σ)dydσ−

∫ t

0

a(x)umk
(x, σ)dσ

+
1

2

∫ t

0

∫ x

0

K(x− y, y)umk
(x− y, σ)umk

(y, σ)dydσ(39)

−
∫ t

0

umk
(x, σ)

∫ mk−x

0

K(x, y)umk
(y, σ)dydσ

}
.

(i) Since umk
(t) → u(t) uniformly in t,

∫ t
0
umk

(σ) dσ →
∫ t

0
u(σ) dσ in X. There-

fore, there exists a subsequence of {mk} which we also denote by {mk}, such that[∫ t

0

umk
(σ) dσ

]
(x)→

[∫ t

0

u(σ) dσ

]
(x) for a.e. x > 0.
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We deduce that
∫ t

0
umk

(x, σ) dσ →
∫ t

0
u(x, σ) dσ since X is a Banach space of type L,

and so for a.e. x ∈ (0,∞),
∫ t

0
a(x)umk

(x, σ) dσ →
∫ t

0
a(x)u(x, σ) dσ as mk →∞.

(ii) We can show that, for each fixed σ ∈ [0, t], gmk
(σ) → g(σ) strongly in X,

where

[gmk
(σ)](x) =

∫ x

0

K(x− y, y)umk
(x− y, σ)umk

(y, σ)dy,

and likewise for [g(σ)](x), with umk
replaced by u. For each mk > 0, |||gmk

(σ)||| ≤
2CKb

2. Thus, by the Lebesgue dominated convergence theorem for Bochner integrable
functions [3, Thm. 3.7.9, p. 83],

∫ t
0
gmk

(σ) dσ →
∫ t

0
g(σ) dσ in X. Again, there exists

a subsequence of {mk} such that∫ t

0

[gmk
(σ)](x) dσ →

∫ t

0

[g(σ)](x) dσ.

Thus∫ t

0

∫ x

0

K(x−y, y)umk
(x−y, σ)umk

(y, σ) dy dσ→
∫ t

0

∫ x

0

K(x−y, y)u(x−y, σ)u(y, σ) dy dσ.

(iii) In a similar manner to part (ii), we can show that∫ t

0

umk
(x, σ)

∫ mk−x

0

K(x, y)umk
(y, σ) dy dσ →

∫ t

0

u(x, σ)

∫ ∞
0

K(x, y)u(y, σ) dy dσ.

(iv) Substituting parts (i)–(iii) into (39), we know that

lim
mk→∞

∫ t

0

∫ ∞
x

γ(y, x)umk
(y, σ) dy dσ

exists in R. We can show that

lim
mk→∞

∫ ∞
x

γ(y, x)umk
(y, σ) dy =

∫ ∞
x

γ(y, x)u(y, σ) dy,

and that ∣∣∣∣∫ ∞
x

γ(y, x)umk
(y, σ)dy

∣∣∣∣ ≤ 2
3CF b.

Hence, by the Lebesgue dominated convergence theorem,∫ t

0

∫ ∞
x

γ(y, x)umk
(y, σ)dydσ →

∫ t

0

∫ ∞
x

γ(y, x)u(y, σ)dydσ

as mk →∞.
Substituting (i)–(iv) into (39), we complete the proof of Proposition 5.1.
We conclude by commenting on the difficulty of proving the nonnegativity of

the solution of the truncated system. If we attempt to follow the steps carried out
in section 4, then we must first modify the definitions given in Notation 4.1. In
particular, Notation 4.1(iii) is replaced by

ξ: (0,m)× [0, T ]→ R
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defined by ξ(x, t) := −CK
∫m−x

0
[ũm(t)](y) dy.

The problem we now face is that the function ξ depends on x as well as t. This
means that (

S(t− σ)[ξ( . , σ)ũm(σ)]
)
( . ) 6= ξ( . , σ)

(
S(t− σ)[ũm(σ)]

)
( . ),

and so we cannot perform the step leading to (25). Had we been able to carry
out this interchange, the result would have followed immediately from the results of
Lemmas 4.2–4.8 and Theorem 4.9, after appropriate changes had also been made to
the definitions of h, g, β, and α. It should, however, be noted that in their analysis
of the truncated full equation for constant kernels, Aizenman and Bak [1] state that
the solution to the truncated full equation can be shown to be nonnegative by the
same argument as that used for the nontruncated equation; unfortunately, no details
are supplied.
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Abstract. In this paper, we consider the inverse backscattering problem for the acoustic equa-
tion. The problem is to determine the sound speed of a medium by measuring the response to sound
waves in the backscattering direction, i.e., by measuring the echoes. We prove that one can uniquely
identify the sound speed from this information if it is a priori close to the constant sound speed.

Key words. backscattering, inverse problems, acoustic equation

AMS subject classifications. 35R30, 25P25

PII. S0036141096301853

1. Introduction and statement of the results. Consider the acoustic wave
equation

(∂2
t − c2(x)∆)u = 0, (t, x) ∈ R×R3,(1.1)

which describes the propagation of sound waves in an inhomogeneous medium with
sound speed c(x). We assume throughout the paper that 0 < c(x), x ∈ R3, and that
for some ρ > 0 we have

c(x) = 1 for |x| ≥ ρ.(1.2)

The scattering kernel measures, roughly speaking, the effect of the inhomogeneity on
an incident plane wave of the form δ(t − x · θ) with θ ∈ S2. More precisely, assume
that c ∈ C2(R3) and let u(t, x, θ) be the solution of the Cauchy problem{

(∂2
t − c2(x)∆)u = 0, (t, x) ∈ R×R3,

u|t�0 = δ(t− x · θ).(1.3)

We have that

u = ∂3
tw,

where w(t, x, θ) solves{
(∂2
t − c2(x)∆)w = 0, (t, x) ∈ R×R3,

w|t�0 = h2(t− x · θ),

with h2(s) = s2/2 for s ≥ 0, and h2(s) = 0 otherwise. We write

w = h2(t− x · θ) + wsc.
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In the Lax–Phillips theory of scattering [L-P] (see also [C-S], [P]) the asymptotic wave
profile w#

sc of wsc is defined by

w#
sc(s, ω, θ) = lim

t→∞
(t+ s)∂twsc(t, (t+ s)ω, θ),

where the limit exists in L2(Rs × S2
ω) for any θ ∈ S2. Then the scattering kernel is

given by

S(s, ω, θ) = − 1

2π
∂3
sw

#
sc(s, ω, θ).

We note that the scattering kernel S is closely connected with the Schwartz kernel of
the scattering operator S. In fact, S(s′ − s, ω′, ω) is the Schwartz kernel of R(S −
I)R−1, R being the Lax–Phillips translation representation [L-P] (see section 2).

The inverse backscattering problem consists in the determination of c(x) from
S(s,−θ, θ), that is, roughly speaking, whether we can determine the sound speed by
measuring the echoes produced by an incident plane wave in the direction θ. In this
paper we show that measuring the echoes is enough to recover the sound speed if it
is a priori close to a constant.

Theorem 1.1. Let Sj be the scattering kernel associated with the sound speed cj,
j = 1, 2, satisfying (1.2). Assume further that cj ∈ W 10,∞(R3). There exists ε > 0
such that if

S1(s,−θ, θ) = S2(s,−θ, θ) for all s ∈ R, θ ∈ S2,

and if

‖cj − 1‖W 10,∞(R3) < ε, j = 1, 2,

then we have c1 = c2.
Guillemin proved in [G] that for the case considered here (and in more general

situations) S is a Fourier integral operator, and he computed its symbol and canonical
relation. In particular, S(s,−θ, θ) makes sense and is a smooth function of θ with
distributional values in the s-variable.

In the stationary approach to scattering, one considers the formal Fourier trans-
form of (1.1): (

−∆ + λ2(1− c−2(x))− λ2
)
v(x, λ) = 0.(1.4)

Notice that one can consider (1.4) as a Schrödinger equation with potential

q(x) = λ2(1− c−2(x)).

However, this is not very useful for the study of the inverse backscattering problem,
since we must consider high frequencies as well. The inverse scattering problem at
a fixed energy has been solved in dimension n ≥ 3 by Novikov [N]. This problem is
in fact closely related to the inverse problem of determining a potential q from its
associated Dirichlet to Neumann map. The latter problem was solved in [S-U]. For
an account of this relationship, see, for instance, [U].

Given any θ ∈ S2, there are solutions of (1.4) of the form

v(x, θ, λ) = eiλx·θ +
eiλ|x|

|x| a(λ, ω, θ) + o(|x|−1), as |x| → ∞,(1.5)
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where ω = x/|x|. The function a is called the scattering amplitude. The relation
between a and S is very simple:

iλ

2π
a(λ, ω, θ) =

∫
e−isλS(s, ω, θ) ds.

Theorem 1.1 therefore has Theorem 1.2 as an immediate corollary.
Theorem 1.2. Let cj, j = 1, 2, be as in Theorem 1.1. Let aj denote the scattering

amplitude associated with cj, j = 1, 2. There exists ε > 0 such that if

a1(λ,−θ, θ) = a2(λ,−θ, θ)

and if

‖cj − 1‖W 10,∞(R3) < ε, j = 1, 2,

then c1 = c2.
The high-frequency asymptotics of the scattering amplitude have been considered

in [G] and [V]. We do not know of any result for the inverse backscattering problem
for the acoustic equation. The inverse backscattering problem for the Schrödinger
equation has been studied in the papers [E-R], [B-L-M], [G-U], [M], [St II].

The structure of the paper is as follows. In section 2 we consider some preliminar-
ies and prove Proposition 2.1, which gives a relation between S1 − S2 and c−2

1 − c−2
2 .

In section 3 we construct the singular solution of (1.3). In section 4 we prove The-
orem 1.1 by combining the results of section 3 and inverting a generalized Radon
transform.

2. Preliminaries. In this section we introduce the scattering kernel S(s, ω, θ),
and in Proposition 2.1, we prove a formula for the difference S1−S2, where Sj , j = 1, 2,
are related to two sound speeds cj ∈ C2 satisfying (1.2). A formula of a similar type
related to a potential perturbation of the wave equation was first obtained in [St I].

The natural energy space for equation (1.1) is the completion H of C∞0 (R3) ×
C∞0 (R3) with respect to the energy norm

‖f‖2H =
1

2

∫ (
|∇f1|2 + c−2(x)|f2|2

)
dx, f = [f1, f2].

Throughout this paper we will denote two-dimensional vector functions t(f1, f2) by
[f1, f2]. Then H is a Hilbert space and equation (1.1) is equivalent to

∂tu = −iAu, with u = [u1, u2], A = i

(
0 I
c2∆ 0

)
;(2.1)

i.e., if u solves (2.1), then u2 = ∂tu1, (∂2
t − c2∆)u1 = 0. Here I stands for the identity

map. It is easy to see that A extends to a self-adjoint operator in H; therefore,
the solution to (2.1) is given by u = e−itAf =: U(t)f , where f = u|t=0. By Stone’s
theorem U(t) forms a strongly continuous group of unitary operators inH. Setting c =
1, we get the unperturbed group U0(t) inH0 related to the unperturbed wave equation
(∂2
t −∆)u = 0. The scattering operator S is then defined by S = W−1

− W+, where the
wave operators W± are defined as the strong limits W± = s-limt→±U(t)U0(−t). It is
well known that the wave operators exist as bounded operators and moreover, S is
also well defined as a bounded operator in H0 [L-P], [R-S].
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As in the Introduction, we consider the scattering solution u(t, x, θ) as the solution
to the following Cauchy problem:{

(∂2
t − c2∆)u = 0, in Rt ×R3

x,
u|t�0 = δ(t− x · θ).(2.2)

Here θ ∈ S2 is a parameter giving the direction of the incident plane wave in (2.2). The
initial condition above can be replaced by u|t=−ρ = δ(−ρ−x·θ), ut|t=−ρ = δ′(−ρ−x·θ).
The standard way of constructing a solution of (2.2) is the following. Set hj(t) = tj/j!
for t ≥ 0, and hj(t) = 0 otherwise. Then h′j = hj−1, j ≥ 1, and h0 is the Heaviside
function. If we replace the Dirac delta function δ in (2.2) by h2, we get initial data
[h2(−ρ−x · θ), h1(−ρ−x · θ)] for t = −ρ, that belong locally to H and even to D(A).
As in the Introduction, consider the problem{

(∂2
t − c2∆)w = 0 in Rt ×R3

x,
w|t�0 = h2(t− x · θ).(2.3)

Then w = h2(t − x · θ) + wsc, where (∂2
t − c2∆)wsc = −(1 − c2)h0(t − x · θ) and

wsc|t�0 = 0. Therefore,

[wsc, ∂twsc] = −
∫ t

−∞
U(t− s)(1− c2)[0, h0(s− x · θ)] ds.(2.4)

Here 1−c2 has compact support; thus (1−c2)[0, h0(s−x·θ)] ∈ H. Having constructed
a solution to (2.3) we can now solve (2.2) by setting

u(t, x, θ) = ∂3
tw(t, x, θ).(2.5)

Following Lax and Phillips [L-P] (see also [C-S]), as in the Introduction, we define the
asymptotic wave profile w#

sc of wsc by

w#
sc(s, ω, θ) = lim

t→∞
(t+ s)∂twsc(t, (t+ s)ω, θ).(2.6)

The limit exists in L2(Rs × S2
ω) for any θ [L-P], [C-S]. Then we define the scattering

kernel S by

S(s, ω, θ) = − 1

2π
∂3
sw

#
sc(s, ω, θ).(2.7)

In some sense S satisfies the asymptotics

∂tu(t, x, θ) = δ′(t− x · θ)− 2π

|x|S
(
|x| − t, x|x| , θ

)
+ o

(
1

|x|

)
, as t, |x| → ∞.

The formula above is a time-dependent analogue of the definition (1.5) of the scat-
tering amplitude via the asymptotics of the solution v of the Lipmann–Schwinger
equation for large x.

It turns out that S is closely related to the distribution kernel of the scattering
operator S. Denote by (Rf)(s, ω) =

∫
f(x)δ(s − x · ω)dx the Radon transform of f

and consider the operator R (the Lax and Phillips translation representation) defined
by R[f1, f2] = 1

4π (−∂2
sRf1 +∂sRf2). Then R is a unitary map R : H0 → L2(R×S2).
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A well-known fact from the Lax–Phillips theory is that S(s′−s, w′, w) is the Schwartz
kernel of R(S − I)R−1 (see [L-P], [C-S], [P]); i.e., in a distribution sense, we have(

R(S − I)R−1k
)

(s′, ω′) =

∫
R×S2

S(s′ − s, ω′, ω)k(s, ω) ds dω.(2.8)

Next we will derive a formula for S1 − S2, where Sj is related to cj , j = 1, 2.
Let us first notice that (2π)−1[u(±t± s, x,±θ), ∂tu(±t± s, x,±θ)] is the distribution
kernel of U(t)W±R−1; i.e., for any k ∈ C∞0 (R× S2) in a distribution sense we have

U(t)W±R−1k =
1

2π

∫
R×S2

[
u(±t± s, x,±θ), ∂tu(±t± s, x,±θ)

]
k(s, θ) ds dθ.(2.9)

Indeed, denote f = R−1k and consider W+. Then U(t)W+R−1k = U(t+T )U0(−T )f
for some fixed T > 0 depending on supp k. Denote [v, ∂tv] = U(t + T )U0(−T )f and
denote also the right-hand side of (2.9) by [ṽ, ∂tṽ]. Both v and ṽ solve (1.1). Next,
for t < −T , we have [v, ∂tv] = U0(t)f . On the other hand, for t� 0 we get for ṽ

[ṽ, ∂tṽ] =
1

2π

∫
R×S2

[
δ(t+ s− x · θ), δ′(t+ s− x · θ)

]
k(s, θ) ds dθ = U0(t)f

by the inversion formula for R (see [L-P]). Therefore, v and ṽ have the same initial
data and must coincide. This proves (2.9) for W+. The proof for W− is similar.

Proposition 2.1. Let Sj(s, ω, θ) be the scattering kernel related to cj(x) ∈ C2,
j = 1, 2. Then

(S1 − S2)(s, ω, θ) =
1

8π2
∂3
s

∫ ∫
(c−2

1 − c−2
2 )u1(t, x, θ)u2(−s− t, x,−ω) dt dx,

where uj are the scattering solutions related to cj, j = 1, 2, and the integral is to be
considered in a distribution sense.

Proof. Denote by Uj(t), j = 1, 2, the propagators related to cj . Consider the
function F (t) = U2(T + t)U1(−t+T )f , f ∈ D(A1) = D(A2). Then F ′(t) = −iU2(T +

t)(A2 −A1)U1(−t+ T ), and from F (T )− F (−T ) =
∫ T
−T F

′(t)dt, we get

(U2(2T )− U1(2T ))f =

∫ T

−T
U2(T + t)QU1(−t+ T )f dt,(2.10)

where

Q =

(
0 0

(c22 − c21)∆ 0

)
.

Next, choose two functions k, l ∈ C∞0 (R × S2) and set f = R−1k, g = R−1l. Then,
by using standard arguments from the Lax–Phillips theory, we get that

(Sjf, g)H0
=
(
U0(−T )Uj(2T )U0(−T )f, g

)
H0

with some large T > 0 depending on supp k, supp l. Therefore, by (2.10),

((S2 − S1)f, g)H0
=

∫ T

−T

(
U0(−T )U2(T + t)QU1(−t+ T )U0(−T )f, g

)
H0

dt

=

∫ T

−T

(
QU1(−t+ T )U0(−T )f, U2(−t− T )U0(T )g

)
H2

dt.(2.11)
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Here Hj , j = 0, 1, 2, are related to c0 = 1, c1, and c2, respectively. Next, note

that U1(−t + T )U0(−T )f = U1(−t)W (1)
+ f = U1(−t)W (1)

+ R−1k. Similarly, U2(−t −
T )U0(T )g = U2(−t)W (2)

− R−1l. Using (2.9), we get from (2.11)

((S2 − S1)f, g)H0

=
1

8π2

∫ T

−T

∫
. . .

∫
(c22 − c21)(∆u1)(−t+ s1, x, θ1)∂tu2(t− s2, x,−θ2)

×k(s1, θ1)l(s2, θ2)c−2
2 ds1dθ1ds2dθ2dx dt

=
1

8π2

∫ T

−T

∫
. . .

∫
(c−2

1 − c−2
2 )∂2

s1u1(−t+ s1, x, θ1)∂tu2(t− s2, x,−θ2)

×k(s1, θ1)l(s2, θ2) ds1dθ1ds2dθ2dx dt.(2.12)

Clearly, the integrand above vanishes for |t| > T , so we may integrate in t over the
whole real line. According to (2.8),

((S2 − S1)f, g)H0

=

∫
[R×S2]2

(S2 − S1)(s2 − s1, θ2, θ1)k(s1, θ1)l(s2, θ2) ds1dθ1ds2dθ2.(2.13)

Comparing (2.12) and (2.13), we conclude that

(S1 − S2)(s2−s1, θ2, θ1)

=
1

8π2

∫ ∫
(c−2

1 − c−2
2 )∂2

s1u1(−t+ s1, x, θ1)∂tu2(t− s2, x,−θ2) dx dt.

The right-hand side above as a function of s1, s2 depends merely on s2 − s1, and
setting s = s2 − s1, t̃ = −t+ s1, we complete the proof of the proposition.

3. Singular decomposition of the scattering solution. In this section we
prove that the scattering solution u(t, x, θ) admits a singular decomposition of the
type u(t, x, θ) = α(x, θ)δ(t − φ(x, θ)) + β(x, θ)h0(t − φ(x, θ)) + r(t, x, θ), where φ is
a suitable phase function and the remainder r(t, ·, θ) belongs to H1 ∩ L∞, ∂tr ∈ L2.
Such decompositions are in principle known for that kind of problem (see, e.g., [V] for
a high-frequency asymptotics of the solution v of (1.4) given by (1.5)). Our goal here
is to prove estimates on the remainder which are uniform in c(x) under the assumption
of a finite smoothness of c. As in Theorem 1.1, we assume that c is close to c = 1
in the Wm,∞ topology for some m. It turns out that in our proof we need estimates
on the remainder for t belonging to a finite interval only. This fact considerably
simplifies our analysis. On the other hand, in principle one could obtain estimates on
the remainder for large t which are also uniform in c. This is related to the problem of
finding estimates of the remainder in the high-frequency asymptotics of the solution
v of (1.4) defined in (1.5) (see [V]) which are uniform in c or finding estimates on the
resolvent of c2∆ + λ2. The latter problems are more delicate ones. In fact, one of the
main reasons for working with time-dependent methods is the advantage we get by
dealing with bounded t’s only.

We start with analysis of the phase function φ related to (1.1). We define φ(x, θ)
as the solution to the eikonal equation{

(∇φ)2 = c−2(x),
φ|x·θ�0 = x · θ.(3.1)
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Throughout this section we assume that c satisfies (1.2) and that

‖c− 1‖Wm+1,∞ < ε(3.2)

with some ε > 0 and m ≥ 2. We need to solve (3.1) in Bρ. Fix θ ∈ S2. We may
assume that θ = t(1, 0, 0). Then (3.1) can be rewritten as (∇φ)2 = c−2(x),

φ|x1=−ρ = −ρ,
∂x1

φ|x1=−ρ = 1.
(3.3)

The Hamiltonian system associated with (3.3) is{
d
dsx = 2ξ, d

dsξ = ∇c−2,
x|s=0 = t(−ρ, η), ξ|s=0 = t(1, 0, 0), η ∈ R2.

(3.4)

Notice that the solution to (3.4) in the case c = 1 is x = t(2s − ρ, η), ξ = t(1, 0, 0).
On the other hand, for general c(x), the solution of (3.4) exists for any s (see [V]).

Lemma 3.1. Fix a > 0. Then there exists C > 0 such that for the solution
x = x(s, η), ξ = ξ(s, η) of (3.4) we have

‖x− t(2s− ρ, η)‖Wm,∞([0,a]×R2) + ‖ξ − t(1, 0, 0)‖Wm,∞([0,a]×R2) ≤ Cε.

The proof of the lemma is based on a comparison theorem for ODEs and will be
omitted here.

In particular, Lemma 3.1 implies that under the smallness assumption (3.2) the
Hamiltonian flow is nontrapping for small ε, more precisely, x(s, η) 6∈ Bρ = {x; |x| <
ρ} for s > a with some a > 0. Moreover, the mapping t(s, η) 7→ x(s, η) is a Wm,∞-
diffeomorphism on [0, a]×{η ∈ R2; |η| ≤ 2ρ}, and its range covers Bρ, provided that
ε is small enough. We will need, in fact, to work in a larger domain, so let us assume
that ε and a are such that t(s, η) 7→ x(s, η) maps [0, a] × {η ∈ R2; |η| ≤ 5ρ} into a
compact covering B4ρ. The phase function φ solving (3.3) is defined in B4ρ by (see
[V])

φ = −ρ+ 2

∫
c−2(x) ds,

where the integration is taken over the shortest characteristics x = x(s, η) joining
the plane x1 = −ρ and x. The change of coordinates x 7→ t(s, η) is ε-close to x =
t(2s − ρ, η) in Wm,∞, which easily implies that φ must be close to φ = x1. So far θ
was fixed. One can also examine easily the dependence of φ on θ ∈ S2. Thus we get
the following lemma.

Lemma 3.2. Assume that (3.2) holds with ε > 0 sufficiently small. Then there
exists C0 > 0 such that

‖φ(x, θ)− x · θ‖Wm,∞(B4ρ×S2) ≤ C0ε.

Now we are ready to prove the principal result of this section about the scattering
solution u(t, x, θ) introduced in (2.2). Denote

T = ρ+ C0ε,(3.5)
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where C0 is the constant in Lemma 3.2. Note that max{|φ(x, θ)|; x ∈ Bρ, θ ∈ S2} ≤
T .

Proposition 3.3. Assume that (3.2) holds with m ≥ 9 and ε > 0 sufficiently
small. Then there exists a constant C > 0, such that for |t| < 3T , and for any θ ∈ S2,
we have

u(t, x, θ) = α(x, θ)δ(t− φ(x, θ)) + β(x, θ)h0(t− φ(x, θ)) + r(t, x, θ),

where

‖α− 1‖Wm−2,∞(B4ρ×S2) ≤ Cε, |β(x, θ)| ≤ Cε,(3.6)

and

‖r(t, ·, θ)‖L∞ + ‖∂tr(t, ·, θ)‖L2 ≤ Cε.(3.7)

Proof. Let us look for u of the form

u(t, x, θ) = α(x, θ)δ(t−φ(x, θ))+β(x, θ)h0(t−φ(x, θ))+γ(x, θ)h1(t−φ(x, θ))+r̃(t, x, θ).

Then α = 1 + α̃, β, γ solve the transport equations

(2∇φ · ∇+ ∆φ)α̃ = −∆φ, α̃|x·θ=−ρ = 0,(3.8)

(2∇φ · ∇+ ∆φ)β = ∆α, β|x·θ=−ρ = 0,(3.9)

(2∇φ · ∇+ ∆φ)γ = ∆β, γ|x·θ=−ρ = 0,(3.10)

while r̃ solves

(c−2∂2
t −∆)r̃ = (∆γ)h1(t− φ), r̃|t�0 = 0.(3.11)

Note that we need to solve (3.8)–(3.10) in the compact x · θ ≥ −ρ, φ(x, θ) ≤ 3T ,
|η| < ρ (η = η(x) is determined by x = x(s, η)), and for ε sufficiently small this
compact is contained in B4ρ, where φ is well defined. The first equation (3.8) can be
solved in B4ρ and (3.6) follows directly from Lemma 3.2. The estimate (3.6) for α
follows easily from Lemmas 3.1 and 3.2. Next, since ∆α = O(ε), we get (if m ≥ 4)
(3.6) for β as well. Similarly, if m ≥ 6, then |γ| = O(ε) as well. Finally, for r̃ we get
by (3.11)

[r̃, ∂tr̃] =

∫ t

−ρ
U(t− s)[0, (∆γ)h1(s− φ)] ds.

We get as above that (∆γ)h1(s−φ) is supported in B4ρ for −ρ ≤ s ≤ t, |t| < 3T , and
moreover ‖[0, (∆γ)h1(s − φ)]‖H ≤ Cε (if m ≥ 8). Note that the norm in H depends
on c(x) but is uniformly bounded when c satisfies (3.2) with ε < 1. So we get

‖[r̃, ∂tr̃]‖H ≤ C(t+ ρ)ε, −ρ ≤ t ≤ T(3.12)
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(and r̃ = 0 for t < −ρ). Next, [r̃, ∂tr̃] ∈ D(A) and

A[r̃, ∂tr̃] = [∂tr̃, c
2∆r̃] =

∫ t

−ρ
U(t− s)A[0, (∆γ)h1(s− φ)] ds

=

∫ t

−ρ
U(t− s)[(∆γ)h1(s− φ), 0] ds.

Since ‖[(∆γ)h1(s− φ), 0]‖H = O(ε) (here we need m = 9), we get as above that∥∥[∂tr̃, c
2∆r̃]

∥∥
H ≤ C(t+ ρ)ε, −ρ ≤ t ≤ T.(3.13)

By (3.12) and (3.13),

‖∇r̃‖+ ‖∆r̃‖+ ‖∂tr̃‖+ ‖∇∂tr̃‖ ≤ Cε,

where ‖ · ‖ = ‖ · ‖L2 . Moreover, r̃ is compactly supported (uniformly in ε < 1,
|t| < 3T ) because of the finite speed of propagation for (1.1). Therefore, by the
Poincaré inequality (see, e.g., [L-P]), we get ‖r̃‖ = O(ε) as well. Thus,

‖r̃‖H2 + ‖∂tr̃‖H1 ≤ Cε.

By the Sobolev embedding theorem this yields ‖r̃‖L∞ + ‖∂tr̃‖L2 = O(ε), and combin-
ing this with (3.6), we get (3.7) for r = γh1(t− φ) + r̃.

4. Proof of Theorem 1.1. Assume that the hypotheses of Theorem 1.1 are
fulfilled and denote by uj the scattering solutions related to cj , j = 1, 2. Then, by
Proposition 2.1,∫ ∫

q(x)u1(t, x, θ)u2(s− t, x, θ) dx dt = 0, q := c−2
1 − c−2

2(4.1)

for any s ∈ R, θ ∈ S2. Let us now apply Proposition 3.3 and substitute uj , j = 1, 2,
in (4.1) by its singular expansion. We get

−
∫
qα1α2δ(s− φ1 − φ2) dx

=

∫
q
[
α2β1h0(s− φ1 − φ2) + α1β2h0(s− φ1 − φ2)

+ α2r1(s− φ2) + α1r2(s− φ1)
]
dx

+

∫ ∫
q
[
β1β2h0(t− φ1)h0(s− t− φ2) + r1(t)r2(s− t)

+ β1h0(t− φ1)r2(s− t) + β2h0(s− t− φ2)r1(t)
]
dx dt.(4.2)

Here r1(t) = r1(t, x, θ), φ1 = φ1(x, θ), etc. Denote φ(x, θ) = φ1(x, θ) + φ2(x, θ),
a(x, θ) = α1(x, θ) +α2(x, θ). Since by Lemma 3.2, φ(x, θ) is close to 2x · θ and a(x, θ)
is close to 1, the left-hand side of (4.2) reminds us of the Radon transform Rq of q.
Let us recall that we have the following Parseval’s equality for the Radon transform
‖∂sRf‖L2(R×S2) = 4π‖f‖L2 . Bearing this in mind, let us differentiate (4.2) with
respect to s.

−∂s
∫
qaδ(s− φ) dx = I1 + I2 + I3 + I4,(4.3)
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where

I1 =

∫
q(α2β1 + α1β2)δ(s− φ) dx,

I2 =

∫
q[α2∂sr1(s− φ2) + α1∂sr2(s− φ1)] dx,

I3 =

∫
q[β1β2h0(s− φ) + β1r2(s− φ1) + β2r1(s− φ2)] dx,

I4 =

∫ ∫
qr1(t)∂sr2(s− t) dx dt.

The left-hand side of (4.3) vanishes for |s| > 2T (see Lemma 3.2 and (3.5)). Therefore,
so does the right-hand side above, but this is not necessarily true for each term Ij . Let
us estimate the norm in L2([−2T, 2T ] × S2) of each term in (4.3). For the left-hand
side in (4.3) we have∥∥∥∥∂s ∫ q(x)a(x, θ)δ(s− φ(x, θ)) dx

∥∥∥∥
L2([−2T,2T ]×S2)

= (2π)−1/2

∥∥∥∥k ∫ eikφ(x,θ)a(x, θ)q(x) dx

∥∥∥∥
L2(Rk×S2

θ
)

.(4.4)

Let us extend φ(x, ξ) and a(x, θ) for ξ 6∈ S2 by φ(x, ξ) = |ξ|φ(x, ξ/|ξ|) and a(x, ξ) =
a(x, ξ/|ξ|), respectively. Then Lemma 3.2 implies∣∣∣∂αx ∂βξ (φ(x, ξ)− 2x · ξ)

∣∣∣ ≤ C1ε|ξ|1−|β| for |α|+ |β| ≤ m, x ∈ B4ρ, ξ 6= 0.(4.5)

Similarly, (3.6) implies∣∣∣∂αx ∂βξ (a(x, ξ)− 1)
∣∣∣ ≤ C1ε|ξ|−|β| for |α|+ |β| ≤ m− 2, x ∈ B4ρ, ξ 6= 0.(4.6)

Since q is real-valued, the square integral of the expression in the right-hand side of
(4.4) over Rk × S2 equals twice the square integral over R+

k × S2
θ . Setting ξ = kθ,

k > 0, θ ∈ S2, we obtain from (4.4)∥∥∥∥∂s ∫ q(x)a(x, θ)δ(s− φ(x, θ)) dx

∥∥∥∥
L2([−2T,2T ]×S2)

=
√

2(2π)−1/2‖Pq‖L2(R3
ξ
),(4.7)

where

(Pq)(ξ) =

∫
eiφ(x,ξ)a(x, ξ)q(x) dx.(4.8)

Our plan is the following. First we will show that C1‖q‖ ≤ ‖Pq‖ ≤ C2‖q‖ with
some C1 > 0, C2 > 0 independent of ε. Next we are going to estimate the norms in
L2([−2T, 2T ]×S2) of each term Ij = Ij(s, θ) in (4.3) and will show that Ij = O(ε‖q‖),
j = 1, 2, 3, 4. Then (4.3), (4.7) would imply that C1‖q‖ ≤ ‖Pq‖ ≤ Cε‖q‖; hence q = 0.

Proposition 4.1. If cj, j = 1, 2, satisfy (3.2) with m = 9 and if ε > 0 is
sufficiently small, then P : L2(Bρ)→ L2(R3

ξ) is a bounded operator. Moreover, there
exist two constants C1 > 0, C2 > 0 independent of ε (small enough), c1, c2, such that

C1‖f‖ ≤ ‖Pf‖ ≤ C2‖f‖ for any f ∈ L2(Bρ).
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Proof. We will show that the estimate above follows from the fact that φ = φ1+φ2

is close to 2x ·θ (see Lemma 3.2) and a is close to 1 (see 4.6). This does not necessarily
imply that P (see (4.8)) is close to the Fourier transform, but one can expect that
P ∗P is close to cI with some constant c. We have

(P ∗Pf) (x) =

∫ ∫
e−i(φ(x,ξ)−φ(y,ξ))a(x, ξ)a(y, ξ)f(y) dy dξ.(4.9)

The phase function above admits the representation

φ(x, ξ)− φ(y, ξ) = 2(x− y) · η(x, y, ξ),

where

η(x, y, ξ) =
1

2

∫ 1

0

(∇xφ)(y + t(x− y), ξ) dt.(4.10)

To prove (4.10), it is enough to apply the identity g(1) − g(0) =
∫ 1

0
g′(t)dt to the

function g(t) = φ(y + t(x− y)). By Lemma 3.2, η(x, y, ξ) belongs to Wm−1,∞ and is
homogeneous with respect to ξ of order one. Moreover,∣∣∣∂αx ∂βy ∂γξ (η(x, y, ξ)− ξ)

∣∣∣ ≤ Cε|ξ|1−|γ|
for |α| + |β| + |γ| ≤ m − 1, x ∈ B4ρ, y ∈ B4ρ, ξ 6= 0. The equation η = η(x, y, ξ)
can be solved for ξ provided that ε is sufficiently small. The Jacobian J := |Dη/Dξ|
satisfies the estimates ∣∣∣∂αx ∂βy ∂γξ (J(x, y, ξ)− 1)

∣∣∣ ≤ Cε|ξ|−|γ|(4.11)

for |α| + |β| + |γ| ≤ m − 2, x ∈ B4ρ, y ∈ B4ρ, ξ 6= 0. Let us perform the change of
variables ξ → η in (4.9):

P ∗Pf =

∫ ∫
e−2i(x−y)·ηb(x, y, η)f(y)J̃(x, y, η) dy dη,(4.12)

where J̃(x, y, η) = J−1(x, y, ξ)|ξ=ξ(x,y,η), b(x, y, η) = a(x, ξ)a(y, ξ)|ξ=ξ(x,y,η). The
principal part of the integral above is∫ ∫

e−2i(x−y)·ηf(y) dy dη = π3f,

so from (4.12) we get

(
P ∗P − π3I

)
f =

∫ ∫
e−2i(x−y)·ηf(y)

(
(bJ̃)(x, y, η)− 1

)
dy dη.(4.13)

We are going to apply Theorem A.1 (see the Appendix below) to (4.13). By (4.11),
(3.6),

(4.14)∣∣∣∂αx ∂βy ((bJ̃)(x, y, η)− 1
)∣∣∣ ≤ Cε for |α|+ |β| ≤ m− 2, x ∈ B4ρ, y ∈ B4ρ, η 6= 0.
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Let us extend the operator P ∗P −π3I, defined a priori on L2(Bρ) to an operator Q in

L2(R3) by (4.13) with J̃−1 replaced by χ(x)(J̃−1)χ(y), where χ ∈ C∞0 , suppχ ⊂ B2ρ,
χ = 1 on Bρ. Then, if m − 2 = 7, Theorem A.1 yields ‖Q‖L(L2(R3)) ≤ Cε, which
implies

‖P ∗P − π3I‖L(L2(Bρ)) ≤ Cε.

Thus, for any f ∈ L2(Bρ), we have∣∣‖Pf‖2 − π3‖f‖2
∣∣ =

∣∣(P ∗Pf − π3f, f
)∣∣ ≤ Cε‖f‖2,

and this completes the proof of Proposition 4.1 for ε small enough.
We proceed now with estimating the norms of Ij , j = 1, 2, 3, 4, in L2([−2T, 2T ]×

S2). By (3.6) and (4.7) we get for I1

‖I1‖L2([−2T,2T ]×S2) ≤ Cε
∥∥∥∥∫ |q|δ(s− φ) dx

∥∥∥∥
L2(R×S2)

≤ C ′ε
∥∥∥∥∂s ∫ |q|δ(s− φ) dx

∥∥∥∥
L2(R×S2)

≤ C ′′‖P0|q|‖ ≤ C ′′′‖q‖.(4.15)

Here P0 is the operator (4.8) with a = 1. In order to prove (4.15), we have approxi-
mated |q| with smooth functions and have used the fact that for any f ∈ C1(R) with
f = 0 outside some finite interval [−a, a], we have ‖f‖L2 ≤ C(a)‖f ′‖L2 .

To estimate I2, I3, and I4, observe that

I2 + I3 + I4 =

∫
K(s, θ, x)q(x) dx(4.16)

with

K = α2∂sr1(s− φ2) + α1∂sr2(s− φ1) + β1β2h0(s− φ)

+ β1r2(s− φ1) + β2r1(s− φ2) +

∫ ρ+2T

−ρ
r1(t)∂sr2(s− t) dt.(4.17)

When |s| < 2T and x ∈ Bρ, we have |s − φ2| ≤ 3T , |s − φ1| ≤ 3T . Next, in the
integral term in (4.17), we have |T | < 3T , −ρ ≤ s − t ≤ ρ + 2T < 3T . Therefore, in
(4.17), the argument of rj(t), j = 1, 2, always belongs to the interval |t| ≤ 3T ; thus
we can apply Proposition 3.3 to get∫

Bρ

∫
S2

∫ 2T

−2T

|K(s, θ, x)|2ds dθ dx ≤ (Cε)2.

Therefore, by (4.16), we have

‖I2 + I3 + I4‖L2([−2T,2T ]×S2) ≤ Cε‖q‖.(4.18)

Combining (4.3), (4.7), (4.15), and (4.18), we get

‖Pq‖ ≤ Cε‖q‖.(4.19)
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On the other hand, by Proposition 4.1, we conclude that

C1‖q‖ ≤ ‖Pq‖.(4.20)

For ε small enough (4.19) and (4.20) imply q = 0. The proof of Theorem 1.1 is
complete.

Appendix A. An L2 estimate. We prove here a theorem for the boundedness
of a(x, y,D) in L2(Rn) if a is smooth of finite order. Under the assumption that a =
a(x, ξ) is independent of y, Theorem 18.1.11′ in [H] says that if

∫
|∂αx a(x, ξ)|dx ≤ M

for all ξ ∈ Rn and for |α| ≤ n+1, then ‖a(x,D)‖L(L2) ≤ CM with C > 0 an absolute
constant. Following the proof of that theorem in [H], we obtain a generalization for
amplitudes a depending on y as well.

Theorem A.1. Let A be the operator

Af = (2π)−n
∫ ∫

ei(x−y)·ξa(x, y, ξ)f(y) dy dξ.

If ∫ ∣∣∂αx ∂βy a(x, y, ξ)
∣∣ dx dy ≤M for |α|+ |β| ≤ 2n+ 1, ξ ∈ Rn,

then ‖A‖L(L2) ≤ CM with C > 0 an absolute constant.
Proof. We have

Af = (2π)−2n

∫ ∫
eix·ξã(x, ξ − ζ, ξ)f̂(ζ) dζ dξ,

where ã(x, ζ, ξ) =
∫
e−iζ·ya(x, y, ξ)dy. Thus

Âf(η) :=

∫
e−iη·x(Af)(x) dx = (2π)−2n

∫ ∫ ∫
e−ix·(η−ξ)ã(x, ξ − ζ, ξ)f̂(ζ) dζ dξ dx

= (2π)−2n

∫ ∫
˜̃a(η − ξ, ξ − ζ, ξ)f̂(ζ) dζ dξ,

where ˜̃a(η, ζ, ξ) =
∫
e−iη·xã(x, ζ, ξ) =

∫
e−i(η·x+ζ·y)a(x, y, ξ)dxdy. Therefore, Âf =

Bf̂ , where B is an integral operator with kernel

b(η, ζ) = (2π)−2n

∫
˜̃a(η − ξ, ξ − ζ, ξ) dξ.

We claim that
∫
|b(η, ζ)|dη ≤ CM ,

∫
|b(η, ζ)|dζ ≤ CM . It is well known that this

implies that B is bounded with norm not exceeding CM .∫
|b(η, ζ)| dη ≤ (2π)−2n

∫ ∫
|˜̃a(η − ξ, ξ − ζ, ξ)| dξ dη.

The assumptions of the theorem imply |˜̃a(η, ζ, ξ)| ≤ CM(1 + |η|+ |ζ|)−2n−1. Hence∫
|b(η, ζ)| dη ≤ C ′M

∫ ∫
(1 + |η − ξ|+ |ξ − ζ|)−2n−1dη dξ

= C ′M

∫ ∫
(1 + |η|+ |ξ − ζ|)−2n−1dη dξ

= C ′M

∫ ∫
(1 + |η|+ |ξ|)−2n−1dη dξ

= C ′′M <∞.
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We treat
∫
|b(η, ζ)|dζ in the same way.
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Abstract. We study the existence and multiplicity of solutions for a two-point boundary value
problem at resonance in the first eigenvalue; the nonlinearity depends only on the first derivative
and has finite limits at ±∞.
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1. Introduction and main result. The two-point semilinear problem

u′′ + u+ g(u′) = p(t),
u(0) = u(π) = 0,

(1)

where g is a continuous function in R and p a continuous function in [0, π], has been
studied by Cañada and Drábek [3] and Kannan, Nagle, and Pothoven [4]. Related
problems involving other boundary conditions are included in [3] and have also been
the object of a paper by Mawhin [5].

It has been remarked (see [3], [2], and [4]) that conditions of the Landesman–Lazer
type are not appropriated to yield the existence of solutions to (1). Let us denote by
C̃[0, π] the subspace of C[0, π] consisting of functions ũ(t) such that

∫ π
0
ũ(t) sin t dt =

0. With respect to the direct sum C[0, π] = span{sin t} ⊕ C̃[0, π], every function
p ∈ C[0, π] has a decomposition

p(t) = p̄ sin t+ p̃(t), p̄ ∈ R, p̃ ∈ C̃[0, π].(2)

In [3] the authors have used a result of Amann, Ambrosetti, and Mancini [1] to
show that, given a bounded g, the solvability of (1) can be described in terms of the
decomposition of p as follows: for each p̃ there exists a nonempty, bounded interval
I = I(p̃) such that (1) has a solution if and only if (2) holds with p̄ ∈ I. They compute
the upper bound of I in a case where

g(−∞) := lim
u→−∞

g(u) = g(+∞) := lim
u→+∞

g(u).

On the other hand, in [4], a contraction argument is used to show that, if g(s) =
arctan s, (1) is solvable for p sufficiently small.

In this note, we consider a nonlinearity based on the model studied in [4], and we
give a new multiplicity result which in some sense completes the picture given in [3]

and [4]; in particular, we prove that there are indeed two solutions of (1) when p̄ ∈
o

I
and p̄ 6= 2

π (g(−∞) + g(+∞)). We now state precisely our main result.
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Theorem 1. Let g : R → R be locally Lipschitz continuous and such that the
limits g(−∞) and g(+∞) exist and are finite. Let p ∈ C[0, π] split according to (2).
Then there exist real numbers a = a(p̃, g) ≤ b = b(p̃, g) such that

l :=
2

π
(g(−∞) + g(+∞)) ∈ [a, b];(3)

and problem (1) has

(i) no solution if p̄ 6∈ [a, b];
(ii) at least one solution if p̄ ∈ (a, b) or p̄ ∈ {a, b} \ {l};

(iii) at least two solutions if p̄ ∈ (a, b) \ {l}.

2. Proof of the theorem. We shall use the following lemma.

Lemma 2. Let m ∈ L1(0, a) and v ∈W 2,1(0, a) satisfy the conditions

(a) v′′ +m(t)v′ + v < 0 in (0, a),
(b) v(0) = v′(0) = 0.

Then there exists a1 ∈ (0, a) such that v(a1) < 0.

Proof. Suppose that v ≥ 0 in (0, a). Let M(t) =
∫ t

0
m(s) ds. Then assumption

(a) can be written

((expM(t))v′)′ + (expM(t))v < 0 in (0, a),

and in particular (expM(t))v′(t) is strictly decreasing in [0, a]. From (b) we infer that
v < 0 in (0, a), a contradiction.

Remark. The lemma shows that in fact v takes negative values arbitrarily near
t = 0.

Proof of the theorem. First we note that without loss of generality we can suppose
l = 0; i.e., g(−∞) + g(+∞) = 0. (We shall henceforth add this to our hypotheses.)
In fact, letting

h(s) := g(s)− g(−∞) + g(+∞)

2
= g(s)− πl

4
and q(t) = p(t)− πl

4
,

we obtain an equivalent problem,

u′′ + u+ h(u′) = q(t),
u(0) = u(π) = 0.

We also have a(p̃, g)− l = a(q̃, h) and b(p̃, g)− l = b(q̃, h).

Proof of (i) and (ii). The existence of a and b satisfying (i) and (ii) is proved in [3],
except possibly for the fact that (1) is solvable when p̄ = b > 0 = l or p̄ = a < l = 0.
However, this follows immediately from Claim 1 in the proof of (iii) below, by a
standard approximation procedure.

Proof of (3). Before proceeding to the proof, we shall introduce some notations.
Let C1

0 [0, π] be the subspace of C1[0, π] consisting of those functions that vanish at
t = 0 or t = π and C̃1

0 [0, π] = C1
0 [0, π]∩C̃[0, π]. These are Banach spaces with the usual

C1 norm, ‖u‖ := max(‖u‖∞, ‖u′‖∞). Consider the projector Q : C[0, π] → C̃[0, π]
defined by

Qu(t) = ũ(t) = u(t)− 2

π

(∫ π

0

u(s) sin s ds

)
sin t.
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Denote by K the (linear, compact) inverse of the differential operator L : C̃1
0 [0, π]→

C̃[0, π], u 7→ u′′ + u, with domain DomL = C2[0, π] ∩ C̃1
0 [0, π]. The problem

ũ′′ + ũ = p̃−Qg(ū cos t+ ũ′),
ũ(0) = ũ(π) = 0

(4)

can be written

ũ = T̃ ũ := K(p̃−Qg(ū cos t+ ũ′)).

The operator T̃ : C̃1
0 [0, π] → C̃1

0 [0, π] is completely continuous and bounded, whence
Schauder’s theorem applies. This proves that there is a k > 0 so that for any given
ū ∈ R, the problem (4) has a solution ũ ∈ C̃1

0 [0, π] with ‖ũ‖ < k. It follows that (1)
has a solution u(t) = ū sin t+ ũ(t), for p̄ sin t = (I −Q)g(ū cos t+ ũ′). By Lebesgue’s
theorem, we have

lim
ū→∞

∫ π

0

g(ū cos s+ ũ′) sin s ds = 0.

Hence, choosing ū sufficiently large, we obtain numbers

p̄ :=
2

π

(∫ π

0

g(ū cos s+ ũ′(s)) sin s ds

)
arbitrarily small such that p̄ ∈ [a, b] and, going to the limit, we have l = 0 ∈
[a, b].

Proof of (iii). Setting u(t) = ū sin t+ ũ(t), with ū ∈ R and ũ ∈ C̃1
0 [0, π], it is easily

seen that (1) can be rewritten as the system

ũ−K[p̃−Q(g(ū cos t+ ũ′))] = 0,
π

2
p̄−

∫ π

0

g(ū cos s+ ũ′(s)) sin s ds = 0.
(5)

As a function of the pair (ū, ũ), the right-hand side of (5) is a compact perturbation
of the identity in R× C̃1

0 [0, π]; we denote it by Tp̄ to emphasize its dependence on p̄.
We divide this proof into several steps.
Claim 1. Given ε > 0, there exists R0 > 0 such that if u is a solution of (1) for

some p̄ with |p̄| ≥ ε, then ‖u‖ < R0.
Proof. Assume that there exists a sequence (p̄n)n with |p̄n| ≥ ε and corresponding

solutions un with ‖un‖ → ∞. Split un(t) = ūn sin t + ũn(t) according to (2). As in
the above argument, it follows from (5) that the sequence ‖ũn‖ is bounded. Hence
|ūn| → ∞. Also, we obtain from (5)∣∣∣∣∫ π

0

g(ūn cos s+ ũ′n(s)) sin s ds

∣∣∣∣ =
π

2
|p̄n| ≥

π

2
ε,

and, by Lebesgue’s theorem again, we reach the contradiction 0 ≥ π
2 ε.

Claim 2. Set BR = {(ū, ũ) | u = ū sin t + ũ ∈ C1
0 [0, π], ‖u‖ ≤ R}. Given p̄0 6= 0,

there exists R0 such that for every R > R0,

deg(Tp̄0 , BR, 0) = 0.(6)

Proof. Suppose p̄0 > 0. As shown in Claim 1, there exists R0 such that for all
solutions u of (5) with p̄ ≥ p̄0, we have ‖u‖ < R0. On the other hand, by (i), we
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can fix p̄1 > p̄0 such that (5) (with p̄ = p̄1) has no solution at all. The homotopy
and existence properties of Leray–Schauder degree allow us to conclude that for every
R > R0,

deg(Tp̄0 , BR, 0) = deg(Tp̄1 , BR, 0) = 0.

The same argument applies if p̄0 < 0.
Claim 3. If 0 < p̄ < b or 0 > p̄ > a, there exists a bounded open set Ω ⊂

R× C̃1
0 [0, π] such that

|deg(Tp̄,Ω, 0)| = 1.

Proof. Step 1: Construction of the set Ω. To fix ideas, suppose that 0 < p̄ < b.
Choose ρ ∈ (p̄, b). By the characterization of a and b, there exists a solution of the
problem

α′′ + α+ g(α′) = ρ sin t+ p̃(t) > p̄ sin t+ p̃(t), on (0, π),
α(0) = α(π) = 0.

(7)

Fix 0 < ε < π
4 p̄. Recall that there is k > 0 so that any solution of (5) is such that

‖ũ(t)‖ ≤ k. Let us then choose β̄0 large enough so that for any ũ with ‖ũ(t)‖ ≤ k,

β̄0 sin t > α(t) + ũ(t) in (0, π)

and

(I −Q)g(β̄0 cos t+ ũ′) =
2

π

(∫ π

0

g(β̄0 cos s+ ũ′(s)) sin s ds

)
sin t

<

(
p̄− 4ε

π

)
sin t.

Next, we choose a β̃0 solution of

ũ−K[p̃− ε̃−Q(g(β̄0 cos t+ ũ′))] = 0,

where ε̃ = Qε = ε(1− 4
π sin t). The function β0(t) := β̄0 sin t+ β̃0(t) satisfies

β′′0 + β0 + g(β′0) = p̃− ε̃+ (I −Q)g(β̄0 cos t+ β̃′0)
< p̃+ p̄ sin t− ε, 0 < t < π,

β0(0) = β0(π) = 0,

and therefore β(t) := β0(t) + ε is a strict upper solution of (1) such that β ≥ α+ ε in
[0, π].

Choose k > 0 so large that

k(β − α) > β′′ − α′′ in [0, π].(8)

Then let us consider the homotopy

u′′ + λ(u+ g(u′)− p)− (1− λ)
[
k
(
u− α+β

2

)
+
α′′+β′′

2

]
= 0,

u(0) = u(π) = 0, 0 ≤ λ ≤ 1,
(9)
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and the bounded open subset of R× C̃1
0 [0, π],

Ω = {(ū, ũ) | u = ū sin t+ ũ ∈ C1
0 [0, π], α(t) < u(t) < β(t) in (0, π),

‖u′‖∞ < N, u′(0) > α′(0) and u′(π) < α′(π)},

where N is a bound for derivatives of solutions u of (9) such that α ≤ u ≤ β. This
bound clearly exists, since g is bounded.

Step 2: There exists no solution u = ū sin t+ ũ of (9) such that (ū, ũ) ∈ ∂Ω. First,
we prove that there exists no solution u = ū sin t+ũ of (9) on ∂Ω if 0 ≤ λ < 1. Arguing
by contradiction, suppose that for some s ∈ [0, π] we have u(s) = α(s), u′(s) = α′(s),
u′′(s) ≥ α′′(s). Then we compute

α′′(s) ≤ u′′(s) ≤ λα′′(s) + (1− λ)

[
k
α(s)− β(s)

2
+
α′′(s) + β′′(s)

2

]
so that

α′′(s) ≤ kα(s)− β(s)

2
+
α′′(s) + β′′(s)

2
,

contradicting the choice of k in (8). An analogous computation shows that it is
impossible to have u(s) = β(s), u′(s) = β′(s), u′′(s) ≤ β′′(s) for some s ∈ (0, π).

Next, we show that, if λ = 1, no solution u ∈ Ω can satisfy u(s) = α(s), u′(s) =
α′(s) or u(s) = β(s), u′(s) = β′(s). This is straightforward since, in case 0 < s < π,

α′′(s) + α(s) + g(α′(s))− p(s) > 0 > β′′(s) + β(s) + g(β′(s))− p(s).

Also, β(0) = β(π) = ε > 0. Hence, it remains to show that u(s) = α(s), u′(s) = α′(s)
cannot hold with (ū, ũ) ∈ Ω and s = 0 or s = π. Let us consider the case s = 0, the
other being similar. If u(0) = α(0), u′(0) = α′(0), the function v(t) := u(t) − α(t)
would satisfy v ≥ 0 in [0, π] and also, on account of (7),

v′′ + v +m(t)v′ = (p̄− ρ) sin t < 0 in [0, π],

where m(t) := g(u′(t))−g(α′(t))
u′(t)−α′(t) if u′(t) 6= α′(t) and m(t) = 0 otherwise. Since g is

locally Lipschitz continuous, the function m is (measurable and) bounded, and we
obtain a contradiction with Lemma 2.

Step 3: Proof of the claim. Note that (9) can be written in operator form as

ũ−KQ[λN(ū, ũ) + (1− λ)M(ū, ũ)] = 0,∫ π

0

[λN(ū, ũ)(t) + (1− λ)M(ū, ũ)(t)] sin t dt = 0,

where

N(ū, ũ)(t) = p− g(ū cos t+ ũ′(t)) and

M(ū, ũ)(t) = k
(
ū sin t+ ũ(t)− α(t)+β(t)

2

)
+
α′′(t)+β′′(t)

2 − ū sin t− ũ(t).

For λ = 1, this reduces to Tp̄ = 0. On the other hand, for λ = 0, it is clear that this is
an equation of the form L = 0, where L is a linear, invertible compact perturbation
of the identity. We derive from (9) that its unique solution is

u(t) =
α(t) + β(t)

2
− ε

2

cosh
√
k(t− π/2)

cosh
√
kπ/2

= ū sin t+ ũ(t),
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and it is clear that (ū, ũ) belongs to Ω. By the invariance property of Leray–Schauder
degree, we easily conclude the proof of Claim 3.

Claim 4. Assertion (iii) holds.
With 0 < p̄ < b fixed, we construct Ω as in Claim 3 and R > R0 given by Claim

2 so that Ω ⊂ BR. Then the excision property of Leray–Schauder degree implies

|deg(Tp̄, BR \ Ω, 0)| = 1.

The existence of a solution of (5) (with p̄ = p̄0) in BR\Ω follows. There exists another
solution in Ω by Claim 3. Similarly, we conclude that there exist two solutions if
a < p̄ < 0, and the proof is complete.

3. Additional results. We do not know whether the interval [a(p̃, g), b(p̃, g)] is
not reduced to a point for some p̃. However, following the idea of [4], we can give
simple conditions to ensure that, at least for small p̃, it is in fact nondegenerate.

Proposition 3. Assume that g : R → R is of class C1, g(0) = 0, the limits
g(−∞) and g(+∞) exist, and g′(0) 6= 0. Let p ∈ C[0, π] split according to (2). Then
there exists ε > 0 such that, if ‖p‖∞ < ε, we have a(p̃, g) < 0 < b(p̃, g).

Proof. The mapping F : C2[0, π] ∩ C1
0 [0, π] → C[0, π], u 7→ u′′ + u + g(u′) is

differentiable at u = 0. Since the problem

v′′ + v + cv′ = 0,
v(0) = v(π) = 0,

where c is a nonzero constant, has only the trivial solution, it follows that F ′(0) is
an isomorphism. Hence, by the inverse mapping theorem, the range of F contains an
open ball centered at the origin, and we can conclude.

Another interesting feature of problem (1) under the assumptions of the above
proposition is that for p small and p̄ 6= 0 = l, one can indeed prove the existence of
two ordered solutions.

Proposition 4. Assume that g : R → R is of class C1, g(0) = 0, the limits
g(−∞) and g(+∞) exist, and g′(0) 6= 0. Let p ∈ C[0, π] split according to (2) and
p̄ 6= l = 0. Then there exists ε > 0 such that, if ‖p‖∞ < ε, we have two solutions u1

and u2 of (1) with

u1(t) > u2(t), in (0, π).

Proof. Let ‖p‖∞ be so small that the corresponding solution u1(t) given by the
inverse mapping theorem has the property that the solution of the linear Cauchy
problem

v′′ + v + g(u′1)v′ = 0, v(0) = 0, v′(0) = 1(10)

is positive in (0, π]. Making the change of variable u = u1(t) + w in (1), we obtain a
new problem

w′′ + w + g(u′1(t) + w′) = g(u′1(t)), w(0) = w(π) = 0.(11)

For definiteness, assume p̄ > 0. Consider the solution z(t, λ) of the Cauchy problem
associated with (11):

z′′ + z + g(u′1(t) + z′) = g(u′1(t)), z(0) = 0, z′(0) = λ.
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Since v(t) := ∂z
∂λ (t, 0) is the solution of (10), we deduce that for λ < 0 and |λ| suffi-

ciently small, we have z(t, λ) < 0 for every t ∈ (0, π]. On the other hand, substituting
z(t, λ) = λ sin t+ x(t, λ), x(t, λ) solves the problem

x′′ + x+ g(u′1(t) + λ cos t+ x′) = g(u′1(t)), x(0) = x′(0) = 0.

As λ→ −∞, x(t, λ) converges uniformly in [0, π] to the solution x̂(t) of

x′′ + x+ ĝ(t) = g(u′1(t)), x(0) = x′(0) = 0,

where ĝ(t) = g(−∞) if 0 < t < π
2 and ĝ(t) = g(+∞) if π

2 < t < π. Now this is given
explicitly by

x̂(t) =

∫ t

0

sin(t− s)[g(u′1(s))− ĝ(s)] ds.

As x̂(π) = 2p̄ > 0, we have x(π, λ) > 0 for |λ| large. We infer that for some (negative)
value of λ, z(., λ) is a negative solution of (11). Hence, (1) has a second solution u2(t)
such that u2(t) < u1(t) in (0, π).
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Abstract. In this article we define measurable multifunctions in nonseparable Banach spaces,
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1. Introduction. Beyond being interesting by itself, the theory of measurable
multifunctions has been shown to be useful in many branches of mathematics, such
as convex analysis [4], mathematical economy [20], differential inclusions [13], and
control theory [1].

In this paper we start with the definition of measurable multifunctions in non-
separable Banach spaces, then give a compactness criterion for the set of all mea-
surable selections of an integrably bounded multifunction and a characterization of
Banach spaces with the Radon–Nikodym property. Also, we generalize some results
related to the convergence of multiconditional expectations recently obtained by Pa-
pageorgiou [23], prove a sort of continuous dependence theorem of the attainable set
for a suitable infinite-dimensional linear system in terms of Kuratowski–Mosco con-
vergence, and, finally, provide conditions for the compactness of mild trajectories of
linear differential inclusions.

We want to remark that most of these results work in general Banach spaces,
dropping some hypotheses like separability and reflexivity.

2. Preliminaries. Let (Ω,Σ, µ) be a nonnegative, complete, σ-finite measure
space. For a Banach space X we shall use the following notation:

Pf(c)(X) = {A ⊂ X : A 6= ∅, closed (convex)},

Pwkc(X) = {A ⊂ X : A 6= ∅,weakly compact, convex}.

For a nonempty subset A of X we put |A| = supx∈A||x||.
It has been standard to define measurable multifunctions with values in a separable

Banach space as follows. Given a separable Banach space X and a measurable space
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(Ω,Σ), a multifunction F : Ω→ 2X\{∅} is measurable if for each open subset U of X
we have

F−(U) = {ω ∈ Ω : F(ω) ∩ U 6= ∅} ∈ Σ.

In [4] the following result is proved.
Theorem 2.1. Let F : Ω → Pf (X) be a measurable multifunction. If there is a

nonnegative complete, σ-finite measure µ defined on Σ, the following statements are
equivalent:

(i) F is measurable.
(ii) For every x ∈ X, ω → d(x,F(ω)) is measurable.
(iii) There is a sequence of measurable functions fn : Ω → X such that F(ω) =

{fn(ω)}, ∀ω ∈ Ω (Castaing representation).
(iv) GrF = {(ω, x) : x ∈ F(ω)} ∈ Σ×B(X), with B(X) the Borel σ-field of X.
(v) F−(C) = {ω ∈ Ω : F(ω) ∩ C 6= ∅} ∈ Σ for each C closed subset of X.
We notice that the separability condition in the Banach space X is a very strong

restriction which can be removed thanks to the Castaing representation together with
the Pettis measurability criterion ([8, p. 42]). This will be done in the next section.

Given a measurable multifunction F : Ω→ Pf (X), a selector of F is a measurable
function f : Ω→ X such that f(ω) ∈ F(ω), µ a.e.

We will denote S1
F as the collection of selectors of F that are Bochner integrable.

Given that definition, the following result holds [19]. S1
F 6= ∅ if and only if the function

g : Ω→ X defined by

g(ω) = inf{||x||;x ∈ F(ω)}

is Lebesgue integrable.
By using S1

F, we can define the multivalued integral∫
Ω

Fdµ =

{∫
Ω

fdµ : f ∈ S1
F

}
.

A multifunction F : Ω → Pf (X) is called integrably bounded if there is an f ∈
L1(µ) such that |F(ω)| ≤ f(ω), µ. a.e.

A collection {Fα}α∈Λ of measurable multifunctions is called uniformly integrable
if

(i) {|Fα|}α∈Λ is bounded in L1(µ), and
(ii) given ε > 0, there is a δ > 0 such that

µ(E) < δ ⇒
∫
E

|Fα|dµ < ε

for each α ∈ Λ.
Given a complete probability space (Ω,Σ,P), an integrably bounded multifunc-

tion F : Ω → Pf (X), and a sub-σ-field Σ0 ⊂ Σ, we define the multiconditional

expectation of F with respect to Σ0 as the multifunction EΣ0

F : Ω→ Pf (X), for which
we have

S1

E
Σ0
F

= {EΣ0

f : f ∈ S1
F},

where the closure is taken in the norm topology of L1
X(µ). It has been proved by Hiai

and Umegaki ([15, Cor. 1.2]) that EΣ0

F exists and is unique.
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If (Ω,Σ,P) is a complete probability space, {Σn}n∈N is an increasing sequence
of sub-σ-fields of Σ, and Fn : Ω → Pf (X) is a sequence of integrably bounded
multifunctions such that for each n ∈ N, Fn is P-measurable with respect to Σn, we
say that (Fn,Σn)n≥1 is a set-valued martingale if

EΣn
Fn+1

(ω) = Fn(ω) a.s.

In what follows we shall also need the following definition. We say that a sequence
{Σn}n∈N of sub-σ-fields of Σ converges to Σ0 in L1

X(P) if for each f ∈ L1
X(P),

EΣn
f → EΣ0

f in the norm topology of L1
X(P).

Finally, following Mosco [17], for a sequence {An}n≥1 contained in 2X\{∅}, we
set

s− limAn = {x ∈ X : x = lim
n→∞

xn, xn ∈ An}

= {x ∈ X : x = lim
n→∞

d(x,An) = 0}

and

ω − limAn = {ω − lim
k→∞

xk, xk ∈ Ank

for some subsequence {Ank} of {An}}.
According to Papageorgiou [23], a sequence {An} is said to be convergent in the

Kuratowski–Mosco sense to a set A (that we will denote as An
K.M.−→ A) if

s− limAn = ω − limAn = A.

3. Measurable multifunctions. In this section we start removing separability
in the definition of measurable multifunctions.

Definition 3.1. Let X be an arbitrary Banach space and (Ω,Σ, µ) be a positive,
σ-finite complete measure space. A multifunction F : Ω→ Pf (X) is µ-measurable if
there is a sequence of µ-measurable functions fn : Ω→ X and N ∈ Σ with µ(N) = 0
so that

F(ω) = {fn(ω)}, ∀ω ∈ Ω\N.

With this definition, we restate Theorem 2.1 in the following fashion.
Theorem 3.1. Let X be a Banach space and F : Ω → Pf (X) a multifunction.

The following conditions are equivalent:
(i) F is measurable.
(ii) There is an N ∈ Σ with µ(N) = 0 such that Y = [∪ω∈Ω\NF(ω)], the closed

subspace generated by ∪ω∈Ω\NF(ω) is separable, and for each relatively open set U ⊂
Y , F(U) ∈ Σ.

(iii) There is an N ∈ Σ with µ(N) = 0 such that Y = [∪ω∈Ω\NF(ω)] is separable,
and for each z ∈ Y , the function g : Ω→ R defined by

g(ω) =

{
0, if ω ∈ N ,
d(z,F(ω)), if ω ∈ Ω\N ,

is µ-measurable.
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(iv) There is an N ∈ Σ with µ(N) = 0 such that Y = [
⋃
ω∈Ω\N F(ω)] is separable

and

GrF = {(ω, x) : x ∈ F(ω)} ∈ Σ×B(Y ),

where B(Y ) is the Borel σ-field of Y .
(v) There is an N ∈ Σ with µ(N) = 0 such that Y = [

⋃
ω∈Ω\N F(ω)] is separable

and F−(C) ∈ Σ for every C relatively closed in Y .
Proof. Since it relies on the separable case, we will prove the equivalence between

(i) and (ii) in order to illustrate the technique.
(i)⇒(ii) Since F : Ω→ Pf (X) is µ-measurable, there is a sequence of µ-measurable

functions fn : Ω→ X and there is a set N0 ∈ Σ so that µ(N0) = 0 and

F(ω) = {fn(ω)}, ∀ω ∈ Ω\N0.

Since each fn is µ-measurable, the Pettis µ-measurability criterion implies that for
each n ∈ N there is an Nn ∈ Σ such that µ(Nn) = 0 and fn(Ω\Nn) is separable.

If N =
⋃∞
n=0Nn, then N ∈ Σ, µ(N) = 0, and fn(Ω\N) is separable, which

implies that Y = [
⋃
ω∈Ω\N F(ω)] is separable.

Define G : Ω→ Pf (Y ) by

G(ω) =

{
F(ω), if ω ∈ Ω\N ,
{0}, if ω ∈ N ,

and gn : Ω→ X by

gn(ω) =

{
fn(ω), if ω ∈ Ω\N ,
0, if ω ∈ N .

Since µ is complete, each gn is measurable and

G(ω) = {gn(ω)} ∀ω ∈ Ω.

Therefore, G is a µ-measurable multifunction. This fact, together with the separability
of Y and the completeness of µ, shows that the equivalence (i)–(ii) of Theorem 2.1
holds with G instead of F, and the conclusion follows.

Now suppose (ii) holds and define G : Ω→ Pf (Y ) as before. Since Y is separable,
µ is complete, and G is plainly µ-measurable, we get, by Theorem 2.1, that there is
a sequence {fn} of measurable functions fn : Ω → X such that G(ω) = {fn(ω)} for
each ω ∈ Ω. Since G(ω) = F(ω), ∀ω ∈ Ω\N , then F(ω) = {fn(ω)} ∀ω ∈ Ω\N . Thus
F is µ-measurable.

Now, in this case, the definitions of S1
F, multiconditional expectation, set-valued

martingale, and all the other notions are analogous to the separable case.
Our next goal is to give a characterization of weak compactness in L1

X(µ) of S1
F

for F integrably bounded.
Theorem 3.2. Let F : Ω→ Pfc(X) be an integrably bounded multifunction with

µ finite, nonnegative, and complete. Then S1
F is weakly compact if and only if F(ω)

is weakly compact, µ a.e.
Proof. (⇐) Since the multifunction F is integrably bounded, S1

F is uniformly
integrable. Since for almost all ω ∈ Ω, F(ω) is weakly compact, the set

{f : f ∈ S1
F}
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is relatively weakly compact in X. Now consider a sequence {fn} in S1
F. By Ülger

[27] and Diestel, Ruess, and Schachermayer [7], there is a gn : Ω → X so that
gn(ω) ∈ c0{fn(ω), fn+1(ω), . . .} for µ (a.e.) ω and g ∈ L1

X(µ) so that

gn(ω)→ g(ω)

(µ a.e.) in the norm of X with g(ω) ∈ F(ω), µ a.e. Consequently, S1
F is relatively

weakly compact. Plainly, S1
F is a convex subset of L1

X(µ).

Now let f ∈ S1
F. Then there exists a sequence {fn}n in S1

F so that {fn}n converges
to f in the strong topology of L1

X(µ); hence, there is a subsequence {fnk}k of {fn}n
satisfying fnk(ω)→ f(ω), µ a.e.

Since {fnk}k ⊂ F(ω), which is convex and weakly compact (µ a.e.), hence closed
in the strong topology of X, we get f(ω) ∈ F(ω), µ a.e. This implies that S1

F is closed
and then, by convexity, weakly closed.

(⇒) Suppose F(ω) is not weakly compact (µ a.e.); then there is a measur-
able set A with µ(A) > 0, and F(ω) is not relatively weakly compact for ω ∈ A.
Since F is integrably bounded, S1

F coincides with the set of all measurable selectors
of F and, again applying the Ülger–Diestel–Ruess–Schachermayer theorem, S1

F is not
relatively weakly compact, which is a contradiction. So, F(ω) has to be relatively
weakly compact (µ a.e.) and, being closed, weakly compact, µ a.e.

Our proof not only generalizes the proof given by Papageorgiou in [18, 19] but is
more elementary than that one. In fact, Papageorgiou’s proof relies on the well-known
James compactness criterion [16]; our proof relies instead on the Ülger–Diestel–Ruess–
Schachermayer L1

X(µ) compactness criterion, which uses Mazur’s theorem, which is
more elementary than James’ theorem. Furthermore, our proof is close in spirit to
the theory of single-valued functions.

We end this section with a characterization of the Radon–Nikodym property
(compare with Egghe [11, Thm. II.2.2.1]).

Theorem 3.3. For a Banach space X the following statements are equivalent:
(i) X has the Radon–Nikodym property.
(ii) For every set-valued uniformly integrable martingale Fn : Ω → Pf (X), there

is an integrably bounded multifunction F : Ω → Pfc(X) such that EΣn
F (ω) = Fn(ω),

µ a.e.
(iii) For every L∞-bounded set-valued martingale Fn : Ω → Pfc(X), there is an

integrably bounded multifunction F : Ω→ Pfc(X) such that EΣn
F (ω) = Fn(ω), µ a.e.

Proof. (i) ⇒ (ii) Since {Fn}n is a sequence of measurable multifunctions, we
can suppose, without loss of generality, that the closed subspace Y generated by
{
⋃
n

⋃
ω∈Ω Fn} is separable. With this assumption, we have that

Fn : Ω→ Pfc(Y ).

Since the Radon–Nikodym property is hereditary for closed subspaces, the conclusion
follows using Theorem 3.1 of [22].

(ii) ⇒ (iii) It is trivial.
(iii)⇒ (i) If (iii) holds, it does for single-valued martingales, and this leads to the

well-known classical case (see Van Dust [10]).

4. Convergence of multiconditional expectation. In this section we gener-
alize Theorems 3.1 and 3.2 of [23] in several directions. The first generalization is the
following one.
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Theorem 4.1. If X∗ has the Radon–Nikodym property, F : Ω → Pfc(X) is
an integrably bounded multifunction and Σn an increasing sequence of sub-σ-fields
converging to Σ0, then

EΣn
F (ω)

K.M.−→ EΣ0

F (ω),

µ a.e. The result is also true if X∗ has the Radon–Nikodym property and (Ω,Σ, µ)
has no Σ0-atoms.

Proof. If X∗ is separable, the result is Theorem 3.1 of [23]. In the general case,
by Stegall’s result [25], X∗ has the Radon–Nikodym property only if every separable
subspace of X has a separable dual. Since F is µ-measurable, there is an N ∈ Σ such
that µ(N) = 0 and Y , the closed subspace generated by

⋃
ω∈Ω\N F(ω), is separable.

Define G : Ω→ Pf (Y ) by

G(ω) =

{
F(ω), if ω ∈ Ω\N ;
{0}, if ω ∈ N .

Therefore, G is a µ-measurable multifunction and, since X∗ has the Radon–Nikodym
property, Y ∗ is separable; so, by Theorem 3.1 of [23],

EΣn
G (ω)

K.M.−→ EΣ0

G (ω), µ a.e.

Since EΣn
G is Σn-µ-measurable, there is a sequence gn,m : Ω → Y ⊂ X of Σn-µ-

measurable functions so that EΣn
G (ω) = {gn,m(µ)} ∀ω ∈ Ω and ∀n ≥ 0.

Since G(ω) = F(ω) (µ a.e),

EΣn
G (ω) = EΣn

F (ω)

(µ a.e.), ∀n ≥ 0. Therefore,

EΣn
F (ω)

K.M.−→ EΣ0

F (ω),

µ a.e.
The same type of argument allows us to obtain the following result.
Theorem 4.2. If X∗ has the Radon–Nikodym property, Fn : Ω → Pwkc(X) is

a sequence of µ-measurable multifunctions Fn(ω) ⊂ G(ω) (µ a.e.), with G : Ω →
Pwkc(X) integrably bounded, Fn(ω)

K.M.−→ F(ω) (µ a.e.), and Σn → Σ0 in L1
X(µ); then

S1
EΣn

F

K.M.−→ S1

E
Σ0
F

.

Proof. If X∗ is separable, the result is Theorem 3.2 of [23]. In the general case,
since each Fn is measurable, there exists an Nn ∈ N such that µ(Nn) = 0 and⋃
ω∈Ω\Nn Fn(ω) is separable. If N =

⋃∞
n=1Nn, then N ∈ Σ, µ(N) = 0, and the

closed subspace Y , generated by
⋃
ω∈Ω\N F(ω), is separable. The remainder of the

proof follows by using the same technique applied in the previous theorem.
Sometimes it is possible to remove the Radon–Nikodym property in Theorem 4.2.

To do that we need the following lemmas.
Lemma 4.1. A function F : Ω → Pf (X) is µ-measurable if and only if there is

an N ∈ Σ so that µ(N) = 0, Y = [
⋃
ω∈Ω\N F(ω)] is separable, and F(B) ∈ Σ for each

closed ball B in the relative strong topology of Y.
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Proof. It is enough to prove the converse. Let A be a nonempty closed set of Y ,
set H ⊂ A dense and countable, and ε > 0. If Uε =

⋃
x∈H B(x, ε), then

F−(Uε) =
⋃
x∈H

F−(B(x, ε)),

which implies that F−(Uε) ∈ Σ. By setting ε = 1
n , n ∈ N, we get

A =
∞⋂
n=1

U 1
n
,

and therefore F−(A) =
⋂∞
n=1 F−(U 1

n
) ∈ Σ. So, by Theorem 3.1, F is µ-measur-

able.
In the separable case, the preceding lemma is equivalent to (a) and (d) of Lemma

2.1 of [14]. The elementary proof given here is inspired by [9, p. 92].
Lemma 4.2. Let X be a Banach space and Fn : Ω → Pwkc(X) be a sequence of

measurable multifunctions such that there is a weakly compact, convex, and separable
subset of X, W such that Fn(ω) ⊂ W, ∀w ∈ Ω and n ∈ N. Then F(ω) = limnFn(ω)
is measurable, takes its values in Pwkc(X), and F(ω) ⊂W, ∀w ∈ Ω.

Proof. If X is reflexive and separable, Proposition 4.3 of Hess [14] provides the
proof with G(ω) = W. In the general case, the Davis–Fiegel–Johnson–Pelczynski
factorization scheme [5] produces a separable reflexive Banach space R, a one-to-one
bounded linear operator J : R → X, and a weakly compact convex subset K of R
such that the restriction J|K is a weak homeomorphism between K and W .

Now we consider the multifunctions

J−1Fn : Ω→ Pwkc(R).

J−1Fn(ω) ⊂ K for each ω ∈ Ω and n ∈ N. Furthermore, given a closed ball B in Y ,
the closed subspace generated by K, we have

B ∩ J−1Fn(ω) 6= ∅ ⇐⇒ (B ∩K) ∩ J−1Fn(ω) 6= ∅,

which means that it is enough to consider closed balls in K.
Let B be a closed ball in K. Then J−1F−n (B) = F−n (J(B)) ∈ Σ; hence Lemma

4.1 implies J−1Fn µ-measurable for each n ∈ N. Now, applying Proposition 4.3 of
[14], we get that

H = lim
n→∞

J−1Fn

is a µ-measurable multifunction with values in Pwkc(R) and H(ω) ⊂ K, ∀ω ∈ Ω.
Since Fn = JJ−1Fn for each n ∈ N and J|K is a weak homeomorphism between K
and W , we get

F−(B) = JH−(B) = H−(J−1B) ∈ Σ,

and Lemma 4.1 implies that F is µ-measurable.
Theorem 4.3. Let X be a Banach space and Fn : Ω → Pwkc(X) be a sequence

of µ-measurable multifunctions. If there is a weakly compact, convex, separable subset

W of X such that Fn(ω) ⊂W, ∀w ∈ Ω and ∀n ∈ N, and Fn
K.M.−→ F, then

S1
EΣn

Fn

K.M.−→ S1

E
Σ0
F
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whenever Σn is a sequence of sub-σ-fields that converges to Σ0 in L1
X(µ).

Proof. Since W is separable, the reflexive Banach space R tailored through
the Davis–Fiegel–Johnson–Pelczynski factorization scheme is separable. Let K be
a weakly compact subset of R so that J|K : K → W is a weak homeomorphism.
From Lemma 4.2, J−1Fn : Ω → Pwkc(R) is a sequence of µ-measurable multifunc-
tions, and so, there is another µ-measurable multifunction H : Ω→ Pwkc(R) so that
H(ω) ⊂ K, ∀ω ∈ Ω, where H = limJ−1Fn. By taking G ≡ K, we can apply Theorem
4.2 of [21] in order to get

ω − lim S1
J−1Fn

⊂ S1
H.

Being R-reflexive and separable, as is its dual, and from the proof of Theorem 3.2 of
[23],

ω − lim S1
EΣn

J−1Fn

⊂ S1

E
Σ0
H

.

The same proof also shows that

S1

E
Σ0
F

⊂ s− lim S1
EΣn

J−1Fn

.

Now, proceeding as in Diestel [6], we define a one-to-one bounded linear operator
J̃ : L1

R(µ)→ L1
X(µ) by J̃(f) = J ◦ f (it is well defined by Hille’s theorem [8, p. 47]).

We claim that

ω − lim J̃(S1
EΣn

J−1Fn

) ⊂ S1

E
Σ0
J(H)

.

In fact, for each

fn ∈ J̃(S1
EΣn

J−1Fn

),

there is a gn ∈ S1
EΣn

J−1Fn

such that fn = Jgn; so if

f ∈ ω − lim J̃(S1
EΣn

J−1Fn

),

there is an increasing sequence of positive integer numbers {nk} such that

gnk ∈ S1

E
Σnk

J−1Fnnk

and Jgnk converges to f in the weak topology of L1
X(µ). Since

S1
EΣn

J−1Fn

⊂ {f : Ω→ R : f is a measurable selector of G ≡ K},

Theorem 3.2 implies that there is a µ-measurable function g : Ω→ K such that gnkl
converges to g in the weak topology of L1

R(µ) for some subsequence gnkl of gnk ; so

g ∈ H. Hence, given x∗ ∈ (L1
X(µ))∗, we have

x∗fnkl = x∗J̃gnkl
w−→ x∗J̃g,
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and therefore f = J̃g (µ a.e.), and this implies f ∈ J(H). But

J̃(S1
EΣn

J−1Fn

) = S1
EΣn

Fn

∀n and J̃(S1

E
Σ0
H

) = S1

E
Σ0
J(H)

.

This fact, together with the previous inclusion, gives us

ω − lim S1
EΣn

J−1Fn

⊂ S1

E
Σ0
J(H)

.

It remains to prove that J(H) = F, since then the conclusion follows from the obtained

inclusions. By hypothesis Fn
K.M.−→ F. Hence ω − lim Fn = F. J being a weak

homomorphism between K and W , we get H = J−1F. This ends the proof.
Our next result brings to this context an application from operator theory.
Definition 4.1. Given X,Y Banach spaces, a bounded linear operator T : X →

Y is called an Asplund operator if there are a Banach space Z and bounded linear
operators T1 : X → Z, T2 : Z → Y such that Z∗ has the Radon–Nikodym property
and T = T2 ◦ T1.

This notion was introduced and studied by Stegall. It has shown to be useful in
convex analysis [26] and control theory [2]. Here is a small contribution to the theory
of measurable multifunctions.

Theorem 4.4. Let (Ω,Σ, µ) be a finite complete measure space, X,Y Banach
spaces, and T : X → Y an Asplund operator. If F,Fn : Ω → Pwkc(X), n ∈ N, are
measurable multifunctions, if there is an integrably bounded multifunction G : Ω →
Pwkc(X), such that Fn(ω) ⊂ G(ω) (µ a.e.) ∀n,∈ N, and if {Σn} is a sequence of
sub-σ-fields that converges to Σ0 in L1

X(µ), then

S1
EΣn
T (Fn)

K.M.−→ S1

E
Σ0
T (F)

.

Proof. Let Z be a Banach space such that its dual Z∗ has the Radon–Nikodym
property and T1 : X → Z, T2 : Z → Y bounded operators so that T = T2 ◦ T1. If
W = T1(X), then Σn converges to Σ0 in L1

W (µ), and W ∗ has the Radon–Nikodym
property. Furthermore, T = T3 ◦ T1 where T3 = T2|W . For each n ∈ N, T1Fn : Ω →
Pwkc(X) is measurable and is contained in T1G : Ω→ Pwkc(X), which is integrably

bounded. Furthermore, T1Fn
K.M.−→ T1F. So by Theorem 4.3,

S1
EΣn
T1(Fn)

K.M.−→ S1

E
Σ0
T1(F)

.

Therefore,

S1
EΣn
T (Fn)

= S1
EΣn
T3◦T1(Fn)

= T3(S1
EΣn
T1(Fn)

)
K.M.−→ T2(S1

E
Σ0
T1(F)

) = S1

E
Σ0
T (F)

.

5. An application in control theory. In this section we give some applica-
tions of the Kuratowski–Mosco convergence into optimal control theory allowing the
controls to be variable in [0, T ]. Therefore, in this section, µ is the Lebesgue measure
in [0,T ].

Given two Banach spaces U , X and a bounded linear operator B : U → X, we
consider the following linear systems in X:

Sn =

{
ẋ(t) = Ax(t) +Bf (n)(t),
x(0) = x0;
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S =

{
ẋ(t) = Ax(t) +Bf(t),
x(0) = x0,

where f (n), f are µ-measurable selectors of Fn : [0, T ] → Pwkc(U), F : [0, T ] →
Pwkc(U), where Fn, F are strongly µ-measurable multifunctions and A generates a
strongly continuous semigroup of bounded linear operators {St}t≥0. The set K(t),
defined as

K(T ) =

{
STx0 +

∫ T

0

ST−sBf(s)ds, f ∈ S1
F

}
,

is called the set of attainable points for the system S in the time T . Analogously, we
define the set Kn(T ) as the set of attainable points for the system Sn in the time T
(where we consider f ∈ S1

Fn
instead).

The system S (or Sn) is controllable in time T if 0 ∈ K(T ) (respectively, 0 ∈
Kn(T )). Controllability criteria for these classes of systems with F constant can be
found in [2], [3], and [24].

The aim of this section is the following result.

Theorem 5.1. Let Sn, S, Fn, and F be as above. If Fn
K.M.−→ F and there is a

G : [0, T ] → Pwkc(X), integrably bounded such that for each n ∈ N, Fn(ω) ⊂ G(ω),

µ a.e., then Kn(T )
K.M.−→ K(T ).

Proof. Since Fn
K.M.−→ F, then for each t ∈ [0, T ], StBFn

K.M.−→ StBF. Furthermore,
StBFn : Ω → Pwkc(U) and are strongly µ-measurable with StBFn(ω) ⊂ StBG(t)
(µ a.e.) with StBG convex weakly compact-valued and integrably bounded. Now,
applying Theorem 3.4 of [21], we get∫ T

0

St−sBFn(s)ds
K.M.−→ cl

∫ T

0

St−sBF(s)ds,

which implies the conclusion because Kn(T ) and K(T ) are merely translations of∫ T
0

St−sBFn(s)ds and
∫ T

0
St−sBF(s)ds, respectively.

Corollary 5.1. Under the same hypothesis as in Theorem 5.1, if Sn is control-

lable at time T and Fn
K.M.−→ F, then S is controllable at time T.

Proof. The proof follows immediately from the definitions and Theorem
5.1.

6. Some applications in differential inclusions. Now we give a set of re-
sults related to the study of compactness of the solution of certain linear systems of
differential inclusions.

In this entire section, Ω = [a, b] ⊂ R, Σ is the Borel σ-field on [a, b] and µ is the
Lebesgue measure on [a, b].

We start with an easy result that has some interesting consequences.
Proposition 6.1. Let X be a Banach space and K ⊂ L1

X(µ) be uniformly
integrable. The set

A =

{
x : [a, b]→ X : x(t) =

∫ t

a

fdµ; f ∈ K
}

is relatively compact in the uniform topology of C([a, b];X) if and only if, for each
t ∈ [a, b], {x(t)}x∈A is relatively compact in the norm topology of X.
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Proof. The boundedness and equicontinuity of A follows from the uniform
integrability of K, and then the conclusion follows from the Arzéla–Ascoli
theorem.

The following result is due to Fattorini [12, Thm. 3.1] for the case a = 0. We
present a simpler proof even though we use the same ideas as Fattorini.

Theorem 6.1. Let K be a uniformly integrable subset of L1
X(µ) and St : X → X a

strongly continuous semigroup that is compact for each t0. Then, for 0 ≤ a < b <∞,
the set

A =

{
x : [a, b]→ X : x(t) =

∫ t

a

St−sfdµ; f ∈ K
}

is relatively compact in the uniform topology of C([a, b];X).
Proof. Let us suppose first that a = 0. Since K is uniformly integrable in L1

X(µ)
and S(·) is uniformly bounded on [0,b], we get that {S(·)f}f∈K is uniformly integrable
in L1

X(µ). Let t ∈ [0, b] and δn be a sequence of real numbers such that δn → t. Notice
that for each n ∈ N and f ∈ L1

X(µ),

∫ t

0

St−sf(s)dµ(s) =

∫ t−δn

0

St−sf(s)dµ(s) +

∫ t

t−δn
St−sf(s)dµ(s)

= Sδn

(∫ t−δn

0

St−δn−sf(s)dµ(s)

)
+

∫ t

t−δn
St−sf(s)dµ(s).

The set {
∫ t

0
St−sf(s)dµ(s)}f∈K is bounded in X, and by hypothesis, Sδn is a compact

operator; therefore, {
∫ t−δn

0
St−sf(s)dµ(s)}f∈K is relatively compact in X. Thus,

given a sequence {fk} in K, we can find, by the diagonal process, a subsequence {fkl}
of {fk} such that {∫ t−δn

0

St−sfkl(s)dµ(s)

}
is convergent in X. Now, using the uniform integrability of K, we can see that
K−K = {f −g : f, g ∈ K} is also uniformly integrable. Therefore, given ε > 0, there
are l0, n0 ∈ N such that for each l > l0,∥∥∥∥∫ t

0

St−s({fkl(s)− fkl0 (s))dµ(s)

∥∥∥∥ ≤
∥∥∥∥∥
∫ t−δn0

0

St−s(fkl(s)− fkl0 (s))dµ(s)

∥∥∥∥∥
+

∥∥∥∥∥
∫ t

t−δn0

St−s(fkl(s)− fkl0 (s))dµ(s)

∥∥∥∥∥ < ε,

and now the conclusion follows from the Arzéla–Ascoli theorem.
In the general case, a 6= 0, we identify L1

X([a, b], µ) with L1
X([0, b−a], µ) using the

identification f ←→ g if and only if g(s) = f(x + a). Let K be uniformly integrable
in L1

X([a, b], µ) and K ′ its image under the identification. It is easy to see that K ′

is uniformly integrable in L1
X([0, b − a], µ), and therefore, applying Proposition 6.1

together with the first part of the proof, we conclude that{∫ t

0

St−a−sg(s)dµ(s)

}
g∈K′
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is relatively compact in X. This means that{
Sa

(∫ t−a

0

St−a−sg(s)dµ(s)

)}
g∈K′

=

{(∫ t−a

0

St−sg(s)dµ(s)

)}
g∈K′

=

{(∫ t

a

St−sg(s− a)dµ(s)

)}
g∈K′

=

{(∫ t

a

St−sf(s)dµ(s)

)}
f∈K

is relatively compact in K. Now, by Proposition 6.1, we conclude the proof.
Now we state the main result of this section.
Theorem 6.2. Let F→ Pwkc(X) be an integrable bounded multifunction, {St}t≥0

a strongly continuous semigroup of operators in X, and

A =

{
x ∈ C([a, b];X) : x(t) =

∫ t

a

St−sfds

}
f∈S1

F

.

Then,
(i) if St is compact for each t > 0, A is compact in C([a, b];X);
(ii) if there is a compact set K ⊂ X such that F(t) ⊂ K, ∀t ∈ [a, b], A is compact

in C([a, b];X).
Proof. (i) From Proposition 6.1, we know that A is relatively weakly compact

in C([a, b];X). Let xn, x be in C([a, b];X), such that ||xn − x||∞ → 0. Clearly, for
each t ∈ [a, b], xn(t) converges weakly to x(t). On the other hand, there is a sequence
{fn} ⊂ S1

F such that, for each n ∈ N,

xn(t) =

∫ t

a

St−sfn(s)dµ(s),

since Theorem 3.2 ensures that {St−(·)fn(·)}f∈S1
F

is weakly compact, there are g ∈ S1
F

and a subsequence {fnk} of {fn} such that St−(·)fnk(·) converges to St−(·)g(·) in the
weak topology of L1

X(µ). This implies that for each t ∈ [a, b], xnk(t) converges weakly

to y(t) =
∫ t
a

St−sg(s)dµ(s). Hence x ≡ y.
(ii) Without loss of generality, we can suppose that K is convex and separable. By

Corollary 8 of [8, p. 48], we have that for each t ∈ (a, b], 1
t

∫ t
a
f(s)ds ∈ K. Set G ≡ K,

and let B = {x : x(t) =
∫ t
a
f(s)ds}f∈S1

G
. Then {x(t)}x∈B is relatively compact in X,

and thus B is relatively compact in C([a, b];X).
Let {fn}∞n=1 be a sequence of simple functions in S1

F, write the image of fn as

Imfn = {x1(n), x1(n), . . . , xk(n)},

and define

Ani = {t ∈ [a, b] : fn(t) = xi(n), i = 1, 2, . . . , k(n)}.

For each n ∈ N we have that {Ani}
k(n)
i=1 is a finite partition of [a, b]. Since

{
∫ t
a
fn(s)dµ(s)}n∈N is relatively compact, then given ε > 0 and n0 ∈ N, there is

a subsequence {fnk}∞k,n=1 of {fn}∞n=1 such that∥∥∥∥∫ t

a

(fn0
(s)− fm(s))dµ(s)

∥∥∥∥ < ε ∀m > n0.
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By means of elementary operations with the sets Ank , we construct a finite partition
(for each m > n0) {Bj}lj=1 of [a, b], such that each Bj is measurable and fk|Bj is

constant for each k and j (1 ≤ j ≤ l , 1 ≤ k ≤ m). Therefore {
⋃l,m
k,j fk(Bj)} =

{x1, . . . , xr(m)} is a finite subset of X. For each n ≥ n0, denote by Xn the subspace
generated by {x1, . . . , xr(n)} and consider the functions S(·)|Xn . Since each Xn is
finite dimensional and S(·) is strongly continuous, we get that S(·)|Xn is continuous
in the uniform topology of operators on L(Xn, X) and is therefore measurable. Con-
sequently, there is a k ∈ N such that Sk : [a, b] → L(Xn, X) is a simple function
and

||Sk(·) − S|Xm(·)|| < ε.

By using Hille’s theorem [8, p. 43] we have that for each T ∈ L(Xm, X),∥∥∥∥∫ t

a

T (fn0
(s)− fm(s))dµ(s)

∥∥∥∥ < ||T ||ε
for m > n0, and from this we conclude that {

∫ b
a

Sk(fn)ds}∞n=1 is relatively compact
in C([a, b], X). By this procedure we see that∥∥∥∥∫ t

a

Ss(fn0
(s)− fm(s))dµ(s)

∥∥∥∥ ≤ ∥∥∥∥∫ t

a

Ss(fn0
(s))− Sk(fn0

(s))dµ(s)

∥∥∥∥
+

∥∥∥∥∫ t

a

Sk(fm(s))− Sk(fn0
(s))dµ(s)

∥∥∥∥
+

∥∥∥∥∫ t

a

Ss(fm(s)− Sk(fm(s))dµ(s)

∥∥∥∥
≤ 2ε2M + ε||Sk||,

where M = supx∈K ||x||. This implies that {
∫ t
a

St−sf(s)ds : f simple}f∈S1
G

is rel-

atively weakly compact in X. Now using the boundedness of S(·) on [a, b] and the
density of simple functions on L1

X(µ), we conclude that

B =

{
x : [a, b]→ X : x(t) =

∫ t

a

f(t)dt

}
f∈S1

G

is relatively compact in C([a, b];X), and since

A =

{
x : [a, b]→ X : x(t) =

∫ t

a

f(t)dt

}
f∈S1

F

⊂ B,

then A is relatively compact in C([a, b];X).
To see that A is compact, we note that for each s ∈ [a, b], SsF(s) is a compact,

convex set-valued multifunction, and using Theorem 3.2 as in (i), we conclude the
proof.

The hypothesis “F(s) contained in a compact set K for each s ∈ [a, b]” cannot be
removed, as the following example illustrates.

Example. Let X be an infinite-dimensional Banch space and K a bounded, sepa-
rable and convex subset of X which is not compact. Define F(s) ≡ K, ∀s ∈ [0, b], and
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Ss ≡ I, the identity in X, ∀s ≥ 0. If {xn}∞n=1 is a sequence in K with no convergent
subsequences, then for each t ∈ [0, b], we have{∫ t

0

St−sxkds

}
k∈N

= {txk}k∈N,

which is relatively compact if and only if t = 0.
We end this section by illustrating how these results can be useful in the qual-

itative study of the trajectories of differential inclusions in Banach spaces. To do
that, we start by outlining the path developed by Frankowska [13] but remove the
hypothesis of separability and reflexibility. In that reference the following differential
inclusion is considered:

S =

{
ẋ(t) ∈ Ax(t) + F(t, x),
x(t0) = x0,

where A generates a strongly continuous semigroup {St}t≥0 and F : [to, T ] × X →
P(X)\{∅} is a multifunction.

In what follows, we need the following definitions.
Let F : [to, T ]×X → Pf (X), t0 ∈ [0, T ]. A function x ∈ C([t0, T ];X) is called a

mild trajectory for the given differential inclusion if there is an f ∈ L1([t0, T ], X) such
that

f(t) ∈ F(t, x(t)), µ a.e.,

and

x(t) = St−t0x0 +

∫ t

t0

St−sf(s)ds.

A function ϕ : X → P(X)\{∅} is called an L-Lipschitz in K ⊂ X if, for x, y ∈ X,

ϕ(x) ⊂ ϕ(y) + L||x− y||B,

where B is the closed unit ball of X.
With these hypotheses in hand, the following result is proposed [13, Thm. 2.7].
Let X be a reflexive (separable) Banach space and F : [to, T ] × X → X be

a multivalued function with closed and convex values. Suppose that there is a k ∈
L1

(t0;T ) so that for almost every t ∈ [t0, T ], F(t, ·) is k(t)-Lipschitz, and for each x ∈ X,

F(t, x) ⊂ k(t)B. If at least one of the following conditions is satisfied,
(i) the semigroup S(·) is compact;
(ii) the semigroup S(·) is uniformly continuous;
(iii) there is a compact set K ⊂ X such that for each (t, x) ∈ [t0, T ]×X, F(t, x) ⊂

K; then for each x ∈ X, the set Γ[t0,T ](ξ) of the mild solutions of the differential
inclusion with initial values x(t0) = ξ is a compact subset of C([t0, T ];X).

According to Theorem 6.2, it is clear that statements (i) and (iii) are true without
any restriction on the Banach space X, while the statement (ii) fails to be true in
any infinite-dimensional Banach space, as is shown in the previous example. This
is so because in the process of the proof given in [13], the relative compactness of
{x(t)}x∈S(t0,T,X) is not checked before applying the Arzéla–Ascoli theorem for infinite-
dimensional Banach spaces. In that sense, Theorem 6.2 not only generalizes Theorem
2.7 (i), (ii) of [13] but also gives a correct proof of these results.

However, that paper is still interesting, since it states the problem to be solved
and offers other interesting results about the subject.
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Abstract. Fuchsian systems of ordinary differential equations that are irreducible and free
from accessory parameters are classified into eight classes. Canonical systems of these classes were
determined by Haraoka [SIAM J. Math. Anal., 25 (1994), pp. 1203–1226]. Among them the canonical
systems of exactly four classes are extended to the completely integrable systems of total differential
equations of two variables that are introduced by Yokoyama [Funkcial. Ekvac., 35 (1992), pp. 65–
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theory for computing monodromy groups of the systems developed by Yokoyama is applied.

Key words. monodromy group, system of total differential equations, accessory parameter

AMS subject classifications. 33E30, 33C65, 34A20

PII. S0036141096296875

Introduction. In the theory of differential equations in the complex domain the
Gauss hypergeometric differential equation

x(1− x)
d2y

dx2
+ {γ − (α+ β + 1)x}dy

dx
− αβy = 0(0.1)

is one of the most important and interesting equations, and there are many investiga-
tions and generalizations of it. The Okubo theory is one of them. Okubo recognized
a system of linear ordinary differential equations of the form

(xIn − T )
dY

dx
= AY,(0.2)

where Y is an unknown n-dimensional column vector, A is an n× n matrix, T is an
n × n diagonal matrix, and In is the identity matrix of rank n, as a generalization
of the Gauss equation (0.1), and developed a global theory of the system in [4]. His
theory, which seems to be an extension of Riemann’s P -function method for comput-
ing a monodromy group of the Gauss equation, consists of the following three parts:
(i) reduction of a single Fuchsian differential equation to the system, (ii) definition of
systems free from accessory parameters, and (iii) an algorithm for computing mon-
odromy groups for such systems. He asserted that if the system (0.2) is free from
accessory parameters, then we can determine its monodromy group explicitly up to
a diagonal transformation. After Okubo, the present author [10] classified the set of
irreducible systems free from accessory parameters. There are eight classes of such
systems. Haraoka [2] determined canonical systems of these classes: systems (I), (I*),
(II), (II*), (III), (III*), (IV), and (IV*). System (I) is known to be transformed into
the generalized hypergeometric equation (see [4], [5]). System (I*) is known to be
transformed into the Pochhammer equation (see [1], [8]). Systems (II), (II*), (III),
(III*), (IV), and (IV*) are new. In [3] Haraoka also computed monodromy groups of
these six systems by following the Okubo theory. Monodromy groups of system (II*)
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†Department of Mathematics, Chiba Institute of Technology, Narashino, Chiba 275, Japan
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of rank 4 and system (II) are also computed by Sasai [6] and Sasai and Tsuchiya [7],
respectively.

In [9] the present author obtained an extension of the system (0.2) and investi-
gated its monodromy group. If the coefficient matrix A satisfies the relation

(A− ρ1In)(A− ρ2In) = O,(0.3)

where ρ1 and ρ2 are complex numbers, then we can extend the system (0.2) to a
completely integrable system of total differential equations of two variables of the
form

dZ =
{

(xIn − T )−1Adx+ (A− (ρ1 + ρ2)In)(yIn − T )−1dy −Ad(x− y)

x− y

}
Z,(0.4)

where Z is an unknown n-dimensional column vector. Among the eight systems we
can extend systems (I*), (II*), (III*), and (IV*) to obtain systems of total differential
equations, which we call systems (I**), (II**), (III**), and (IV**), respectively. It
is shown in [9] that the systems of partial differential equations for the Appell func-
tions F1 and F2 are reduced to system (I**) of rank 3 and system (II**) of rank 4,
respectively.

The purpose of this paper is to compute monodromy groups of systems (I**),
(II**), (III**), and (IV**) by following the theory developed in [9]. In section 1 we
review the theory of the system (0.4). In section 2 we investigate system (I**). We
give generators of a monodromy group of system (I**) in Theorem 1 in section 2.1
and prove the theorem in section 2.2. We deal with the other systems in section 3.
We give generators of monodromy groups of systems (II**), (III**), and (IV**) in
Theorems 2, 3, and 4 in sections 3.1, 3.2, and 3.3, respectively, and we prove these
theorems in section 3.4. We use the following notation throughout this paper:

Z<0 : the set of negative integers.
Ik : the identity matrix of rank k, for k ∈ N.
O : zero matrix of an appropriate size.
e(α) := exp(2π

√
−1α), for α ∈ C.

1. Monodromy group of the system (0.4). We give a short review of the
theory developed in [9]. In the system (0.4) we assume that

T =


t1In1

t2In2

. . .

tpInp

 (ti 6= tj (i 6= j), n1 + n2 + · · ·+ np = n),

A =


A11 A12 · · · A1p

A21 A22 · · · A2p

...
...

. . .
...

Ap1 Ap2 · · · App

 ∼
(

ρ1Im1

ρ2Im2

)
(m1 +m2 = n),

where Aij is an ni × nj matrix and

Aii =


λi,1

λi,2
. . .

λi,ni

 (i = 1, . . . , p),
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together with the conditions

λi,h, λi,h − λi,h′ /∈ Z (i = 1, . . . , p, h, h′ = 1, . . . , ni, h 6= h′),

ρ1 − ρ2 /∈ Z,

ρj /∈ Z<0 (j = 1, 2).

(1.1)

1.1. Fundamental set of solutions. We have shown the following.
Proposition 1. The system (0.4) is completely integrable. Namely, we have

dΩ = Ω ∧ Ω, where Ω denotes the coefficient 1-form of (0.4).
This proposition follows from the relation (0.3) and guarantees the existence of n

linearly independent solutions of the system (0.4).
Proposition 2. For each i (i = 1, . . . , p), the system (0.4) has ni solutions

Zi,h(x, y) = (x− ti)λi,h(y − ti)−ρ1−ρ2Wi,h(x, y) (h = 1, . . . , ni)

such that

Wi,h(ti, y) = the (n1 + · · ·+ ni−1 + h)th unit n-vector (h = 1, . . . , ni)

and Wi,h(x, y) (h = 1, . . . , ni) are holomorphic in Di ×∆i, where Di is an arbitrary
simply connected domain in C containing ti and not containing tk (k 6= i), and ∆i =
C \ Di.

We set

Z(x, y) =
(
Z1,1(x, y) · · · Z1,n1

(x, y) · · · Zp,1(x, y) · · · Zp,np(x, y)
)
.

Proposition 3.

detZ(x, y)

=

∏p
i=1

∏ni
h=1 Γ(λi,h + 1)∏2

j=1 Γ(ρj + 1)mj

p∏
i=1

ni∏
h=1

{
(x− ti)λi,h(y − ti)λi,h−ρ1−ρ2(y − x)−λi,h

}
holds. Therefore Z(x, y) is a fundamental set of solutions of (0.4).

1.2. Circuit matrices. We set

Sp =

p⋃
i=1

(
{(x, y) | x = ti}

⋃
{(x, y) | y = ti}

)⋃
{(x, y) | x = y}

and fix a base point (x0, y0) in C2 \ Sp. Let Cx be a simple closed curve on the
(x, y0)-plane (= {(x, y0) | x ∈ C}) such that the points (x0, y0), (y0, y0), (t1, y0),
(t2, y0), . . . , (tp, y0) lie on Cx and come in this order when we trace Cx in the positive
direction. For each i (i = 0, 1, . . . , p), let σi be a loop on the (x, y0)-plane that
starts from (x0, y0), goes inside Cx, encircles (ti, y0) once in the positive direction,
and returns inside Cx to (x0, y0), where we set t0 = y0. Let Cy be a copy of Cx onto
the (x0, y)-plane (= {(x0, y) | y ∈ C}); that is, Cy is a curve on the (x0, y)-plane such
that the points (x0, x0), (x0, y0), (x0, t1), (x0, t2), . . . , (x0, tp) lie on Cy and come in
this order when we trace Cy in the positive direction. Let L be a simple curve on the
(x0, y)-plane that starts from a point located between (x0, y0) and (x0, t1) on Cy, goes
outside Cy, and ends at (x0,∞). For each j (j = 1, . . . , p, p + 1), let τj be a loop on
the (x0, y)-plane that starts from (x0, y0), goes outside Cy not crossing L, encircles
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(x0, tj) once in the positive direction, and returns outside Cy to (x0, y0) not crossing
L, where we set tp+1 = x0. Then the homotopy classes [σi] (i = 0, 1, . . . , p) and [τj ]
(j = 1, . . . , p, p+ 1) generate the fundamental group π1(C2 \ Sp, (x0, y0)).

If we continue analytically the fundamental set of solutions Z(x, y) along the
loop σi (resp., τj), then we obtain another fundamental set of solutions Z(x, y)Mi

(resp., Z(x, y)Nj), where Mi (resp., Nj) is an element in GL(n, C). We call Mi

(resp., Nj) the circuit matrix of Z(x, y) along σi (resp., τj). The monodromy group
of the system (0.4) with respect to Z(x, y) is a subgroup of GL(n, C) generated by
Mi (i = 0, 1, . . . , p) and Nj (j = 1, . . . , p, p + 1), that is to say, an image of the
representation

R : π1(C2 \ Sp, (x0, y0)) −→ GL(n, C)

that is defined by

Z(x, y)γ = Z(x, y) ·R([γ])

for any loop γ in C2 \ Sp with the base point (x0, y0), where Z(x, y)γ denotes the
analytic continuation of Z(x, y) along the loop γ.

We have shown the following.
Proposition 4.

(i) For i = 1, . . . , p, the circuit matrix Mi has the form

Mi =



In1

. . .

Ini−1

Mi1 · · · Mi,i−1 Mii Mi,i+1 · · · Mip

Ini+1

. . .

Inp


,

where

Mii =


e(λi,1)

e(λi,2)
. . .

e(λi,ni)

 .

(ii) For j = 1, . . . , p, the circuit matrix Nj has the form

Nj =



In1 N1j

. . .
...

Inj−1 Nj−1,j

Njj
Nj+1,j Inj+1

...
. . .

Npj Inp


.

(iii) The Jordan canonical form of the circuit matrix M0 is(
e(−ρ1)Im1

e(−ρ2)Im2

)
.
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Proposition 5. The circuit matrices Mi (i = 0, 1, . . . , p) and Nj (j = 1, . . . , p,
p+ 1) have the following relations:

MpMp−1 · · ·M1M0 = In,(1.2)

N1N2 · · ·NpNp+1 = e(− ρ1 − ρ2) · In,(1.3)

Np+1 = M0,(1.4)

and

MiNj = NjMi(1.5)

for i, j = 1, . . . , p with i 6= j.
Remark. From the relations (1.2) and (1.4) it follows that the monodromy group

of (0.4) is generated by Mi (i = 1, . . . , p) and Nj (j = 1, . . . , p).
Restricting the system (0.4) to the (x, y0)-plane, we obtain

dZ

dx
=
(

(xIn − T )−1 − 1

x− y0
In

)
AZ,

which is transformed into the system of Okubo normal form

(tIn − T ′)
dZ

dt
= AZ,(1.6)

where T ′ = (T − y0In)−1, by the change of the variable x for t = (x − y0)−1. Since
the matrices Mi (i = 1, . . . , p) are also circuit matrices for the system (1.6), we can
determine Mi (i = 1, . . . , p) explicitly up to a diagonal transformation if (1.6) is free
from accessory parameters. Once the Mi’s are determined, we can determine the
matrices Nj (j = 1, . . . , p) by the relation

Nij = [e(− ρ1 − ρ2) ·Mj−1Mj−2 · · ·M1MpMp−1 · · ·Mj ]ij(1.7)

for i, j = 1, . . . , p, where [ ]ij denotes the (i, j)-block in the (n1, n2, . . . , np)-decom-
position of an n × n matrix. The relation (1.7) is derived from the form of Nj and
the relations (1.2)–(1.5) (see Lemma 1 in section 2.2).

2. System (I**). Let n be an integer equal to or greater than 3, and let ti (i =
1, . . . , n) be mutually distinct points in C. We are concerned with a representation
of the fundamental group of C2 \ Sn, where

Sn =
n⋃
i=1

(
{(x, y) | x = ti}

⋃
{(x, y) | y = ti}

)⋃
{(x, y) | x = y}.

2.1. Monodromy group of system (I**). Let λ = (λ1, λ2, . . . , λn) be an
element in Cn, and let ρ1 be an element in C. We set

ρ2 =
n∑
i=1

λi − (n− 1)ρ1 and ρ = (ρ1, ρ2).

System (I**)λ,ρ (or simply (I**)) of rank n is the system of total differential equations

dZ =
{

(xIn − TI*)−1AI*dx+ (AI* − (ρ1 + ρ2)In)(yIn − TI*)−1dy −AI*
d(x− y)

x− y

}
Z

(2.1)
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for an unknown n-dimensional column vector Z, where

TI* =


t1

t2
. . .

tn

 and AI* =


λ1 λ1 − ρ1 · · · λ1 − ρ1

λ2 − ρ1 λ2 · · · λ2 − ρ1

...
...

. . .
...

λn − ρ1 λn − ρ1 · · · λn

 .

Under the condition that ρ1 6= ρ2, the Jordan canonical form of AI* is(
ρ1In−1

ρ2

)
(see Haraoka [2, Thm. I*]). Therefore, AI* satisfies the relation

(AI* − ρ1In)(AI* − ρ2In) = O,

and hence the system (2.1) is completely integrable.
We assume the conditions

λi /∈ Z (i = 1, . . . , n),

ρ1 − ρ2 /∈ Z,

ρj /∈ Z<0 (j = 1, 2),

(2.2)

which are corresponding to (1.1). Then the system (2.1) has a fundamental set of
solutions such as we state in section 1.1, which we denote by ZI**(x, y).

Theorem 1. We assume (2.2) and

λi − ρ1 /∈ Z (i = 1, . . . , n).

There is a diagonal matrix D ∈ GL(n, C) such that the monodromy group of the
system (2.1) with respect to ZI**(x, y)D is generated by

Mi =



1
. . .

1
ξi1 · · · ξi,i−1 e(λi) ξi,i+1 · · · ξin

1
. . .

1


(i = 1, . . . , n)

and

Nj =



1 η1j
. . .

...
1 ηj−1,j

ηjj
ηj+1,j 1

...
. . .

ηnj 1


(j = 1, . . . , n)
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with

ξij =

{
e(λj)− e(ρ1) for i, j = 1, . . . , n with i < j,

e(λj − ρ1)− 1 for i, j = 1, . . . , n with i > j,
(2.3)

and

(2.4)

ηjj = e(λj − ρ1 − ρ2) for j = 1, . . . , n,

ηij = e(λj + λj+1 + · · ·+ λj+r−1 − rρ1 − ρ2) · ξij for i, j = 1, . . . , n with i 6= j,

where we have set

r = r(i, j) =

{
n+ i− j for i < j,

i− j for i > j,

and

λ` = λ`−n for ` > n.

2.2. Proof of Theorem 1. We have only to prove (2.4), since the elements
(2.3) of Mi (i = 1, . . . , n) have already been evaluated by Takano and Bannai [8] and
Haraoka [1]. Note that Mi (i = 1, . . . , n) and Nj (j = 1, . . . , n) satisfy

N1N2 · · ·Nn = e(− ρ1 − ρ2) ·MnMn−1 · · ·M1(2.5)

and

NjMi = MiNj(2.6)

for i, j = 1, . . . , n with i 6= j.

Lemma 1. For i, j = 1, . . . , n, we have

ηij = [e(− ρ1 − ρ2) ·Mj−1Mj−2 · · ·M1MnMn−1 · · ·Mj ]ij ,

where [ ]ij denotes the (i, j)-element.

Proof. Combining (2.5) and (2.6) we obtain

NjNj+1 · · ·NnN1N2 · · ·Nj−1 = e(− ρ1 − ρ2) ·Mj−1Mj−2 · · ·M1MnMn−1 · · ·Mj .

By virtue of the form of the Nj ’s we obtain

[NjNj+1 · · ·NnN1N2 · · ·Nj−1]ij = ηij .

Hence, we have the relation. This completes the proof.

Proof of Theorem 1.

Step 1. We first prove (2.4) for j = 1 by induction on n. In the case n = 3 we
can obtain
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M3M2M1 =

 e(λ1) ∗ ∗
e(λ1)(e(λ1 − ρ1)− 1) ∗ ∗
e(λ1 + λ2 − ρ1)(e(λ1 − ρ1)− 1) ∗ ∗


by direct calculation. Applying Lemma 1 with j = 1, we have

η11 = e(λ1 − ρ1 − ρ2),

ηi1 = e(λ1 + λi−1 − (i− 1)ρ1 − ρ2) · ξi1 (i = 2, 3),

which shows that (2.4) is valid for j = 1 in the case n = 3.

We assume for induction that (2.4) is valid for j = 1 in the case of rank n − 1.
Then, we shall prove (2.4) for j = 1 in the case of rank n. We use the notation λ′i,
ρ′j , M

′
i , and η′ij for the case of rank n − 1 instead of λi, ρj , Mi, and ηij for the case

of rank n, respectively. We set

L =
(
ζij
)
1≤i≤n
1≤j≤n

= MnMn−1 · · ·M1 and L′ =
(
ζ ′ij
)
1≤i≤n−1
1≤j≤n−1

= M ′n−1M
′
n−2 · · ·M ′1.

Provided that λ′i = λi for i = 1, . . . , n− 1 and ρ′1 = ρ1, we have

Mi =

 M ′i ∗
0 · · · 0 1


for i = 1, . . . , n− 1, and hence

L = Mn

 L′ ∗

0 · · · 0 1

 =


0

In−1

...
0

ξn1 · · · ξn,n−1 e(λn)


 L′ ∗

0 · · · 0 1



From this expression it follows that

ζi1 = ζ ′i1 (i = 1, . . . , n− 1) and ζn1 =
n−1∑
k=1

ξnk · ζ ′k1.

Using these relations and the assumption for induction with Lemma 1, we therefore



MONODROMY OF TOTAL DIFFERENTIAL EQUATIONS 1235

obtain

η11 = e(− ρ1 − ρ2) · ζ11 = e(− ρ1 − ρ2) · ζ ′11 = e(− ρ1 − ρ2) · e(ρ1 + ρ′2) · η′11
= e(ρ′2 − ρ2) · e(λ1 − ρ1 − ρ′2)

= e(λ1 − ρ1 − ρ2),

ηi1 = e(− ρ1 − ρ2) · ζi1 = e(− ρ1 − ρ2) · ζ ′i1 = e(− ρ1 − ρ2) · e(ρ1 + ρ′2) · η′i1
= e(ρ′2 − ρ2) · e(λ1 + λ2 + · · ·+ λi−1 − (i− 1)ρ1 − ρ′2) · ξi1
= e(λ1 + λ2 + · · ·+ λi−1 − (i− 1)ρ1 − ρ2) · ξi1 (i = 2, . . . , n− 1),

ηn1 = e(− ρ1 − ρ2) · ζn1 = e(− ρ1 − ρ2) ·
n−1∑
k=1

ξnk · e(ρ1 + ρ′2) · η′k1

= e(ρ′2 − ρ2) ·
{

(e(λ1 − ρ1)− 1) · e(λ1 − ρ1 − ρ′2)

+
n−1∑
k=2

(e(λk − ρ1)− 1) · e(λ1 + · · ·+ λk−1 − (k − 1)ρ1 − ρ′2) · (e(λ1 − ρ1)− 1)
}

= e(ρ′2 − ρ2) · (e(λ1 − ρ1)− 1) ·
{
e(λ1 − ρ1 − ρ′2)

+
n−1∑
k=2

(
e(λ1 + · · ·+ λk − kρ1 − ρ′2)− e(λ1 + · · ·+ λk−1 − (k − 1)ρ1 − ρ′2)

)}
= e(ρ′2 − ρ2) · (e(λ1 − ρ1)− 1) · e(λ1 + λ2 + · · ·+ λn−1 − (n− 1)ρ1 − ρ′2)

= e(λ1 + λ2 + · · ·+ λn−1 − (n− 1)ρ1 − ρ2) · ξn1,

which shows that (2.4) is valid for j = 1 in the case of rank n.
Step 2. We next prove (2.4) for j = 2. We set

R =


0 e(ρ1)

1
. . .
. . .

. . .

1 0

 .

Moreover, we set

M̃i = R−1Mi+1R =



1
. . .

ξi+1,2 · · · e(λi+1) · · · ξi+1,n e(ρ1)ξi+1,1

. . .

. . .

1


for i = 1, 2, . . . , n− 1, and

M̃n = R−1M1R =


1

. . .

1
e(−ρ1)ξ12 · · · e(−ρ1)ξ1,n−1 e(λ1)

 .
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Here we see that for each i (i = 1, . . . , n), M̃i agrees with Mi with a parameter
set λ = (λ1, λ2, . . . , λn) replaced by λ̃ = (λ2, λ3, . . . , λn, λ1). Hence, for each i
(i = 1, . . . , n), the (i, 1)-element of the matrix e(− ρ1 − ρ2)·M̃nM̃n−1 · · · M̃1 is equal
to ηi1 with λ = (λ1, λ2, . . . , λn) replaced by λ̃ = (λ2, λ3, . . . , λn, λ1), that is,[
e(− ρ1 − ρ2) · M̃nM̃n−1 · · · M̃1

]
i1

=

{
e(λ2 − ρ1 − ρ2) (i = 1),

e(λ2 + λ3 + · · ·+ λi − (i− 1)ρ1 − ρ2) · (e(λ2 − ρ1)− 1) (i = 2, . . . , n).

On the other hand, by Lemma 1 with j = 2, we have

ηi2 =
[
e(− ρ1 − ρ2) ·M1MnMn−1 · · ·M2

]
i2

=
[
e(− ρ1 − ρ2) ·RM̃nM̃n−1 · · · M̃1R

−1
]
i2

=

{
e(ρ1) ·

[
e(− ρ1 − ρ2) · M̃nM̃n−1 · · · M̃1

]
n1

(i = 1),[
e(− ρ1 − ρ2) · M̃nM̃n−1 · · · M̃1

]
i−1,1

(i = 2, . . . , n).

Therefore, we obtain

η12 = e(ρ1) · e(λ2 + · · ·+ λn − (n− 1)ρ1 − ρ2) · (e(λ2 − ρ1)− 1)

= e(λ2 + · · ·+ λn − (n− 1)ρ1 − ρ2) · ξ12,
η22 = e(λ2 − ρ1 − ρ2),

ηi2 = e(λ2 + · · ·+ λi−1 − (i− 2)ρ1 − ρ2) · (e(λ2 − ρ1)− 1)

= e(λ2 + · · ·+ λi−1 − (i− 2)ρ1 − ρ2) · ξi2 (i = 3, . . . , n),

which shows that (2.4) is valid for j = 2.
Step 3. For j = 3, 4, . . . , n, we can prove (2.4) by the same consideration as

developed in Step 2 with the matrices R−(j−1)MiR
j−1 (i = 1, . . . , n). Thus the proof

of Theorem 1 is complete.

3. System (II**), system (III**), and system (IV**). Let t1, t2, and
t3 be mutually distinct points in C. We are concerned with representations of the
fundamental group of C2 \ S3, where

S3 =
3⋃
i=1

(
{(x, y) | x = ti}

⋃
{(x, y) | y = ti}

)⋃
{(x, y) | x = y}.

3.1. Monodromy group of system (II**). Let n be an even integer equal
to or greater than 4. We set n = 2m with m ∈ {2, 3, 4, . . . }. Let λ = (λ1, . . . , λm),
µ = (µ1, . . . , µm−1), ν, and ρ = (ρ1, ρ2) be elements in Cm, Cm−1, C, and C2,
respectively, satisfying

λi 6= λj , µi 6= µj , ρi 6= ρj

for i 6= j, and

m∑
i=1

λi +
m−1∑
i=1

µi + ν = mρ1 +mρ2.
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System (II**)λ,µ,ν,ρ (or simply (II**)) of rank n is the system of total differential
equations

dZ =
{

(xIn − TII*)−1AII*dx+ (AII* − (ρ1 + ρ2)In)(yIn − TII*)−1dy −AII*
d(x− y)

x− y

}
Z

(3.1)

with

TII* =

 t1Im
t2Im−1

t3

 ,

AII* =



λ1

. . . (αij)
λm

µ1 γ1

(βij)
. . .

...
µm−1 γm−1

δ1 · · · δm−1 ν


,

where

αij = (λi − ρ1)(λi − ρ2) ·
∏

k∈{1,... ,m}\{i}

λk + µj − ρ1 − ρ2

λi − λk

(i = 1, . . . ,m, j = 1, . . . ,m− 1),

αim = (λi − ρ1)(λi − ρ2) ·
∏

k∈{1,... ,m}\{i}

1

λi − λk
(i = 1, . . . ,m),

βij =
∏

`∈{1,... ,m−1}\{i}

λj + µ` − ρ1 − ρ2

µi − µ`
(i = 1, . . . ,m− 1, j = 1, . . . ,m),

βmj = −
∏

`∈{1,... ,m−1}
(λj + µ` − ρ1 − ρ2) (j = 1, . . . ,m),

γi =
∏

`∈{1,... ,m−1}\{i}

1

µi − µ`
(i = 1, . . . ,m− 1),

δj = −
∏

k∈{1,... ,m}
(λk + µj − ρ1 − ρ2) (j = 1, . . . ,m− 1).

The Jordan canonical form of AII* is(
ρ1Im

ρ2Im

)
(see Haraoka [2, Thm. II*]). Therefore AII* satisfies the relation

(AII* − ρ1In)(AII* − ρ2In) = O,

and hence the system (3.1) is completely integrable.
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We assume the conditions

λi, λi − λj /∈ Z (i, j = 1, . . . ,m, i 6= j),

µi, µi − µj /∈ Z (i, j = 1, . . . ,m− 1, i 6= j),

ν /∈ Z,

ρ1 − ρ2 /∈ Z,

ρj /∈ Z<0 (j = 1, 2),

(3.2)

which are corresponding to (1.1). Then the system (3.1) has a fundamental set of
solutions such as we state in section 1.1, which we denote by ZII**(x, y).

Theorem 2. We assume (3.2) and

λi − ρk /∈ Z (i = 1, . . . ,m, k = 1, 2),

λi + µj − ρ1 − ρ2 /∈ Z (i = 1, . . . ,m, j = 1, . . . ,m− 1).

There is a diagonal matrix D ∈ GL(n, C) such that the monodromy group of the
system (3.1) with respect to ZII**(x, y)D is generated by

M1 =

(
Em(λ) (ξij)1≤i≤m

1≤j≤m
O Im

)
,

M2 =

 Im O O
(ηij)1≤i≤m−1

1≤j≤m
Em−1(µ) (ηin)1≤i≤m−1

O O 1

 ,

M3 =

(
In−1 O

(ζj)1≤j≤n−1 e(ν)

)
,

N1 =

(
Em(λ− ρ1 − ρ2) O

(θij)1≤i≤m
1≤j≤m

Im

)
,

N2 =

 Im (φij) 1≤i≤m
1≤j≤m−1

O

O Em−1(µ− ρ1 − ρ2) O
O (φnj)1≤j≤m−1 1

 ,

N3 =

(
In−1 (ψi)1≤i≤n−1

O e(ν − ρ1 − ρ2)

)
,

where

Em(λ) =

e(λ1)
. . .

e(λm)

, Em(λ− ρ1 − ρ2) = e(− ρ1 − ρ2)Em(λ),

Em−1(µ) =

e(µ1)
. . .

e(µm−1)

, Em−1(µ− ρ1 − ρ2) = e(− ρ1 − ρ2)Em−1(µ),
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ξij = (e(λi)− e(ρ1))(e(ρ2 − λi)− 1)·
∏

k∈{1,... ,m}\{i}

e(µj)− e(ρ1 + ρ2 − λk)

e(ρ1 + ρ2 − λi)− e(ρ1 + ρ2 − λk)

(i = 1, . . . ,m, j = 1, . . . ,m− 1),

ξim = (e(λi)− e(ρ1))(e(ρ2 − λi)− 1)·
∏

k∈{1,... ,m}\{i}

1

e(ρ1 + ρ2 − λi)− e(ρ1 + ρ2 − λk)

(i = 1, . . . ,m),

ηij =
∏

`∈{1,... ,m−1}\{i}

e(ρ1 + ρ2 − λj)− e(µ`)
e(µi)− e(µ`)

(i = 1, . . . ,m− 1, j = 1, . . . ,m),

ηin =
∏

`∈{1,... ,m−1}\{i}

1

e(µi)− e(µ`)
(i = 1, . . . ,m− 1),

ζj = e(λj + ν − ρ1 − ρ2) ·
∏

`∈{1,... ,m−1}
(e(ρ1 + ρ2 − λj)− e(µ`)) (j = 1, . . . ,m),

ζm+j = − 1

e(µj)
·

∏
k∈{1,... ,m}

(e(µj)− e(ρ1 + ρ2 − λk)) (j = 1, . . . ,m− 1),

and

θij = e(λj − ρ1 − ρ2) · ηij (i = 1, . . . ,m− 1, j = 1, . . . ,m),

θmj = e(−ν) · ζj (j = 1, . . . ,m),

φij = e(−λi) · ξij (i = 1, . . . ,m, j = 1, . . . ,m− 1),

φnj = e(µj − ρ1 − ρ2) · ζm+j (j = 1, . . . ,m− 1),

ψi = e(ν − ρ1 − ρ2) · ξim (i = 1, . . . ,m),

ψm+i = e(−µi) · ηin (i = 1, . . . ,m− 1).

3.2. Monodromy group of system (III**). Let n be an odd integer equal to
or greater than 5. We set n = 2m + 1 with m ∈ {2, 3, 4, . . . }. Let λ = (λ1, . . . , λm),
µ = (µ1, . . . , µm), ν, and ρ = (ρ1, ρ2) be elements in Cm, Cm, C, and C2, respectively,
satisfying

λi 6= λj , µi 6= µj , ρi 6= ρj

for i 6= j, and

m∑
i=1

λi +
m∑
i=1

µi + ν = (m+ 1)ρ1 +mρ2.

System (III**)λ,µ,ν,ρ (or simply (III**)) of rank n is the system of total differential
equations

dZ =
{

(xIn − TIII*)−1AIII*dx+ (AIII* − (ρ1 + ρ2)In)(yIn − TIII*)−1dy −AIII*
d(x− y)

x− y

}
Z

(3.3)

with

TIII* =

 t1Im
t2

t3Im

 ,
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AIII* =



λ1 γ1

. . .
... (αij)

λm γm
ε1 · · · εm ν κ1 · · · κm

δ1 µ1

(βij)
...

. . .

δm µm


,

where

αij = (λi − ρ1) ·
∏

k∈{1,... ,m}\{i}

λk + µj − ρ1 − ρ2

λk − λi
(i, j = 1, . . . ,m),

βij = (µi − ρ1) ·
∏

`∈{1,... ,m}\{i}

ρ1 + ρ2 − λj − µ`
µi − µ`

(i, j = 1, . . . ,m),

γi = (λi − ρ1) ·
∏

k∈{1,... ,m}\{i}

1

λk − λi
(i = 1, . . . ,m),

δi = (µi − ρ1) ·
∏

`∈{1,... ,m}\{i}

1

µi − µ`
(i = 1, . . . ,m),

εj =
∏

`∈{1,... ,m}
(ρ1 + ρ2 − λj − µ`) (j = 1, . . . ,m),

κj = −
∏

k∈{1,... ,m}
(λk + µj − ρ1 − ρ2) (j = 1, . . . ,m).

The Jordan canonical form of AIII* is(
ρ1Im+1

ρ2Im

)
(see Haraoka [2, Thm. III*]). Therefore AIII* satisfies the relation

(AIII* − ρ1In)(AIII* − ρ2In) = O,

and hence the system (3.3) is completely integrable.
We assume the conditions

λi, λi − λj /∈ Z (i, j = 1, . . . ,m, i 6= j),

µi, µi − µj /∈ Z (i, j = 1, . . . ,m, i 6= j),

ν /∈ Z,

ρ1 − ρ2 /∈ Z,

ρj /∈ Z<0 (j = 1, 2),

(3.4)

which are corresponding to (1.1). Then the system (3.3) has a fundamental set of
solutions such as we state in section 1.1, which we denote by ZIII**(x, y).

Theorem 3. We assume (3.4) and

λi − ρ1 /∈ Z (i = 1, . . . ,m),

µi − ρ1 /∈ Z (i = 1, . . . ,m),

λi + µj − ρ1 − ρ2 /∈ Z (i, j = 1, . . . ,m).
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There is a diagonal matrix D ∈ GL(n, C) such that the monodromy group of the
system (3.3) with respect to ZIII**(x, y)D is generated by

M1 =

(
Em(λ) (ξij)1≤i≤m

0≤j≤m
O Im+1

)
,

M2 =

 Im O O
(ζj)1≤j≤m e(ν) (ζm+j)1≤j≤m

O O Im

 ,

M3 =

(
Im+1 O

(ηij) 1≤i≤m
1≤j≤m+1

Em(µ)

)
,

N1 =

(
Em(λ− ρ1 − ρ2) O

(θij)0≤i≤m
1≤j≤m

Im+1

)
,

N2 =

 Im (ψi)1≤i≤m O
O e(ν − ρ1 − ρ2) O
O (ψm+i)1≤i≤m Im

 ,

N3 =

(
Im+1 (φij)1≤i≤m+1

1≤j≤m
O Em(µ− ρ1 − ρ2)

)
,

where

Em(λ) =

 e(λ1)
. . .

e(λm)

 , Em(λ− ρ1 − ρ2) = e(− ρ1 − ρ2)Em(λ),

Em(µ) =

 e(µ1)
. . .

e(µm)

 , Em(µ− ρ1 − ρ2) = e(− ρ1 − ρ2)Em(µ),

ξi0 = −e(λi + ν − ρ1 − ρ2)(e(λi)− e(ρ1)) ·
∏

k∈{1,... ,m}\{i}

1

e(ρ2 − λi)− e(ρ2 − λk)

(i = 1, . . . ,m),

ξij = (e(λi)− e(ρ1)) ·
∏

k∈{1,... ,m}\{i}

e(µj − ρ1)− e(ρ2 − λk)

e(ρ2 − λi)− e(ρ2 − λk)
(i, j = 1, . . . ,m),

ζj = −
∏

`∈{1,... ,m}
(e(ρ2 − λj)− e(µ` − ρ1)) (j = 1, . . . ,m),

ζm+j = e(ρ1) ·
∏

k∈{1,... ,m}
(e(µj − ρ1)− e(ρ2 − λk)) (j = 1, . . . ,m),

ηij = (e(µi − ρ1)− 1) ·
∏

`∈{1,... ,m}\{i}

e(ρ2 − λj)− e(µ` − ρ1)

e(µi − ρ1)− e(µ` − ρ1)
(i, j = 1, . . . ,m),

ηi,m+1 = (e(ρ1 − µi)− 1) ·
∏

`∈{1,... ,m}\{i}

1

e(µi − ρ1)− e(µ` − ρ1)
(i = 1, . . . ,m),
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and

θ0j = e(λj − ρ1 − ρ2) · ζj (j = 1, . . . ,m),

θij = e(−µi) · ηij (i, j = 1, . . . ,m),

ψi = e(−λi) · ξi0 (i = 1, . . . ,m),

ψm+i = e(ν − ρ1 − ρ2) · ηi,m+1 (i = 1, . . . ,m),

φij = e(µj − ρ1 − ρ2) · ξij (i, j = 1, . . . ,m),

φm+1,j = e(−ν) · ζm+j (j = 1, . . . ,m).

3.3. Monodromy group of system (IV**). Let λ = (λ1, λ2), µ = (µ1, µ2),
ν = (ν1, ν2), and ρ = (ρ1, ρ2) be elements in C2 satisfying

λ1 6= λ2, µ1 6= µ2, ν1 6= ν2, ρ1 6= ρ2,

and

λ1 + λ2 + µ1 + µ2 + ν1 + ν2 = 4ρ1 + 2ρ2.

System (IV**)λ,µ,ν,ρ (or simply (IV**)) is the system of total differential equations
of rank 6

dZ =
{

(xI6 − TIV*)−1AIV*dx+ (AIV* − (ρ1 + ρ2)I6)(yI6 − TIV*)−1dy −AIV*
d(x− y)

x− y

}
Z

(3.5)

with

TIV* =

 t1I2
t2I2

t3I2

 ,

AIV* =


λ1 α13 α14 α15 α16

λ2 α23 α24 α25 α26

β11 β12 µ1 β15 β16

β21 β22 µ2 β25 β26

γ11 γ12 γ13 γ14 ν1
γ21 γ22 γ23 γ24 ν2

 ,

where

αij =
λi − ρ1

λi − λi′
· aij for i = 1, 2 with {i, i′} = {1, 2}, j = 3, 4, 5, 6,

βij =
µi − ρ1

µi − µi′
· bij for i = 1, 2 with {i, i′} = {1, 2}, j = 1, 2, 5, 6,

γij =
νi − ρ1

νi − νi′
· cij for i = 1, 2 with {i, i′} = {1, 2}, j = 1, 2, 3, 4,
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a13 = λ1 + µ2 + ν1 − 2ρ1 − ρ2, a14 = λ1 + µ1 + ν2 − 2ρ1 − ρ2,
a15 = λ2 + µ2 + ν1 − 2ρ1 − ρ2, a16 = λ2 + µ1 + ν2 − 2ρ1 − ρ2,
a23 = λ2 + µ2 + ν2 − 2ρ1 − ρ2, a24 = λ2 + µ1 + ν1 − 2ρ1 − ρ2,
a25 = λ2 + µ2 + ν2 − 2ρ1 − ρ2, a26 = λ2 + µ1 + ν1 − 2ρ1 − ρ2,
b11 = λ2 + µ1 + ν1 − 2ρ1 − ρ2, b12 = λ1 + µ1 + ν2 − 2ρ1 − ρ2,
b15 = λ1 + µ1 + ν2 − 2ρ1 − ρ2, b16 = λ1 + µ2 + ν2 − 2ρ1 − ρ2,
b21 = λ2 + µ2 + ν2 − 2ρ1 − ρ2, b22 = λ1 + µ2 + ν1 − 2ρ1 − ρ2,
b25 = λ1 + µ1 + ν1 − 2ρ1 − ρ2, b26 = λ1 + µ2 + ν1 − 2ρ1 − ρ2,
c11 = λ1 + µ2 + ν2 − 2ρ1 − ρ2, c12 = λ1 + µ2 + ν1 − 2ρ1 − ρ2,
c13 = λ1 + µ2 + ν1 − 2ρ1 − ρ2, c14 = λ1 + µ2 + ν2 − 2ρ1 − ρ2,
c21 = λ1 + µ1 + ν1 − 2ρ1 − ρ2, c22 = λ1 + µ1 + ν2 − 2ρ1 − ρ2,
c23 = λ1 + µ1 + ν1 − 2ρ1 − ρ2, c24 = λ1 + µ1 + ν2 − 2ρ1 − ρ2.

The Jordan canonical form of AIV* is

(
ρ1I4

ρ2I2

)

(see Haraoka [2, Thm. IV*]). Therefore, AIV* satisfies the relation

(AIV* − ρ1In)(AIV* − ρ2In) = O,

and hence the system (3.5) is completely integrable.

We assume the conditions

λ1, λ2, λ1 − λ2 /∈ Z,

µ1, µ2, µ1 − µ2 /∈ Z,

ν1, ν2, ν1 − ν2 /∈ Z,

ρ1 − ρ2 /∈ Z,

ρj /∈ Z<0 (j = 1, 2),

(3.6)

which are corresponding to (1.1). Then the system (3.5) has a fundamental set of
solutions such as we state in section 1.1, which we denote by ZIV**(x, y).

Theorem 4. We assume (3.6) and

λi − ρ1 /∈ Z (i = 1, 2),

µi − ρ1 /∈ Z (i = 1, 2),

νi − ρ1 /∈ Z (i = 1, 2),

λi + µj + νk − 2ρ1 − ρ2 /∈ Z (i, j, k = 1, 2).

There is a diagonal matrix D ∈ GL(n, C) such that the monodromy group of the
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system (3.5) with respect to ZIV**(x, y)D is generated by

M1 =


e(λ1) ξ11 ξ12 ξ13 ξ14

e(λ2) ξ21 ξ22 ξ23 ξ24
1

1
1

1

 ,

M2 =


1

1
η11 η12 e(µ1) η13 η14
η21 η22 e(µ2) η23 η24

1
1

 ,

M3 =


1

1
1

1
ζ11 ζ12 ζ13 ζ14 e(ν1)
ζ21 ζ22 ζ23 ζ24 e(ν2)

 ,

N1 =


e(λ1 − ρ1 − ρ2)

e(λ2 − ρ1 − ρ2)
θ11 θ12 1
θ21 θ22 1
θ31 θ32 1
θ41 θ42 1

 ,

N2 =


1 φ11 φ12

1 φ21 φ22

e(µ1 − ρ1 − ρ2)
e(µ2 − ρ1 − ρ2)

φ31 φ32 1
φ41 φ42 1

 ,

N3 =


1 ψ11 ψ12

1 ψ21 ψ22

1 ψ31 ψ32

1 ψ41 ψ42

e(ν1 − ρ1 − ρ2)
e(ν2 − ρ1 − ρ2)

 ,

where

ξij =
e(λi)− e(ρ1)

e(λi)− e(λi′)
· xij for i = 1, 2 with {i, i′} = {1, 2}, j = 1, . . . , 4,

ηij =
e(µi)− e(ρ1)

e(µi)− e(µi′)
· yij for i = 1, 2 with {i, i′} = {1, 2}, j = 1, . . . , 4,

ζij =
e(νi)− e(ρ1)

e(νi)− e(νi′)
· zij for i = 1, 2 with {i, i′} = {1, 2}, j = 1, . . . , 4,
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x11 =
[211]

e(ν1 + 2ρ1 + ρ2)
, x12 =

[111]

e(ν1 + 2ρ1 + ρ2)
,

x13 = − [122]

e(λ1 + µ2 + ν1 + 3ρ1 + ρ2)
, x14 =

[111]

e(λ1 + µ1 + ν1 + 3ρ1 + ρ2)
,

x21 =
[221]

e(ν1 + 2ρ1 + ρ2)
, x22 =

[121]

e(ν1 + 2ρ1 + ρ2)
,

x23 = − [212]

e(λ2 + µ1 + ν1 + 3ρ1 + ρ2)
, x24 =

[221]

e(λ2 + µ1 + ν1 + 3ρ1 + ρ2)
,

y11 =
[121]

e(ρ1)
, y12 =

[111]

e(ρ1)
,

y13 =
[212]

e(λ2 + 3ρ1 + ρ2)
, y14 = − [222]

e(λ2 + 3ρ1 + ρ2)
,

y21 =
[221]

e(ρ1)
, y22 =

[211]

e(ρ1)
,

y23 = − [211]

e(λ1 + λ2 + µ1 + ν1 + ρ1)
, y24 =

[221]

e(λ1 + λ2 + µ1 + ν1 + ρ1)
,

z11 = −e(λ1 + ν1)[221], z12 = −e(λ2 + ν1)[111],

z13 = [221], z14 = [111],

z21 = −e(2ρ1 + ρ2)[121]

e(µ2)
, z22 = −e(2ρ1 + ρ2)[211]

e(µ2)
,

z23 = −[211], z24 =
e(2ρ1 + ρ2)[212]

e(λ2 + µ2 + ν2)
,

and

θij = e(λj − ρ1 − ρ2) · ηij , θ2+i,j = e(−νi) · ζij ,
φij = e(−λi) · ξij , φ2+i,j = e(µj − ρ1 − ρ2) · ζi,2+j ,
ψij = e(νj − ρ1 − ρ2) · ξi,2+j , ψ2+i,j = e(−µi) · ηi,2+j

for i, j = 1, 2. Here we have set

[ijk] = e(λi + µj + νk)− e(2ρ1 + ρ2)

for i, j, k = 1, 2.

3.4. Proof of Theorems 2, 3, and 4. The elements of Mi (i = 1, 2, 3) have
already been determined by Haraoka [3, Thms. 7, 9, and 11]. Applying the following
lemma to the Mi’s, we can easily evaluate the elements of Nj (j = 1, 2, 3).

Lemma 2. Let Mi (i = 1, 2, 3) and Nj (j = 1, 2, 3) be matrices of the form

M1 =

M11 M12 M13

In2

In3

,M2 =

 In1

M21 M22 M23

In3

,M3 =

 In1

In2

M31 M32 M33

,
where Mij is an ni × nj matrix, and

N1 =

N11

N21 In2

N31 In3

, N2 =

In1
N12

N22

N32 In3

, N3 =

In1
N13

In2
N23

N33

,
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where Nij is an ni × nj matrix. Let ε be an element in C \ {0}. Suppose that Mi

(i = 1, 2, 3) and Nj (j = 1, 2, 3) are invertible and satisfy

N1N2N3 = εM3M2M1(3.7)

and

NjMi = MiNj(3.8)

for i, j = 1, 2, 3 with i 6= j. Then we have

N11 = εM11, N21 = εM21M11, N31 = M−1
33 M31,(3.9)

N12 = M−1
11 M12, N22 = εM22, N32 = εM32M22,(3.10)

and

N13 = εM13M33, N23 = M−1
22 M23, N33 = εM33.(3.11)

Proof. We prove (3.10). By direct calculation, we obtain

N1N2N3 =

 N11 ∗ ∗
N21 ∗ ∗
N31 ∗ ∗


and

εM3M2M1 = ε

 M11 M12 ∗
M21M11 M21M12 +M22 ∗
(M31 +M32M21)M11 (M31 +M32M21)M12 +M32M22 ∗

 .

(3.12)

From these with the relation (3.7) we temporarily obtain

N11 = εM11, N21 = εM21M11, N31 = ε(M31 +M32M21)M11,

and hence

N−1
1 =

 ε−1M−1
11

−M21 In2

−(M31 +M32M21) In3

 .(3.13)

From (3.12) and (3.13) we obtain

εN−1
1 M3M2M1 =

 In1 M−1
11 M12 ∗

εM22 ∗
εM32M22 ∗

 .

On the other hand, by the relation (3.7) multiplied by N−1
1 from the left we have

εN−1
1 M3M2M1 = N2N3 =

 In1 N12 ∗
N22 ∗
N32 ∗

 .
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Comparing these expressions, we obtain (3.10).
Starting with the relations

N2N3N1 = εM1M3M2 and N3N1N2 = εM2M1M3,

which are derived from (3.7) with (3.8), we can prove (3.11) and (3.9), respectively,
by the same consideration as above. Thus the proof is complete.
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Abstract. The relativistic Hermite polynomial (RHP) is a class of orthogonal polynomials
associated with varying weights. We study the asymptotics of the zeros of the RHP when both
degree n of polynomials and relativistic parameter N approach infinity.
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1. Introduction. Relativistic Hermite polynomials (RHPs) {H(N)
n (x)}∞n=0 were

introduced in [1] in connection with the wave functions of the quantum relativistic
harmonic oscillator. It was shown in [1] that the RHP satisfies the second-order
differential equation(

1 +
x2

N

)
y′′n −

2

N
(N + n− 1)xy′n +

n

N
(2N + n− 1)yn = 0.(1.1)

Equation (1.1) is a particular case of a second-order hypergeometric-type equation [9]

σ(x)y′′ + τ(x)y′ + λy = 0,(1.2)

where

σ(x) =

(
1 +

x2

N

)
,

τ = − 2

N
(N + n− 1)x,

λ =
n

N
(2N + n− 1).

It is easy to verify that the following relation holds:

λ = −nτ ′ − 1

2
n(n− 1)σ′′.

By solving the equation

[σ(x)ρn(x;N)]′ = τ(x)ρn(x;N),
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one can find the symmetric factor or weight function

ρn(x;N) =

(
1 +

x2

N

)−(N+n)

, N >
1

2
, n = 0, 1, 2, . . . , x ∈ (−∞,∞).(1.3)

Using this weight function, the following orthogonality of the RHP was established in
[1]: ∫ ∞

−∞
xkH(N)

n (x)ρn(x;N)dx = 0, k = 0, 1, . . . , n− 1.(1.4)

That is, {H(N)
n (x)}∞n=0 is a class of orthogonal polynomials with respect to a sequence

of varying weight functions ρn(x). Clearly,

lim
N→∞

ρn(x;N) = e−x
2

and

lim
N→∞

H(N)
n (x) = Hn(x).

So the relativistic Hermite polynomials become classical Hermite polynomials when
the relativistic parameter N →∞.

The distributions of zeros of RHP were studied in [2]. An analytic approximation
for the distribution was derived within the framework of the WKB approximation.

The asymptotics of orthogonal polynomials with respect to varying weights are
closely related to constrained or weighted polynomial approximation. Logarithmic
potential has been extensively used in investigating such asymptotics. We study the
asymptotics of the zeros of RHP when both n and N approach ∞ by using the
potential-theoretic method.

The paper is organized as follows: in order to state our main results, we shall
introduce some basics from potential theory in section 2. Applying a general result
from potential theory developed in [11] to our relativistic weight function, we deter-
mine the support of the equilibrium measure explicitly in section 3. In section 4,
we give an explicit formula for the density function of the equilibrium measure. The
asymptotics of the zeros of the RHP when both n and N approach∞ are determined
in section 5.

2. Basics of potential theory. We shall use logarithmic potentials of Borel
measures. If µ is a finite Borel measure with compact support, then its logarithmic
potential is defined as its convolution with the logarithmic kernel:

Uµ(z) =

∫
log

1

|z − t|dµ(t).

Let E be a closed subset of the real number line. A weight function w on E is said
to be admissible if it satisfies the following three conditions:

(i) w is continuous;
(ii) Cap{x ∈ E | w(x) > 0} > 0;

(iii) Z := {x ∈ E : w(x) = 0} has capacity zero; and
(iv) if E is unbounded, then |x|w(x)→ 0 as |x| → ∞, x ∈ E.
We say that w is strongly admissible if

(i) wq is admissible for every q, 0 < q ≤ 1;
(ii) E is regular, i.e., for all k large, E ∩ [−k, k] is regular with respect to the

Dirichlet problem for its complement on the Riemann sphere, and
(iii) E\Z is interval-like.
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We define Q = Qw by

w(x) = exp(−Q(x)).(2.1)

Then Q : E → (−∞,∞] is continuous everywhere where w is positive, i.e., Q is finite.
Let M(E) be the set of all positive unit Borel measures µ with support S(µ) :=

supp(µ) ⊂ E and define the weighted energy integral

Iw[µ] =

∫∫
log

1

|z − t|w(z)w(t)
dµ(z)dµ(t).

Let

Vw(E) = inf{Iw[µ] | µ ∈M(E)}.

Then the following properties are true (cf. [12], [10]).
(i) Vw(E) is finite.

(ii) There exists a unique µE ∈M(E) such that

Iw(µw) = Vw(E).

Moreover, µw has finite logarithmic energy.
(iii) S(µw) is a compact subset of E.
(iv) The inequality

Uµw(z) +Q(z) ≥ Fw, z ∈ E.(2.2)

(v) The equality

Uµw(z) +Q(z) = Fw, z ∈ S(µw).(2.3)

The measure µw is called the equilibrium or extremal measure in the presence of
an external field, and

Fw = Vw(E)−
∫
Qdµw.(2.4)

In order to state our applications to polynomial extremal problems, we define

En,p(w) := inf{‖[w(x)]n[xn − P (x)]‖E,p : P ∈ Pn−1},

where Pn is the set of all polynomials with degrees ≤ n and

‖f‖E,p :=

(∫
E

|f |pdx
)1/p

,

n = 1, 2, . . . , 0 < p ≤ ∞. The extremal polynomials Tn(x;w, p) = xn + · · · ∈ Pn are
defined by the property

En,p(x) = ‖[w(x)]nTn(x;w, p)‖E,p.

Finally, in this section, we state the following two lemmas.
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Lemma 2.1 (see [6]). Let w be strongly admissible and 0 < p ≤ ∞. Let {tn,k}nk=1

be the zeros of Tn(x;w, p). Then there exists a closed bounded interval I containing
S(µw) and all the zeros of Tn(x;w, p). Moreover,

lim
n→∞

|Tn(x;w, p)|1/n = exp

[∫
log |z − t|dµw(t)

]
uniformly on every compact set of the complex plane disjoint from I,

lim
n→∞

[En,p]
1/n = exp(Fw),

and

lim
n→∞

µn = µw

in the weak-star topology, where

µn(B) :=
1

n
#{k : tn,k ∈ B}, n = 1, 2, . . . ,

for any Borel set B.
Lemma 2.2 (see [6]). Let w be strongly admissible and 0 < p ≤ ∞. Suppose that

I ⊂ R is a closed bounded interval containing S(µw). Let {vn,k}nk=1 be a triangular
scheme of points lying in I. With this scheme, let qn(x) =

∏n
k=1(x − vn,k). Assume

that for some p (0 < p ≤ ∞),

lim
n→∞

‖wnqn‖1/nE,p ≤ exp(Fw).

Then

lim
n→∞

|qn(x)|1/n = exp

[∫
log |z − t|dµw(t)

]
uniformly on every compact set of the complex plane disjoint from I, and

lim
n→∞

µn = µw

in the weak-star topology, where

µn(B) :=
1

n
|{k : vn,k ∈ B}|, n = 1, 2, . . . ,

for any Borel set B.

3. Support of equilibrium measure. A fundamental theorem [5] in weighted
polynomial approximation asserts that every weighted polynomial {wn(x)pn(x)}must
assume its maximum modulus on S(µ), i.e.,

‖wn(x)pn(x)‖E = ‖wn(x)pn(x)‖S(µ),(3.1)

where S(µ) is the support of the equilibrium measure of the set E, and ‖ · ‖E is the
sup norm.
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In this section we determine explicitly the support of the equilibrium measure S(µ)
for the weight function ρn(x;N). To find S(µ), we shall need to directly maximize
the following F -functional [5]:

F (a, b) = log

(
(b− a)

4

)
− 1

π

∫ b

a

Q(x)√
(x− a)(b− x)

dx.

We define wn(x) = ρ
1
2n
n (x;N). Then we have

Qn(x) = log
1

wn(x)
=

(
1

2
+
N

2n

)
log

(
1 +

x2

N

)
.

Since Qn(x) is an even function, the F -functional can be written as follows:

F (a) := f(−a, a) = log a− 1

π

(
1 +

N

n

)∫ a

0

log

(
1 +

t2

N

)
√
a2 − t2

dt− log 2.

By an elementary integral formula [3],∫ 1

0

log(1 + bx2)√
1− x2

ds = π log
1 +
√

1 + b

2
.

We have

F (a) = log
a

2
−
(

1 +
N

n

)
log

1 +
√

1 + a2

N

2
.

It is now elementary to check that the choice of a = an, which maximizes F (−a, a),
is given by

an =

√
n(n+ 2N)

N
.(3.2)

Therefore, we have determined the support [−an, an] of equilibrium measure corre-
sponding to varying weight ρn(x;N).

Furthermore, we can determine the constant Fwn ,

Fwn = log
an
2
−
(

1 +
N

n

)
log

1 +
√

1 +
a2
n

N

2
.

We note that

lim
N→∞

an =
√

2n,

lim
n→∞

Fwn = −1

2
logN,

which concides with the results of [8]. We remark here that, although we use a
potential-theoretic approach similar to the one used in [8], our approach is more
direct. We shall continue our investigation along the same direction to determine the
equilibrium measure.
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4. Equilibrium measure. In section 3, we determined the support S(µn) =
[−an, an] of equilibrium measure µn associated with varying weight wn(x). In this
section, we apply a general formula [12, p. 53] for the density function of the equilib-
rium measure to our weight function wn(x) and find the following theorem.

Theorem 4.1.

dµn(t) = gn(t)dt =
N

nπ

√
a2
n − t2

N + t2
dt, t ∈ S(µn).(4.1)

Proof. It was shown in [12, Lem. 5.1] that the integral equation∫ 1

−1

log
1

|x− t|g(t)dt = −Q(x) + C,

where C is some constant, has a solution g(t) of the form

g(t) =
2

π2

√
1− t2

∫ 1

0

sQ′(s)− tQ′(t)
(1− s2)1/2(s2 − t2)

ds+
D1√
1− t2

,(4.2)

where

D1 =
1

π
− 1

π2

∫ 1

−1

sQ′(s)√
1− s2

ds.(4.3)

g(t) is even and has total integral 1 over [−1, 1]. Apply (4.2) and (4.3) to

Qn(anx) =

(
1

2
+
N

2n

)
log

(
1 +

a2
nx

2

N

)
,

and we get

gn(t) =
N

nπ

√
a2
n − t2

N + t2
.

We note that

lim
n→∞

gn(t) =

√
N

π(N + t2)
, t ∈ (−∞,∞).

5. Asymptotics of zeros. In this section, we study the zeros distribution of

H
(N)
n (x) for n, N → ∞. The following lemma tells us that the support of H

(N)
n (x)

“lives” also in some compact set in L2.
Lemma 5.3. For w(x) = (1 + x2/N)(−N−n)/2, there is a positive constant A

independent of n, N, such that, for p ∈ Pn,

‖w(x)p(x)‖(−∞,∞),2 ≤ 2‖w(x)p(x)‖[−Aan,Aan],2.

Proof. The proof can be found in [4] for the fixed weight. Here we have a varying
weight, so we may proceed exactly as in Theorem 5.2 in [4] to get the lemma.

The next theorem will discuss the location of the zeros of H
(N)
n (x).



1254 MATTHEW HE, K. PAN, AND PAOLO E. RICCI

Theorem 5.2. For w(x) = (1 + x2/N)(−N−n)/2, there is a positive constant D

independent of n, N, such that all the zeros of H
(N)
n (x) lie in [−Dan, Dan].

Proof. Let Xn,N denote the largest zero of H
(N)
n (x). Suppose now that ∀A > 0

there exist n, N such that Xn,N > Aan. Let

tn,N (x) :=
x−Aan
x−Xn,N

H(N)
n (x).

Then, for x ∈ [−Aan, Aan],

|tn,N (x)| ≤ 2Aan
Xn,N −Aan

|H(N)
n (x)|.

Hence, from the lemma above, we have

‖w(x)tn,N (x)‖(−∞,∞),2

≤ 2‖w(x)tn,N (x)‖[−Aan,Aan],2

≤ 2

(
2Aan

Xn,N −Aan,N

)
‖w(x)H(N)

n (x)‖[−Aan,Aan],2

≤ 2

(
2Aan

Xn,N −Aan,N

)
‖w(x)H(N)

n (x)‖(−∞,∞),2.

Thus, since H
(N)
n (x) is extremal, the inequality implies that 1 ≤ 4Aan/(Xn,N −Aan),

that is, Xn,N ≤ 5Aan.
Now, we consider the case in which both n and N converge to ∞ with the same

rate.
Theorem 5.3. Let N = λn and an be as in (3.2), where λ is a fixed number.

Then

lim
n→∞

|H(N)
n (anx)| 1n = exp

[∫ 1

−1

log |z − t|dµ(t)

]
locally uniformly in C\[−1, 1], where

dµ(t) =
λ(1 + 2λ)

π

√
1− t2

λ2 + (1 + 2λ)t2
dt.

Furthermore, let {tn,k}nk=1 be the zeros of H
(N)
n (anx) and B be a Borel set. Define

µn :=
1

n
|{k : tn,k ∈ B}|, n = 1, 2, . . . ;

then

lim
n→∞

µn = µ

in the weak-star topology.
Proof. Let

w(x) =

(
1 +

(1 + 2λ)

λ2
x2

)− 1+λ
2

.
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Let tn(x) = xn + · · · be the extremal polynomial for the sup norm on [−1, 1],

‖w(x)ntn(x)‖ = inf
pn=xn+···

‖w(x)npn(x)‖,

and Tn(x) = anntn( x
an

). Notice that an =
√

(1 + 2λ)n/λ; then

‖w(x)nH
(N)
n (anx)‖[−1,1],2

=

∥∥∥∥∥
(

1 +
(1 + 2λ)

λ2
x2

)− 1+λ
2 n

H(N)
n (anx)

∥∥∥∥∥
[−1,1],2

=

∥∥∥∥∥
(

1 +
(1 + 2λ)

λ2

x2

a2
n

)− 1+λ
2 n

H(N)
n (x)

∥∥∥∥∥
[−an,an],2

≤
∥∥∥∥∥
(

1 +
x2

λn

)− 1+λ
2 n

H(N)
n (x)

∥∥∥∥∥
(−∞,∞),2

≤
∥∥∥∥∥
(

1 +
x2

λn

)− 1+λ
2 n

Tn(x)

∥∥∥∥∥
(−∞,∞),2

≤
∥∥∥∥∥
(

1 +
x2

λn

)− 1+λ
2 n

Tn(x)

∥∥∥∥∥
−(∞,∞),∞

=

∥∥∥∥∥
(

1 +
x2

λn

)− 1+λ
2 n

Tn(x)

∥∥∥∥∥
[−an,an],∞

=

∥∥∥∥∥
(

1 +
(1 + 2λ)

λ2
x2

)− 1+λ
2 n

Tn(anx)

∥∥∥∥∥
[−1,1],∞

=

∥∥∥∥∥
(

1 +
(1 + 2λ)

λ2
x2

)− 1+λ
2 n

anntn(x)

∥∥∥∥∥
[−1,1],∞

.

Thus we have∥∥∥∥[w(x)]n
Hn(anx)

ann

∥∥∥∥ 1
n

[−1,1],2

≤
∥∥∥∥∥
(

1 +
(1 + 2λ)

λ2
x2

)− 1+λ
2 n

tn(x)

∥∥∥∥∥
1/n

[−1,1],∞

.(5.1)

For the weight w, notice that tn(x) is the extremal for w, and from Lemma 1, we have

lim sup
n→∞

∥∥∥∥w(x)n
Hn(anx)

ann

∥∥∥∥ 1
n

[−1,1],2

≤ exp(Fw).

Notice that Hn(anx)
ann

= xn + · · · and the zeros of H
(N)
n (anx) lie in [−D,D]. From

Lemma 2, we have the proof of the theorem.
Theorem 5.4. Let N = λnn and an be as in (3.2). If λn →∞, then

lim
n→∞

|H(N)
n (anx)| 1n = exp

[∫ 1

−1

log |z − t|dν(t)

]
locally uniformly in C\[−1, 1], where

dν(t) =
2

π

√
1− t2 dt.
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Furthermore, let the sequence of unit measures {νn}∞n=1 be

νn :=
1

n
|{k : tn,k ∈ B}|, n = 1, 2, . . . ,

where B is a Borel set and {tn,k}nk=1 are the zeros of H
(N)
n (anx). If λn →∞, then

lim
n−∞

νn = ν

in the weak-star topology.
Proof. In the proof of (5.1), it is easy to see that for any pn(x) = xn + · · · ∈ Pn,

we have ∥∥∥∥∥
(

1 +
(1 + 2λn)

λ2
n

x2

)− 1+λn
2 n

Hn(anx)

ann

∥∥∥∥∥
[−1,1],2

(5.2)

≤
∥∥∥∥∥
(

1 +
(1 + 2λn)

λ2
n

x2

)− 1+λn
2 n

pn(x)

∥∥∥∥∥
[−1,1],∞

.

Here, we consider w(x) = e−x
2

on [−1, 1]; the equilibrium measure is dν =
2
π

√
1− t2 dt [7]. Choose pn(x) = Tn(x;w,∞); from (5.2), we have∥∥∥∥∥[w(x)]n

H
(N)
n (anx)

ann

∥∥∥∥∥
[−1,1],2

=

∥∥∥∥∥e−nx2H
(N)
n (anx)

ann

∥∥∥∥∥
[−1,1],2

≤
∥∥∥∥∥e−nx2

(
1 +

(1 + 2λn)

λ2
n

x2

) 1+λn
2 n

∥∥∥∥∥
[−1,1],2

∥∥∥∥∥
(

1 +
(1 + 2λn)

λ2
n

x2

)− 1+λn
2 n

H
(N)
n (anx)

ann

∥∥∥∥∥
[−1,1],2

≤
∥∥∥∥∥e−nx2

(
1 +

(1 + 2λn)

λ2
n

x2

) 1+λn
2 n

∥∥∥∥∥
[−1,1],2

∥∥∥∥∥
(

1 +
(1 + 2λn)

λ2
n

x2

)− 1+λn
2 n

Tn(x;w,∞)

∥∥∥∥∥
[−1,1],∞

≤
∥∥∥∥∥e−nx2

(
1 +

(1 + 2λn)

λ2
n

x2

) 1+λn
2 n

∥∥∥∥∥
[−1,1],2

∥∥∥∥∥enx2

(
1 +

(1 + 2λn)

λ2
n

x2

)− 1+λn
2 n

∥∥∥∥∥
[−1,1],∞

×
∥∥∥e−nx2

Tn(x;w,∞)
∥∥∥

[−1,1],∞
.

Notice that, as λn →∞,

lim
n→∞

∥∥∥∥∥e−nx2

(
1 +

(1 + 2λn)

λ2
n

x2

) 1+λn
2 n

∥∥∥∥∥
1/n

[−1,1],2

= 1

and

lim
n→∞

∥∥∥∥∥enx2

(
1 +

(1 + 2λn)

λ2
n

x2

)− 1+λn
2 n

∥∥∥∥∥
1/n

[−1,1],∞

= 1;
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then

lim
n→∞

∥∥∥∥∥[w(x)]n
H

(N)
n (anx)

ann

∥∥∥∥∥
1/n

[−1,1],2

≤ eFw .

From Lemma 2, this completes the proof of the theorem.
For the case when N is fixed and n→∞, see [8].
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Abstract. The cardinal B-splines Bj,n, j ∈ Z, of order n form an orthonormal sequence in the

Sobolev space Hn−1,2(R) endowed with the norm ‖f‖2
ω(n)

:=
∑n−1

µ=0
ωµ(n)‖∂µf‖2 for certain posi-

tive weights ωµ(n). These weights are specified explicitly. Further, an application to approximation
theory is discussed.

Key words. B-spline, Sobolev space, orthogonality, approximation
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1. Preliminaries. In this section we shall briefly introduce some basic concepts
from B-spline theory and functional analysis; see, e.g., [4], [3], [1], and [5] for an
introduction to these topics.

For m ∈ N denote by 〈·, ·〉, 〈·, ·〉m the inner products and by ‖ ·‖, ‖ ·‖m the norms
of the Hilbert spaces L2(R) and Hm,2(R), respectively. Let ω := [ω0, . . . , ωm] be a
vector of positive weights, and define the weighted Sobolev space Hm,2

ω (R) by providing
Hm,2(R) with the inner product

(f, g)ω :=
m∑
µ=0

ωµ〈∂µf, ∂µg〉 .(1.1)

Evidently, the induced norm ‖ · ‖ω is equivalent to the standard norm ‖ · ‖m obtained
for ωµ = 1,

min
µ

√
ωµ ‖f‖m ≤ ‖f‖ω ≤ max

µ

√
ωµ ‖f‖m .(1.2)

Thus, the fundamental properties of Hm,2(R) extend to Hm,2
ω (R). In particular,

Hm,2
ω (R) is continuously embedded into Ck(R) for 0 ≤ k < m (see [1]); i.e., there

exist constants Γ(k,m, ω) such that

‖∂kf‖∞ ≤ Γ(k,m, ω) ‖f‖ω .(1.3)

The Fourier transform F : f 7→ f̂ and its inverse are given by

f̂(y) =
1√
2π

∫ ∞
−∞

f(x) exp(−ixy) dx , f(x) =
1√
2π

∫ ∞
−∞

f̂(y) exp(ixy) dy .(1.4)

Strictly speaking, (1.4) is defined for functions f ∈ L1(R), but F can be extended to
L2(R) by a limiting process. Now F is an isometry in L2(R); i.e.,

〈f, g〉 = 〈f̂ , ĝ〉 , ‖f‖ = ‖f̂‖(1.5)

∗Received by the editors January 2, 1996; accepted for publication (in revised form) June 5, 1996.
This research was supported by Bundesministerium für Bildung und Forschung (Germany) Projekt
03–HO7STU–2.
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for all f, g ∈ L2(R). Further, if f(x) ≤ C (1 + |x|)−1−δ and f̂(y) ≤ C (1 + |y|)−1−δ for
some constants C, δ > 0, then the Poisson summation formula holds [5, p. 252]:∑

j∈Z

f(j) =
√

2π
∑
k∈Z

f̂(2πk) .(1.6)

Denote by Bj,n,h the uniform B-spline of order n ∈ N with knot sequence hZ and
support suppBj,n,h = h[j, j + n]. The cardinal B-splines Bj,n = Bj,n,1 are obtained
for h = 1. Let

s(y) :=

{
2 sin(y/2)/y for y 6= 0,
1 for y = 0;

(1.7)

then the Fourier transforms of Bj,n and its derivatives are given by

∂̂µBj,n(y) = (iy)µ exp(−iy(j + n/2)) sn(y)/
√

2π;(1.8)

see [4, p. 139]. Note that

∂µsn(y)|y=2kπ
= 0 for k ∈ Z\{0} , 0 ≤ µ < n .(1.9)

Further, with Bk as the Bernoulli numbers, the Taylor expansion of 1/s at the origin
is (see [2])

1/s(y) = 1 +

∞∑
k=1

(2k−1 − 1)Bk
22k(2k)!

y2k .(1.10)

The spline space Sn,h := spanBj,n,h consists of linear combinations of B-splines
b :=

∑
j∈Z bjBj,n,h. With a slight abuse of notation, b will denote both the function

and the bi-infinite column vector [bj ]j∈Z of B-spline coefficients.
For an even analytic function f , let [f ]m := [f0, . . . , fm−1] be the vector of the first

m coefficients of the power series f(x) =
∑∞
j=0 fjx

2j . Denote by ∗ the convolution

operator and by a∗k the (k − 1)-fold convolution of a vector a with itself; i.e.,

∗ : Rm × Rm 7→ Rm , (a ∗ b)ν :=
ν∑
µ=0

aν−µbµ,(1.11)

a∗k := a ∗ a∗(k−1) , a∗1 := a;(1.12)

then

[fg]m = [f ]m ∗ [g]m , [fk]m = [f ]∗km .(1.13)

2. Weights providing orthonormality. The cardinal B-splinesBj,n have com-
pact support and a piecewise constant derivative of order n−1; thus Bj,n ∈ Hn−1,2

ω (R)
for arbitrary ω. It is the main result of this paper that ω = ω(n) can be chosen such
that {Bj,n, j ∈ Z} becomes an orthonormal sequence.

Theorem 2.1. The sequence {Bj,n, j ∈ Z} is orthonormal in Hn−1,2
ω(n) (R) if and

only if

ω(n) := [1/s]∗2nn .(2.1)



1260 ULRICH REIF

In particular, ωµ(n) > 0 for all n ∈ N and 0 ≤ µ < n.
Proof. Since (Bj1,n, Bj2,n)ω = (Bj2,n, Bj1,n)ω = (B0,n, B|j2−j1|,n)ω, it suffices to

consider inner products of type (B0,n, Bj,n)ω, j ≥ 0. For j ≥ n the supports of B0,n

and Bj,n are disjoint; hence (B0,n, Bj,n)ω = 0. For j = 0, . . . , n − 1, we obtain using
(1.5) and (1.8)

(B0,n, Bj,n)ω =
n−1∑
µ=0

ωµ 〈∂µB0,n, ∂
µBj,n〉

=

n−1∑
µ=0

ωµ
2π

∫ ∞
−∞

y2µs2n(y) exp(ijy) dy

=

n−1∑
µ=0

(−1)µ ωµ ∂
2µB0,2n(j + n) .(2.2)

Define the column vector e by ej := δj,0 and the n× n-matrices P, Q by

Pj,µ := (−1)µ∂2µB0,2n(j + n),(2.3)

Qν,j :=
2(−1)νj2ν

(2ν)!
− δν,0δj,0 .(2.4)

Scaling the rows of Q appropriately yields the Vandermonde-matrix with entries j2ν .
Thus Q is invertible, and orthonormality of {Bj,n, j ∈ Z} is equivalent to

QPω = Qe = e .(2.5)

For computing the product matrix R := QP the summation array j = 0, . . . , n−1 can
be transformed to Z exploiting B0,2n(j+n) = B0,2n(−j+n) and suppB0,2n = [0, 2n],

Rν,µ =
n−1∑
j=0

Qν,jPj,µ =
(−1)ν+µ

(2ν)!

∑
j∈Z

j2ν∂2µB0,2n(j + n) .(2.6)

So, (1.6) becomes applicable, and we obtain the following using (1.9):

Rν,µ =
1

(2ν)!

∑
k∈Z

∂2ν
(
y2µs2n(y)

)
|y=2kπ

=
1

(2ν)!

∑
k∈Z

2ν∑
`=0

(
2ν

`

)
∂`
(
y2µ
)
|y=2kπ

∂2ν−`(s2n(y)
)
|y=2kπ

=
1

(2ν)!

2ν∑
`=0

(
2ν

`

)
∂`
(
y2µ
)
|y=0

∂2ν−`(s2n(y)
)
|y=0

=

{
0 for ν < µ,

1
(2ν−2µ)! ∂

2(ν−µ)
(
s2n(y)

)
|y=0

for ν ≥ µ .(2.7)

Consequently, Rω = [s2n]n ∗ ω, and setting ω(n) = [1/s]∗2nn yields

Rω(n) = [s2n]n ∗ [1/s]∗2nn = [s2n]n ∗ [1/s2n]n = [1]n = e .(2.8)

The solution is positive for all n ∈ N by (1.10) and unique since detR = 1.
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Table 2.1

Weights ω(n) for n ≤ 7.

n ω0(n) ω1(n) ω2(n) ω3(n) ω4(n) ω5(n) ω6(n)

1 1

2 1 1
6

3 1 1
4

1
30

4 1 1
3

7
120

1
140

5 1 5
12

13
144

41
3024

1
630

6 1 1
2

31
240

139
6048

479
151200

1
2772

7 1 7
12

7
40

311
8640

37
6480

59
79200

1
12012

Table 2.1 shows the weights ω(n) for n ≤ 7. The result of Theorem 2.1 can be
readily generalized to uniform B-splines by scaling.

Corollary 2.2. The sequence {Bj,n,h, j ∈ Z} is orthonormal in Hn−1,2
ω(n,h)(R) if

and only if

ωµ(n, h) := h2µ−1ωµ(n) .(2.9)

3. An application. A typical application, where the orthonormality of B-splines
is of advantage, is the approximation of functions by splines.

Theorem 3.1. For f ∈ Hn−1,2(R), consider the approximation problem

‖f − g‖ω(n,h) → min , g ∈ Sn,h .(3.1)

The B-spline coefficients of the solution Qhf =
∑
j∈Z(Qhf)jBj,n,h are given by

(Qhf)j := (f,Bj,n,h)ω(n,h) .(3.2)

Thus, the projection Qh := Hn−1,2(R) → Sn,h is local in the sense that (Qhf)(x)
depends only on the restriction of f to the interval [x− nh, x+ nh].

Proof. The proof is trivial.
The approximation error satisfies the following estimates.
Theorem 3.2. For f ∈ Hn−1,2(R)∩Hn,∞(R) and k ∈ [0, . . . , n− 1] there exists

a constant C depending only on n and k such that

‖∂k(f −Qhf)‖∞ ≤ C hn−k ‖∂nf‖∞ .(3.3)

Moreover, for f ∈ Hn−1,2(R) and 0 ≤ k ≤ n− 2,

‖∂k(f −Qhf)‖∞ ≤ Γ(k, n− 1, ω(n, h))‖f −Qhf‖ω(n,h)

= Γ(k, n− 1, ω(n, h))

‖f‖2ω(n,h) −
∑
j∈Z

f2
j

1/2

(3.4)

with the constant declared in (1.3).
Proof. Let Ph := Cn(R) 7→ Sn,h be a standard quasi interpolant of order n. Set

∆h := f − Phf ; then

‖∂k∆h‖∞ ≤ C1 h
n−k‖∂nf‖∞(3.5)
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with C1 some constant depending only on n and k (see [4, p. 229]). Sn,h is invariant
under Qh (i.e., QhPh = Ph), so

‖∂k(f −Qhf)‖∞ = ‖∂k(∆h −Qh∆h)‖∞
≤ C1 h

n−k‖∂nf‖∞ + ‖∂k(Qh∆h)‖∞ .(3.6)

Using
∫

R ∂
νBj,n,h(x) dx = h1−ν ∫

R ∂
νB0,n(x) dx, we obtain for the second summand

‖∂kQh∆h‖∞ ≤
∑
j∈Z

|(∆h, Bj,n,h)ω(n,h)| ‖∂kBj,n,h‖∞

≤ h−k ‖∂kB0,n‖∞ sup
j∈Z
|(∆h, Bj,n,h)ω(n,h)|

≤ ‖∂kB0,n‖∞
n−1∑
ν=0

h2ν−k−1 ων(n) sup
j∈Z
|〈∂ν∆h, ∂

νBj,n,h〉|

≤ C2 h
n−k ‖∂nf‖∞ .(3.7)

The constant C2 also depends only on n and k; thus, (3.3) holds with C := C1 + C2.
(3.4) is an immediate consequence of (1.3).

Since Qhf depends only locally on f , the domain of Qh can be extended signifi-
cantly.

Corollary 3.3. For f ∈ Hn−1,2
loc (R)∩Hn,∞

loc (R) (i.e., f|r ∈ Hn−1,2(r)∩Hn,∞(r)
for any compact interval r ⊂ R), the operator Qh is well defined by (3.2), and in
analogy to (3.3), the estimate

‖∂k(f −Qhf)(x)‖ ≤ C hn−k ‖∂nf|[x−nh,x+nh]
‖∞(3.8)

holds for 0 ≤ k < n.
The numerical evaluation of (3.2) can be made efficient by using the identity

〈∂µf, ∂µBj,n,h〉 =

{
(−1)µ 〈f, ∂2µBj,n,h〉 if 2µ < n,
(−1)µhn! [hj, . . . , h(j + n)]∂2µ−nf if 2µ ≥ n.(3.9)

The benefit is that the derivatives of f have to be evaluated solely at the knots and
not at the multitude of arguments required by the quadrature scheme. (3.9) is based
on repeated integration by parts. In the second case, the process stops, when the
B-spline has been transformed to ∂n−1Bj,n,h, which is piecewise constant. Thus, the
integral can be evaluated and yields the given divided difference. A more detailed
proof is not very instructive in this context.

In many applications, approximation is subject to a finite number of linear con-
straints, say Hermite interpolation at certain points. It turns out that the solution of
such a problem is simply obtained by an orthogonal projection of the unconstrained
approximant Qhf on the feasible set.

Theorem 3.4. For f ∈ Hn−1,2(R), consider the constrained approximation
problem

‖f − g‖ω(n,h) → min , Λg = λ , g ∈ Sn,h ,(3.10)

where Λ is a full rank matrix with k absolutely summable bi-infinite rows. The solution
QΛ
hf =

∑
j∈Z(QΛ

hf)jBj,n,h is given by

(QΛ
hf) := (Qhf)− ΛT (ΛΛT )−1(ΛQhf − λ) .(3.11)
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Proof. Note that ΛQhf is well defined since (Qhf)j is bounded by

|(Qhf)j | ≤ ‖Bj,n,h‖ω(n,h)‖f‖ω(n,h) = ‖B0,n,h‖ω(n,h)‖f‖ω(n,h) .(3.12)

Introducing the vector p of Lagrange multipliers, (3.10) is equivalent to

QΛ
hf + ΛT p = Qhf,(3.13)

ΛQΛ
hf = λ .(3.14)

Multiplication of the first equation by Λ and substitution yields (ΛΛT )p = ΛQhf−λ.
The k × k-matrix (ΛΛT ) is invertible; thus (3.11) follows.

The benefits of approximation in Hm,2
ω(n,h)(R) with orthonormal B-splines are ev-

ident. First, Qh is local and can be computed explicitly and efficiently using (3.9).
Second, (3.3) indicates that the approximation order of Qh is optimal. This property
is shared by a large family of quasi interpolants, but Qh stands out due to the fact that
it is the best approximation with respect to a reasonable inner product, measuring
the total deviation of function values and certain derivatives. Third, (3.4) guarantees
that if the approximation is good in Hn−1,2

ω(n,h)(R), then the maximum norm of the error

is small. This feature is of particular importance in many applications, where the
absolute error is required to be smaller than a given tolerance, everywhere. Fourth,
constrained approximation simply splits into solving the unconstrained problem and
a subsequent projection step.

Acknowledgment. The author thanks Klaus Höllig for helpful comments.
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Abstract. In this paper, we consider three problems related to the mathematical study of
vortex phenomena in superconductivity based on the G–L models. First, we study the long-time
behavior of the solutions of the time-dependent Ginzburg–Landau equations. Then we describe
results concerning the pinning effect of thin regions in a variable thickness thin film. Finally, we
prove the existence of vortex-like solutions to the steady state Ginzburg–Landau equations and
study the hysteresis phenomenon near the lower critical field.
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1. Introduction. Below the critical temperature Tc, the response of a super-
conducting material to an externally imposed magnetic field is most conveniently
described by the diagram given in Figure 1, which shows the minimum energy state
of the superconductor as a function of H0, the applied magnetic field, and the di-
mensionless material parameter κ (known as the Ginzburg–Landau parameter). The
parameter κ determines the type of superconducting material [10]. For κ < 1√

2
, type-I

superconductors, there is a critical magnetic field HC below which the material will
be the superconducting Meissner state but above which it will be in the normal state.
For κ > 1√

2
, type-II superconductors, there is a third state known as the mixed (or

vortex) state. The vortex state consists of many normal filaments embedded in a
superconducting matrix. Each of these filaments carries with it a quantized amount
of magnetic flux and is circled by a vortex of superconducting current. Thus, these
filaments are often know as vortex lines. One of the most challenging problems to
mathematicians working on the superconductivity models is to understand vortex
phenomena in type-II superconductors, which include the recently discovered high-
temperature superconductors.

The transition from the normal state to the vortex state takes place by a bifur-
cation as the magnetic field is lowered through some critical value HC2 . The critical
field HC1

, on the other hand, is calculated so that at this field the energy of the wholly
superconducting solution becomes equal to the energy of the single vortex filament
solution for infinite superconductors.

The vortex structures have been studied extensively on the mezoscale by using the
well-known Ginzburg–Landau (G–L) models of superconductivity [10, 13, 14]. The
existence of vortex-like solutions for the full nonlinear G–L equations has been inves-
tigated by researchers using methods ranging from asymptotic analysis to numerical
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Fig. 1. The various states of superconductors.

simulations; however, it has not been justified by rigorous mathematical analysis.
Much progress has been made in recent years [3, 20, 21] to establish a mathematical
framework for a rigorous description of both the static and dynamic properties of
the vortex solutions; in particular, as the coherence length tends to zero (κ goes to
infinity), various results have been obtained. From a technological point of view, this
is of interest since recently discovered high critical temperature superconductors are
known to have large values of κ, say κ in excess of 50.

Vortex lines may move as a result of internal interactions between these filaments
and external forces (due to applied fields or thermal fluctuations) acting on them.
Unfortunately, such vortex motion in an applied magnetic field induces an effective
electrical resistance in the material and, thus, a loss of superconductivity. Therefore,
it is crucial to understand the dynamic of these vortex lines. At the same time, one is
interested in studying mechanisms that can pin the vortices at a fixed location, i.e.,
prevent their motion. Various such mechanisms have been advanced by physicists,
engineers, and material scientists. For example, normal (nonsuperconducting) impu-
rities in an otherwise superconducting material sample are believed to provide sites
at which vortices are pinned. Likewise, regions of the sample that are thin relative to
other regions are also believed to provide pinning sites. These mechanisms have been
introduced into the general G–L framework to derive various variants of the original
G–L models of superconductivity. Numerical simulation clearly suggests the pinning
effect.

In this paper, we deal with three independent problems, yet all of them are related
to the study of vortex phenomena. First we study the long-time behavior of the
solutions of the time-dependent G–L equations and the main result is Theorem 2.1.
Then we describe results (Theorems 3.1–3.5) concerning the pinning effect of thin
regions in a variable thickness thin film, based on the models developed in [6, 12],
and finally, we prove the existence of vortex-like solutions to the steady state G–L
equations (Lemma 4.1) and study the hysteresis phenomenon near the lower critical
field.

Before addressing the above problems, we introduce the notation and the models
that will be used in the paper. The starting point of our study is the phenomenological
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model due to Ginzburg and Landau for superconductivity in isotropic, homogeneous
material samples. Let Ω be a smooth bounded domain in RI 3, occupied by the su-
perconducting material. By ignoring the effect of the region exterior to the sample,
the steady state model can be stated as a minimization problem of the free energy
functional

G(ψ,A) =

∫
Ω

{
fn + a|ψ|2 +

b

2
|ψ|4 +

1

2ms

∣∣∣(ih∇+
es
c

A
)
ψ
∣∣∣2

+
µs
8π

h · (h− 2H0)

}
dΩ ,(1)

where fn is the free energy density of the nonsuperconducting state in the absence of
a magnetic field, ψ is the (complex-valued) superconducting order parameter, A is the
magnetic vector potential, h = (1/µs)curlA is the magnetic field, H0 is the applied
magnetic field, a and b are constants whose values depend on the temperature and
such that b > 0, es is the mass of the superconducting charge carriers which is twice
the electronic charge e, c is the speed of light, µs is the permeability, and 2πh is
Planck’s constant. It can be rewritten in nondimensionalized form:

G(ψ,A) =

∫
Ω

(
1

2
(1− |ψ|2)2 +

∣∣∣∣
(
i

κ
∇+ A

)
ψ

∣∣∣∣
2

+ |curlA−H0|2
)
dx,(2)

where κ is the so-called G–L parameter.
The functional G(ψ,A) has an interesting gauge invariance property and the min-

imization of G in appropriate functional spaces gives the following system of nonlinear
differential equations that are named the G–L equations:

(
i

κ
∇+ A

)2

ψ − ψ + |ψ|2ψ = 0 in Ω,(3)

curl curlA =
i

2κ
(ψ∇ψ∗ − ψ∗∇ψ)− |ψ|2A in Ω,(4)

along with natural boundary conditions

curlA ∧ n = H0 ∧ n on ∂Ω(5)

and (
i

κ
∇ψ + Aψ

)
· n = 0 on ∂Ω,(6)

where n is the exterior normal to the boundary ∂Ω. The G–L vortices are represented
by the zeros of the complex order parameter ψ. In section 4, we will prove the existence
of vortex solutions to the above system when κ is large and the applied field is near
the lower critical field.

Equations (3)–(4) are the steady state G–L equations. The time-dependent G–L
model is often described by the Gorkov–Eliashberg evolution equation [17]:


η
∂ψ

∂t
+ i η κΦψ +

(
i

κ
∇+ A

)2

ψ − ψ + |ψ|2 ψ = 0,

∂A

∂t
+∇Φ + curl curl A = − i

2κ
(ψ∗∇ψ − ψ∇ψ∗)−A|ψ|2.

(7)
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Here, Φ denotes the (real) scalar electric potential, η is a relaxation parameter, and
ψ∗ denotes the complex conjugate of ψ. For simplicity, we take η = 1 in the rest of
the paper.

The system is supplemented by the initial and boundary conditions

ψ (x, 0) = ψ0(x), A(x, 0) = A0(x), x ∈ Ω;(8)




(
i

κ
∇+ A

)
ψ · n = 0,

curl A ∧ n = H0 ∧ n,(
∂A

∂t
+∇Φ

)
· n = ~E · n = 0 on ∂Ω.

(9)

Note that (7) and (9) are gauge invariant [11], in the sense that if (ψ, A, Φ) is
a solution, then so is (ψχ, Aχ, Φχ), where

ψχ = ψ ei κ χ, Aχ = A +∇χ, Φχ = Φ− ∂χ

∂t
.

The dynamics of vortices can be determined from the solutions of the time-dependent
equations (7)–(9). The long-time asymptotic behavior of solutions of equations (7)–(9)
as t→∞ will be studied later in section 2.

For type-II superconductors, the minimizers of G are believed to exhibit vortex
structures. Numerical experiments show that for large values of κ and moderate field
strength, the number of vortices could be exceedingly large even for a small sample
size in actual physical scale. Thus, resolving the vortex phenomenon by using the full
G–L equations remains computationally intensive.

Various simplifications have been made to reduce the complexity. For thin films
of superconducting material, a two-dimensional model has been developed [6, 12] that
can account for thickness variations through an averaging process. The model is given
by the following minimization problem:

Gaε (ψ) =

∫
Ω

a(x)

(
|(∇− iA0)ψ|2 +

1

2ε2
(1− |ψ|2)2

)
dx,(10)

where Ω denotes the platform of the film, a(x) measures the relative thickness of the
film, and A0 is a prescribed vector potential due to the normal (to film) component
of the applied field. The role of the Ginzburg–Landau parameter κ is assumed by the
parameter ε(∝ 1/κ).

It was proved that for fixed ε, the minimizers of the above problem, along with
the prescribed vector potential A0, provide the leading order approximation to the
solution of the three-dimensional problem [6]. The creation and interaction of vortices
based on the above model is connected to the prescribed magnetic potential. The
number of vortices cannot be prescribed a priori, independently of A0. To simplify the
analysis further, a simpler problem, in which the number of vortices is prescribed and
the magnetic potential is ignored, can be studied. By rescaling the spatial variables,
one may consider the minimization of the functional

Fa
ε (ψ) =

∫
Ω

a(x)

(
|∇ψ|2 +

1

2ε2
(1− |ψ|2)2

)
dx(11)
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with the boundary condition

ψ(x) = g(x) for x ∈ ∂Ω,(12)

where g is smooth with |g(x)| = 1,x ∈ ∂Ω. This can be viewed as a generalization of
the problem studied in [3, 20] in which a(x) ≡ 1, i.e.,

Fε(ψ) =

∫
Ω

(
|∇ψ|2 +

1

2ε2
(1− |ψ|2)2

)
dx.(13)

The pinning effect of the variable thickness will be studied in section 3 by exam-
ining the properties of minimizers of (10) and (11).

The rest of the paper is devoted to the problems we have discussed above.

2. The uniqueness of the asymptotic limit. The global existence and unique-
ness (up to gauge transformations) of classical solutions of (7)–(9) have been studied
by various authors, e.g., [7, 11, 28]. The dynamics of vortices (including the simpler
case which ignores the magnetic field) have been studied by [15, 16, 23, 24, 25] and
recently proved in [22]. In [28], the long-time behavior, in particular the existence of
the global attractor, is also investigated. Here, we shall sketch the proof of the asymp-
totic stability result, which shows that, as t → ∞, (7)–(9) has a unique asymptotic
limit up to gauge transformations.

As in [11], one may choose the so-called zero electric potential gauge for system
(7)–(9). To do so, one must solve

∂χ
∂t

= Φ(14)

and, at t = 0,

∆χ = −divA in Ω with ∇χ · n = −A · n on ∂Ω.(15)

Thus, in this gauge, Φ ≡ 0 and system (1) reduces to the gradient flow of the
energy functional:

E (ψ, A) = 1
2

∫
Ω

[ ∣∣∣∣
(
i

κ
∇+ A

)
ψ

∣∣∣∣
2

+ 1
2

(|ψ|2 − 1)2

+ |curlA−H0|2
]
dx.(16)

The initial condition satisfies divA(0) = 0 and A(0) · n = 0. Moreover, we make
a physically meaningful assumption that ‖ψ(0)‖∞ ≤ 1. Let v = (ψ, A). As shown in
[11] and [28], the flow

dv

dt
= − grad E(v), v(0) = v0,(17)

has a global classical solution. Let V = H2(Ω) ×H2(Ω), where H2(Ω) and H2(Ω)
are spaces of functions whose components (or real and imaginary parts) are in the
standard Sobolev space H2(Ω).

Our main result concerning (17) now follows.
Theorem 2.1.

V∞ = lim
t→∞ v(t) exists in V .
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To describe the idea, we start with the ODE{
dx

dt
= − grad f(x), x ∈ RI N

x(0) = x0 .
(18)

We assume f ∈ C2 ( RI N ), ∇f(0) = 0, and x0 is close to 0.
Case (i). If A = ∇2 f(0) is positive definite, then x(t) → 0 (at an exponential

rate) as t→ +∞.
This result is standard. One can calculate

d

dt
|ẋ|2 = −2〈 ∇2f(x) · ẋ, ẋ 〉 ≤ −2λ |ẋ|2 .

Here we shall assume |x|(t) ≤ δ0, and (∇2f(x)) ≥ λ I whenever |x| ≤ δ0. Thus
|ẋ(t)| ≤ |ẋ(0)| e−λt ∀t ≥ 0 and |x(t)| ≤ |x0| + 1

λ |ẋ(0)| = |x0| + 1
λ |∇f(x0)|. We

shall always assume x0 is so close to the origin that |x0|+ 1
λ |∇f(x0)| < δ0. Then the

assumption |x(t)| ≤ δ0 is true for all t > 0 and, thus, x(t) → 0 at an exponential rate
as t→ +∞.

Case (ii). det (A) 6= 0. Then one has that

− d

dt
(f(x)− f(0))

1/2
=

1

2

|∇f(x)| |ẋ|
(f(x)− f(0))1/2

, if f(x) > f(0),(19)

d

dt
(f(0)− f(x))

1/2
=

1

2

|∇f(x)| |ẋ|
|f(x)− f(0)|1/2 , if f(x) < f(0).(20)

We obtain the following: either there is a T ∈ (0,∞) such that

f(x)(T ) ≤ f(0)− δ0 (for some δ0 > 0)

or

lim
t→+∞ x(t) = x∞ exists.

Indeed, if x is close to 0, then

|∇f(x)|
|f(x)− f(0)|1/2 ≥ λmin√

2λmax

= C(A) > 0.

Here λmin and λmax are the minimum and maximum, respectively, eigenvalues of
(AT A)1/2. Therefore,

∫ ∞

0

|ẋ(t)| dt ≤ 2δ
1/2
0

C(A)

by (19)–(20) whenever f(x)(t) ≥ f(0)−δ0 for all t ≥ 0. In such a case the conclusion
limt→+∞ x(t) = x∞ follows (in fact x∞ = 0 ) as for Case (i).

Case (iii). det (A) = 0 and f(x) is real analytic in B1. We have the following
well-known estimate (cf. [26, 27]). There are two positive constants θ0, σ0 ∈ (0, 1)
depending on f such that

|f(x)− f(0)|θ0 ≤ | grad f(x)| whenever x ∈ Bσ0(0),(21)
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∇f(0) = 0. Then, as for Case (ii), one has that either there is a T ∈ (0,∞) such that

f(T ) ≤ f(0)− δ0

or

lim
t→∞x(t) = x∞ exists.

In [27], Simon considered the case

E(u) =

∫
M

F (x, u,∇u) dx,(22)

where M is a compact manifold without boundary and{
u̇ = − grad E(u) ≡ M(u),
u(0) = u0 ' 0, M(0) = 0.

(23)

Here, F is assumed to be analytic in both u and ∇u for u, ∇u near 0.
Suppose L is elliptic, Lv = d

ds |s=0 M(sv). Then either there is a T ∈ (0,∞) such
that

E(u(T )) ≤ E (0)− δ0 for some δ0 > 0

or

u∞ = lim
t→∞u(t) exists.

To apply the above idea to the time-dependent G–L equations, we need to use
the following estimate given in [11] (also see [28] for similar results).

Lemma 2.2. Let v = (ψ,A) be the solution of the time-dependent G–L equations
(17). Then

∫ T

t

[
(ψ̇(s), ψ̇(s)) + (Ȧ(s), Ȧ(s))

]
ds+ E(ψ(T ),A(T )) = E(ψ(t),A(t))(24)

for any T > t > 0.
The following lemma will enable us to apply the above conclusion of Simon.
Lemma 2.3. Let (ψ,A) satisfy

curlA ∧ n = H0 ∧ n , A · n = 0, and ∇ψ · n = 0 on ∂Ω.

Let E(ψ,A) be defined by (16) and (ψ∗,A∗) be a steady state solution of the G–L
equations in the gauge divA∗ = 0 in Ω and A∗ · n = 0 on ∂Ω. Then there exist
constants θ0, σ0 ∈ (0, 1) such that

|E(ψ,A)− E(ψ∗,A∗)|θ0 ≤ ‖ grad E(ψ,A)‖L2(Ω)(25)

for any ‖(ψ,A)− (ψ∗,A∗)‖C2(Ω) ≤ σ0.
Proof. Let

G (ψ, A) = E (ψ, A) + 1
2

∫
Ω

[|divA|2 ] dx.(26)
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By assumption, since (ψ∗,A∗) is a steady state solution of the G–L equations in the
gauge divA∗ = 0 in Ω and A∗ · n = 0 on ∂Ω, then

G (ψ∗, A∗) = E (ψ∗, A∗)(27)

and (ψ∗,A∗) remains a critical point of G. By the ellipticity of grad G(ψ,A), see
[7, 11, 28], we may apply the result of [27] to conclude that there exist constants
θ0, σ1 ∈ (0, 1) such that

|G(ψ, A)−G(ψ∗,A∗)|θ0 ≤ ‖ grad G (ψ, A)‖L2(Ω)(28)

for any ‖(ψ,A)− (ψ∗,A∗)‖C2(Ω) ≤ σ1.

Let χ be a gauge transformation function and ψ̃ = eiκχψ with Ã = A +∇χ. Let
us choose χ such that div Ã = 0. Simple calculation shows that

∂G

∂ψ̃
= eiκχ

∂E

∂ψ
and

∂G

∂Ã
=
∂E

∂A
.

So,

‖ grad E(ψ,A)‖L2(Ω) = ‖ grad G(ψ̃, Ã)‖L2(Ω) .

Since divA∗ = 0 for small enough σ0, if ‖(ψ,A)− (ψ∗,A∗)‖C2(Ω) ≤ σ0, we have

‖(ψ̃, Ã)− (ψ∗,A∗)‖C2(Ω) ≤ σ1. Thus,

|E(ψ,A)− E(ψ∗,A∗)|θ0 = |E(ψ̃, Ã)−G(ψ∗,A∗)|θ0
= |G(ψ̃, Ã)−G(ψ∗,A∗)|θ0
≤ ‖ grad G (ψ̃, Ã)‖L2(Ω)

= ‖ grad E(ψ,A)‖L2(Ω).

This proves the lemma.
We now turn to the proof of Theorem 2.1. It is important to observe that both

the energy functional and inequality in Lemma 2.3 are gauge invariant.
By Lemma 2.2, given any ε > 0, there exists a sufficiently large time tn such that

‖ψ̇(tn)‖L2(Ω) < ε,(29)

‖Ȧ(tn)‖L2(Ω) < ε,(30)

and ∫ T

tn

[
‖ψ̇(s)‖2L2(Ω) + ‖Ȧ(s)‖2L2(Ω)

]
ds < ε ∀ T > tn.(31)

By gauge invariance, one may define a gauge transformation function χ̃(tn) such
that ψ̃(tn) = eiκχ̃(tn)ψ(tn) and Ã(tn) = A(tn) +∇χ̃(tn) and

div Ã(tn) = 0 in Ω,

Ã(tn) · n = 0 on ∂Ω .
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We note that ψ̃(t) = eiκχ̃(tn)ψ(t) and Ã(t) = A(t)+∇χ̃(tn) are again solutions of
the time-dependent G–L equations in the zero electric potential gauge with properly
modified initial conditions and equation (24) still holds. Also,

‖ ˙̃
ψ(tn)‖L2(Ω) < ε and ‖ ˙̃A(tn)‖L2(Ω) < ε

and ∫ T

tn

[
‖ ˙̃
ψ(s)‖2L2(Ω) + ‖ ˙̃A(s)‖2L2(Ω)

]
ds < ε ∀ T > tn

remain valid. To apply Lemma 2.3, we must construct solutions that are C2(Ω) close
to some steady state for some time t̃n ∈ [tn, tn + 1]. To get the C2 closeness, we use
another gauge transformation ψ̄(t) = eiκχ̄(t)ψ̃(t) and Ā(t) = Ã(t) +∇χ̄(t), where χ̄
is defined by

∂χ̄

∂t
−∆χ̄ = div Ã in Ω

with boundary condition

∂χ̄

∂n
= −Ã · n = 0 on ∂Ω

and initial condition at t = tn: χ̄(tn) = 0.
Note that from the G–L equations (7)–(9), we may get [11]

div ˙̃A = − i
2
κ

[
ψ̃
∂ψ∗

∂t
− ψ̃∗

∂ψ

∂t

]
.

Thus, we have ∫ tn + 1

tn

[
‖ ˙̃A(s)‖2L2(Ω)

]
ds < cε

for some generic constant c. From this, we may get∫ tn + 1

tn

[
‖∇ ˙̄χ(s)‖2L2(Ω)

]
ds < cε.

This further implies that∫ tn + 1

tn

[
‖∆χ̄(s)‖2L2(Ω) + ‖ ˙̄χ(s)‖2L2(Ω)

]
ds < cε.

It follows that (ψ̄, Ā) also satisfies estimates similar to those in equations (29)–(31).
Notice that (ψ̄, Ā) is a solution of the time-dependent G–L equations in the gauge
Φ = −divA and it satisfies a parabolic system:



∂ψ̄

∂t
− i κ div Ā ψ̄ +

(
i

κ
∇+ Ā

)2

ψ̄ − ψ̄ + |ψ̄|2 ψ̄ = 0,

∂Ā

∂t
−∆Ā = − i

2κ
(ψ̄∗∇ψ̄ − ψ̄∇ψ̄∗)− Ā|ψ̄|2

(32)
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with boundary conditions

curl Ā ∧ n = H0 ∧ n , Ā · n = 0, and ∇ψ̄ · n = 0 on ∂Ω.

Using standard parabolic regularity and estimates like (29)–(31) for (ψ̄, Ā), we
may find a small δ0 > 0 such that for all δ0 < δ < 1, we have

‖ ˙̄ψ(tn + δ)‖C2(Ω) < cε and ‖ ˙̄A(tn + δ)‖C2(Ω) < cε

and

‖div Ā(tn + δ)‖C1(Ω) < cε

for some constant c. Thus, we may conclude that in C2(Ω), (ψ̄(tn + δ), Ā(tn + δ)) is
close to some solution (ψ̄∞, Ā∞) of the steady state G–L equations with div Ā∞ = 0.
Now, by Lemma 2.3, we get

∣∣E(ψ̄(tn + δ), Ā(tn + δ))− E(ψ̄∞, Ā∞)
∣∣θ0

≤ ‖ grad E(ψ̄(tn + δ), Ā(tn + δ))‖L2(Ω) .

Using the gauge invariance, however, this also implies that

∣∣E(ψ(tn + δ),A(tn + δ))− E(ψ̄∞, Ā∞)
∣∣θ0

≤ ‖ grad E(ψ(tn + δ),A(tn + δ))‖L2(Ω) .

Since (ψ̄(tn + δ), Ā(tn + δ)) is C2 close to (ψ̄∞, Ā∞), we have∣∣E(ψ(tn + δ),A(tn + δ))− E(ψ̄∞, Ā∞)
∣∣

=
∣∣E(ψ̄(tn + δ), Ā(tn + δ))− E(ψ̄∞, Ā∞)

∣∣
≤ cε .

By the monotonicity of E(ψ(t),A(t)), we have that for any T , there exists tn large
enough such that

E(ψ(T ),A(T ))− E(ψ̄∞, Ā∞)

≥ E(ψ(tn + δ),A(tn + δ))− E(ψ̄∞, Ā∞)

≥ cε

for some generic constant c. Using the ideas given in Case (iii) for ODEs, we conclude
that ∫ ∞

T

[
‖ ˙̃
ψ(s)‖L2(Ω) + ‖ ˙̃A(s)‖L2(Ω)

]
ds < cε.

Thus, we must have that

V∞ = lim
t→∞ v(t) exists in V.

This concludes the proof of the Theorem 2.1.
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3. The pinning effect of variable thickness in thin films. In the previous
section, we were concerned with the dynamic properties of solutions to the time-
dependent G–L equations. In this section, we focus our attention on the static case. In
particular, we illustrate that the vortices may be pinned by inhomogeneities inside the
material. The inhomogeneities we consider here are introduced due to the variation
in thickness of the sample. During our writing, we also became aware of independent
works [9, 1, 18] on the same subject; thus, we only give a brief outline here of the
approach we have used.

3.1. The Dirichlet case. To present the main idea, we first ignore the magnetic
potential and consider

min{Fa
ε (ψ) , ψ|∂Ω = g }

= min

{∫
Ω

a(x)

(
1

2
|∇ψ|2 +

1

4ε2
(1− |ψ|2)2

)
dx , ψ|∂Ω = g

}
.(33)

For convenience, we assume that Ω is a bounded, smooth (say Lipschitz) domain
in RI 2. We may also view ψ as a map from Ω to RI 2 and g as a smooth map from ∂Ω to
S1 with deg(g, ∂Ω) = d(≥ 0). The coefficient a is a smooth (say Lipschitz or Hölder)
function from Ω to RI R with 0 < m ≤ a(x) ≤ M for all x ∈ Ω̄. The minimizers of
functional Fa

ε satisfy

div (a(x)∇ψ(x)) +
a(x)

ε2
(1− |ψ(x)|2)ψ(x) = 0 in Ω.(34)

First of all, let us consider the case where, in Ω, there are at least d distinct points
b1, . . . ,bd, . . . ,bk with a(bj) = m, j = 1, 2, . . . , k. Moreover, we assume that each bj
is a strict minimum, that is, a(x) > m for any x 6= bj in a small neighborhood of bj .
We define

δ0 =
1

2
min{|bj − bi|, dist(bj , ∂Ω); j 6= i , i, j = 1, . . . , k} > 0.(35)

Theorem 3.1. Let ψεn , εn ↘ 0, be a sequence of minimizers of (33). Then

ψεn(x) → ψ∗(x) in C1,α
loc

(
Ω/{b1, . . . ,bd}

)
,(36)

where

ψ∗(x) =
d∏

j=1

x− bj
|x− bj |e

ih∗(x) in Ω(37)

and b1, . . . ,bd are d distinct points in Ω with

a(bj) = m = minx∈Ω̄a(x) .(38)

Moreover, if we write ψ∗(x) = ei(Θ(x)+h∗(x)), then h∗ ∈ H1(Ω) ∩ Cα(Ω̄), ψ∗ = g on
∂Ω and

div [a(x)(∇Θ +∇h∗)] = 0 in Ω/{b1, . . . ,bd}.(39)
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The proof of the above theorem is based on a series of estimates as similarly
presented in an earlier work [20]. One first has the energy upper bound

min {Fa
ε (ψ), ψ|∂Ω = g } ≤ mπd log

1

ε
+ C(a, g,Ω)

and energy lower bound

min

{∫
B

a(x)

(
1

2
|∇ψ|2 +

1

4ε2
(1− |ψ|2)2

)
dx, ψ|∂B = g , |g| ≤ 1

}

≥ mπd log
1

ε
− C(K),(40)

where m = minx∈B a(x) if deg(g, ∂B) 6= 0. Now, the class Sg(λ,K) may be defined
as in [20].

Definition 3.2. Let Ω, g be given as before. We say a map u : Ω → RI 2 belongs
to the class Sg(λ,K) if

(i) Fε(u) ≤ mπd log 1
ε +K.

(ii) for any x ∈ {x ∈ Ω, |u(x)| ≤ 1
2}, Bλε(x) ∩ Ω ⊂ {|u(x)| ≤ 3

4}.
Then one can show that if ψ minimizes (33), there exists some positive constants

λ,K such that ψ ∈ Sg(λ,K).
One may then show that there are exactly d balls, say B1, . . . , Bd, with xε1, . . . ,x

ε
d

their centers, such that the corresponding dj = deg(u, ∂Bj) = 1 and

min{|xεj − xεk|, dist(xεj , ∂Ω); j, k = 1, . . . , d, j 6= k } ≥ δ1(λ,K) > 0.

After extracting a subsequence, we have

xεnj → x∗j as εn → 0.

The limits {x∗j} are all different points; moreover, a(x∗j ) = m, j = 1, 2, . . . , d. Com-
bining with estimates away from vortices, the proof now follows similarly to that in
[3, 20].

In the following, we briefly discuss the case when the number of minima is less
than the degree of the boundary data. For simplicity, we focus on the case where
Ω is the unit disc B in RI 2 and g(θ) = eidθ for some positive integer d ≥ 2. Let
a(x, y) = 1 + r2, r2 = x2 + y2. We consider

EB = min

{
Fa
ε,B(ψ) =

∫
B

(a
2
|∇ψ|2 +

a

4ε2
(1− |ψ|2)2

)
dxdy,

ψ|∂Ω = g

}
.(41)

Theorem 3.3. Let ψε be a sequence of minimizers of (41) as ε → 0. Then all
vortices of the ψ must be separated and of degree +1 for small enough ε > 0 and they
go to the origin as ε→ 0.

Proof. Indeed, for any small parameter δ > 0 (say δ < 1/d), one may choose
ε ≤ ε(δ) and ψ with ψ|∂Ω = g and vortices placed along ∂Bδ/2 such that

EB ≤ Fa
ε,B(ψ) ≤ πd(1 + δ2) log

δ

ε
+ πd2 log

1

δ
+ c0d

2

= πd(1 + δ2) log
1

ε
+ {πd2 − πd(1 + δ2)} log

1

δ
+ c0d

2 .
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On the other hand, if there are either vortices of degree no less than 2 or vortices
outside B√δ(0), then by [3],

Fa
ε,B(ψ) ≥ π(d+ dδ) log

1

ε
+ c(δ, d) .

For δ > 0 and ε → 0, since π(d + dδ) log 1
ε + c(δ, d), one sees that all vortices of the

minimizer must go to the origin and be of degree +1.
The next question is for given d (say 2 ≤ d ≤ 5) and ε > 0 (but small): How close

must these vortices be to the origin? We want to show that they cannot be too close.
Indeed, for a small generic constant β, if all vortices of ψ are in the β-neighborhood

of the origin, then∫
Bβ(0)

(1 + r2)

(
1

2
|∇ψ|2 +

1

4ε2
(1− |ψ|2)2

)
dxdy ≥ πd log

β

ε
− c0d

2

and ∫
B\Bβ(0)

(1 + r2)

(
1

2
|∇ψ|2 +

1

4ε2
(1− |ψ|2)2

)
dxdy ≥ πd2 log

1

β
.

So,

Fa
ε,B(ψ) ≥ πd log

1

ε
+ πd(d− 1) log

1

β
− c0d

2.

On the other hand, by placing vortices along ∂Bδ/2(0), one may construct a map with
energy

Fa
ε,B(ψ) ≤ πd(1 + δ2) log

1

ε
+ πd(d− 1− δ2) log

1

δ
+ c0d

2 .

Comparing the two bounds, we see that not all vortices are in the δ-neighborhood
of the origin if we have

πd(d− 1) log
δ

β
≥ 2c0d

2 + πdδ2 log
1

ε
.

By taking β ≤ δ2, this means

πd(d− 1) log
1

δ
− πdδ2 log

1

ε
≥ 2c0d

2 .

Again, letting log 1
δ ≥ 2c0, it is sufficient to have

d− 1

2
log

1

δ
≥ δ2 log

1

ε
,

or

ε ≥ δ
d−1

2δ2 .

Thus, for small but positive ε, δ cannot be too small.
We have performed a series of numerical experiments to illustrate the pinning

effect even for modest values of ε. The numerical methods used here are similar to
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Fig. 2. Contour plots of the magnitude of the order parameter for a model with constant
thickness. The left-hand figure is for ε = .1. The right-hand figure is for ε = .02.

Fig. 3. Contour plots of the magnitude of the order parameter for a model with variable
thickness a = a(x, y). The left-hand figure is for ε = .1. The right-hand figure is for ε = .02.

those discussed in [13, 14]. For computational convenience, the unit square [0, 1]2 is
taken to be our sample Ω. In the first experiment, we choose the thickness function
a ≡ 1. We solve for the minimizer of (33) by using the Dirichlet boundary conditions
with |ψ| = 1 on the boundary. ψ|∂Ω has a winding number 4. The contour plots of
the magnitude of the order parameter ψ are given in Figure 2.

Next, we choose the thickness function a = a(x, y) such that it has four minima at
(0.25, 0.25), (0.75, 0.35), (0.25, 0.65), (0.75, 0.75) with the same minimum value. The
contour plots are given in Figure 3. We see that as ε gets smaller, the vortices get
“pinned” at the minima of a. This is the case illustrated by Theorem 3.1.

Now, we continue the numerical experiments again using the Dirichlet boundary
conditions with |ψ| = 1 on the boundary. However, we impose the boundary condition
such that ψ|∂Ω has a winding number 3. We first choose the thickness function a =
a(x, y) such that it has four minima at (0.25, 0.25), (0.25, 0.65), (0.75, 0.35), (0.75, 0.75)
with the same minimum value. The contour plots are given in Figure 4. Since the
number of minima is larger than the winding number, each vortex gets pinned to a
different minimum point.

Then, we change the thickness function a = a(x, y) such that it has two minima
at (0.25, 0.65), (0.75, 0.35) with the same minimum value. The contour plots are given
in Figure 5. Since the number of minima is less than the winding number, one vortex
gets pinned at one minimum but the other two get attracted to another minimum
with some distance still between them.
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Fig. 4. Contour plots of the magnitude of the order parameter for a model with variable
thickness a = a(x, y). The left-hand figure is for ε = .08. The right-hand figure is for ε = .04.

Fig. 5. Contour plots of the magnitude of the order parameter for a model with variable
thickness a = a(x, y). The left-hand figure is for ε = .08. The right-hand figure is for ε = .04.

For comparison purposes, we also give the pictures when choosing the thickness
function a ≡ 1. The contour plots are given in Figure 6.

Finally, we present an experiment on the co-existence of vortex–antivortex solu-
tions to the minimizers of (33) with constant thickness functions. This question has
been rigorously studied in [22]. We again use the Dirichlet boundary conditions with
|ψ| = 1 on the boundary. ψ|∂Ω has a winding number 0. Here, we start with a vortex
state that has a vortex with winding number +1 on one side of the domain and a vor-
tex with winding number −1 on the other side of the domain. We numerically follow
the gradient flow of (33). The solution reaches steady state which again consists of
two vortices with opposite winding numbers. The contour plots of the magnitude of
the steady state solution ψ are given in Figure 7.

3.2. The Neumann problem. We now study the minimization problem with
Neumann-type boundary conditions. Let a(x) have a strict local minimum at points
b1, . . . ,bd with a(bj) = m, j = 1, . . . , d. Recall that

δ0 =
1

2
min{|bj − bk|, dist(bj , ∂Ω); j 6= k, j, k = 1, . . . , d} > 0.

Let r0 < δ0, Ω0 = Ω \⋃d
i=1Br0(bi) and define

V =

{
u ∈ H1(Ω) | |u| ≥ 1

2
in Ω0,
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Fig. 6. Contour plots of the magnitude of the order parameter for a model with constant
thickness. The left-hand figure is for ε = .08. The right-hand figure is for ε = .04.

Fig. 7. Contour plots of the magnitude of the order parameter. The top figure is for ε = .08.
The bottom figure is for ε = .03.

deg

(
u

|u| , ∂Br0(bk)

)
= 1 , 1 ≤ k ≤ d.

}
.(42)

We consider

min {Fa
ε (ψ) , ψ ∈ V }

= min

{∫
Ω

a(x)

(
1

2
|∇ψ|2 +

1

4ε2
(1− |ψ|2)2

)
dx , ψ ∈ V

}
.(43)

It is easy to see that V is a weakly closed subset of H1(Ω). In fact, it is also connected.
For given ε > 0, (43) has at least one minimizer, denoted by ψε.

Theorem 3.4. Let ψεn , εn ↘ 0, be a sequence of minimizers of (43). Then,

ψεn(x) → ψ∗(x) in C1,α
loc

(
Ω/{b1, . . . ,bd}

)
,
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where

ψ∗(x) =
d∏

j=1

x− bj
|x− bj |e

ih∗(x) in Ω.

Moreover, if we write ψ∗(x) = ei(Θ(x)+h∗(x)), then h∗ ∈ H1(Ω) ∩ Cα(Ω̄), ∂φ∗

∂n = 0 on
∂Ω and

div [a(x)(∇Θ +∇h∗)] = 0 in Ω/{b1, . . . ,bd}.

The proof follows from constructions similar to those outlined in section 3.1.

3.3. Problems with prescribed magnetic potential. Unlike bulk material,
in the thin film limit, superconductors of type-I and type-II display vortex-like struc-
ture. It has been shown that the G–L functional takes the special form

F(ψ) =

∫
Ω

a(x)

(
1

2
|i∇ψ +A0(x)ψ|2 + (1− |ψ|2)2

)
dx,

where a(x) represents the relative thickness distribution of the thin film. Since, to
leading order, the magnetic field penetrates the film uniformly, we get A0 to be a
given magnetic potential that can be prescribed by setting curlA0(x) = H.

Numerical simulation in [6, 14] suggests that the thickness variation provides a
pinning mechanism for vortices. Using techniques similar to those in section 3.1, we
now provide a rigorous analysis for such phenomena in the case where κ is large while
the magnetic field is weak (H ≈ κ−1). By a proper scaling of the free energy, we get
a functional of the form

Fa
ε (ψ) =

∫
Ω

a(x)

(
1

2
|∇ψ − iA0(x)ψ|2 +

1

4ε2
(1− |ψ|2)2

)
dx.(44)

In the present form, ε is a small parameter measuring the relative penetration depth
and the sample size. Hence, we may consider problems similar to those in section 3.1
with the functional defined above. We first consider the Dirichlet problem

min {Fa
ε (ψ) , ψ|∂Ω = g } = min

{∫
Ω

a(x)

(
1

2
|∇ψ −A0(x)ψ|2

+
1

4ε2
(1− |ψ|2)2

)
dx , ψ|∂Ω = g

}
.(45)

For simplicity, we assume that |g| = 1 on ∂Ω, deg(g, ∂Ω) = d, and a(x) has d distinct
strict minimums at points b1,b2, . . . ,bd. With a proper choice of gauge, we may
define

A0(x, y) =
1

2
(Hy,−Hx)T ,

where H is the scaled applied magnetic field. We then have the following theorem.

Theorem 3.5. Let ψεn , εn ↘ 0, be a sequence of minimizers of (45). Then

ψεn(x) → ψ∗(x) in C1,α
loc

(
Ω/{b1, . . . ,bd}

)
,
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where

ψ∗(x) =
d∏

j=1

x− bj
|x− bj |e

ih∗(x) in Ω.

Moreover, if we write ψ∗(x) = ei(Θ(x)+h∗(x)), then h∗ ∈ H1(Ω) ∩ Cα(Ω̄), ψ∗|∂Ω = g
on ∂Ω, and

div [a(x)(∇Θ +∇h∗)] = 0 in Ω/{b1, . . . ,bd}.

Next, we may also prove similar results for the Neumann-type problems. Let V
be the space defined in (42). We consider

min {Fa
ε (ψ) , ψ ∈ V } = min

{∫
Ω

a(x)

(
1

2
|∇ψ −A0(x)ψ|2

+
1

4ε2
(1− |ψ|2)2

)
dx , ψ ∈ V

}
.(46)

Theorem 3.6. Let ψεn , εn ↘ 0, be a sequence of minimizers of (46). Then

ψεn(x) → ψ∗(x) in C1,α
loc

(
Ω/{b1, . . . ,bd}

)
,

where

ψ∗(x) =
d∏

j=1

x− bj
|x− bj |e

ih∗(x) in Ω.

Moreover, if we write ψ∗(x) = ei(Θ(x)+h∗(x)) = ei(φ∗(x)), then h∗ ∈ H1(Ω) ∩ Cα(Ω̄),
∂φ∗

∂n = A0 · n on ∂Ω (here, n is the outward normal of ∂Ω), and

div [a(x)(∇Θ +∇h∗)] = 0 in Ω/{b1, . . . ,bd}.

Again, the proofs of Theorems 3.3 and 3.4 are omitted due to their similarities to
our earlier discussions.

4. The renormalized energy and the vortex solution of the full G–L
model with applied magnetic field. With proper scaling, we focus on the fol-
lowing form of the G–L functional:

G(ψ,A) =

∫
Ω

(
1

4ε2
(1− |ψ|2)2 +

1

2
|(∇− iA)ψ|2 +

1

2
|curlA−H0|2

)
dx.

Let Ω ∈ RI 2 be a bounded Lipshitz domain and H0 be a constant field. In this
nondimensionalization, one may view ε as proportional to 1

κ and H0 as proportional
to κ times the (nondimensionalized) applied field. Studies of the densely packed vortex
state when the nondimensionalized field is near the upper critical field may be found in
[4]. In the low field case, variational problems concerning the G–L functional have been
considered in [5] but with boundary conditions that are not completely physical. Our
discussion here is valid for the natural (physically meaningful) boundary conditions
and we will borrow many useful results from [5] and [20].
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4.1. The renormalized energy. Following the discussions in [20, 21, 5], we
now formulate the renormalized energy: Let

ψ = eiφb(x) =

d∏
j=1

x− bj
|x− bj |e

ih

for some points b = (b1,b2, . . . ,bd) ∈ Ωd and ∂φb
∂n = 0 on ∂Ω. Let

Bρ =
d⋃

j=1

Bρ(bj) .

Choose the gauge divA = 0 in Ω and A · n = 0 on ∂Ω. We may define ζ such
that

A = ∇⊥ζ in Ω,

ζ = 0 on ∂Ω.

Now, consider

Gρ =

∫
Ω\Bρ

(
1

2

∣∣∇φb −∇⊥ζ∣∣2 + |∆ζ −H0|2
)
dΩ

=

∫
Ω\Bρ

(
1

2
|∇φb|2 +

1

2
|∇ζ|2 −∇φb · ∇⊥ζ +

1

2
|∆ζ −H0|2

)
dΩ

:= dπ log
1

ρ
+WΩ(b, H0) +O(ρ),

where the last equality may be taken as the definition of the renormalized energy
WΩ(b, H0). Note

−
∫

Ω\Bρ)

∇φb · ∇⊥ζdΩ =

∫
Ω\Bρ

div (ζ · ∇⊥φb)dΩ

=
d∑

j=1

2πζ(bj) +O(ρ).

So,

WΩ(b, H0) =

∫
Ω\Bρ

1

2
|∇φb|2dΩ− dπ log

1

ρ
+

d∑
j=1

2πζ(bj)

+

∫
Ω\Bρ

1

2

(|∇ζ|2 + |∆ζ −H0|2
)
dΩ +O(ρ)

=

∫
Ω\Bρ

1

2
|∇φb|2dΩ− dπ log

1

ρ
+ 2π

d∑
j=1

ζ(bj)

+

∫
Ω\Bρ

1

2

(|∇ζ|2 + |∆ζ|2) dΩ +
1

2
H2

0 |Ω|

−
∫

Ω\Bρ

H0∆ζdΩ +O(ρ).
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Minimizing the term involving φb, we see that φb is a multivalued harmonic func-
tion on Ω \ {b1,b2, . . . ,bd} and we may define the function gΩ(b) by∫

Ω\Bρ

1

2
|∇φb|2dΩ− dπ log

1

ρ
:= gΩ(b) +O(ρ).

Minimizing the terms involving ζ, we can choose ζ to satisfy

−∆2ζ + ∆ζ = 2π
d∑

j=1

δbj in Ω,

where δbj is the Dirac–Delta measure with boundary conditions

ζ = 0 on ∂Ω,

∆ζ = H0 on ∂Ω.

So,

2π

d∑
j=1

ζ(bj) = −
∫

Ω

(|∇ζ|2 + |∆ζ|2) dΩ +H0

∫
∂Ω

∂ζ

∂n
dΓ .

Because H0 is a constant, we get∫
Ω\Bρ

H0∆ζdΩ = H0

∫
∂Ω

∂ζ

∂n
dΓ +H0O(ρ) .

Thus,

WΩ(b, H0) =
1

2
H2

0 |Ω| −
1

2

∫
Ω

(|∇ζ|2 + |∆ζ|2) dΩ +H0O(ρ) + gΩ(b) .

Now, let us define ζ = ζb + ζH0 , where

−∆2ζb + ∆ζb = 2π
d∑

j=1

δbj in Ω,

ζb = 0 on ∂Ω,

∆ζb = 0 on ∂Ω,

and ζH0
= H0ζ1 with

−∆2ζ1 + ∆ζ1 = 0 in Ω,

ζ1 = 0 on ∂Ω,

∆ζ1 = 1 on ∂Ω.
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Then ∫
Ω

|∇ζ|2dΩ = H2
0

∫
Ω

|∇ζ1|2dΩ +

∫
Ω

|∇ζb|2dΩ− 2H0

∫
Ω

∆ζ1ζbdΩ,

∫
Ω

|∆ζ|2dΩ = H2
0

∫
Ω

|∆ζ1|2dΩ +

∫
Ω

|∆ζb|2dΩ + 2H0

∫
Ω

∆ζ1∆ζbdΩ,

and ∫
Ω

∆ζ1(∆ζb − ζb)dΩ =

∫
Ω

ζ1∆(∆ζb − ζb)dΩ

= −2π
d∑

j=1

ζ1(bj) .

So, ∫
Ω

(|∇ζ|2 + |∆ζ|2) dΩ = H2
0

∫
Ω

(|∇ζ1|2 + |∆ζ1|2
)
dΩ

+

∫
Ω

(|∇ζb|2 + |∆ζb|2
)
dΩ− 2π

d∑
j=1

ζ1(bj) .

Therefore,

WΩ(b, H0) =
1

2
H2

0C(Ω) + 2πH0

d∑
j=1

ζ1(bj) + g̃Ω(b) +O(ρ),(47)

where C(Ω) is a constant and g̃Ω(b) has the property

g̃Ω(b) =

{
+∞ , bi = bj for some i 6= j ,
−∞ , b ∈ ∂Ωd,

otherwise it is a smooth function in Ωd.
Lemma 4.1. WΩ(b, H0) has a local minimum inside Ωd whenever H0 ≥ H0(Ω)

for some constant H0(Ω).
Proof. Choose a small enough positive constant δ0 and let

Ωδ0 = {x ∈ Ω | δ0 ≤ dist(x, ∂Ω) ≤ 2δ0} .
If dist(bj , ∂Ω) ≥ δ0 for all j, then g̃Ω(b) ≥ −M(δ0), independently of H0. On the
other hand, we can choose d distinct points b1,b2, . . . ,bd ∈ BR(x0), where x0 satisfies
ζ1(x0) = minx∈Ω ζ1(x) = −m0 < 0 such that BR(x0) ⊂ {x : dist(x, ∂Ω) ≥ 2δ0} and
such that

g̃Ω(b) ≤ C(R)

for some constant C(R) when R is small. Moreover,

d∑
j=1

ζ1(bj) ≤ −dm0 + C̃1R
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for some constant C̃1. So,

WΩ(b, H0) ≤ −2πH0dm0 + C(R) + 2πH0C̃1R+
1

2
H2

0C(Ω) .

If, however, at least one bj satisfies bj ∈ Ωδ0 , then

WΩ(b, H0) ≥ −M(δ0)− 2πH0C̃2δ0 − 2πH0(d− 1)m0 +
1

2
H2

0C(Ω)

≥ −2πH0dm0 + C(R) + 2πH0C̃1R+
1

2
H2

0C(Ω)

for some constant C̃2 if R, δ0 are small enough and H0 is large enough. Thus,
WΩ(b, H0) has a local minimum inside Ωd whenever H0 > H0(Ω).

4.2. The existence of vortex solutions. Using the renormalized energy, we
now study the solutions of the G–L equations (3)–(6).

Theorem 4.2. If H0 ≥ H0(Ω) and WΩ(b, H0) has a nondegenerate local mini-
mum for some b ∈ Ωd, then, for small ε, there are solutions (ψε,Aε) to the full steady
state G–L equations with the gauge choice Aε = ∇⊥ζε in Ω, Aε · n = 0 on ∂Ω such
that

ψε(x) → ψ∗(x) in C1,α
loc

(
Ω/{b1,b2, . . . ,bd}

)
,

ζε(x) → ζ∗(x) in H2(Ω),

where

−∆2ζ∗ + ∆ζ∗ = 2π
d∑

j=1

δ(bj) in Ω

with

ζ∗ = 0 on ∂Ω,

∆ζ∗ = H0 on ∂Ω,

and

ψ∗(x) =
d∏

j=1

x− bj
|x− bj |e

ih∗(x) in Ω.

Moreover, if we write ψ∗(x) = eiθb(x)+ih∗(x) = eiφb , then φb is a multivalued harmonic
function on Ω \ {b1,b2, . . . ,bd} with ∂φb

∂n = 0 on ∂Ω.
To complete the proof, we use the approach in [21]. We consider the solution of

the following system:

∂ψ

∂t
− (∇− iA)2ψ − 1

ε2
ψ(1− |ψ|2) = 0 in Ω,(48)

∂A

∂t
−∆A +

i

2
(ψ∗∇ψ − ψ∇ψ∗) + |ψ|2A = 0 in Ω,(49)
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and

curlA = H0 on ∂Ω,(50)

(∇− iA)ψ · n = 0 on ∂Ω,(51)

A · n = 0 on ∂Ω(52)

with properly defined initial conditions.
Let

Eε(ψ,A) =
1

4ε2
(1− |ψ|2)2 +

1

2
|(∇− iA)ψ|2 +

1

2
|curlA−H0|2

and

Ẽε(ψ,A) = Eε(ψ,A) +
1

2
|divA|2 .

It is easy to see that (see [11], for example)∫
Ω

Ẽε(ψ(t),A(t))dx ≤
∫

Ω

Ẽε(ψ(0),A(0))dx .

Assuming that the initial condition satisfies

divA(0) = 0,

this in turn implies ∫
Ω

Eε(ψ(t),A(t))dx ≤
∫

Ω

Eε(ψ(0),A(0))dx.

Let ρ0 be small enough such that

δ0 = min{dist(∂Ω, ∂B2ρ0(bj)), |bj − bi|, i 6= j, i, j = 1, 2, . . . , d} > 0

and

min
x∈∂Bρ0 (b)

W (x) ≥ C(ρ0) +W (b) .

Let us construct initial conditions. Let A(0) = ∇⊥ζb in Ω with ζb defined as

before. For small ρ, let Bρ =
⋃d
j=1Bρ(bj), and let ψ(0) = eiφb in Ω \Bρ and extend

ψ(0) inside each ball Bρ(bj) by the minimizer of

Iρ(ψ,A) = min

{∫
Bρ(bj)

(
1

2
|∇ψ − iAψ|2 +

1

4ε2
(1− |ψ|2)2

+
1

2
|curlA−H0|2

)
dx | divA = 0 in Ω, A · n = 0 on ∂Ω,

|ψ| |∂Bρ(bj)= 1 , (iψ, (∇− iA)ψ · τ) = g on ∂Bρ(bj),

and deg(ψ, ∂Bρ(bj)) = 1 , j = 1, 2, . . . , d

}
,
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where τ is the unit tangent vector and g = ∇(θb − ζb) · τ on ∂Bρ(bj).
Using the argument in [5] and the gauge invariance, one may show that

Iρ(ψ,A) = πd log
(ρ
ε

)
+ γd+ o(1) +O(ρ).

Thus, we may assume

Eε(ψ(0),A(0)) ≤ dπ log
1

ε
+WΩ(b, H0) + γd+ o(1) .

Lemma 4.3. The solution of (48)–(52) has the property, for all sufficiently small
ε and for all t ≥ 0, that the set {x ∈ Ω, |ψε(x)| ≤ 1

2} is contained in a union of disjoint
discs Bj , j = 1, 2 . . . , d, where

(i) Bj = Bεα(xεj), xεj ∈ Bρ0(bj), for some small α.

(ii) εα
∫
∂Bj

Eε(ψε,Aε)dx ≤ C(K0).

Thus, dj = deg(∂Bj , ψ) is well defined and dj = 1, j = 1, 2, . . . , d.
Proof. Let us define

P = {t ≥ 0 | (ψε,Aε) s.t. (i)− (ii)} .
Clearly, P is a closed set and by choosing the initial conditions properly, we have
0 ∈ P . We now show that P is open; thus P = [0,∞). First, we have the following
claim.

Claim. For any t ∈ P , there exists a ρ∗ ∈ (0, ρ0), independent of sufficiently small
ε, such that min{dist(xε, ∂Bρ0

(b)), } ≥ ρ∗.
Assume that the claim is true. Then for any t′ > t but sufficiently close to t,

deg(∂Bρ∗(x
ε
j), ψε(·, t′)) = 1.

We may then follow the ideas in [21] and [5] to construct, for ψε(·, t′), a new disc B̃j

which satisfies (i)–(ii). Again, the center of the disc can be shown to satisfy the above
claim. Thus, the lemma is proved.

Now we verify the claim. Suppose the claim is not true, there exists a sequence
εn ↘ 0, tn ↗ t∗ ∈ P , such that xεni → b̄i ∈ Bρ0(bi) for i = 1, 2 . . . , d, and b̄j ∈
∂Bρ0

(bj) for some j.
We will follow constructions similar to those in [21] and [5] to show that one may

replace (ψε,Aε) by (ψ̄ε, Āε) to satisfy

E(ψ̄ε, Āε) ≥ πd log
1

ε
+WΩ(b̄, H0) + γd+ o(1).

First, let us do gauge transformation such that Āε = ∇⊥ζε with ζε = 0 on ∂Ω. Let
us consider

min

{∫
Ω\
⋃d

j=1
Bεα (xε

j
)

Eε(ψ̄, Ā)dx | Ā = ∇⊥ζ in Ω , deg(ψ̄, ∂Bεα(xεj)) = 1,

|ψ̄||∂Bεα (xε
j
) = |ψε||∂Bεα (xε

j
) , and (iψ̄, (∇− iĀ)ψ̄ · τ) = gε on ∂Bεα(xεj)

}
,

where gε = (iψε, (∇ − iAε)ψε · τ). Note that the boundary conditions are the same
gauge invariant boundary conditions considered in [5] and α satisfies property (ii)
listed above.
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Let (ψ̄ε, Āε) denote a minimizer. Let ψ̄ε = ρ̄εe
iφ̄ε and ψε = ρεe

iφε on the boundary

of
⋃d
j=1Bεα(xεj). To extend it inside the εα balls, we define a gauge transformation

by

∆2χ = 0 in
d⋃

j=1

Bεα(xεj)

with boundary conditions

κχ = φ̄ε − φε and
∂χ

∂n
= 0 on

d⋃
j=1

∂Bεα(xεj) .

Note that χ is well defined on
⋃d
j=1 ∂Bεα(xεj). Thus, inside

⋃d
j=1Bεα(xεj), we define

ψ̄ε = ψεe
iκχ and Āε = Aε +∇χ .

By the gauge invariance and the choice of the small α, we have the energy lower
bound inside the εα balls:∫

⋃d

j=1
Bεα (xε

j
)

Eε(ψ̄ε, Āε)dx =

∫
⋃d

j=1
Bεα (xε

j
)

Eε(ψε,Aε)dx

≥ πd log

(
εα

ε

)
− C

for small enough ε. So, we have the energy upper bound outside:∫
Ω\
⋃d

j=1
Bεα (xε

j
)

Eε(ψ̄ε, Āε)dx ≤ πdα log

(
1

ε

)
+ C .

Using arguments similar to those in [21] and [5], we have

|ψ̄ε| ≥ 1

2
in Ω \

d⋃
j=1

Bεα(xεj).

Moreover, we may modify the arguments of [21] and [5] to show that we have strong
convergence of

ψ̄ε → eiφb̄

and

Āε → ∇⊥ζb̄
outside any small neighborhood of b̄j , j = 1, 2, . . . , d. Indeed, using the fact that
H = curl Āε satisfies the equation

div

(
1

|ψ̄ε|2
∇H

)
= H in Ω \

d⋃
j=1

Bεα(xεj) ,

we note that ρ = |ψ̄ε| > 1/2 in Ω \⋃d
j=1Bεα(xεj) (in fact, ρ is arbitrarily close to 1 if

we allow ε small). Therefore, we obtain from elliptic estimates that the W 1,p norm
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and the Cγ norm of H are bounded locally for some p > 2 and γ > 0. On the other
hand, from Lemma 4.1 in [21] and arguments in [21] and [5], one deduces the local
strong convergence of ψ̄ε. Then the assertion on the convergence of Āε follows. We
omit the details.

Next, for small δ, by strong convergence,∫
Ω\
⋃d

j=1
Bδ(xεj)

Eε(ψ̄ε, Āε)dx

≥ πd log

(
1

δ

)
+WΩ(b̄, H0) + o(1) +O(δ).(53)

We can also get deg(ψ̄ε, ∂Bδ(b̄j)) = 1 for any j.
Let us write ψ̄ε = |ψ̄ε|eiφε = ρeiθ+ih, where θ is the angle function inside each

Bδ(x
ε
j) so that

eiθ(x) =
x− b̄j
|x− b̄j |

in Bδ(x
ε
j) ∀ j.

We have, by gauge invariance, the energy upper bound outside the εα balls:∫
⋃d

j=1
Bδ(xεj)\Bεα (xε

j
)

(|∇ρ|2 + ρ2|∇θ −∇⊥ζ|2 + |∆ζ|2) dx ≤ C log

(
1

ε

)
+K,(54)

where ∇⊥ζ = Āε is the magnetic potential after a gauge transformation.
Thus, we have∫

⋃d

j=1
Bδ(xεj)\Bεα (xε

j
)

(1− ρ2)|∇θ −∇⊥ζ|2dx

≤
∫
⋃d

j=1
Bδ(xεj)\Bεα (xε

j
)

[
2(1− ρ2)|∇⊥ζ|2 + 2(1− ρ2)|∇θ|2] dx

≤
∫
⋃d

j=1
Bδ(xεj)\Bεα (xε

j
)

(
1

ε
(1− ρ2)2dx + ε|∇⊥ζ|4

)
dx + o(1)

≤ Cε log

(
1

ε

)
+ ε

(∫
⋃d

j=1
Bδ(xεj)\Bεα (xε

j
)

|∆ζ|2dx
)2

+ o(1)

≤ Cε log

(
1

ε

)
+ Cε

(
log

(
1

ε

))2

+ o(1)

≤ o(1),

where C is some generic constant.
This implies in particular that

∫
⋃d

j=1
Bδ(xεj)\Bεα (xε

j
)

E(ψ̄ε, Āε)dx

≥
∫
⋃d

j=1
Bδ(xεj)\Bεα (xε

j
)

|∇θ −∇⊥ζ|2dx + o(1)

≥ πd log

(
δ

εα

)
+ o(1).
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Therefore, by arguments in [5] and the convergence of (ψ̄ε, Āε), we have

d∑
j=1

∫
Bδ(xεj)

Eε(ψ̄ε, Āε) dx ≥ πd log

(
δ

ε

)
+ γd+ o(1) +O(δ).(55)

Thus, for small ε and small δ,

∫
Ω

Eε(ψ̄ε, Āε) dx ≥ πd log

(
1

ε

)
+WΩ(b̄, H0) + γd+ o(1) .

This leads to a contradiction of the energy upper bound obtained from the energy
dissipation from the energy of the initial condition since b is the nondegenerate local
minimum of W (b, H0). Hence, the claim is true.

To complete the proof of the theorem, let us use the uniform bound on the solution
(ψε,Aε) as t → ∞. We get a subsequence tn such that (ψε(tn),Aε(tn)) → (ψε,Aε)
as t → ∞. One may then easily check that (ψε,Aε) is the critical point of the G–L
functional. This proves the theorem.

Remark.

(1) One may prove, using arguments given in [5], that as ε→ 0, the zeros of the
ψε go to the local minimum of the renormalized energy.

(2) By a more careful analysis, one may replace the assumption that the renor-
malized energy has a nondegenerate local minimum by simply the existence of a local
minimum.

(3) One can also prove, via [19], the existence of general critical points (saddle
points) of the G–L functional under similar conditions.

(4) According to the nondimensionalization used here, our theorem describes the
phenomenon that the G–L system has a vortex solution for an applied field of strength
on the order of 1

κ . Recall that the standard estimates for the lower critical field are
log(κ)
κ . That is, we can prove the existence of a stable vortex state below Hc1.

4.3. The weak hysteresis near the lower critical field Hc for type-II
superconductors. We have just shown that when we decrease the applied magnetic
field, there may be stable vortex states (even local energy minimizing states) even
when the field strength is below the lower critical field Hc1(≈ logκ/κ), say, c0/κ for
some constant c0. On the other hand, it is rather straightforward to check from the
definition of WΩ(b, H0) that there is no local minimum of the function WΩ(b, H0)
when H0 is sufficiently small. That is, we have shown the existence of a subcooling
field 0 < Hsc < Hc1.

Let us consider another case where we gradually increase the applied field. We
start, say, with a perfect superconducting state (or the Meissner state). It is quite
possible that the Meissner state exists even when the applied field is much larger than
the lower critical field Hc1. Indeed, if one looks for a solution to the full steady state
G–L equations (ψ,A) with |ψ| 6= 0, then one may write ψ = feiχ for some f 6= 0.

Using gauge invariance, we define Q = A− 1
κ∇χ, then (f,Q) remains a solution

of the steady state G–L equations which can now be written in the following form:

{
1
κ2 ∆f = f3 − f + f |Q|2
−curl2Q = f2Q

in Ω(56)
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H
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  Vortex

sc
0H
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Fig. 8. The weak hysteresis diagram for type-II superconductors near Hc1.

with boundary conditions




∂f
∂n = 0
Q · n = 0
H = curlQ = H0

on ∂Ω.(57)

From the equation for Q, we obtain

{ − ∂H
∂x2

= f2Q1

∂H
∂x1

= f2Q2

in Ω,

or, equivalently,

div

(∇H
f2

)
= H in Ω.

As in [2], we let κ→∞ to obtain

f = 1− |Q|2.

So, |∇H|2 = f4(1− f2). Let f = ρ(|∇H|). Then the equation for H becomes

{
div (ρ(∇H)∇H) = H in Ω,
H = H0 on ∂Ω .

(58)

For H0 > 0 small enough (but obviously larger than limκ→∞ log κ
κ = 0), one can

show the existence of a solution to the above equation. Moreover, such a solution is a
linearly stable wholly superconducting state (Meissner state) for 0 < H0 ≤ H∗

0 . The
new field strength H∗

0 is called the superheating field; see [2] for details.

Combining this latter result with ours given in section 4.2, a weak-hysteresis
diagram of type-II superconductors near the lower critical field Hc1 is completed (see
Figure 8).
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Abstract. The nonlinear Boltzmann equation for an electron gas in a semiconductor is in-
vestigated. Some meaningful properties of the collision operator are first presented. A large class
of kernels is allowed. Then the global existence and uniqueness of bounded, continuous, space-
independent solutions to the related Cauchy problem is performed. Finally, the conservation of mass
is examined.
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1. Introduction. A well-accepted model for the charge carrier transport in
semiconductors is the Boltzmann equation for an unknown function defined in the
seven-dimensional phase space spanned by time, space coordinates, and wave vector
[17], [20]. This equation contains a very complicated nonlinear integral operator (the
collision term). So, to avoid technical difficulties, numerous simplifying assumptions
and modifications are often introduced. Although such approximate new Boltzmann-
like models provide acceptable results in a few cases, properties of the true equation
are frequently lost [11], [12], [16]. Therefore, precise information may be obtained only
through the exact equation. For example, the increasing miniaturization of modern
electron devices requires this accurate modeling in order to correctly describe the
evolution of physical parameters. An alternative approach, which avoids the use of
the Boltzmann equation, is furnished by the direct molecular simulation [10]. In
this framework, techniques like Monte Carlo simulation provide detailed information
about carrier transport within advanced devices, but the computational burden limits
its use for many devices’ engineering applications. For such reasons, great attention
has recently been paid to the study of the semiconductor Boltzmann equation.

In this paper we consider the Boltzmann equation for the distribution function
f of an electron gas in a semiconductor with the full collision operator Q(f), which
describes the interactions between the electron gas and the molecules, assumed in
thermal equilibrium, of the semiconductor. We omit electron–electron collisions and
hole–electron interactions, because they often are physically negligible with respect to
the other interactions. This avoids both cumbersome formulas for Q(f) and technical
troubles that otherwise might occur (see section 4).

The main difficulty in studying the equation arises from the fact that the collision
term contains integral operators of the type

I(f)(t, x, k) =

∫
R

3
G(k, k′)f(t, x, k′)δ(ε(k′)− ε(k)− µ) dk′ , (t, x, k) ∈ R

+
0 × R

3 × R
3 ,
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where G denotes a continuous function, ε represents the particle energy, µ is a constant,
and δ(ε(k′) − ε(k) − µ) means the composition of the real-valued function (k, k′) →
ε(k′)− ε(k)− µ and the Dirac distribution δ.

Usually, the distribution δ is replaced by a smooth function (we refer, for instance,
to [14], [15], [18], [19]), or a simple expression of ε is employed (see, for example, [11],
[16]) so that I(f) may be reduced to an integral operator without distributions. How-
ever, trustable numerical results for the high-energy part of the electron distribution
function can be achieved only when the correct form of ε is used [21].

We make quite general assumptions on ε, which cover all of the most common
expressions considered in applications and simulations. Under such hypotheses, in
sections 1 and 2, we show that the collision operator is well defined and has significant
properties in the space of all bounded continuous functions. This is performed by
first giving a precise meaning for and then proving some basic facts about the integral
operator I(f). In section 3, we examine the Boltzmann equation without external
fields, since f does not depend on space coordinates. We study the related Cauchy
problem and we establish the global existence and uniqueness of bounded continuous
solutions. Further, we show that if the initial datum is integrable on R

3, then the same
holds for the function k → f(t, k), t ∈ R

+
0 , and its integral is constant with respect to

the time t. Throughout the paper, integrable always means Lebesgue integrable.

2. Basic equations. The Boltzmann equation for an electron gas reads

∂f

∂t
+

1

h̄
∇kε · ∇xf − e

h̄
E · ∇kf = Q(f),(2.1)

where the unknown function (t, x, k) → f(t, x, k) represents the existence probability
of an electron at the position x ∈ R

3, with the wave vector k ∈ R
3 at time t ∈ R

+
0 [13],

[17]. The parameters h̄ and e are the Planck constant divided by 2π and the positive
electric charge, respectively. The symbol ∇k stands for the gradient with respect to
the variables k and∇x with respect to the space coordinates x. The particle energy ε is
an assigned nonnegative function defined in R

3. In (2.1) the external force represents
the electric field (t, x) → E(t, x), which satisfies a suitable Poisson equation.

We follow a semiclassical approach for the collision term Q(f), so

Q(f) =

∫
R

3
[S(k′, k)f ′(1− f)− S(k, k′)f(1− f ′)] dk′ .(2.2)

Here, for any function φ we use the notation φ′ = φ(k′). The kernel S is defined by

S(k, k′) =
n∑
i=1

Gi(k, k′) [(ni + 1)δ(ε′ − ε+ h̄ωi) + niδ(ε
′ − ε− h̄ωi)] ,(2.3)

where n is a fixed positive integer, Gi : R
3 × R

3 → R
+
0 denotes a continuous function

satisfying Gi(k, k′) = Gi(k′, k) for every k, k′ ∈ R
3, and ni and ωi are nonnegative

constants, i = 1, 2, ..., n. The symbol δ (ε′ − ε± h̄ωi) means the composition of the
real-valued function (k, k′) → ε(k′)− ε(k)± h̄ωi and the Dirac distribution δ (see [8,
Chapter III]).

The kernel (2.3) is rather different from the one appearing in the widely known
Boltzmann equation for a perfect rarefied gas [7]. Indeed, in this case, the Dirac
distributions have been ab initium eliminated in some way (we refer to [4] and [5]
for a complete treatment). Consequently, the kernel of the integral term is a usual
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measurable function, and (2.1) can be solved in several settings, for example, Lebesgue
spaces. This is not the present case. In fact, since the function ε may have many
different expressions, it is not possible in general, by using a unique technique, to
transform the integral operator (2.2) to an equivalent one without Dirac distributions.
Moreover, the presence of distributions requires the use of functions which are at least
continuous with respect to the wave vector.

We consider here the Boltzmann equation (2.1) in the simpler case when E ≡ 0.
Further, we suppose that the unknown function (t, x, k) → f(t, x, k) does not depend
on x ∈ R

3; namely, it is space homogeneous. This allows us to treat the equation with
the original expression (2.3) for the kernel S.

To the best of our knowledge, no existence results concerning the complete un-
modified equation (2.1) have been established. Some authors [14], [15], [19] studied
the Cauchy problem for (2.1) with the full differential operator but a different kernel,
which is usually taken to be smooth and without Dirac distributions. This choice
seems to be forced by the used techniques, which require the existence of partial
derivatives of S. Of course, such assumption is not satisfied by kernel (2.3). So, a
new approach is probably necessary in order to get strong solutions of the full equation
(2.1).

3. The collision operator. We will now make the following assumptions on
the function ε:

(a1) ε : R
3 → R

+
0 is continuous.

(a2) There exists k0 ∈ R
3 such that if D = [0, 2π]× [0, π],

n = (sinϕ cosϑ, sinϕ sinϑ, cosϕ), and η(ρ, ϑ, ϕ) = ε(k0 + ρn),

ρ ≥ 0, (ϑ, ϕ) ∈ D, then
(a21) the function η admits a continuous and positive partial derivative with

respect to ρ for every (ρ, ϑ, ϕ) ∈]0,+∞[×D,

(a22) lim
ρ→0+

ρ2

[
∂η(ρ, ϑ, ϕ)

∂ρ

]−1

= 0 uniformly in (ϑ, ϕ) ∈ D,

(a23) lim
ρ→+∞ η(ρ, ϑ, ϕ) = +∞ uniformly in (ϑ, ϕ) ∈ D.

In Appendix A we list the most common expressions of ε considered in applica-
tions and simulations [3], [10]. It is easily seen that each of them satisfies hypotheses
(a1) and (a2).

For every f ∈ C0(R+
0 × R

3 × R
3), we define

A(f)(t, x, k) =

∫
R

3
S(k′, k)f(t, x, k′) dk′ ,(3.1)

A∗(f)(t, x, k) =

∫
R

3
S(k, k′)f(t, x, k′) dk′ ,(3.2)

B(f)(t, x, k) =

∫
R

3
S(k, k′) [1− f(t, x, k′)] dk′ ,(3.3)

ν(k) =

∫
R

3
S(k, k′) dk′ ,

(t, x, k) ∈ R
+
0 × R

3 × R
3, where the kernel S is given by (2.3). Each of the above

expressions is a finite sum of terms of the kind

Φ(t, x, k) =

∫
R

3
φ(t, x, k, k′)δ(ε(k′)− ε(k)− µ) dk′ ,(3.4)
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where φ indicates a function belonging to C0(R+
0 × R

3 × R
3 × R

3) and µ is a real
number. In Appendix B we first give a precise meaning to the right-hand side of (3.4)
and then prove some technical lemmas which guarantee the following properties for
Φ:

(R1) Φ ∈ C0(R+
0 × R

3 × R
3).

(R2) For every ψ ∈ C0(R3) with compact support,∫
R

3
ψ(k)Φ(t, x, k) dk =

∫
R

3
dk′

∫
R

3
ψ(k)φ(t, x, k, k′)δ(ε(k′)− ε(k)− µ) dk .(3.5)

(R3) If φ(t, x, k, k′) ≥ 0 in R
+
0 × R

3 × R
3 × R

3 then the function k → Φ(t, x, k) is
integrable on R

3 for any (t, x) ∈ R
+
0 × R

3 and (3.5) holds for all nonnegative
bounded ψ ∈ C0(R3).

The aim of this section is to point out some meaningful properties of the operators
A(f), B(f), and Q(f). Throughout the paper, we suppose

MA = sup
{
A(1)(k) : k ∈ R

3
}
< +∞, MB = sup

{
B(0)(k) : k ∈ R

3
}
< +∞.(3.6)

Since one has B(f) = ν −A∗(f), due to (2.2), we can write

Q(f) = (1− f)A(f)− fB(f).(3.7)

As a consequence of (R1), we immediately infer the following proposition.
Proposition 3.1. Let f ∈ C0(R+

0 × R
3 × R

3). Then A(f), B(f) ∈ C0(R+
0 ×

R
3 × R

3). Consequently, Q(f) ∈ C0(R+
0 × R

3 × R
3). If, moreover, 0 ≤ f(t, x, k) ≤ 1

for every (t, x, k) ∈ R
+
0 × R

3 × R
3, then

0 ≤ A(f)(t, x, k) ≤MA and 0 ≤ B(f)(t, x, k) ≤MB in R
+
0 × R

3 × R
3.

We now come to the integrability of the function k → Q(f)(t, x, k).
Proposition 3.2. Let f ∈ C0(R+

0 × R
3 × R

3) be such that the function k →
f(t, x, k) is integrable on R

3 for all (t, x) ∈ R
+
0 × R

3 and 0 ≤ f(t, x, k) ≤ 1 in R
+
0 ×

R
3 ×R

3. Then the functions k → A(f)(t, x, k) and k → Q(f)(t, x, k) are integrable on
R

3 for every (t, x) ∈ R
+
0 × R

3. Furthermore,
∫
R

3 Q(f)(t, x, k) dk = 0.

Proof. Fix (t, x) ∈ R
+
0 × R

3. Let ψn : R → R
+
0 , n ∈ N, be defined by setting, for

z ∈ R,

ψn(z) =




1 if |z| ≤ n,
1 + n− |z| if n < |z| < n+ 1,
0 if |z| ≥ n+ 1.

(3.8)

Owing to (3.5) and Proposition 3.1, for any n ∈ N one has∫
R

3
A(f)(t, x, k)ψn(|k|) dk =

∫
R

3
dkψn(|k|)

∫
R

3
S(k′, k)f(t, x, k′) dk′

=

∫
R

3
dk′ f(t, x, k′)

∫
R

3
S(k′, k)ψn(|k|) dk ≤MA

∫
R

3
f(t, x, k′) dk′ .

Since A(f)(t, x, k)ψn(|k|) ≤ A(f)(t, x, k)ψn+1(|k|) and

lim
n→+∞A(f)(t, x, k)ψn(|k|) = A(f)(t, x, k)
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pointwise in R
3, the monotone convergence theorem ensures that the function k →

A(f)(t, x, k) is integrable on R
3. Moreover,∫

R
3
A(f)(t, x, k) dk ≤MA

∫
R

3
f(t, x, k) dk .(3.9)

The integrability of k → Q(f)(t, x, k) is an immediate consequence of (3.7) because,
by Proposition 3.1, the function B(f) is bounded.

Now, let ψ ∈ C0(R3) be nonnegative and bounded. Bearing in mind (3.7) and
(R3), we see that∫

R
3
Q(f)(t, x, k)ψ(k) dk =

∫
R

3
dk (1− f(t, x, k))ψ(k)

∫
R

3
S(k′, k)f(t, x, k′) dk′

−
∫
R

3
dk f(t, x, k)ψ(k)

∫
R

3
S(k, k′)(1− f(t, x, k′)) dk′

=

∫
R

3
dk′ f(t, x, k′)

∫
R

3
S(k′, k)ψ(k)(1− f(t, x, k)) dk

−
∫
R

3
dk f(t, x, k)ψ(k)

∫
R

3
S(k, k′)(1− f(t, x, k′)) dk′ .

Interchanging k and k′ in the first of the above integrals, we infer∫
R

3
Q(f)(t, x, k)ψ(k) dk

=

∫
R

3
dk f(t, x, k)

∫
R

3
S(k, k′)(1− f(t, x, k′))(ψ(k′)− ψ(k)) dk′ .

Therefore, the proof is achieved by choosing ψ(k) = 1, k ∈ R
3.

4. Space homogeneous solutions: Existence and uniqueness. In the case
when E ≡ 0 and the unknown function f only depends on (t, k), bearing in mind (3.7),
the Boltzmann equation (2.1) becomes

∂f

∂t
= (1− f)A(f)− fB(f).(4.1)

We look for solutions f : R
+
0 × R

3 → R to (4.1) that are continuous in R
+
0 × R

3,
continuously differentiable with respect to the first variable at each point (t, k) ∈
R

+
0 × R

3, and, moreover, fulfill the initial condition

f(0, k) = f0(k),(4.2)

where f0 ∈ C0(R3) and 0 ≤ f0(k) ≤ 1 for all k ∈ R
3.

Theorem 4.1. Let assumptions (a1) and (a2), and (3.6) be satisfied. Then
problem (4.1)–(4.2) admits a unique solution f such that 0 ≤ f(t, k) ≤ 1 in R

+
0 ×R

3.
Proof. We first define, for every g ∈ C0(R+

0 × R
3),

H(g)(t, k) = exp

(∫ t

0

[A(g)(r, k) +B(g)(r, k)] dr

)
, (t, k) ∈ R

+
0 × R

3.(4.3)

A simple computation shows that the requests on possible solutions f of (4.1)–(4.2)
are equivalent to the following: f ∈ C0(R+

0 × R
3), 0 ≤ f(t, k) ≤ 1, and

f(t, k) =
1

H(f)(t, k)

[
f0(k) +

∫ t

0

H(f)(s, k)A(f)(s, k)ds

]
(4.4)
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for (t, k) ∈ R
+
0 × R

3.
Choose a real number α complying with

α >
1

2
max

{
1, [MA + (1 +MA) (MA +MB)]

2
}
,(4.5)

and denote by X the real linear space of all continuous functions g : R
+
0 × R

3 → R

such that

‖g‖α = sup
{
exp

(−αt2) |g(t, k)| : (t, k) ∈ R
+
0 × R

3
}
< +∞.

Arguing as in [6, pp. 2–3], we see that (X, ‖ · ‖α) is a Banach space. Let

Z =
{
g ∈ C0(R+

0 × R
3) : 0 ≤ g(t, k) ≤ 1 for every (t, k) ∈ R

+
0 × R

3
}
.

Clearly, Z ⊆ X. For every g ∈ Z, we define

T (g)(t, k) =
1

H(g)(t, k)

[
f0(k) +

∫ t

0

H(g)(s, k)A(g)(s, k)ds

]
, (t, k) ∈ R

+
0 × R

3.

The function T (g) is continuous in R
+
0 ×R

3 because, by Proposition 3.1, A(g), B(g) ∈
C0(R+

0 × R
3). Further, again owing to Proposition 3.1,

0 ≤ T (g)(t, k) =
1

H(g)(t, k)

[
f0(k) +H(g)(t, k)− 1−

∫ t

0

H(g)(s, k)B(g)(s, k)ds

]

≤ 1

H(g)(t, k)
[f0(k) +H(g)(t, k)− 1] ≤ 1

for every (t, k) ∈ R
+
0 × R

3, so T (g) ∈ Z. Hence, T (Z) ⊆ Z. The set Z is closed in X
and, in view of (4.4), a function f ∈ C0(R+

0 ×R
3) is a solution to problem (4.1)–(4.2)

if and only if it is a fixed point of T : Z → Z. Then, the proof is accomplished by
showing that T is a contraction with respect to the norm ‖ · ‖α.

Let g, h ∈ Z. Taking into account (3.1)–(3.3), for every t, s ∈ R
+
0 , t ≥ s, and

every k ∈ R
3, one has∣∣∣∣exp

(
−
∫ t

s

[A(g)(r, k) +B(g)(r, k)] dr

)
− exp

(
−
∫ t

s

[A(h)(r, k) +B(h)(r, k)] dr

)∣∣∣∣
≤
∣∣∣∣
∫ t

s

[A(g)(r, k) +B(g)(r, k)] dr −
∫ t

s

[A(h)(r, k) +B(h)(r, k)] dr

∣∣∣∣
=

∣∣∣∣
∫ t

s

[A(g − h)(r, k)−A∗(g − h)(r, k)] dr

∣∣∣∣
≤ (MA +MB) ‖g − h‖α

∫ t

s

exp
(
αr2

)
dr.

Therefore, due to (4.3),∣∣∣∣H(g)(s, k)

H(g)(t, k)
− H(h)(s, k)

H(h)(t, k)

∣∣∣∣ ≤ (MA +MB) ‖g − h‖α
∫ t

s

exp
(
αr2

)
dr.(4.6)

From this inequality, written for s = 0, we obtain∣∣∣∣ f0(k)

H(g)(t, k)
− f0(k)

H(h)(t, k)

∣∣∣∣ ≤ |f0(k)| (MA +MB) ‖g − h‖α
∫ t

0

exp
(
αr2

)
dr.
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A simple computation shows that∫ t

0

exp
(
αr2

)
dr ≤ 1√

2α
exp

(
αt2

)
.

Consequently,∣∣∣∣ f0(k)

H(g)(t, k)
− f0(k)

H(h)(t, k)

∣∣∣∣ ≤ MA +MB√
2α

‖g − h‖α exp
(
αt2

)
.(4.7)

Next, bearing in mind (4.6), for every (t, k) ∈ R
+
0 × R

3 we have∣∣∣∣ 1

H(g)(t, k)

∫ t

0

H(g)(s, k)A(g)(s, k)ds− 1

H(h)(t, k)

∫ t

0

H(h)(s, k)A(h)(s, k)ds

∣∣∣∣
≤
∣∣∣∣
∫ t

0

H(g)(s, k)

H(g)(t, k)
A(g)(s, k)ds−

∫ t

0

H(g)(s, k)

H(g)(t, k)
A(h)(s, k)ds

∣∣∣∣
+

∣∣∣∣
∫ t

0

H(g)(s, k)

H(g)(t, k)
A(h)(s, k)ds−

∫ t

0

H(h)(s, k)

H(h)(t, k)
A(h)(s, k)ds

∣∣∣∣
≤
∫ t

0

|A(g)(s, k)−A(h)(s, k)| ds

+ (MA +MB) ‖g − h‖α
∫ t

0

ds

∫ t

s

|A(h)(s, k)| exp
(
αr2

)
dr

≤MA‖g − h‖α
[∫ t

0

exp
(
αs2

)
ds+ (MA +MB)

∫ t

0

ds

∫ t

s

exp
(
αr2

)
dr

]

≤MA‖g − h‖α
[

1√
2α

exp
(
αt2

)
+ (MA +MB)

∫ t

0

dr

∫ r

0

exp
(
αr2

)
ds

]

= MA‖g − h‖α
[

1√
2α

exp
(
αt2

)
+ (MA +MB)

1

2α

(
exp

(
αt2

)− 1
)]

≤ MA (1 +MA +MB)√
2α

‖g − h‖α exp
(
αt2

)
because, by (4.5), 2α > 1. The preceding inequality, together with (4.7), gives

‖T (g)− T (h)‖α ≤ MA + (1 +MA) (MA +MB)√
2α

‖g − h‖α.

Thus, the desired conclusion immediately follows from (4.5).
Usually, one requires that the function k → f(t, k) be integrable on R

3. In the
present setting this is achieved by assuming only that the initial datum f0 is integrable.

Theorem 4.2. Let f0 and f be as in Theorem 4.1. If f0 ∈ L1(R3) then the func-
tion k → f(t, k) is integrable on R

3 for every t ∈ R
+
0 . Furthermore,

∫
R

3 f(t, k) dk =∫
R

3 f0(k) dk .

Proof. Fix τ > 0. We first note that if g ∈ C0(R+
0 × R

3) ∩ L1([0, τ ] × R
3) and

0 ≤ g(t, k) ≤ 1 for all (t, k) ∈ R
+
0 ×R

3, then A(g) is integrable on [0, τ ]×R
3. In fact,

from Proposition 3.2 and (3.9) it follows that∫ τ

0

dt

∫
R

3
A(g)(t, k) dk ≤MA

∫ τ

0

dt

∫
R

3
g(t, k) dk .
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Since A(g) is nonnegative in R
+
0 × R

3, the Tonelli theorem [9, p. 138] implies that
A(g) ∈ L1([0, τ ]× R

3).
We now adopt the notation used in the proof of Theorem 4.1 and define fm =

T (fm−1), m ∈ N. Obviously, the sequence {fm} converges to f in Z. Moreover, we
easily have

fm(t, k) ≤ f0(k) +

∫ t

0

A (fm−1) (s, k) ds

for every m ∈ N, (t, k) ∈ R
+
0 × R

3. Since f0 is integrable on [0, τ ] × R
3, the same

holds for A(f0). Arguing by induction, we obtain fm ∈ L1([0, τ ]× R
3) for all m ∈ N

because, in view of (3.9),∫
R

3
fm(t, k) dk ≤

∫
R

3
f0(k) dk +MA

∫ t

0

ds

∫
R

3
fm−1(s, k) dk ,(4.8)

and thus∫ τ

0

dt

∫
R

3
fm(t, k) dk ≤ τ

[∫
R

3
f0(k) dk +MA

∫ τ

0

ds

∫
R

3
fm−1(s, k) dk

]
.

It is a simple matter to see, by induction again and using inequality (4.8), that∫
R

3
fm(t, k) dk ≤ exp(MAt)

∫
R

3
f0(k) dk

for m ∈ N, t ∈ R
+
0 . Therefore, owing to Fatou’s lemma [9, p. 129], the function

k → f(t, k) is integrable on R
3 for every t ∈ R

+
0 and f also belongs to L1([0, τ ]×R

3).
From (3.7) we infer Q(f) ∈ L1([0, τ ] × R

3), so ∂f/∂t is integrable on [0, τ ] × R
3.

Finally, taking into account Proposition 3.2, we get∫
R

3

∂f(t, k)

∂t
dk =

∫
R

3
Q(f)(t, k) dk = 0 for every t ∈ R

+
0 .

Hence,

0 =

∫ τ

0

dt

∫
R

3

∂f(t, k)

∂t
dk =

∫
R

3
dk

∫ τ

0

∂f(t, k)

∂t
dt =

∫
R

3
f(τ, k) dk −

∫
R

3
f0(k) dk .

This completes the proof.

5. Concluding remarks. We feel that it would be worthwhile to make some
observations. The first concerns the presence of the term δ(ε′ − ε ± h̄ωi) inside the
collision operator Q. It leads to defining Q(f) and, consequently, to solving problem
(4.1)–(4.2) in the setting of functions (t, k) → f(t, k) that are at least continuous with
respect to the second variable. Actually, since the kernel of Q does not depend on t,
the global continuity for f is quite natural.

The second remark concerns the continuity of the function Gi on the whole space
R

3×R
3. In several applications and simulations, functions Gi defined and continuous

only in a proper subset of R
3 × R

3 are considered. In any case, Gi is continuous
in the closed set C =

{
(k, k′) ∈ R

3 × R
3 : |ε(k′)− ε(k)| = h̄ωi

}
. By using the Tietze

extension theorem [9, p. 192], we are able to find a continuous extension on the whole
R

3 × R
3. Now, in Appendix C it is shown that the integral∫

R
3
Gi(k, k′)f(t, k′)δ(ε(k′)− ε(k)± h̄ωi) dk

′
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really can be calculated whenever we know the function Gi only on the set C. Hence,
there is no loss of generality in assuming that Gi is continuous in R

3 × R
3.

We next note that, by using hypotheses (a1) and (a2), the collision operator Q
is reduced to an integral one, say Q̃, with a continuous kernel (see Appendix C).
This new map naturally acts on the space of continuous functions, but it also may be
considered in other function spaces. Consequently, the existence of solutions (in the
relevant sense) to the full equation

∂f

∂t
+

1

h̄
∇kε · ∇xf − e

h̄
E · ∇kf = Q̃(f)(5.1)

could be investigated in appropriate settings. Possible solutions of (5.1) do not solve,
in general, the unmodified equation (2.1). Nevertheless, like in the case of the classical
Boltzmann equation for a perfect rarefied gas, the study of (5.1) is of interest.

The final observation deals with the possibility of studying (2.1) as, in the right-
hand side, the term describing electron–electron interactions is added to Q. In the
simple parabolic case, it has the following expression [19]:

Qe−e(f) =

∫
R

3
[Se−e(f)(k′, k)f ′(1− f)− Se−e(f)(k, k′)f(1− f ′)] dk′ ,(5.2)

where

Se−e(f)(k, k′) =

∫
R

6
B(|k− k′|, |k− k∗|)f∗(1− f ′∗)δε δk dk ∗ dk

′
∗ ,

δε = δ (ε(k) + ε(k∗)− ε(k′)− ε(k′∗)) ,
δk = δ(k + k∗ − k′ − k′∗) ,

and B is a function satisfying suitable conditions. The operator Qe−e seems to have
the same form of Q, except for the kernel Se−e that now depends on f . This is not
completely true. In fact, Se−e(f) might not be defined even if B and f are continuous
and bounded. This happens, for instance, when k = k′, in which case δε δk becomes
δ(ε(k∗)− ε(k′∗)) δ(k∗ − k′∗).

A similar trouble occurs in the classical Boltzmann equation [4] where, to avoid
the singularity, a cutoff is often introduced. The same approach may be tried in
the present case. Unfortunately, several further difficulties arise whenever a general
expression for ε is maintained.

Appendix A. In this appendix we list the most common expressions of the
particle energy ε considered in applications and simulations [3], [10]. It is easily seen
that each of them complies with assumptions (a1) and (a2).

ε(k) =
h̄2|k|2
2m

(parabolic case),

ε(k) = εc +
h̄2

2mc
|k− kc|2 (general parabolic case),

ε(k) =
h̄2

2

(
k2
1

m1
+
k2
2

m2
+
k2
3

m3

)
(ellipsoidal model),

ε(k) =
h̄2|k|2
2m

(1− g(ϑ, ϕ)) (warped case),

ε(k) =

−1 +

√
1 + 2

α

m
h̄2|k|2

2α
(nonparabolic case),
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ε(k) =

−1 +

√
1 + 2αh̄2

(
k2
l

ml
+
k2
t

mt

)
2α

(nonparabolic case).

Here, m, εc, mc, kc, m1, m2, m3, α, ml, and mt are constant parameters. Moreover,
k1, k2, k3 denote the components of the vector k, and kl, kt are the lengths of the
longitudinal and transverse projections of k with respect to an assigned direction.
Finally, the function g : [0, 2π]× [0, π] → R is continuous and strictly less than one.

Appendix B. A well-known definition of the Dirac distribution δ is given by
using the following family of functions with compact support [8].

Let r ∈ R
+ and let ωr : R → R

+
0 be the function defined by setting, for z ∈ R,

ωr (z) =




exp(1/2)

K1(1/2)−K0(1/2)

1

r
exp

(
− r2

r2 − z2

)
if |z| < r,

0 otherwise,

where K0 and K1 are modified Bessel functions [1], so∫ +∞

−∞
ωr (z) dz = 1.

The following lemma is an easy extension of useful facts concerning the regular-
ization of a function [2, p. 30].

Lemma B.1. Let V be a nonempty subset of a real Euclidean space, let λ ∈
C0(R3), and let γ ∈ C0(V × R

3 × R). Then, for every (v, k) ∈ V × R
3, one has

lim
r→0+

∫ +∞

−∞
γ(v, k, u)ωr (u− λ(k)) du = γ(v, k, λ(k)).(B.1)

Further, (B.1) uniformly holds on any compact set ∆ ⊆ V × R
3.

Proof. The first assertion is well known (see, for instance, [2, Lemma 2.18]). So,
let us pick a compact subset ∆ of V × R

3. Since∫ +∞

−∞
γ(v, k, u)ωr (u− λ(k)) du =

∫ +∞

−∞
γ(v, k, λ(k) + s)ωr (s) ds, (v, k) ∈ ∆,

we get ∣∣∣∣
∫ +∞

−∞
γ(v, k, u)ωr (u− λ(k)) du− γ(v, k, λ(k))

∣∣∣∣
≤
∫ r

−r
|γ(v, k, λ(k) + s)− γ(v, k, λ(k))|ωr (s) ds

≤ sup {|γ(v, k, λ(k) + s)− γ(v, k, λ(k))| : (v, k) ∈ ∆, |s| ≤ r} .
Then, by using the uniform continuity of the function (v, k, s) → γ(v, k, λ(k) + s) on
the compact set ∆× [−r, r], we see that the second assertion is true too.

Throughout this appendix we denote by W a generic interval of a real Euclidean
space and by p and λ two functions belonging to C0(W × R

3 × R
3) and C0(R3),

respectively. For every (w, k) ∈W × R
3, we define∫

R
3
p(w, k, k′) δ(ε(k′)− λ(k)) dk′ = lim

r→0+

∫
R

3
p(w, k, k′)ωr (ε(k′)− λ(k)) dk′ .(B.2)
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Since, in view of (a23), the set
{
k′ ∈ R

3 : |ε(k′)− λ(k)| < r
}

is bounded, the function
k′ → ωr (ε(k′)− λ(k)) has compact support. Therefore,∫

R
3
p(w, k, k′)ωr (ε(k′)− λ(k)) dk′ < +∞ for all r > 0.

To prove that the right-hand side of (B.2) is a real number, we make a change of
variables in the integral. Set u0 = ε(k0) and Ω0 = [u0,+∞[×D. Assumption (a2)
guarantees that η maps R

+
0 ×D onto [u0,+∞[ and, for fixed (ϑ, ϕ), that the function

ρ → η(ρ, ϑ, ϕ) is strictly increasing on R
+
0 . Hence, there exists a unique function

v : Ω0 → R
+
0 satisfying

η(v(u, ϑ, ϕ), ϑ, ϕ) = u for every (u, ϑ, ϕ) ∈ Ω0.(B.3)

Lemma B.2. The function v is continuous in Ω0.
Proof. Pick (u, ϑ, ϕ) ∈ Ω0 and choose a sequence {(uk, ϑk, ϕk)} ⊆ Ω0 converging

to (u, ϑ, ϕ). Moreover, set ρk = v(uk, ϑk, ϕk), k ∈ N. Making use of (B.3) and
assumption (a23), we see that {ρk} is bounded. Due to the continuity of η, for any
convergent subsequence {ρrk}, one has

u = lim
k→∞

urk = lim
k→∞

η(ρrk , ϑrk , ϕrk) = η

(
lim
k→∞

ρrk , ϑ, ϕ

)
.

Thus, again by (B.3), lim
k→∞

ρrk = v(u, ϑ, ϕ). This clearly forces lim
k→∞

v(uk, ϑk, ϕk) =

v(u, ϑ, ϕ).
The preceding proof is motivated by the fact that standard implicit function

theorems cannot be applied to prove the continuity of the function v on the boundary
of the set Ω0.

Since v(u0, ϑ, ϕ) = 0, (ϑ, ϕ) ∈ D, a continuous extension of v over Ω = R × D
can be obtained by setting v(u, ϑ, ϕ) = 0 for every (u, ϑ, ϕ) ∈] −∞, u0[×D. Finally,
if (u, ϑ, ϕ) ∈ Ω, we define

J(u, ϑ, ϕ) =




0 if u ≤ u0,

[v(u, ϑ, ϕ)]
2

[
∂η(ρ, ϑ, ϕ)

∂ρ

∣∣∣∣
ρ = v(u, ϑ, ϕ)

]−1

sinϕ otherwise.

Lemma B.2 and hypothesis (a22) imply J ∈ C0(Ω). Moreover, we have the following
lemma.

Lemma B.3. For every (w, k) ∈W × R
3, one has

lim
r→0+

∫
R

3
p(w, k, k′)ωr (ε(k′)− λ(k)) dk′(B.4)

=

∫
D

p(w, k, k0 + v(λ(k), ϑ, ϕ)n)J(λ(k), ϑ, ϕ)dϑ dϕ.

Further, (B.4) uniformly holds on any compact subset ∆ of W × R
3.

Proof. Fix (w, k) ∈W × R
3 and observe that∫

R
3
p(w, k, k′)ωr (ε(k′)− λ(k)) dk′

=

∫
D

dϑ dϕ sinϕ

∫ +∞

0

p(w, k, k0 + ρn)ωr (ε(k0 + ρn)− λ(k)) ρ2dρ, r > 0.
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Let us write γ̂(w, k, u, ϑ, ϕ) in place of p(w, k, k0 + v(u, ϑ, ϕ)n)J(u, ϑ, ϕ). By making
the change of variable ρ = v(u, ϑ, ϕ) in the last integral, we get

∫
R

3
p(w, k, k′)ωr (ε(k′)− λ(k)) dk′ =

∫
D

dϑ dϕ

∫ +∞

u0

γ̂(w, k, u, ϑ, ϕ)ωr (u− λ(k)) du

and, due to the properties of the function J ,∫
R

3
p(w, k, k′)ωr (ε(k′)− λ(k)) dk′ =

∫
D

dϑ dϕ

∫ +∞

−∞
γ̂(w, k, u, ϑ, ϕ)ωr (u− λ(k)) du.

Moreover, owing to Lemma B.1,

lim
r→0+

∫ +∞

−∞
γ̂(w, k, u, ϑ, ϕ)ωr (u− λ(k)) du = γ̂(w, k, λ(k), ϑ, ϕ)(B.5)

uniformly in (ϑ, ϕ) ∈ D. Hence,

lim
r→0+

∫
R

3
p(w, k, k′)ωr (ε(k′)− λ(k)) dk′

= lim
r→0+

∫
D

dϑ dϕ

∫ +∞

−∞
γ̂(w, k, u, ϑ, ϕ)ωr (u− λ(k)) du

=

∫
D

γ̂(w, k, λ(k), ϑ, ϕ)dϑ dϕ.

Since, by Lemma B.1 again, (B.5) uniformly holds on ∆×D for any compact subset
∆ of W × R

3, the conclusion follows.
The preceding lemma, together with (B.2), leads to∫

R
3
p(w, k, k′)δ(ε(k′)− λ(k)) dk′(B.6)

=

∫
D

p(w, k, k0 + v(λ(k), ϑ, ϕ)n)J(λ(k), ϑ, ϕ) dϑ dϕ.

Consequently, the continuity theorem for integrals depending on a parameter yields
the following lemma.

Lemma B.4. The function

(w, k) →
∫
R

3
p(w, k, k′)δ (ε(k′)− λ(k)) dk′ , (w, k) ∈W × R

3,

is continuous in W × R
3.

We denote by C0
0 (R3) the space of all functions ψ ∈ C0(R3) which have compact

support suppψ.
Lemma B.5. Let µ ∈ R. Then, for every ψ ∈ C0

0 (R3), w ∈W ,∫
R

3
dkψ(k)

∫
R

3
p(w, k, k′)δ(ε(k′)− ε(k)− µ) dk′(B.7)

=

∫
R

3
dk′

∫
R

3
ψ(k)p(w, k, k′)δ(ε(k′)− ε(k)− µ) dk .
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Proof. Choose ψ ∈ C0
0 (R3) and w ∈ W . By Lemma B.4, the left-hand side of

(B.7) is a real number. Since, owing to Lemma B.3,

lim
r→0+

∫
R

3
p(w, k, k′)ωr (ε(k′)− ε(k)− µ) dk′ =

∫
R

3
p(w, k, k′)δ(ε(k′)− ε(k)− µ) dk′

uniformly in {w} × suppψ, we get∫
R

3
dkψ(k)

∫
R

3
p(w, k, k′)δ(ε(k′)− ε(k)− µ) dk′(B.8)

= lim
r→0+

∫
R

3
dk

∫
R

3
ψ(k)p(w, k, k′)ωr (ε(k′)− ε(k)− µ) dk′ .

For every r > 0 the function (k, k′) → ψ(k)p(w, k, k′)ωr (ε(k′)− ε(k)− µ) has compact
support in R

3 × R
3 because, by assumption (a23), the set{

(k, k′) ∈ R
3 × R

3 : k ∈ suppψ, |ε(k′)− ε(k)− µ| ≤ r
}

is compact. Therefore, due to (B.8) and Lemma B.3 again,∫
R

3
dkψ(k)

∫
R

3
p(w, k, k′)δ(ε(k′)− ε(k)− µ) dk′

= lim
r→0+

∫
R

3
dk′

∫
R

3
ψ(k)p(w, k, k′)ωr (ε(k′)− ε(k)− µ) dk

=

∫
R

3
dk′ lim

r→0+

∫
R

3
ψ(k)p(w, k, k′)ωr (ε(k′)− ε(k)− µ) dk

=

∫
R

3
dk′

∫
R

3
ψ(k)p(w, k, k′)δ(ε(k′)− ε(k)− µ) dk .

This completes the proof.
We note that the presence of the Dirac distribution δ prevents the establishment

of (B.7) through the usual formulas on the change of order of integration. As an
example, if p(z, z′) = (1 + |z||z′ − 1|)/(1 + z2), z, z′ ∈ R, then

∫ +∞

−∞
dz

∫ +∞

−∞
p(z, z′) δ(z′ − 1) dz′ =

∫ +∞

−∞
p(z, 1) dz = π ,

whereas the other iterated integral does not exist, because

∫ +∞

−∞
p(z, z′) dz = +∞ whenever z′ 6= 1 .

Lemma B.6. Let µ ∈ R. If p(w, k, k′) ≥ 0 in W × R
3 × R

3 and, for any w ∈ W ,
the function

k →
∫
R

3
p(w, k, k′)δ(ε(k′)− ε(k)− µ) dk′

is integrable on R
3, then (B.7) holds for all nonnegative bounded ψ ∈ C0(R3).

Proof. Pick w ∈ W and choose a function ψ with the asserted properties. More-
over, let ψn : R → R

+
0 , n ∈ N, be defined as in (3.8). Assumption (a23) guarantees



SEMICONDUCTOR BOLTZMANN EQUATIONS 1307

that the function k → ψn(ε(k)) has compact support. Hence, by Lemma B.5,∫
R

3
dkψ(k)ψn(ε(k))

∫
R

3
p(w, k, k′)δ(ε(k′)− ε(k)− µ) dk′(B.9)

=

∫
R

3
dk′

∫
R

3
ψ(k)ψn(ε(k))p(w, k, k′)δ(ε(k′)− ε(k)− µ) dk

for n ∈ N. Both sides of (B.9) are nonnegative and less than or equal to the real
number ∫

R
3
dkψ(k)

∫
R

3
p(w, k, k′)δ(ε(k′)− ε(k)− µ) dk′ .

Since ψn(z) ≤ ψn+1(z) for all n ∈ N and z ∈ R, the sequence of functions

k → ψ(k)ψn(ε(k))

∫
R

3
p(w, k, k′)δ(ε(k′)− ε(k)− µ) dk′

is nondecreasing and pointwise convergent in R
3 to

k → ψ(k)

∫
R

3
p(w, k, k′)δ(ε(k′)− ε(k)− µ) dk′ .

So, the monotone convergence theorem [9, p. 129] gives

lim
n→∞

∫
R

3
dkψ(k)ψn(ε(k))

∫
R

3
p(w, k, k′)δ(ε(k′)− ε(k)− µ) dk′(B.10)

=

∫
R

3
dkψ(k)

∫
R

3
p(w, k, k′)δ(ε(k′)− ε(k)− µ) dk′ .

Making use of (B.6), it is not difficult to see that∫
R

3
dk′

∫
R

3
ψ(k)ψn(ε(k))p(w, k, k′)δ(ε(k′)− ε(k)− µ) dk

=

∫
R

3
dk′ ψn(ε(k′)− µ)

∫
R

3
ψ(k)p(w, k, k′)δ(ε(k′)− ε(k)− µ) dk

for every n ∈ N. This formula, together with (B.9) and (B.10), leads to∫
R

3
dkψ(k)

∫
R

3
p(w, k, k′)δ(ε(k′)− ε(k)− µ) dk′

= lim
n→∞

∫
R

3
dk′ ψn(ε(k′)− µ)

∫
R

3
ψ(k)p(w, k, k′)δ(ε(k′)− ε(k)− µ) dk .

Now, the same arguments used to prove (B.10) yield the conclusion.

Appendix C. In view of (B.6), we get∫
R

3
Gi(k, k′)f(t, k′)δ(ε(k′)− ε(k)± h̄ωi) dk

′(C.1)

=

∫
D

Gi(k, ξ∓(ϑ, ϕ, k))f(t, ξ∓(ϑ, ϕ, k))J(ε(k)∓ h̄ωi, ϑ, ϕ)dϑ dϕ,
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where ξ∓(ϑ, ϕ, k) = k0+v(ε(k)∓h̄ωi, ϑ, ϕ)n. Now k′ = ξ∓(ϑ, ϕ, k) satisfies the equation
ε(k′) = ε(k) ∓ h̄ωi for all (ϑ, ϕ) ∈ D, k ∈ R

3. In fact, recalling the definition of the
function η (see hypothesis (a2)) and (B.3), we have

ε(k′) = ε (k0 + v(ε(k)∓ h̄ωi, ϑ, ϕ)n)

= η (v(ε(k)∓ h̄ωi, ϑ, ϕ), ϑ, ϕ) = ε(k)∓ h̄ωi.

Therefore, in the integral at the left-hand side of (C.1), the function Gi is actually
evaluated for (k, k′) in the set

{
(k, k′) ∈ R

3 × R
3 : |ε(k′)− ε(k)| = h̄ωi

}
.
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Abstract. The paper considers heat kernels of second-order parabolic equations in R
N , with

constant uniform diffusion and advective coefficients bounded in the maximum norm. Two critical
cases, corresponding to upper and lower solutions, are identified, and explicit solutions are con-
structed for them in terms of the error function. They are shown to bound above and below all other
heat kernels satisfying the same constraints on their advective coefficients by using a method of proof
which relates two heat kernels together in a way which resembles the classical parametrix construc-
tion. Sharp bounds on the corresponding parabolic solution operators in L1(RN ) are obtained as a
consequence.

Key words. heat kernels, non-self-adjoint operators
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1. Introduction. Upper and lower pointwise bounds on the heat kernels of
second-order parabolic operators were first derived, for the general case of variable dif-
fusion and advection coefficients in Lp spaces, by Aronson [1]. These initial qualitative
estimates have more recently been sharpened, in the self-adjoint case, by Davies [2]
and Fabes and Stroock [3]. For the non-self-adjoint case of equations with advection,
sharper estimates have been obtained by Norris and Stroock [6].

Here, we consider the heat kernel Γ(x, t; y, s) of the equation

Lu(x, t) ≡ ∂u

∂t
−∆ u+ a(x, t).∇u = 0, (x, t) ∈ R

N × (0, ∞),(1.1)

with constant uniform diffusion, and aim to obtain sharper estimates in this physically
significant special case. Our methods are classically based and, thus, we initially take
a to obey assumption (A):

(A) a(x, t) is a continuous function, Hölder continuous in x (exponent α), uni-
formly with respect to (x, t) in subsets of the form R

N × [0, T ), for T > 0. The ai
also satisfy (1.2).

ess. sup(x, t)∈RN×[0,∞)|ai(x, t)| ≤Mi for Mi ≥ 0, i = 1, . . . , N.(1.2)

We recall that the classical heat kernel Γ(x, t; y, s), x, y ∈ R
N , t > s ≥ 0, may

be characterized as a solution of (1.1), twice continuously differentiable in space and
once in time, such that

lim
t↘s

∫
RN

Γ(x, t; y, s)f(y) dy = f(x)(1.3)

for all continuous f ∈ L1(R
N ).

∗Received by the editors March 25, 1996; accepted for publication July 30, 1996.
http://www.siam.org/journals/sima/28-6/30104.html

†School of Mathematical Sciences, University of Bath, BA2 7AY, United Kingdom (ath@
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1309



1310 ADRIAN T. HILL

To derive a pointwise upper bound on Γ(x, t; y, s) for fixed y and s, we explicitly
construct a function GM (x− y, t− s), which is the solution of

∂u

∂t
−∆u+

N∑
i=1

Misign[xi − yi]
∂u

∂xi
= 0, (x, t) ∈ R

N × (0, ∞),(1.4)

such that

lim
t↘s

∫
RN

GM (x− y, t− s)f(y) dy = f(x)(1.5)

for all continuous f ∈ L1(R
N ). Here, we use the convention sign[0] = 0, and M =

[M1, M2, . . . , MN ]T , where the Mi are as in (1.2).
The constructed function GM (x− y, t− s) also satisfies

sign[xi − yi]
∂GM

∂xi
≤ 0, i = 1, . . . , N,(1.6)

and is, therefore, one of the solutions of the nonlinear equation

∂u

∂t
−∆u−

N∑
i=1

Mi

∣∣∣∣ ∂u∂xi
∣∣∣∣ = 0, (x, t) ∈ R

N × (0, ∞).(1.7)

We remark that the maximality of nonsingular solutions of (1.7) has previously been
considered by Pucci [7].

If one ignores the singularity at (x, t) = (y, s), then intuitively GM (x− y, t− s)
should bound Γ(x, t; y, s) pointwise above, because it is an upper solution for (1.1),
(1.3) in the sense of the comparison principle. In our main result we prove this
relationship by representing Γ as the sum of GM and a nonpositive integral term;
our representation resembles, in a way, the classical parametrix construction of the
heat kernel. A lower bound is similarly obtained by considering G−M (x, t; y, s), the
solution of (1.4), (1.5) with −Mi replacing Mi.

By appealing to the machinery of Aronson [1], this classical result is extended to
the case where a obeys assumption (B):

(B) a ∈ L∞[RN × [0, ∞)] and a satisfies (1.2).

The pointwise upper limit on Γ(x, t; y, s) is actually attained within the wider
class of equations obeying assumption (B). This is seen from the fact that GM (x −
y, t− s) satisfies (1.4) and (1.5) and is, therefore, equal to ΘM (z; x, t; y, s), the heat
kernel of

∂u

∂t
−∆u+

N∑
i=1

Misign[xi − zi]
∂u

∂xi
= 0(1.8)

when y = z. A similar argument shows that the lower bound is also attained. Since
Aronson [1] has shown that ΘM may be pointwise approximated by the heat ker-
nels of equations satisfying assumption (A), the upper and lower bounds given by
G±M (x, t; y, s) are sharp (though not attained) in that case.
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In section 4, we use the pointwise upper and lower bounds on Γ(x, t; y, s) to
deduce sharp upper and lower L1 bounds on the solutions of (1.1) with u(0) = u0 ∈
L1(R). In particular, we obtain

‖u(t)‖1 ≤
N∏
i=1

(
2 +M2

i t
) ‖u0‖1.

2. Main result. For M ∈ R, consider the function gM : R × (0, ∞) → (0, ∞)
given by

gM (x, t) =
1

2
√
πt

exp

{
− (|x| −Mt)2

4t

}
+
M

4
erfc

( |x|
2
√
t
− M

√
t

2

)
,(2.1)

where erfc(x) = 2√
π

∫∞
x

e−t
2

dt. By direct differentiation,

∂gM
∂x

=
−x

4
√
πt3

exp

{
− (|x| −Mt)2

4t

}
,

∂2gM
∂x2

=
1

4
√
πt3

(
−1 +

x2

2t
− M |x|

2

)
exp

{
− (|x| −Mt)2

4t

}
,

∂gM
∂t

=
1

4
√
πt3

(
−1 +

x2

2t
+
M |x|

2

)
exp

{
− (|x| −Mt)2

4t

}
.(2.2)

Each of the right-hand sides is Lipschitz continuous. (Note that ∂3gM/∂x3 is discon-
tinuous at x = 0.) We deduce that gM is a classical solution of

∂u

∂t
− ∂2u

∂x2
+Msign[x]

∂u

∂x
= 0, (x, t) ∈ R× (0, ∞).(2.3)

We define

GM (x, t) =
N∏
i=1

gMi
(xi, t) for M ∈ R

N .(2.4)

By (2.2)–(2.4), GM (x− y, t) satisfies (1.4) and (1.6).

Theorem 2.1. Suppose that for some M ∈ [0, ∞)N , a(x, t) satisfies assumption
(B). Then, for all x, y ∈ R

N , t > s ≥ 0,

G−M (x− y, t− s) ≤ Γ(x, t; y, s) ≤ GM (x− y, t− s).(2.5)

For each y ∈ R
N , these bounds are attained for all x ∈ R

N , t > s ≥ 0 by the heat
kernels Θ±M (z; x, t; y, s) of (1.8) when y = z.

Remark. Aronson [1, Theorem 10, p. 679] shows that Γ(x, t; y, s) = Γ̃(y, s; x, t)
for t > s ≥ 0, where Γ̃ is the heat kernel for the adjoint problem to (1.1):

L̃[u] ≡ ∂v

∂s
+ ∆v +∇.(a(y, s)v) = 0, (y, s) ∈ R

N × [0, t).(2.6)

Hence, Theorem 2.1 also implies pointwise bounds for Γ̃.
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3. Proof of main result. We begin here with the following lemma.
Lemma 3.1. If (1.1) obeys assumption (A) for some M ∈ [0, ∞)N , then

Γ(x, t; y, s) = G(x− y, t− s)−
∫ t

s

∫
RN

Γ(x, t; η, σ)LG(η − y, σ − s) dηdσ,(3.1)

where G(x, t) is either GM (x, t) or G−M (x, t).
Proof. The proof relies on the account given by Friedman [4, Chapter 1] of the

parametrix method. Here, for t0 ∈ (s, t) and D = {z | |z − x| ≤ 1}, the integral on
the right-hand side of (3.1) is split up as J1 + J2 + J3, where

J1 =

∫ t0

s

∫
RN

Γ(x, t; η, σ)LG(η − y, σ − s) dηdσ,

J2 =

∫ t

t0

∫
RN\D

Γ(x, t; η, σ)LG(η − y, σ − s) dηdσ,

J3 =

∫ t

t0

∫
D

Γ(x, t; η, σ)LG(η − y, σ − s) dηdσ.

For J1 and J2, Γ(x, t; η, σ) has second derivatives in x, continuous with respect
to (x, t; η, σ). On the other hand, for C and c, generic positive constants,

|LG(η − y, σ − s)| =
∣∣∣∣∣
N∑
i=1

(
ai(η, σ)∓Misign[ηi − yi]

∂G

∂ηi

)∣∣∣∣∣
≤ C

N∑
i=1

∣∣∣∣∂G∂ηi
∣∣∣∣

≤ C|η − y|
(σ − s)(N+2)/2

exp

(
− (|η − y| −M(σ − s))2/4(σ − s)

)

≤ C

(σ − s)3/4|η − y|(N−1/2)
exp

(−c|η − y|2/(σ − s)
)

and so is absolutely integrable. Hence, differentiation in x and t commutes with
integration in J1 and J2. (We note here that differentiation of the upper limit t in J2

is valid, but that this yields a term which one may show to be 0.)
For J3, we observe that for fixed y and s,

LG(η − y, σ − s) =

N∑
i=1

(ai(η, σ)∓Misign[ηi − yi])
∂G

∂ηi
(η − y, σ − s)

is Hölder continuous in η, uniformly for (η, σ) ∈ R
N × [t0, t], since (considering (2.2)

and (2.4))

∂G

∂ηi
(η − y, σ − s) and sign[ηi − yi]

∂G

∂ηi
(η − y, σ − s)

are both uniformly Lipschitz continuous and assumption (A) implies that a(η, σ) is
uniformly Hölder continuous.

According to Friedman [4, Theorems 1.3–1.5], the first and second derivatives in
x commute with integration in J3, and

∂J3

∂t
=

∫ t

t0

∫
D

∂Γ(x, t; η, σ)

∂t
LG(η − y, σ − s) dηdσ + LG(x− y, t− s).
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The continuity of these derivatives follows from considerations similar to [4, Theorem
1.8, p. 19].

Let J(x, t; y, s) = J1 + J2 + J3. From (2.2), (2.4) it follows that G(x− y, t− s)
is twice continuously differentiable in x and once in t for x, y ∈ R

N and t > s ≥ 0.
Thus, the same property holds for G(x− y, t− s) + J(x, t; y, s).

Combining the above results, we deduce that

LG(x− y, t− s)− L

∫ t

s

∫
RN

Γ(x, t; η, σ)LG(η − y, σ − s) dηdσ

= LG(x− y, t− s)− LG(x− y, t− s)

−
∫ t

s

∫
RN

LΓ(x, t; η, σ)LG(η − y, σ − s) dηdσ = 0.

We must now prove that

lim
t↘s

∫
RN

(G(x− y, t− s) + J(x, t; y, s))f(y) dy = f(x)(3.2)

for continuous f ∈ L1(R
N ). The contribution from J may be shown to be 0 by

following the proof in [4, p. 20]. On the other hand, for fixed T > 0, it is readily
shown that ∣∣∣∣G(x− y, t− s)− exp(−|x− y|2/(4(t− s)))

(4π(t− s))N/2

∣∣∣∣
≤ C

(t− s)(N−1)/2
exp

(−c|x− y|2
(t− s)

)

≤ C

(t− s)1/2|x− y|(N−2)
exp

(−c|x− y|2
(t− s)

)

for all (t− s) ∈ (0, T ]. Hence,

lim
t↘s

∫
RN

(
G(x− y, t− s)− exp(−|x− y|2/(4(t− s)))

(4π(t− s))N/2

)
f(y) dy = 0,

so (3.2) follows from the well-known properties of the Gaussian kernel.
We deduce that G(x−y, t−s)+J(x, t; y, s) satisfies the characterizing equations

(1.1) and (1.3) and is, therefore, equal to Γ(x, t; y, s).
Proof of Theorem 2.1. We first consider (3.1) under assumption (A). It is well

known that Γ(x, t; ξ, σ) > 0. On the other hand, for M ∈ [0, ∞)N ,

LGM (x− y, t− s) =
N∑
i=1

(ai(x, t)−Misign[xi − yi])
∂GM

∂xi
≥ 0

by (1.2) and (1.6). So, (3.1) implies that Γ(x, t; y, s) ≤ GM (x− y, t− s). The lower
bound follows similarly.

Under conditions which include (1.1) under assumption (B), Aronson [1] defines
the weak fundamental solution Γ(x, t; y, s), which coincides with the classical heat
kernel when coefficients are sufficiently smooth. He considers [1, p. 681] a sequence
of classical heat kernels Γk(x, t; y, s), k ∈ N, for the problem

ut −∆u+ ak(x, t) · ∇u = 0(3.3)
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for |x| < k, t > 0, with Dirichlet boundary conditions

u(x, t) = 0, |x| = k, t > 0,

and shows that Γk(x, t; y, s) → Γ(x, t; y, s) pointwise, as k → ∞. Here, ak(x, t)
is an integral average of a(x, t) formed with a smooth kernel whose support lies in
|x|2 + t2 < k−2. Therefore, ak(x, t) satisfies assumption (A).

Let Hk(x, t; y, s) be the heat kernel of (3.3) in the extended domain R
N×(0, ∞).

Then Γk(x, t; y, s) = Hk(x, t; y, s)+vk(x, t; y, s) for |x|, |y| ≤ k, where vk(x, t; y, s)
is the interior solution of (3.3) such that

vk(x, t; y, s) = −Hk(x, t; y, s), |x| = k, t > 0.

Since Hk satisfies the upper and lower bounds (2.5), it is clear from the parabolic
maximum principle [4, Chapter 2] that vk(x, t; y, s) → 0 pointwise, as k → ∞, for
fixed (x, t; y, s). Hence, Γ(x, t; y, s) satisfies (2.5).

The last part of the theorem is completed by following the argument given in the
introduction.

4. L1 bounds. Aronson [1, section 9] shows, under conditions which include the
case of (1.1) with a(x, t) satisfying assumption (B), that if u0 ∈ L1(R

N ), then

u(x, t) =

∫
RN

Γ(x, t; y, 0)u0(y) dy(4.1)

is the unique weak solution of the equation in L2[[δ, T ]; L2(R
N )] for any T > δ > 0

and that u(x, t) also satisfies the continuity condition

lim
t→0

‖u(t)− u0‖1 = 0.

Here, we use the representation formula (4.1) and the pointwise bounds (2.5) on
Γ(x, t; y, 0) to obtain an upper bound on ‖u(t)‖1/‖u0‖1.

Since u0, and hence u(t), may be split as the sum of nonnegative and nonpositive
parts, it is sufficient to consider nonnegative u0 for the purposes of obtaining L1

bounds. In this case, Fubini’s theorem implies that

‖u(t)‖1 =

∫
RN

∫
RN

Γ(x, t; y, 0)u0(y) dy dx

=

∫
RN

(∫
RN

Γ(x, t; y, 0) dx

)
u0(y) dy, t > 0.

From (2.5) we deduce that, provided u0 is not null,

inf
y∈RN

∫
RN

G−M (x− y, t) dx ≤ ‖u(t)‖1
‖u0‖1 ≤ sup

y∈RN

∫
RN

GM (x− y, t) dx.

That there is in fact no y dependence involved is apparent on a change of variable in
the integrals, and one obtains∫

RN

G−M (x, t) dx ≤ ‖u(t)‖1
‖u0‖1 ≤

∫
RN

GM (x, t) dx.(4.2)

Remark. Suppose that we take a sequence of smooth nonnegative initial data
uk0(x), k ∈ N, for (1.8) such that ‖uk0‖1 = 1 and the support of uk0 lies in the set
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|x− z| < k−1. Let the corresponding solution be denoted uk(x, t). Fixing t > 0 and
noting that the heat kernel ΘM (z; x, t; y, 0) of (1.8) is equal to GM (x − z, t) when
y = z, we deduce that

lim
k→∞

‖uk(t)‖1
‖uk0‖1

=

∫
RN

GM (x, t) dx.

If one exchanges Mi for −Mi, a similar argument shows that the lower bound in (4.2)
is also sharp.

The construction (2.4) of GM implies that

∫
RN

G±M (x, t) dx =
N∏
i=1

∫
R

g±Mi
(xi, t) dxi.(4.3)

A calculation using the identity [5, Formula 7.2.5, p. 299]∫ ∞
x

erfc(t) dt = −x erfc(x) +
1√
π

exp(−x2)

yields ∫
R

gM (x, t) dx = h

(
M
√
t

2

)
, M ∈ R, t ≥ 0,(4.4)

where we define

h(x) =
(
1 + 2x2

)
erfc(−x) +

2x√
π

exp
(−x2

)
.(4.5)

The above analysis is summarized in the following theorem.
Theorem 4.1. Suppose that L obeys assumption (B) and that non-null initial

data u0 ∈ L1(R) are given for (1.1). Then, if u0 is nonnegative, the solution u(t)
satisfies

N∏
i=1

h

(−Mi

√
t

2

)
≤ ‖u(t)‖1

‖u0‖1 ≤
N∏
i=1

h

(
Mi

√
t

2

)
.(4.6)

For general u0 ∈ L1(R
N ) \ {0}, u(t) obeys the upper bound of (4.6).

For small x, the behavior of h(x) is as seen in Gautschi [5, Formula 7.1.6, p. 297],
where for x ∈ R,

h(x) = (1 + 2x2) +
2 exp(−x2)√

π

(
x+ (1 + 2x2)

∞∑
n=0

2n

1 · 3 · · · (2n+ 1)
x2n+1

)

= 1 +
4x√
π

+ 2x2 +
4x3

3
√
π

+ · · · .

When Mi

√
t� 1 for each i, the upper bound in (4.6) grows like

1 +

2

N∑
i=1

Mi

√
π

t1/2,(4.7)



1316 ADRIAN T. HILL

while the decay of the lower bound is found by changing the sign of the Mi’s.
Using an asymptotic expansion for erfc(x) in negative powers of |x| [5, Formula

7.1.23, p. 298], for x < 0 one obtains

h(x) = −2|x|√
π

exp(−x2) + (1 + 2x2)erfc(|x|)

∼ exp(−x2)√
π|x|

(
−2x2 + (1 + 2x2)

(
1 +

∞∑
n=1

(−1)n
1 · 3 · · · (2n− 1)

(2x2)n

))
.

(If the series is truncated, the error, h(x)−R.H.S., is equal to θ(x) times the first
neglected term, where θ(x) ∈ (0, 1).) Hence, when Mi

√
t � 1 for each i, the lower

bound in (4.6) decays like

(
8

π1/2M
3

)N
t−3N/2 exp

(
−

N∑
i=1

M2
i t

4

)
for M ≡

(
N∏
i=1

Mi

)1/N

.(4.8)

Since erfc(x)+ erfc(−x) = 2, (4.5) implies that h(x) = 2 + 4x2 − h(−x). Thus,
when Mi

√
t� 1 for each i, the upper bound in (4.6) may be approximated by

N∏
i=1

(2 +M2
i t)(4.9)

with very little error. This last result may be attributed to the fact that

GM (x, t) ≈
N∏
i=1

Mi

2
for −Mit < xi < Mit, i = 1, 2, . . . , N,(4.10)

and rapidly vanishes outside this box.
Remark. Considering non-null nonnegative endpoint data u(t) = u0 ∈ L∞(RN )

for the adjoint problem (2.6), a duality argument leads to the bounds

N∏
i=1

h

(−Mi

√
t− s

2

)
≤ ‖u(s)‖∞

‖u0‖∞ ≤
N∏
i=1

h

(
Mi

√
t− s

2

)
, s ∈ [0, t].(4.11)
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Abstract. Stationary antisymmetric single-bump periodic solutions of a fourth-order general-
ization of the Fisher–Kolmogorov (FK) equation are analyzed. The coefficient γ > 0 of the additional
fourth-order spatial derivative is found to be a critical parameter. If γ ≤ 1

8
, the family of periodic so-

lutions is still very similar to that of the FK equation. However, if γ > 1
8
, it is possible to distinguish

different families of periodic solutions and the structure of such solutions is much richer.

Key words. differential equations, nonlinear, periodic solutions, phase transitions
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1. Introduction. In this paper we shall study the formation of spatially periodic
patterns in bistable systems described by the extended Fisher–Kolmogorov (EFK)
equation

(1.1)
∂u

∂t
= −γ ∂

4u

∂x4
+
∂2u

∂x2
+ u− u3, γ > 0.

This equation was proposed in 1987 by Coullet, Elphick, and Repaux [8] and in 1988
by Dee and van Saarloos [11] as a generalization of the classical Fisher–Kolmogorov
(FK) equation

(1.2)
∂u

∂t
=

∂2u

∂x2
+ u− u3,

which has played an important role in the studies of pattern formation in bistable
systems (cf. [3, 13, 14, 16, 20, 25, 26]). The term “bistable” refers here to the fact
that the uniform states u = ±1 are stable as solutions of the equation

du

dt
= u− u3.

The EFK equation arises in the study of singular points (so-called Lifshitz points
[14]) in phase transitions and as the evolution equation in gradient systems described
by the energy functional

(1.3) I(u) =

∫ {γ
2
(u′′)2 +

β

2
(u′)2 + F (u)

}
dx, γ > 0, β ∈ R,

where F denotes the double-well potential

(1.4) F (u) =
1

4
(1− u2)2.
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We then obtain the EFK equation when we choose β = 1. Another important appli-
cation of this equation is found in the theory of instabilities in nematic liquid crystals
[5, 27].

In studies of second-order materials [10, 17, 18] one also finds the functional I(u).
Here β < 0. The stationary points of I(u) are then equivalent to the equilibrium
solutions of the Swift–Hohenberg equation

(1.5)
∂u

∂t
= −

(
1 +

∂2

∂x2

)2

u+ αu− u3, α > 0

when α > 1 through a simple scaling of x, t, and u (see, for instance, [7, 9] and the
references therein).

In this paper we are interested in stationary spatial patterns which can be de-
scribed by the EFK equation and in particular in periodic patterns. Thus, we are
concerned with bounded solutions u(x) of the equation

(1.6) γuiv = u′′ + u− u3 on R.

Our main objectives are to determine the effect of the added higher-order gradient
term and the value of the coefficient γ, on the class of possible stationary periodic
patterns, and the qualitative properties of these patterns.

For convenience we recall below the types of stationary patterns that can be
described by the FK equation. However, before doing so we introduce some notation.
We observe that equation (1.6) has a constant of integration: if u is a solution of
equation (1.6), then

(1.7) E(u)
def
= 2γu′u′′′ − γ(u′′)2 − (u′)2 +

1

2
(1− u2)2 = constant

def
=

µ

2
.

To eliminate arbitrary shifts, we always place the origin at a zero of u:

(1.8) u(0) = 0

whenever a zero exists.
For the special value γ = 0, equation (1.6) reduces to the stationary FK equation

(1.9) u′′ + u− u3 = 0.

Proposition 1.1. The FK equation (γ = 0) has the following bounded stationary
solutions.

(a) There exists a unique solution u of equation (1.9) (a kink), such that

(u, u′) → (±1, 0) as x→ ±∞.

It is antisymmetric and monotone and is given explicitly by

u(x) = tanh
( x√

2

)
.

This solution corresponds to the values γ = 0 and µ = 0 in (1.7).
(b) For each µ ∈ (0, 1), there exists a unique periodic solution u of (1.9) such that

u′(0) > 0. It is (i) antisymmetric with respect to its zeros, (ii) symmetric with respect
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to the location of its maxima and its minima, (iii) concave where it is positive and
convex where it is negative, and

(iv) max{|u(x)| : x ∈ R} =
√

1−√µ.

(c) There exist no bounded periodic solutions of (1.9) when µ /∈ (0, 1) and no
bounded solutions of (1.9) when µ /∈ [0, 1].

In two earlier papers [21, 24] we investigated the existence and properties of
kinks of the EFK equation. They are solutions u(x) of equation (1.6) which have the
properties

(1.10) (u, u′, u′′, u′′′) → (±1, 0, 0, 0) as x→ ±∞.

We found that kinks exist for every γ > 0 but that their character and number change
abruptly at γ = 1

8 . When γ ≤ 1
8 , there exists a unique odd monotone kink with the

same characteristic properties as the kink of the FK equation. However, we have
recently shown that for γ > 1

8 , there exists a countably infinite number of odd kinks,
and none of these is monotone in its approach to ±1 as x → ±∞ [22]. We collect
these results in the following proposition.

Proposition 1.2. (a) For each γ > 0, there exists an odd solution of equation
(1.6) which satisfies (1.10).

(b) If γ ≤ 1
8 , there exists one and only one kink which is odd and monotone.

(c) If γ > 1
8 , there exists for every integer n ≥ 0 a kink with 2n+ 1 zeros.

The critical value γ = 1
8 is related to the linearization of (1.6) around u = 1 or

u = −1. For γ ≤ 1
8 the corresponding eigenvalues are all real, whilst for γ > 1

8 they
are all complex.

In the present paper we investigate stationary periodic solutions of the EFK equa-
tion and we shall inquire how parts (b) and (c) of Proposition 1.1 generalize when
we take γ > 0. We shall restrict this study to periodic solutions u which (i) are
odd, (ii) are symmetric with respect to the location of their extrema, and (iii) have a
single relative maximum between consecutive zeros. Thus, let ζ be the first positive
zero of u′. Then we are concerned with periodic solutions of (1.6) with the following
properties:

(1.11)
u(−x) = −u(x) for x ∈ R,

u(ζ − y) = u(ζ + y) for y ∈ R.

We refer to solutions which satisfy (1.11) as single-bump periodic solutions. In this
paper we shall only discuss such periodic solutions.

As we do with the FK equation we only consider solutions for which

E(u) ≥ 0 or µ ≥ 0.

We conjecture that if γ > 1
8 , there exist periodic solutions for some negative values of

µ as well. However, we leave their analyses to a further study.
In our first result, we find that when 0 < µ < 1 the periodic solutions of the FK

equation continue to exist for all γ > 0.
THEOREM A. Let 0 < µ < 1 and γ > 0. Then there exists a periodic solution

u(x) of (1.6) such that

max{|u(x)| : x ∈ R} < 1.
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When µ ≥ 1 the FK equation has no periodic solutions and we see below that
this also continues to be true for all γ > 0.

THEOREM B. Let µ ≥ 1 and γ > 0. Then there exists no periodic solution of
equation (1.6).

When µ = 0 and γ > 1
8 the situation becomes very different from that of the FK

equation. Whereas the FK equation has no periodic solutions for this value of µ, the
EFK equation has two branches of periodic solutions bifurcating from the unique odd
monotone kink U(x) at γ = 1

8 . This is the content of the following two theorems.
THEOREM C. Let µ = 0.
(a) If 0 < γ ≤ 1

8 , then there exist no periodic solutions.
(b) If γ > 1

8 , then there exist a periodic solution u1(x) such that

max{|u1(x)| : x ∈ R} < 1

and a periodic solution u2(x) such that

max{|u2(x)| : x ∈ R} ∈ (1,
√

2).

THEOREM D. Let µ = 0 and let {γi} be a sequence such that

γi ↘ 1

8
as i→∞.

For each i ≥ 1, let ui be a periodic solution corresponding to γi. Then

ui(x) → U(x) as i→∞,

where U is the unique odd monotone kink corresponding to γ = 1
8 . The convergence

is uniform on compact intervals.
We conjecture that in addition to the single-bump periodic solutions of Theorem

C, infinitely many multibump periodic solutions bifurcate from U at γ = 1
8 .

A result which is analogous to Theorem D holds for periodic solutions when
0 < µ < 1 and γ → 0 (cf. Lemma 6.3). They converge to the periodic solution of the
FK equation for the given value of µ.

Periodic solutions with amplitude larger than 1 continue to exist when γ > 1
8 and

µ > 0 is sufficiently small. However, if either γ ≤ 1
8 or µ ≥ 4

9 , they cannot exist.
THEOREM E. Let µ ≥ 0 and γ > 0. There exist no periodic solutions u(x) such

that

max{|u(x)| : x ∈ R} > 1

when one of the following conditions is satisfied:
(a) 0 < γ ≤ 1

8 ,
(b) µ ≥ 4

9 .
For the global behavior of the branches of periodic solutions we obtain several

bounds. We begin with a universal upper bound.
THEOREM F. Let 0 ≤ µ < 1 and γ > 0. Then any periodic solution satisfies

|u(x, γ)| <
√

2 for x ∈ R.

We also prove the following lower bound.
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THEOREM G. Let 0 ≤ µ < 1 and γ > (2
5 )4. Then any periodic solution satisfies

max{|u(x, γ)| : x ∈ R} > 1

50

√
1− µ

log 2
.

Let u be a periodic solution which satisfies (1.11). Then for its slope u′(0) at the
origin we prove an upper and a lower bound:

(1.12)
1

5

√
1− µ < γ1/4u′(0, γ) < {8(1− µ) log 2}1/4

for γ > 1
8 if µ = 0 and for γ > (2

5 )4 if 0 < µ < 1. These bounds enable us to
obtain information about the behavior of periodic solutions for large values of γ. The
description of their limiting behavior involves the reduced problem

(1.13a)

(1.13b)

(1.13c)



viv = v − v3,

v(0) = 0, v′′(0) = 0,

v′(0) = ω, v′′′(0) = −1− µ

4ω

in which ω is a positive number.
THEOREM H. Let 0 ≤ µ < 1. Suppose that {γi} is a sequence which tends to

infinity and {ui} is a sequence of periodic solutions which satisfy (1.11). Then there
exist a subsequence, which we also denote by {γi}, and a periodic solution V of problem
(1.13) such that

ui(γ
1/4
i s, γi) → V (s) as i→∞

uniformly on compact sets.
Outline of the shooting method. We now give a brief description of the topological

shooting method used to prove the existence of the families of odd periodic solutions
described in Theorem A and Theorem C(b).

Since we are looking for odd solutions of (1.6), it is sufficient to consider the
equation on R+ only and with initial conditions of the form

(1.14)
(
u(0), u′(0), u′′(0), u′′′(0)

)
= (0, α, 0, β),

where α and β are real. It is easily verified that a solution u of (1.6) satisfying (1.14)
must be odd, and that −u is also a solution. We shall see that α cannot be zero, and
so we may choose α to be positive. It follows from (1.7) that

(1.15) β =
1

2αγ

{
α2 − 1− µ

2

}
.

In Theorem A we assume that γ and µ are fixed, with γ > 0 and 0 < µ < 1. We
are then free to vary α, our shooting parameter. We begin our analysis by showing
that for each α > 0 there exists a finite value ξ(α) > 0, which depends continuously
on α, such that

(1.16) u′(x, α) > 0 for 0 < x < ξ(α) and u′(ξ(α), α) = 0.

We shall show that u′′′(ξ(α), α) < 0 for small values of α > 0, that there is an α̃ > 0
for which u′′′(ξ(α̃), α̃) > 0, and that

(1.17) 0 < u(ξ(α), α) <
√

1−√µ for 0 < α < α̃.
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From these observations and the continuity of ξ(α) with respect to α we conclude that
there is an intermediate value α− ∈ (0, α̃) such that u′′′(ξ(α−), α−) = 0. At α = α−
we have

0 < u(ξ(α−), α−) <
√

1−√µ, u′(ξ(α−), α−) = 0, and u′′′(ξ(α−), α−) = 0,

and it follows from (1.7) and the definition of ξ(α−) that u′′(ξ(α−), α−) < 0. By
reflecting the graph {(x, u(x, α−)) : 0 ≤ x ≤ ξ(α−)} with respect to the endpoints
x = 0 and x = ξ(α−), we obtain the desired periodic solution. The details of the
analysis described above are given in sections 2 and 3.

In section 5 we turn to the proof of Theorem C(b) in which we set µ = 0 and
restrict γ to satisfy γ > 1

8 . For γ ∈ (0, 1
8 ], part (a) of Theorem C states that no

periodic solutions exist, and this result is proved in section 4. However, as γ passes
through 1

8 from below, a linearization of (1.6) around the constant solution u = 1
shows that the eigenvalues change from real to complex, two of the eigenvalues have
positive real part and two have negative real part. Because of this change in character
of the eigenvalues, Coullet, Elphick, and Repaux [8] conjectured that the range γ > 1

8
is where one would expect to observe complex pattern formation. Such patterns
could include families of periodic and aperiodic solutions, multibump heteroclinic and
homoclinic orbits (kinks, respectively, solitons), and possibly chaos.

One of the main goals of our investigation of the EFK equation is to resolve this
conjecture of Coullet, Elphick, and Repaux and to determine the different types of
solutions that exist for the parameter regime µ = 0 and γ > 1

8 . In Theorem C(b) we
state our first existence result for this range of parameters. We prove that there are
at least two families of periodic solutions; one of these is characterized by the fact
that the relative maxima all lie below u = 1, while the relative maxima of the second
family all lie above u = 1. In addition we show that both families of periodic solutions
bifurcate from the odd, monotone kink (the heteroclinic orbit connecting u = −1 and
u = +1) at γ = 1

8 and continue to exist for all γ > 1
8 .

The proof of Theorem C(b) is based on the same shooting technique we used
for the proof of Theorem A. Again, for each α > 0 we find that there exists a first
ξ(α) ∈ R+ for which u′(ξ(α), α) = 0. In the proof of Theorem A we found that
u(ξ(α), α) 6= 1 because µ 6= 0. However, now we have µ = 0 and indeed we find that
there is a critical value α̃ for which u(ξ(α̃), α̃) = 1. It follows from (1.6), (1.7), and
uniqueness that

(1.18) u(ξ(α̃), α̃) = 1, u′(ξ(α̃), α̃) = 0, u′′(ξ(α̃), α̃) = 0, and u′′′(ξ(α̃), α̃) > 0.

To proceed with our shooting argument we need to know that ξ(α) is continuous.
When u′′ 6= 0 this is an easy consequence of the implicit function theorem, but when
u′′ = 0, as it is at ξ(α̃), this is no longer obvious and the situation is much more
delicate. In Lemma 5.8 we further refine a method originally developed in [21], which
uses u as an independent variable, to prove this important property.

Having established continuity of ξ(α) we conclude that there exists an α− ∈ (0, α̃)
for which u′′′(ξ(α−), α−) = 0. As before, it follows that u(·, α−) is a periodic solution
and by construction its relative maxima lie below u = 1.

For our second periodic solution, whose relative maxima are all greater than 1,
we show that for α > α̃ sufficiently large,

u(ξ(α), α) > 1 and u′′′(ξ(α), α) < 0.
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Remembering that u′′′(ξ(α̃), α̃) > 0, we conclude from the continuity of ξ(α) that
there exists an α+ > α̃ for which

u(ξ(α+), α+) > 1, u′(ξ(α+), α+) = 0, and u′′′(ξ(α+), α+) = 0.

Again, we conclude that u(·, α+) is a periodic solution, but now the construction
ensures that its relative maxima lie above u = 1.

We emphasize that the key result in the proof of the existence of both families
of periodic orbits is Lemma 5.8, which implies that ξ(α) is continuous for all α > 0
if µ = 0 and γ > 1

8 . We have recently extended this property [23] and proved
that all subsequent relative maxima ξi(α) and minima ηi(α), i = 1, 2, . . . , have the
same continuity property. In turn this has allowed us to further refine our shooting
method to establish the existence of complicated types of solutions, such as multibump
heteroclinic orbits [22] and chaotic patterns [23]. The topological shooting argument
developed here and extended in [22] and [23] enables one to prove chaos without
having to verify the typical transversality condition (see, for instance, [12]) required
by the dynamical systems approach. This verification can be very difficult.

Preliminary results suggest that the method developed here presents a framework
which can be used to investigate stationary spatial patterns described by a large class
of model equations, such as the Swift–Hohenberg equation (1.5), and equations de-
scribing soliton solutions in nonlinear optical fibers [1], traveling waves in a suspension
bridge [19], and the deflections of an asymmetrically supported strutt:

(1.19) uiv + Pu′′ + u− u2 = 0, P ∈ R.

In a series of papers [2, 6, 4] this equation has been studied by completely different
(Hamiltonian) methods. Although the nonlinearity in this equation is not cubic,
and the emphasis here lies on homoclinic orbits, it is interesting to compare the two
different methods and the different types of results they generate. Finally, we note
that in [15] a variational approach in combination with a partition of function spaces
into topological subclasses has proved to be successful in analyzing equations such as
(1.6) and (1.9).

2. Preliminaries. Our basic method for proving existence of odd periodic so-
lutions is a shooting technique, so we consider the initial value problem

(2.1a)

(2.1b)

{
γuiv = u′′ + u− u3, x > 0,

u(0) = 0, u′(0) = α, u′′(0) = 0, u′′′(0) = β.

We may restrict our attention to α > 0; if α = 0, then (1.7) implies that µ = 1 and we
shall show in Lemma 2.2 that in this case no periodic solution which satisfies (1.11)
can exist. Thus, if we fix µ ≥ 0 and γ > 0, then (1.7) yields

(2.2) β = β(α) =
1

2γα

{
α2 − 1− µ

2

}
.

We seek a positive value of α such that the solution u(x, α) has the properties
(1.11). That is,

u′(x, α) > 0 for 0 ≤ x < ξ,(2.3a)

u′(ξ, α) = 0 and u′′′(ξ, α) = 0(2.3b)
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for some finite ξ = ξ(α) > 0. It is easily verified that a solution defined on [0, ξ],
which satisfies (2.1)–(2.3), can be extended to yield a periodic solution of period 4ξ.
Thus, we define

ξ(α) = sup{x > 0 : u′(·, α) > 0 on [0, x)}.
In this section we will show that for all values α > 0, except those for which the
corresponding solution u is a monotone kink, ξ(α) is finite and that u is bounded on
[0, ξ] with horizontal slope at ξ. Therefore, to satisfy (2.3) we must still determine
α > 0 so that

u′′′(ξ(α), α) = 0.

At times we shall find it convenient to adopt a different formulation for the initial
value problem (2.1). Since we construct periodic solutions from strictly monotone
segments defined on [0, ξ], we may introduce u as an independent variable, as was
done in [21] for the study of kinks. Denoting the inverse function of u(x) by x(u), we
set

(2.4) t = u and z(t) = (u′)2(x(t)).

This yields

(2.5) z′(t) = 2u′′(x) and z′′(t) = 2
u′′′(x)

u′(x)
.

Hence, upon substitution into (1.7), we obtain

(2.6a)

(2.6b)


 zz′′ =

(z′)2

4
+

1

γ
{z − fµ(t)}, t > 0,

z(0) = α2 and z′(0) = 0,

where

(2.7) fµ(t) =
1

2
{(t2 − 1)2 − µ}.

We denote the solution by z(t, α) and write

τ(α) = sup{t > 0 : z(·, α) > 0 on [0, t)}.
From (2.4) and the definition of ξ(α) it follows that

τ(α) = lim
x→ξ(α)−

u(x, α).

To be assured that z(·, α) corresponds to a periodic solution u(·, α), we need to prove
the existence of a positive α for which

(2.8a) 0 < ξ(α) <∞, 0 < τ(α) <∞,

and

(2.8b) lim
t→τ(α)−

z(t, α) = 0, lim
t→τ(α)−

√
z(t, α)z′′(t, α) = 0.
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Then (2.8), together with (2.4) and (2.5), implies that u(·, α) satisfies (2.3) so that u
is periodic.

Lemma 2.1. Suppose that µ ≥ 0 and γ > 0.
(a) For any α ∈ R+, we have

(2.9) u(ξ(α), α) <∞ and u′(ξ(α), α) = 0.

(b) If µ > 0, then

ξ(α) <∞ for any α ∈ R+.

(c) If µ = 0, then

ξ(α) <∞




for any α ∈ R+ if γ >
1

8
,

for any α ∈ R+ \ {α0} if 0 < γ ≤ 1

8
.

Here α0 = U ′(0), and U is the unique odd monotone kink found in [21].
Proof. (a) We write (2.6a) as

(2.10) (z3/4)′′ =
3

4γ

z − f

z5/4
,

where we have suppressed the subscript µ from f , and we define

τ0 = sup{t ∈ (0, τ) : z′ < 0 on (0, t)},
if z′ < 0 in a right-neighborhood of the origin, and τ0 = 0 otherwise.

We distinguish two cases:

(i) τ0 = τ and (ii) τ0 < τ.

(i) In this case, z(t) < α2 for 0 < t < τ . Suppose that τ = ∞ (i.e., u(ξ(α), α) =
∞). Then, since f(t) ∼ 1

2 t
4 as t → ∞, there exists a T > 0 such that (2.10) reduces

to

(z3/4)′′ < −1 for t > T,

which implies that τ <∞, a contradiction. Thus, it must be the case that u(ξ(α), α) <
∞. If limt→τ− z(t) > 0, then standard theory applied to (2.6) shows that z contin-
ues to exist, with z > 0 on an interval [τ, τ + ε), contradicting the definition of τ .
Therefore,

lim
t→τ−

z(t) = 0.

From this and (2.4) we conclude that u′(ξ(α), α) = 0.
(ii) We now consider the case τ0 < τ , and again we suppose that τ = ∞. At

t = τ0 we have

z(τ0) > 0, z′(τ0) = 0, and z′′(τ0) ≥ 0.

We again distinguish two cases:

(ii∗) 0 ≤ τ0 < 1 and (ii∗∗) τ0 ≥ 1.
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(ii∗) We claim that

(2.11) z(t) > f(t) and z′(t) > 0 for τ0 < t < τ0 + ε,

where ε is some small positive constant. If z′′(τ0) > 0, this follows immediately
from (2.6a). If z′′(τ0) = 0, differentiation of (2.6a) yields z′′′(τ0) > 0 if τ0 > 0 and
z′′′(τ0) = 0 if τ0 = 0. In the latter case one further differentiation of (2.6a) shows that
ziv(τ0) > 0. Thus, in all cases (2.11) holds.

This enables us to define

τ1 = sup{t > τ0 : z′ > 0 on (τ0, t)}.

We shall show that

(2.12) τ1 <∞, z′(τ1) = 0, and z′′(τ1) < 0.

Suppose, to the contrary, that τ1 = ∞. Then, since f(t) > 0 for t > τ+(µ) =√
1 +

√
µ, it follows from (2.10) that

(z3/4)′′ <
3

4γ
z−1/4 for t > τ+

or

(2.13) y′′ <
3

4γ
y−1/3 for t > τ+,

where we have set y = z3/4. If we now multiply (2.13) by 2y′ and integrate over
(τ+, t), we find that

y′ <
3

2
√
γ

√
y2/3 + C for t > τ+,

where C is a positive constant. Writing w = y2/3 = z1/2, this inequality translates
into

w′ <
1√
γ

√
w + C

w
for t > τ+.

Thus, since w is increasing, w′ is uniformly bounded on (τ+,∞), so that

(2.14) z(t) < A(1 + t)2 for t > 0

for some positive constant A.
Remembering that f(t) ∼ 1

2 t
4 as t→∞, it follows from (2.14) that z(t)− f(t) ∼

− 1
2 t

4 as t→∞. Hence, since z is increasing, there exists a constant K > 0 such that

(z3/4)′′ < −K(1 + t)3/2 for t > t1,

where t1 is some sufficiently large number. Two integrations show that z cannot keep
increasing indefinitely, contradicting our assumption that τ1 = ∞. Thus,

τ1 <∞ and z′(τ1) = 0.
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To complete the proof of (2.12), in this case, we shall show that

(2.15) τ1 > 1 and z′′(τ1) < 0.

By (2.11), we can define

τ∗ = sup{t > τ0 : z > f on (τ0, t)}.
It then follows from (2.6a) that z′′ > 0 on (τ0, τ

∗]. This implies that τ1 > τ∗. Also,
since f ′ < 0 on (0,1), it must be that τ1 > 1.

To prove the second assertion in (2.15), we need to show that z′′(τ1) < 0. Suppose,
to the contrary, that z′′(τ1) = 0. Then, since f ′ > 0 on (1,∞), it follows that
z′′′(τ1) < 0, which implies that z′′ > 0 and z′ < 0 on a left-neighborhood of τ1,
contradicting the definition of τ1. This completes the proof of (2.15).

It now follows from (2.6a) that z′′ < 0 and z′ < 0 for t > τ1 until z = 0 at some
finite value τ . This contradicts our assumption that τ = ∞. As in case (i) above it
follows that u′(ξ(α), α) = 0.

(ii∗∗) We now assume that τ0 ≥ 1. The definition of τ0 implies that z′′(τ0) ≥ 0.
If z′′(τ0) > 0, then z′ > 0 on a right-neighborhood of τ0 and we proceed as in the
previous case. If z′′(τ0) = 0, then z′′′(τ0) < 0 if τ0 > 1, and it follows from (2.10) that
z′′ < 0 and z′ < 0 to the right of τ0 until z = 0 at a finite τ , a contradiction. If τ0 = 1
in this case, then z′′′(τ0) = 0 as well, but ziv(τ0) < 0. Again we find that z′′ < 0 and
z′ < 0 to the right of τ0 until z = 0 at a finite τ , a contradiction.

This completes the proof of part (a).
(b) Suppose, to the contrary, that there exist constants µ > 0, α > 0, and γ > 0

such that ξ(α) = ∞. Then u′(x) > 0 for all x > 0 and by part (a), u is uniformly
bounded on R+. Hence,

lim
x→∞u(x, α) exists

def
= `.

We distinguish three cases:

(i) ` > 1, (ii) 0 < ` < 1, and (iii) ` = 1.

(i) Since `(1− `2) < 0 if ` > 1, there exist a point x1 > 0 and a constant M > 0
such that

γuiv − u′′ < −M for x > x1.

When we integrate this inequality twice over (x1, x), we obtain in turn

γu′′′(x)− u′(x) < A−Mx,

γu′′(x)− u(x) < Ax+B − 1

2
Mx2,

where A and B are appropriate constants. Plainly, it is possible to choose x2 > x1 so
large that

Ax+B <
1

4
Mx2 for x > x2

and hence,

γu′′(x) < u(x)− 1

4
Mx2 for x > x2.
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Because u is uniformly bounded, this means that there exists a point x3 > x2 such
that

γu′′(x) < −1

8
Mx2 for x > x3.

One more integration shows that u′(x) → −∞ as x → ∞, which contradicts the
assumption that ξ(α) = ∞.

(ii) Since `(1 − `2) > 0 if 0 < ` < 1, there exist a point y1 > 0 and a constant
N > 0 such that

γuiv − u′′ > N for x > y1.

Proceeding as in the previous case, we can find a point y2 > y1 such that

γu′′(x) > +
1

8
Nx2 for x > y2,

and we conclude that u′(x) → ∞ as x → ∞, which contradicts the fact that u is
uniformly bounded.

(iii) If ` = 1, we conclude from (1.7) that there exists a point x∗ > 0 such that

(2.16) u′(x)u′′′(x) ≥ µ

8γ
> 0 for x > x∗.

Hence, u′′ has one sign on (x∗,∞), so limx→∞ u′(x) = m exists and m ≥ 0. If m > 0,
then u(x) →∞ as x→∞, violating the boundedness of u. Hence m = 0, so that by
(2.16), u′′′(x) → ∞ as x → ∞. Thus, u′′(x) → ∞, u′(x) → ∞, and u(x) → ∞ as
x→∞, contradicting again the boundedness of u.

(c) Suppose, to the contrary, that there exist constants γ > 0 and α > 0 such
that ξ(α) = ∞. Then u′(x) > 0 for all x > 0 and it follows as in part (b) that

(2.17) lim
x→∞u(x, α) = 1.

Hence, 0 < u < 1 for all x > 0, and we deduce from the differential equation that

(2.18) γuiv − u′′ > 0 for x > 0.

By the maximum principle, u′′ can have only one sign on R+, and therefore u′ tends
to a limit: limx→∞ u′(x) = `1 ≥ 0. If `1 > 0, the solution will be unbounded on R+,
so

(2.19) lim
x→∞u′(x) = 0.

In view of (2.18), limx→∞(γu′′′ − u′) = `2 exists, and therefore,

lim
x→∞u′′′(x) =

`2
γ
.

Reasoning as before we find that

(2.20) lim
x→∞u′′′(x) = 0.

Thus, since µ = 0, it follows from (2.17)–(2.20) and the energy identity (1.7) that

(2.21) lim
x→∞(u, u′, u′′, u′′′) = (1, 0, 0, 0) and u′ > 0 on [0,∞).
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If γ ∈ (0, 1
8 ], then (2.21) implies that α = α0, where α0 is the unique positive

value of α for which a monotone, antisymmetric kink U exists. But this value has
been excluded in the hypotheses.

If γ > 1
8 , then a linearization of (2.6a) around u = 1 shows that all four eigenvalues

are complex with nonzero real and imaginary parts. Therefore, u cannot approach u =
1 monotonically, as asserted in (2.21). Thus, we have arrived at the final contradiction
and Lemma 2.1 is proved.

We conclude this section with a lemma which restricts the admissible values of µ
and α.

Lemma 2.2. Let γ > 0 and suppose that either

(a) 0 ≤ µ < 1 and α ≥
√

1− µ

2
or

(b) µ ≥ 1 and α ≥ 0.

Then the solution u(·, α) of problem (2.1), (2.2) cannot satisfy (2.3).
Proof. Suppose, to the contrary, that there exist values of µ and α for which

either (a) or (b) holds and which are such that the corresponding solution u(x, α) of
problem (2.1), (2.2) does satisfy (2.3). We consider the two cases in succession.

(a) Observe that

z′′(0, α) =
1

γα2

(
α2 − 1− µ

2

)
.

Thus, if α >
√

1
2 (1− µ), then z′′(0, α) > 0, and if α =

√
1
2 (1− µ), then z′′(0, α) = 0.

However, in the second case z′′′(0, α) > 0. Therefore, in both cases z′′ > 0 on an
interval (0, δ).

It follows by the arguments used in the proof of part (a) of Lemma 2.1 that
z′′(t) > 0 and z′(t) > 0 for all t ∈ (0, τ+(µ)]. In terms of the function u(·, α) this
means that there exists a point x1 such that

u′ > 0, u′′ > 0, and u′′′ > 0 on (0, x1) and u(x1) > 1.

For condition (2.3b) to hold, there must be a first x2 > x1 such that

u′′(x2) = 0 and u′′′(x2) ≤ 0.

Thus, u′′ > 0 and, hence, also u′ > 0 on (0, x2), so that ξ(α) > x2. By equation
(2.1a), we have uiv(x2) < 0, so

u′′′ < 0 and u′′ < 0 on (x2, ξ(α)].

In particular, u′′′(ξ(α), α) < 0, which contradicts (2.3b).
(b) In this case, if α > 0 then z′′(0, α) > 0 and we can proceed using the same

arguments we used in part (a) to complete the proof. We omit the details for the sake
of brevity.

If α = 0, then by (1.7) we must have µ = 1, so that u(0) = 0, u′(0) = 0, u′′(0) = 0.
If u′′′(0) = 0 as well, then u is the trivial solution, so we must assume that u′′′(0) 6= 0.
Without loss of generality we may assume that u′′′(0) > 0. Then u′ > 0 and u′′ > 0
in a right-neighborhood of the origin; hence, z(t) > 0 and z′(t) > 0 for small values
of t. We may now proceed as in part (a) to show that u cannot be a periodic solution
which satisfies (2.3). Theorem B is an immediate consequence of part (b) of Lemma
2.2.
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3. Existence and uniqueness of periodic solutions: 0 < µ < 1, γ > 0.
In this section we focus our attention on the parameter range 0 < µ < 1, γ > 0. We
prove Theorem A and a uniqueness theorem for a more restricted range of values of
µ, i.e., µ ∈ (0, 4

9 ].
Theorem 3.1. Let µ ∈ (0, 1) and γ > 0. Then there exists a periodic solution

u(x) such that

max{|u(x)| : x ∈ R} < 1.

The proof proceeds via a sequence of lemmas.
We define the shooting set

S = {α̂ > 0 : u(ξ(α), α) < 1, u′′(ξ(α), α) < 0, and u′′′(ξ(α), α) < 0 for 0 < α < α̂}.
Lemma 3.2. We have
(a) ξ ∈ C1(S).
(b) S is an open interval.

(c) u(ξ(α), α) <
√

1−√µ if α ∈ S.

Proof. (a) Let α ∈ S. Then, at ξ = ξ(α) we have

u′(ξ(α), α) = 0 and u′′(ξ(α), α) < 0.

Hence, by the implicit function theorem, ξ ∈ C1(S).
(b) Since the inequalities in the definition of S are strict, the assertion follows

immediately from part (a) and the continuous dependence of solutions on initial data.
Part (c) follows at once from the energy identity (1.7).
In the following lemma we show that S is nonempty. Define

α = min

{√
1− µ

2
,

√
3(1− µ)

24γ + 7

}
.

Lemma 3.3. (0, α) ⊂ S.
Proof. Let α ∈ (0, α). Observe that (1.7) implies that u′′′(0) < 0, since 0 < µ < 1

and α < α. As we increase x and as long as u′′′ < 0, it follows that u′′ < 0, u′ < α,
and u(x) < αx. Thus, as long as u ≥ 0 and u′′′ < 0, it follows from (2.1a) that

(3.1a) uiv(x) <
α

γ
x.

We integrate this inequality three times to obtain

u′′′(x) < β +
α

2γ
x2,(3.1b)

u′′(x) < βx+
α

6γ
x3,(3.1c)

u′(x) < α+
β

2
x2 +

α

24γ
x4.(3.1d)

Since we assume that α < 1
2

√
1− µ, the energy identity (1.7) implies that

β < −1− µ

8γα
.
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Hence, the right-hand sides of (3.1b) and (3.1c) are negative for 0 < x ≤ 1 and, since
α < 1, it follows that u < 1 on [0, 1] as long as u′ ≥ 0.

On the other hand, because we have chosen α <
√

3(1−µ)
24γ+7 , the right-hand side of

(3.1d) is negative at x = 1. Thus, there must exist a first zero ξ of u′ on (0, 1), where
u < 1, u′′ < 0, and u′′′ < 0, so that α ∈ S.

Define

α∗ = supS.

Lemma 3.4. We have

α∗ ≤
√

1− µ

2
.

Proof. It follows from (1.7) that

2γu′u′′′ ≥ (u′)2 − 1

2
{(1− u2)2 − µ}

> (u′)2 − 1− µ

2
for 0 < u < 1.

Thus, if α2 > (1− µ)/2, then u′′′ > 0, u′′ > 0, and u′ > α > 0 as long as 0 < u ≤ 1,
so that u′ cannot have a first zero ξ such that u(ξ) < 1.

Lemma 3.5. We have

0 < u(ξ(α∗), α∗) < 1, u′′(ξ(α∗), α∗) < 0, and u′′′(ξ(α∗), α∗) = 0.

Proof. Suppose that u(ξ(α∗), α∗) ≥ 1. Then by the continuous dependence of
u(·, α) on α on compact intervals, it follows that u(ξ(α), α) >

√
1−√µ for all α in a

small enough neighborhood of α∗. Since (0, α∗) ⊂ S, this contradicts Lemma 3.2 and
we conclude that

(3.2) u(ξ(α∗), α∗) < 1.

Thus, in the limit as α increases toward α∗, the first inequality in the definition
of S continues to hold, and we wish to prove that the second one continues to hold as
well. Suppose that the second inequality fails. It follows from the definition of ξ that
u′′(ξ(α∗), α∗) ≤ 0. Hence, we suppose that

(3.3) u′′(ξ(α∗), α∗) = 0.

In what follows we shall write ξ∗ = ξ(α∗) and u∗ = u(ξ∗, α∗).
To show that (3.3) leads to a contradiction we proceed via a series of steps.
Step 1. We show that (3.3) implies that

(3.4) u′′′(ξ∗, α∗) > 0.

Suppose that u′′′(ξ∗, α∗) < 0. Then u′′ > 0 and u′ < 0 in a left-neighborhood of ξ∗,
contradicting the definition of ξ∗.

Next, suppose that u′′′(ξ∗, α∗) = 0. Then, since u∗ ∈ (0, 1) by (3.2), it follows
from the differential equation that uiv(ξ∗, α∗) > 0, so that u′′′ < 0, u′′ > 0, and u′ < 0
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in a left-neighborhood of ξ∗. This means that u′ has a zero on (0, ξ∗) contradicting
again the definition of ξ∗.

Thus, if (3.3) holds, then so does (3.4).
Step 2. We show that

(3.5) ξ(α) → ξ(α∗) as α→ α∗, α ∈ S.
First, it follows from (3.3), (3.4), and (2.1a) that

u′′′(x, α∗) > 0, u′′(x, α∗) > 0, and u′(x, α∗) > 0

for x > ξ∗ until u(x0, α
∗) = 1 at a finite x0 > ξ(α∗).

Next, let ε > 0 be small and arbitrarily chosen to satisfy

0 < ξ(α∗)− ε < ξ(α∗) < ξ(α∗) + ε < x0.

Since [0, x0] is compact, it follows from the definition of α∗, part (b) of Lemma 3.2,
and continuity that there exists a δ = δ(ε) > 0 such that if 0 < α∗ − α < δ, then
α ∈ S,

(3.6a) u(x0, α) >
√

1−√µ,

and

(3.6b) u′(x0, α) > 0 for all x ∈ [0, ξ(α∗)− ε] ∪ [ξ(α∗) + ε, x0].

From (3.6a), part (c) of Lemma 3.2, (3.6b), and the definition of ξ(α) we conclude
that ξ(α) ∈ (ξ(α∗)− ε, ξ(α∗) + ε) if 0 < α∗ − α < δ. This implies (3.5).

Step 3. The contradiction. It follows from (3.5) that

u′′′(ξ(α), α) → u′′′(ξ(α∗), α∗) as α→ α∗, α ∈ S.
Because u′′′(ξ(α), α) < 0 for all α ∈ S, this implies that

u′′′(ξ(α∗), α∗) ≤ 0,

which contradicts (3.4) and we conclude that (3.3) cannot hold. Thus,

(3.7) u′′(ξ(α∗), α∗) < 0.

To complete the proof we suppose that

u′′′(ξ(α∗), α∗) < 0.

Then α∗ ∈ S and since S is open, α∗ cannot be the supremum of S. Therefore,

u′′′(ξ(α∗), α∗) = 0

and the lemma is proved.
Corollary 3.6. We have

u(ξ(α∗), α∗) <
√

1−√µ and α∗ <

√
1− µ

2
.
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Proof. The first inequality follows as in Lemma 3.2(c) from the energy identity
(1.7). However, because we know from Lemma 3.5 that u′′(ξ∗, α∗) < 0, we now obtain
strict inequality.

The second inequality is proved if we can rule out equality from Lemma 3.4. Thus,
suppose that (α∗)2 = (1 − µ)/2. Then u(i)(0) = 0 for i = 2, 3, 4 and u(5)(0) > 0.
Hence, since u(i) > 0, i = 2, 3, 4 in a right-neighborhood of the origin, we conclude
that u′ > 0 as long as u ≤ 1, so that u(·, α∗) cannot yield a periodic solution such
that u(ξ∗, α∗) < 1.

Proof of Theorem 3.1. It follows from Lemma 3.5 that the solution u(x, α∗) of
problem (2.1) satisfies the conditions (2.3) at ξ = ξ(α∗) and so can be continued to
yield a periodic solution with period 4ξ(α∗).

Concerning uniqueness, we give the following partial result.

Lemma 3.7. Let γ > 0 and 4
9 ≤ µ < 1. Then there exists a unique periodic

solution u which satisfies (2.1), (2.2) and is such that max |u| < 1.

Proof. Suppose that there are values γ > 0 and µ ∈ [49 , 1) such that there exist
two distinct periodic solutions u1 and u2 with max |ui| < 1 (i = 1, 2). Let α1 and α2

be their respective slopes at x = 0. Since

dβ

dα
=

1

2γ
+

1− µ

4γα2
> 0,

it follows that

α1 < α2 ⇒ u′′′1 (0) < u′′′1 (0) < 0.

Let w = u1 − u2. Then, by the mean value theorem,

(3.8a)

(3.8b)

{
γwiv = w′′ + (1− 3ũ2)w,

w(0) = 0, w′(0) < 0, w′′(0) = 0, and w′′′(0) < 0,

where ũ is a function whose values lie between those of u1 and u2. Since 4
9 ≤ µ < 1

and max |ui| <
√

1−√µ, it follows that

|ũ(x)| ≤ 1√
3

for x ∈ R

and, therefore,

1− 3ũ2(x) ≥ 0 for x ∈ R.

Thus, we conclude from (3.8a) and (3.8b) that

wiv < 0, w′′′ < 0, w′′ < 0, and w′ < 0 for x ∈ R.

This implies that w(x) → −∞ as x → ∞. Because |w(x)| ≤ |u1(x)| + |u2(x)| ≤ 2√
3

for all x ∈ R, this is not possible and we have a contradiction.

We conjecture that for every γ > 0 and 0 < µ < 1, there exists a unique periodic
solution with maximum less than 1.
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4. Nonexistence of periodic solutions. In this section we restrict our atten-
tion to the parameter regime

(4.1) 0 ≤ µ < 1 and γ > 0.

In Lemma 2.2 we already proved that no periodic solution can exist if µ ≥ 1 and
γ > 0. We wish to determine the largest possible range of values of µ and γ in this
regime in which no periodic solution exists. We emphasize again that by a periodic
solution we mean a solution of problem (2.1)–(2.2) which satisfies (2.3).

In the analysis below we extend Lemma 2.2 and prove two nonexistence theorems
for 0 < γ ≤ 1

8 . In the previous section we found that there exist periodic solutions
for every γ > 0 when 0 < µ < 1 and that their maxima lie below u = 1. In our first
nonexistence theorem we set µ = 0 and show that such solutions cease to exist when
0 < γ ≤ 1

8 . This range of γ-values is optimal; in the next section we shall show that
when µ = 0 and γ > 1

8 such periodic solutions do exist.
In section 5 it is shown that when µ = 0 and γ > 1

8 , there exist periodic solutions
with maxima above u = 1. In our second nonexistence theorem we shall show that
when µ = 0, this range of γ-values is also optimal and that no periodic solutions with
maxima above u = 1 exist when γ ≤ 1

8 .
Before proving these two theorems, we establish three technical lemmas. For this

we recall that if u(·, α) is a periodic solution, then the corresponding solution z(·, α)
of problem (2.6) has the properties

(2.8b) lim
t→τ(α)−

z(t, α) = 0 and lim
t→τ(α)−

√
z(t, α)z′′(t, α) = 0,

where τ(α) is finite and defined by

τ(α) = sup{t > 0 : z(·, α) > 0 on [0, t)}.
Lemma 4.1. Let 0 ≤ µ < 1 and γ > 0. If z corresponds to a periodic solution,

then

(a) z(0) <
1− µ

2
,

(b) z′(t) < 0 for 0 < t < τ.

Proof. (a) Since z(0) = α2, the assertion follows at once from Lemma 2.2.
(b) It follows from part (a) and (2.6a) that z′′(0) < 0. Hence, z′ < 0 in an interval

(0, ε) for some small ε > 0. If z′ vanishes at a first τ0 ∈ (0, τ), then

(4.2) z(τ0) > 0, z′(τ0) = 0, and z′′(τ0) ≥ 0.

If z′′(τ0) = 0, then z(τ0) = fµ(τ0) by (2.6a) and a differentiation of (2.6a) yields

(4.3) z′′′(τ0) = − f ′µ(τ0)

γz(τ0)
= −2τ0(τ

2
0 − 1)

γ z(τ0)
.

We shall discuss the cases (i) τ0 = 1, (ii) τ0 < 1, and (iii) τ0 > 1 in succession.
(i) τ0 = 1. It follows from (2.6a) that

z(τ0) = fµ(τ0) = −1

2
µ ≤ 0,
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which contradicts (4.2).
(ii) τ0 < 1. It follows from (4.3) that z′′′(τ0) > 0, so that z′′ < 0 and z′ > 0 in a

left-neighborhood (τ0 − ε, τ0) of τ0. But this contradicts the definition of τ0.
(iii) τ0 > 1. It follows from (4.3) that z′′′(τ0) < 0. Therefore, z′′ < 0 and z′ < 0

in a small interval (τ0, τ0 + ε). When we differentiate (2.6a) and divide by
√
z, we

obtain

(4.4) (
√
z z′′)′ =

z′ − f ′µ
γ
√
z

.

Since τ0 > 1 and f ′µ > 0 on (1,∞), it follows from (4.4) that z′′ < 0 and z′ < 0 on
the entire interval (τ0, τ). Integration of (4.4) over (τ0, τ) shows that

lim
t→τ−

√
z(t) z′′(t) =

∫ τ

τ0

z′ − f ′µ
γ
√
z

ds < 0,

contradicting (2.8b).
Thus, because (i), (ii), and (iii) lead to contradictions, we must conclude that

z′′(τ0) > 0. This implies by (2.6a) that z(τ0) > fµ(τ0). Hence, z′ > 0 in a right-
neighborhood of τ0. Because z(τ) = 0, there must exist a first τ1 > τ0 where z′(τ1) =
0. We assert that τ1 > 1. To see this, note that (2.6a) implies that z′′ > 0; hence,
z′ > 0 as long as z > fµ. Because f ′µ < 0 on (0, 1), it follows that

z(t) > z(τ0) > fµ(τ0) > fµ(t) on τ0 < t ≤ 1.

This means that z′ > 0 on (τ0, 1] and, hence, τ1 > 1.
At t = τ1 we have z′′(τ1) ≤ 0. If z′′(τ1) < 0, then z′′ < 0 and z′ < 0 on an

interval (τ1, τ1 + ε). Reasoning as before, using (4.4) again, we find that z′ < 0 on the
entire interval (τ1, τ) and that limt→τ−

√
z(t) z′′(t) < 0, which contradicts (2.8b). If

z′′(τ1) = 0, then, as in (4.3), we find that

z′′′(τ1) = −2τ1(τ
2
1 − 1)

γ z(τ1)
< 0.

Therefore, z′′ < 0 and z′ < 0 on a right-neighborhood of τ1 and we can repeat the
previous argument to obtain a contradiction of (2.8b).

This leads us to the conclusion that z′ < 0 on (0, τ) and the lemma is proved.
Lemma 4.2. Suppose that z corresponds to a periodic solution and that fµ(τ) 6= 0.

Then

(4.5) z′′(τ) = lim
t→τ−

z′′(t) =
2

γ

{
1 +

√
γ

2

f ′µ(τ)√
fµ(τ)

}
.

Proof. Because u′ and u′′′ both vanish as x → ξ−, or t → τ−, it follows from
l’Hôpital’s rule that

(4.6) z′′(τ) = 2 lim
x→ξ−

u′′′(x)

u′(x)
= 2 lim

x→ξ−

uiv(x)

u′′(x)
=

2

γ

(
1 +

u− u3

u′′
)
,

where the last term is evaluated at x = ξ. By the energy identity (1.7) we have

(u′′)2 =
1

γ
fµ(u) at x = ξ,
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so that

u′′ = − 1√
γ

√
fµ(u) at x = ξ.

If we substitute this expression for u′′ into (4.6) and remember that u(ξ) = τ , the
assertion follows.

Define

(4.7) H = z
(
z′′ − 1

γ

)
− µ

2γ

and

τ0 = sup{t ∈ (0, τ) : z′ < 0 on (0, t)}.
Lemma 4.3. Let 0 ≤ µ < 1 and 0 < γ ≤ 1

8 , and let z be the solution of problem
(2.6). Then

H(t) < 0 for 0 ≤ t < τ∗ = min{τ0, 1}.

Proof. Observe that we can write H as

(4.8) H =
(z′)2

4
− (t2 − 1)2

2γ
.

Hence

H(0) = − 1

2γ
< 0

and it follows that H < 0 in a right-neighborhood of the origin. Suppose that H first
vanishes at a point t0 ∈ (0, τ∗). Then

(4.9) H(t0) = 0 and H ′(t0) ≥ 0.

We deduce from (4.8), (4.9), and part (b) of Lemma 4.1 that, since t0 < 1,

(4.10) z′(t0) = −
√

2

γ
(1− t20).

For H ′ we differentiate (4.8) and use (4.10) to obtain

(4.11) H ′(t0) = −(1− t20)

{
z′′√
2γ

− 2t0
γ

}
.

Since µ ≥ 0 and H vanishes at t0, it follows from (4.7) and (4.9) that

z
(
z′′ − 1

γ

)
=

µ

2γ
≥ 0 at t = t0.

Hence z′′(t0) ≥ 1
γ , and we conclude from (4.11) that

H ′(t0) ≤ − 1

γ
(1− t20)

{
1√
2γ

− 2t0

}
< 0
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because 0 < t0 < 1 and γ ≤ 1
8 . This contradicts (4.9) and the lemma is proved.

We are now ready to prove the two nonexistence theorems for 0 < γ ≤ 1
8 . As

was explained earlier, we know that there exist periodic solutions for these values of
γ when 0 < µ < 1 and that they do not exceed u = 1. In the first theorem we show
that such periodic solutions no longer exist when µ = 0. In the second theorem we
show that if µ ∈ [0, 1), then there exist no periodic solutions which exceed u = 1.

Theorem 4.4. Let µ = 0 and 0 < γ ≤ 1
8 . Then there exists no periodic solution

u(x) such that

max{|u(x)| : x ∈ R} < 1.

Proof. Suppose, to the contrary, that there exists a periodic solution u whose
maximum is less than 1. Let z correspond to u. Then τ < 1, Lemma 4.1 implies that
z′ < 0 on (0, τ), and we deduce from Lemma 4.3 that H < 0 on (0, τ). Thus, by (4.7),

(4.12) z′′(t) <
1

γ
for 0 < t < τ

and, in particular,

z′′(τ) ≤ 1

γ
.

From this last inequality and Lemma 4.2, we conclude that

f ′(τ) ≤ − 1√
γ

√
f(τ).

Therefore, because of (2.7),

τ ≥ 1√
8γ

.

Since γ ≤ 1
8 , this means that we must have τ ≥ 1, a contradiction.

Theorem 4.5. Let 0 ≤ µ < 1 and 0 < γ ≤ 1
8 . Then there exists no periodic

solution u(x) such that

max{|u(x)| : x ∈ R} > 1.

Proof. Suppose that there exists a periodic solution u whose maximum is greater
than 1. Let z correspond to u. Then τ > 1. Since Lemma 4.1 implies that z′ < 0 on
(0, τ), it follows that z′(1) < 0.

To force a contradiction we shall show that z′(1) > 0. The proof of Lemma 3.4
shows that this is the case when α > αµ =

√
(1− µ)/2, and by continuity this will

remain so until z′(1) = 0 for some α̃ < αµ. When z′(1) = 0, it follows from (4.8) that

H(1) = 0 and H ′(1) = 0.

In addition,

H ′′(1) ≥ 1− 8γ

2γ2
+

µ

2γ2z
,
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where strict inequality holds if µ > 0 and equality holds if µ = 0. Thus,

H ′′(1) > 0 if (µ, γ) 6=
(

0,
1

8

)
,

in which case H ′ < 0 and H > 0 in a left-neighborhood of t = 1. Since H < 0 on
(0, 1) by Lemma 4.3, we have a contradiction.

On the other hand, if µ = 0 and γ = 1
8 , then H ′′(1) = 0 and we have to consider

higher derivatives. We find that

H ′′′(1) = −12

γ
< 0.

Therefore, in this case, H ′′ > 0, H ′ < 0, and H > 0 in a left-neighborhood of t = 1
and by Lemma 4.3, we have once again arrived at a contradiction.

5. Existence of periodic solutions: µ = 0, γ > 1
8
. In the previous section

we saw that if µ = 0, then there are no periodic solutions for 0 < γ ≤ 1
8 . In this

section we shall show that there do exist periodic solutions when γ > 1
8 , both with a

maximum less than 1 and with a maximum greater than 1. The method of proof is
similar to the one used in section 3.

Theorem 5.1. Let µ = 0 and γ > 1
8 . Then there exists a periodic solution u

such that

max{|u(x)| : x ∈ R} < 1.

We recall from Lemma 2.1 that if µ = 0 and γ > 1
8 , then

ξ(α) <∞ and u′(ξ(α), α) = 0 for every α > 0.

Continuing as in section 3, we set

S = {α̂ > 0 : u(ξ(α), α) < 1, u′′(ξ(α), α) < 0, and u′′′(ξ(α), α) < 0 for 0 < α < α̂}.
Reproducing the proofs of Lemmas 3.2–3.4, we establish the following properties of ξ
and S.

Lemma 5.2. Let µ ∈ [0, 1) and γ > 0.
(a) ξ ∈ C1(S).
(b) The set S is a nonempty, open interval of the form (0, α∗).

(c) min

{√
1− µ

2
,

√
3(1− µ)

24γ + 7

}
≤ α∗ ≤

√
1− µ

2
.

We must still determine the properties of u(·, α∗). This will be done in the next
lemma.

Lemma 5.3. Let µ = 0 and γ > 0. Then

u(ξ(α∗), α∗) < 1, u′′(ξ(α∗), α∗) < 0, and u′′′(ξ(α∗), α∗) = 0.

Proof. We first show that u′′(ξ∗, α∗) < 0, where we have written ξ∗ = ξ(α∗).
From the definition of ξ we conclude that u′′(ξ∗, α∗) ≤ 0. We claim that

u′′(ξ∗, α∗) < 0. Thus, suppose to the contrary that

(5.1) u′′(ξ∗, α∗) = 0.
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Then, by the energy identity (1.7),

u(ξ∗, α∗) = 1.

We assert that (5.1) implies that

(5.2) u′′′(ξ∗, α∗) > 0.

Suppose that u′′′(ξ∗, α∗) < 0. Then u′′ > 0 and u′ < 0 in a left-neighborhood of
ξ∗, contradicting the definition of ξ∗. On the other hand, if u′′′(ξ∗, α∗) = 0, then by
uniqueness, u(x) = 1 for all x ∈ R, a contradiction. Thus, indeed, (5.2) holds.

As in the proof of Lemma 3.5 it follows that

ξ(α) → ξ(α∗) as α→ α∗, α ∈ S,
which means that

u′′′(ξ(α), α) → u′′′(ξ(α∗), α∗) as α→ α∗, α ∈ S.
Because u′′′(ξ(α), α) < 0 for all α ∈ S, we arrive in the limit as α→ α∗ at

(5.3) u′′′(ξ(α∗), α∗) ≤ 0,

which contradicts (5.2). Thus, (5.1) must be false; hence,

(5.4) u′′(ξ(α∗), α∗) < 0.

It follows from (5.4) and the energy identity (1.7) that

u∗ = u(ξ(α∗), α∗) 6= 1

and that ξ(α) is continuous at α = α∗. Therefore, by the continuous dependence on
initial data, if u∗ > 1, then u(ξ(α), α) > 1 for α in a left-neighborhood of α∗. Since
(0, α∗) ⊂ S, the definition of S shows that this is impossible. Thus,

(5.5) u(ξ(α∗), α∗) < 1.

Finally, regarding u′′′, we must have equality in (5.3). For if

u′′′(ξ(α∗), α∗) < 0,

then continuity implies that α∗ < supS, a contradiction.
Thus, we have shown that the solution u(x, α∗) of problem (2.1) satisfies the

properties (2.3) at x = ξ(α∗) and this yields a periodic solution of which, by (5.5),
the maximum is less than 1. This completes the proof of Theorem 5.1.

In the next theorem we find periodic solutions whose maxima exceed unity.
Theorem 5.4. Let µ = 0 and γ > 1

8 . Then there exists a periodic solution u
such that

max{|u(x)| : x ∈ R} > 1.

We now take the shooting set from those values of α for which the maximum of
u exceeds 1. Specifically, we define

T = {α̂ > 0 : u(ξ(α), α) > 1, u′′(ξ(α), α) < 0, and u′′′(ξ(α), α) < 0 for α > α̂}.
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Lemma 5.5. We have (
1√
2
,∞
)
⊂ T .

Proof. It follows from (1.7) that

2γu′u′′′ ≥ (u′)2 − 1

2
(1− u2)2.

Thus, if α2 > 1
2 , then u′′′ > 0, u′′ > 0, and u′ > 0 as long as 0 < u ≤ 1. Hence, u

first reaches 1 at a finite value x1, where

u′(x1) > 0, u′′(x1) > 0, u′′′(x1) > 0.

Therefore, at x = ξ we have

(5.6) u(ξ) > 1, u′(ξ) = 0, u′′(ξ) < 0,

where the last inequality is strict because of the energy identity (1.7). Hence, u′′ has
a first zero at a point x2 ∈ (x1, ξ). At this point we have

u(x2) > 1, u′′(x2) = 0, u′′′(x2) ≤ 0.

Since, by equation (2.1a), uiv < 0 when both u > 1 and u′′ ≤ 0, it follows that

(5.7) u′′′(ξ) < 0.

From (5.6) and (5.7) we deduce that for any α > 1√
2
,

u(ξ(α), α) > 1, u′′(ξ(α), α) < 1, and u′′′(ξ(α), α) < 0,

so that ( 1√
2
,∞) ⊂ T .

As with Lemma 5.2, we can prove the following properties of ξ.
Lemma 5.6. We have
(a) ξ ∈ C1(T ),
(b) the set T is an open interval of the form (α∗,∞),

(c) α∗ ≥ α∗,

where α∗ = supS as defined in Lemma 5.2, part (b).
In the next lemma we list again the important properties of u(ξ(α), α) at α = α∗.
Lemma 5.7. We have

u(ξ∗, α∗) > 1, u′′(ξ∗, α∗) < 0, and u′′′(ξ∗, α∗) = 0,

where we have written ξ∗ = ξ(α∗).
Proof. From the definition of ξ we conclude that u′′(ξ∗, α∗) ≤ 0. Let us first

suppose that

(5.8) u′′(ξ∗, α∗) = 0.

Then, by the energy identity (1.7),

u(ξ∗, α∗) = 1.
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We assert that (5.8) implies that

(5.9) u′′′(ξ∗, α∗) > 0.

For if u′′′(ξ∗, α∗) < 0, then u′′ > 0 and u′ < 0 in a left-neighborhood of ξ∗, which
contradicts the definition of ξ∗. If u′′′(ξ∗, α∗) = 0, it follows from uniqueness that
u(x) = 1 for all x ∈ R, which contradicts the condition at x = 0. Therefore, (5.9)
holds (see also [21, Lemma 3.10]).

To complete the proof of Lemma 5.7, we need the following lemma in which we
establish continuity of ξ at α∗ under the above conditions.

Lemma 5.8. Suppose that for some α0 > 0 we have

u(ξ(α0), α0) = 1, u′′(ξ(α0), α0) = 0, and u′′′(ξ(α0), α0) > 0.

Then

ξ(α) → ξ(α0) as α→ α0.

Accepting Lemma 5.8 for the moment, we conclude that

u′′′(ξ(α), α) → u′′′(ξ(α∗), α∗) as α→ α∗, α ∈ T .
Because u′′′(ξ(α), α) < 0 for all α ∈ T , it follows that

(5.10) u′′′(ξ(α∗), α∗) ≤ 0,

which contradicts (5.9). Thus, (5.8) cannot be true and we conclude that

(5.11) u′′(ξ(α∗), α∗) < 0.

It follows from (5.11) and the energy identity (1.7) that

either u(ξ∗, α∗) > 1 or u(ξ∗, α∗) < 1

and that ξ(α) is continuous at α = α∗. Hence, by continuous dependence on initial
data, if u(ξ∗, α∗) < 1, then u(ξ(α), α) < 1 for α in a right-neighborhood of α∗. Since
(α∗,∞) ⊂ T , the definition of T implies that this is impossible. Thus,

(5.12) u(ξ∗, α∗) > 1.

Finally, regarding u′′′, we must have equality in (5.10). For if

u′′′(ξ(α∗), α∗) < 0,

then continuity implies that α∗ > inf T , a contradiction. Therefore,

(5.13) u′′′(ξ(α∗), α∗) = 0.

We conclude from (5.13) that the solution u(x, α∗) of problem (2.1) satisfies the
properties (2.3) at x = ξ(α∗) and, thus, yields a periodic solution of which, by (5.12),
the maximum is greater than 1. This completes the proof of Lemma 5.7.

The proof of Theorem 5.4 is complete once we have proved Lemma 5.8.
Proof of Lemma 5.8. Fix ε > 0 and small. Then by the assumptions on u(·, α0)

there exists a δ > 0 such that

(5.14a) u(ξ0 − ε, α0) < 1− 2δ, u(ξ0 + ε, α0) > 1 + 2δ,
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and

(5.14b) u′(x, α0) > δ for all x ∈ [0, ξ0 − ε].

We wish to prove that there exists a ν > 0 such that if |α−α0| < ν, then u′(·, α) has
a zero on (ξ0 − ε, ξ0 + ε).

By the continuous dependence of solutions on initial data it follows from (5.14)
that there exists a ν1 > 0 such that

(5.15) u(ξ0−ε, α) < 1−δ, u(ξ0+ε, α) > 1+δ, and u′(x, α) > 0 for all x ∈ [0, ξ0−ε]
if |α− α0| < ν1 so that

(5.16) ξ(α) > ξ0 − ε if |α− α0| < ν1.

To show that ξ(α) < ξ0 + ε for α sufficiently close to α0, it is sufficient to prove
that

(5.17) τ(α) → τ(α0) = 1 as α→ α0,

where we recall that τ(α) = u(ξ(α), α). For (5.17) implies that there exists a ν2 > 0
such that

τ(α) < 1 + δ if |α− α0| < ν2,

and, because u′ > 0 on (0, ξ), we conclude from (5.15) that

(5.18) ξ(α) < ξ0 + ε if |α− α0| < ν = min{ν1, ν2}.
Thus, (5.15) and (5.18) yield the continuity of ξ(α) at α0.

Let us now prove (5.17). Let z0(t) = z(t, α0) be the solution of problem (2.6)
which corresponds to u(x, α0). Then

z0(t) → 0 and
√
z0(t)z

′′
0 (t) → A as t→ 1−,

where by assumption A = 2u′′′(ξ(α0), α0) is a positive constant. It is readily shown

that this implies that the function y0(t) = z
3/4
0 (t) has the properties

(5.19)
y0(t)

1− t
→ B and y′0(t) → −B as t→ 1−,

where B = 3
2

√
A.

We can write the equation (2.6a) for z as

(z−1/4z′)′ =
z − f

γz5/4
,

so that, since f(t) ≥ 0 for all t ≥ 0, the function y(t) = z3/4(t) satisfies

(5.20) y′′ ≤ 3

4γ
y−1/3.

Fix ρ ∈ (0, 1). Then y0(1 − ρ) > 0 and it follows from the continuous dependence
on initial data on [0, ρ] that there exists a ϑ1 > 0 such that τ(α) > 1 − ρ when
|α− α0| < ϑ1. Since ρ may be chosen as small as we wish, we conclude that

(5.21a) lim inf
α→a0

τ(α) ≥ 1.
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It remains to prove that

(5.21b) lim sup
α→a0

τ(α) ≤ 1.

Fix ε > 0 and t0 ∈ (0, 1). By (5.19), it is possible to choose t0 so close to 1 that

y′0(t0) ≤ −
√

3

2
B and y0(t0) ≤ B

8
ε.

By continuity we can find a constant ϑ2 > 0 so small that if |α− α0| < ϑ2, then

(5.22) y′(t0) ≤ −B

2
and 0 < y(t0) ≤ B

4
ε.

Thus, in a neighborhood of t0 we have y′ < 0, so that when we multiply (5.20) by y′

we obtain

(y′2)′ ≥ 9

4γ
(y2/3)′

for t > t0 as long as y > 0 and y′ < 0. This yields, upon integration over (t0, t),

y′2(t) ≥ y′2(t0) +
9

4γ
{y2/3(t)− y2/3(t0)}

≥ y′2(t0)− 9

4γ
y2/3(t0)

≥ B2

4
− 9

4γ

(Bε
4

)2/3

>
B2

16
,

if we choose ε < ε0 = 1
2 (γ3 )3/2B2. Therefore,

y′(t) < −B

4
for t0 ≤ t ≤ τ.

Thus, when 0 < ε < ε0, integration over (t0, τ) yields

τ ≤ t0 +
4

B
y(t0) < t0 + ε < 1 + ε,

where we have used (5.22). Since ε can be chosen arbitrarily small, this proves (5.21b)
and the proof of Lemma 5.8 is complete.

We conclude this section with a few observations about the existence of periodic
solutions with amplitude greater than 1 when 0 < µ < 1.

Because the initial data, and hence the solution u of problem 2.1, depend con-
tinuously on µ, it is evident from the proof of Theorem 5.1 that there exist periodic
solutions with amplitude greater than 1 when µ is sufficiently small. In the following
theorem we shall show that this is no longer true when µ ≥ 4

9 .
Theorem 5.9. If µ ≥ 4

9 and γ > 0 is arbitrary, then there exists no periodic
solution u for which

max{|u(x)| : x ∈ R} > 1.
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Proof. Let µ ∈ (0, 1) and suppose that z corresponds to a periodic solution such
that

τ = sup{u(x) : x ∈ R} > 1.

Then (1.7) implies that

τ >
√

1 +
√
µ.

From Lemma 4.1(b) we know that

z′(t) < 0 and 0 < t < τ,

and by multiplying equation (2.6a) by 3
4z
−5/4 we obtain

(2.10) (z3/4)′′ =
3

4γ

z − fµ
z5/4

for 0 < t < τ,

where

fµ =
1

2
{(1− t2)2 − µ}.

Let us denote the zeros of fµ by a and b:

a =
√

1−√µ and b =
√

1 +
√
µ.

Because τ > b, we can integrate (2.10) over (0, b) to obtain

3

4γ

(∫ a

0

+

∫ b

a

)z − fµ
z5/4

dt = (z3/4)′
∣∣∣b
0
< 0,

where the inequality is clear when we remember that z′(0) = 0 and z′(b) < 0. Thus,
writing

I1 =

∫ a

0

z − fµ
z5/4

dt and I2 =

∫ b

a

z − fµ
z5/4

dt,

we have

(5.23) I1 + I2 < 0.

Recall that z > 0 and z′ < 0 on (0, τ). Hence

(5.24) I1 > −
∫ a

0

fµ
z5/4

dt > − 1

z5/4(a)

∫ a

0

fµ(t) dt

and

(5.25) I2 =

∫ b

a

z + |fµ|
z5/4

dt >
1

z5/4(a)

∫ b

a

|fµ(t)| dt > 0,

because fµ < 0 on (a, b). Putting (5.24) and (5.25) into (5.23) we find that

−
∫ a

0

fµ(t) dt+

∫ b

a

|fµ(t)| dt < 0,
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or, equivalently,

(5.26)

∫ b

0

fµ(t) dt > 0.

An elementary computation shows that (5.26) holds if and only if

µ <
4

9
.

Thus, if µ ≥ 4
9 , there can be no periodic solution with maxima above 1.

6. Qualitative properties. In this section we prove several qualitative prop-
erties of periodic solutions. We begin with a convexity lemma and then we establish
universal global bounds for periodic solutions. This is followed by an analysis of the
behavior of periodic solutions as γ → 0 (when 0 < µ < 1), as γ → 1

8 (when µ = 0),
and as γ →∞.

We begin with a convexity property.
Lemma 6.1. Let u(x) be a periodic solution which has a single critical point

between zeros and has the symmetry properties (1.11). Then

u′′(x) < 0 when u(x) > 0.

Proof. By Lemma 4.1(b), if z(t) is the solution of problem (2.6) which corresponds
to u(x), then z′(t) < 0 for 0 < t < τ , and hence,

u′′(x) =
1

2
z′(t(x)) < 0 for 0 < x < ξ.

Since u′′(ξ) < 0 by the energy identity, the assertion follows.
A remarkable feature of all single-bump periodic solutions is that they are bounded

by a constant which does not depend on either γ or µ. This is shown in the next
lemma.

Lemma 6.2. Let 0 ≤ µ < 1 and γ > 0, and let u(x) be a periodic solution that
has the symmetry properties (1.11). Then

|u(x)| <
√

2 for x ∈ (−∞,∞).

Proof. Suppose that for some a ∈ R we have |u(a)| ≥ √
2. Without loss of

generality we may assume that u has a maximum at x = a. Thus, we have

(6.1) u(a) ≥
√

2, u′(a) = 0, u′′(a) ≤ −
√

1− µ

2γ
, u′′′(a) = 0,

where the upper bound for u′′ follows from the energy identity (1.7). From (1.6) we
see that uiv(a) < 0.

Thus, as x increases above a, u′′′ and u′′ decrease. Thus, u′′′ < 0 and u′′ < 0 as
long as uiv < 0. Furthermore,

uiv = u′′ + u− u3 < 0 as long as u > 1.

Thus, if

b = sup{x > a : u > 1 on [a, x)},
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then

(6.2) u(b) = 1, u′(b) < 0, u′′(b) < −
√

1− µ

2γ
, u′′′(b) < 0.

We claim that

(6.3) u′′(x) < −
√

1− µ

2γ
as long as |u| < 1.

Suppose that (6.3) does not hold. Then u′′′ must have a zero at a point where |u| < 1.
Let y > b be the first zero of u′′′. Then by (1.7),

−γ(u′′)2 − (u′)2 +
1

2
(1− u2)2 =

µ

2
at y.

Because of our assumption that |u(y)| < 1,

{u′′(y)}2 < 1− µ

2γ
.

This means that

u′′(y) > −
√

1− µ

2γ
.

However, since u′′′ < 0 on (b, y), it follows from (6.2) that

u′′(y) < −
√

1− µ

2γ
,

so we have a contradiction.
Thus, (6.3) holds. In particular, we have that u′′ < 0 at the first zero of u and,

by (1.11), at all zeros of u. This contradicts the fact that because u is odd, u′′ = 0
whenever u = 0. Thus, we must conclude that the assertion holds.

We now turn to a discussion of the behavior of periodic solutions for values of γ
close to γ = 0, or γ = 1

8 when µ = 0, and for large values of γ.
Lemma 6.3. Let {γi} be a sequence such that

γi ↘ θ =




1

8
when µ = 0

0 when 0 < µ < 1
as i→∞.

For each i ≥ 1, let ui be a periodic solution corresponding to γi. Then

ui(x) → U(x) as i→∞, uniformly on compact intervals,

where
(i) if µ = 0, then U is the unique monotone symmetric kink corresponding to

γ = 1
8 ;
(ii) if 0 < µ < 1, then U is the unique periodic solution of the FK equation with

energy µ.
Proof. Let αi = u′i(0). If 0 < µ < 1, then Lemmas 3.3 and 3.4 imply that

(6.4)

√
1− µ

4
≤ αi ≤

√
1− µ

2
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for i sufficiently large and γi − θ > 0 sufficiently small. If µ = 0, then (6.4) follows
from Lemmas 5.2, 5.5, and 5.6. Hence, there exists a convergent subsequence, which
we also denote by {γi}, such that

αi → α̂ as i→∞,

where α̂ satisfies (6.4).
We consider the cases µ = 0 and 0 < µ < 1 in succession.
Case I. Let µ = 0 and let α0 = U ′(0), where U is the kink for γ = θ = 1

8 . Suppose
that α̂ > α0. Then, by [21, Lemma 3.6 and Theorem 3.7],

(6.5) u

(
ξ

(
α̂,

1

8

)
, α̂,

1

8

)
> 1 and u′′

(
ξ

(
α̂,

1

8

)
, α̂,

1

8

)
< 0.

Since by Theorem 4.5, u(·, α̂, 1
8 ) cannot be a periodic solution, it also follows that

(6.6) u′′′
(
ξ

(
α̂,

1

8

)
, α̂,

1

8

)
6= 0.

The inequality in (6.5) implies that the function ξ(α, γ) is continuous at (α̂, 1
8 ) so, by

the continuous dependence of u(·, α, γ) on α and γ, it follows that for i large enough,

(6.7) u′′′(ξ(αi, γi), αi, γi) 6= 0

as well. However, since u(·, αi, γi) is a periodic solution for every i, we must have

u′′′(ξ(αi, γi), αi, γi) = 0

for every i, which contradicts (6.7).
If α̂ < α0, then by [21, Lemma 3.6 and Theorem 3.7],

u

(
ξ

(
α̂,

1

8

)
, α̂,

1

8

)
< 1 and u′′

(
ξ

(
α̂,

1

8

)
, α̂,

1

8

)
< 0.

It follows from Theorem 4.4 that (6.6) holds again and, as before, we arrive at a
contradiction.

Thus, for the subsequence we have αi → α0 as i → ∞. Because the limit is
uniquely determined, it follows that the entire sequence {αi} converges to α0. There-
fore, ui → U uniformly on compact sets of the form [0, L], L > 0.

Case II. Let 0 < µ < 1 and let αµ = U ′(0), where U is the periodic solution of
the FK equation with energy equal to µ. From the energy identity (1.7) in which we
set γ = 0, we conclude that

αµ =

√
1− µ

2
.

It follows from Corollary 3.6 that

α̂ ≤ αµ.

In the remainder of the proof we shall show that

α̂ ≥ αµ
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as well. This proves that αi → αµ as i → ∞, and therefore ui → U uniformly on
compact sets, as asserted.

We shall show that for each ε > 0 there exists a γε > 0 such that if 0 < γ < γε
and u(·, α, γ) is a periodic solution, then α > αµ − ε so

lim inf
i→∞

αi ≥ αµ.

Remember that the initial conditions for u are

u(0) = 0, u′(0) = α, u′′(0) = 0, u′′′(0) = β(α) =
α2 − α2

µ

2αγ
.

Because β′(α) > 0 it follows that

β(α) ≤ β(αµ − ε) = −δ(ε)

γ
for 0 < α ≤ αµ − ε,

where δ(ε) ∼ ε as ε→ 0.
We now proceed as in the proof of Lemma 3.3. Because u(0) = 0 and u′′′(0) < 0,

it follows that u < 1 and u′′′ < 0 in a neighborhood of the origin. As long as these
inequalities do not change it follows from the equation for u that

uiv(x) <
α

γ
x,(6.8a)

u′′′(x) < − δ

γ
+

α

2γ
x2,(6.8b)

u′′(x) < − δ

γ
x+

α

6γ
x3,(6.8c)

u′(x) < α− δ

2γ
x2 +

α

24γ
x4.(6.8d)

Set

xγ = γ1/4.

Then, when γ < γ1 = (2δ/αµ)2, it follows from (6.6b) that u′′′ < 0 on (0, xγ ]. More-
over, the right-hand side of (6.6d) will be negative at xγ if γ < γ2 = {12δ/(25αµ)}2.

Thus, if we set γε = min{γ1, γ2} and denote as usual the first zero of u′ by ξ, then

ξ ∈ (0, xγε) and u′′′(ξ) < 0 if 0 < γ < γε.

This means that if α ≤ αµ − ε and γ ∈ (0, γε), then u(·, α, γ) cannot be a periodic
solution. Therefore, if it is given that u(·, α, γ) is a periodic solution, then we must
conclude that α > αµ − ε, and the proof is complete.

To determine the behavior of periodic solutions as γ →∞, we first need an upper
and a lower bound for the slope at the origin.

Lemma 6.4. Let 0 ≤ µ < 1 and γ > 0, and let u(x) be a periodic solution which
satisfies (1.11). Then

u′(0) ≤ {8(1− µ) log 2}1/4γ−1/4 for γ > θ,

where θ = 0 if 0 < µ < 1 and θ = 1
8 if µ = 0.
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Proof. It is convenient to prove this lemma using the function z(t) introduced in
section 3. We then need to show that

(6.9) z(0) ≤ {8(1− µ) log 2}1/2γ−1/2.

It follows from (2.6a) that

zz′′ =
(z′)2

4
+

1

γ
{z − fµ(t)} > −1− µ

2γ
for 0 ≤ t <

√
2.

Because τ <
√

2 by Lemma 6.2, it follows that

z′′ > −1− µ

2γz
for 0 ≤ t < τ.

We multiply by z′ < 0, integrate over (0, t), and obtain

(6.10) z′(t) > −
{

1− µ

γ
log

z(0)

z(t)

}1/2

for 0 ≤ t < τ.

Let

t0 = sup

{
t > 0 : z >

1

2
z(0) on [0, t)

}
.

Then

0 < t0 <
√

2 and
z(0)

z(t)
≤ 2 for 0 ≤ t ≤ t0.

Hence, by (6.10),

z′(t) > −
(

(1− µ) log 2

γ

)1/2

for 0 < t < t0

and we obtain, after an integration over (0, t0),

(6.11) z(t0)− z(0) > −
(

(1− µ) log 2

γ

)1/2

t0.

Since t0 <
√

2, this implies that

1

2
z(0) <

(
(1− µ) log 2

γ

)1/2

,

from which (6.9) follows.
Next we establish a lower bound for u′(0).
Lemma 6.5. We have

u′(0) >
1

5

√
1− µγ−1/4 for γ >

(2

5

)4

.
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Proof. In light of the upper bound obtained in Lemma 6.3, we scale the variables
and set

(6.12) s =
x

γ1/4
and v(s) = u(x).

We then obtain the problem

(6.13a)

(6.13b)

(6.13c)




viv =
v′′√
γ

+ v − v3,

v(0) = 0, v′′(0) = 0,

v′(0) = ω, v′′′(0) =
1

2ω

( ω2

√
γ
− 1− µ

2

)

in which

ω = αγ1/4

and we need to prove that

ω >
1

5

√
1− µ.

Suppose, to the contrary, that

ω ≤ 1

5

√
1− µ.

Then for γ > (2/5)4, we have

v′′′(0) < −1− µ

8ω
.

As long as v > 0 and v′′′ < 0, we have

v(s) < ωs

and

viv(s) < ωs,

which yields, upon integration over (0, s),

(6.14) v′′′(s) < −1− µ

8ω
+

1

2
ωs2.

One verifies that the right-hand side of (6.14) is negative for all s ∈ [0, 1]. Two more
integrations yield

v′(s) < ω − 1− µ

16ω
s2 +

1

24
ωs4.

It follows that the first zero σ = σ(ω, γ) of v′ has the properties

0 < σ < 1 and v′′′(σ) < 0,
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so v, and hence u, cannot be periodic solutions, a contradiction.
With the lower bound we now have in hand we can return to the argument used

in the proof of Lemma 6.1 to obtain a lower bound for the maximum of |u(x)| on R.
Lemma 6.6. Let u(x, γ) be a periodic solution. Then

max{|u(x, γ)| : x ∈ R} > 1

50

√
1− µ

log 2
if γ >

(2

5

)4

.

Proof. If u is a periodic solution, then by Lemma 6.5,

z(0) >
1− µ

25
√
γ

if γ >
(2

5

)4

.

Therefore, by (6.11),

(
(1− µ) log 2

γ

)1/2

t0 >
1− µ

50
√
γ
.

This means that

t0 >
1

50

√
1− µ

log 2
.

Now, because

max{|u(x, γ)| : x ∈ R} = τ(γ) > t0,

the assertion follows.
From Lemmas 6.4 and 6.5 we conclude that if u is a periodic solution which

satisfies (1.11), then for γ large enough,

1

8

√
1− µ < ω < {8(1− µ) log 2}1/4.

Let {γi} be a sequence tending to infinity and let ui be a corresponding sequence of
periodic solutions, with initial slopes αi. Let vi and ωi be the solutions of problem
(6.13) corresponding to these periodic solutions. Then by compactness there exists
a subsequence, which we also denote by {ωi}, which converges to a number ω∗ < ∞
as i → ∞. Plainly, it must be the case that vi → V , uniformly on compact sets, as
i→∞, where V satisfies

(6.15a)

(6.15b)

(6.15c)



V iv = V − V 3,

V (0) = 0, V ′′(0) = 0,

V ′(0) = ω∗, V ′′′(0) = −1− µ

4ω∗
.

We assert that the sequence of maxima {σi}, where σi = σ(ωi, γi), remains bounded:

lim sup
i→∞

σ(ωi, γi) <∞.

For if not, then there exists a subsequence along which σi tends to infinity. Hence,

V ′(s) > 0 for 0 ≤ s <∞.
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An argument like the one used in the proof of Lemma 2.1 shows that this is impos-
sible. Therefore, the sequence {σi} is bounded and there exists a subsequence which
converges to some σ∗ < ∞ as i → ∞. Since v′′′i (σi) = 0 for every i, it easily follows
that V ′′′(σ∗) = 0, so that V is a periodic solution of problem (6.15).

Thus we have the following lemma.
Lemma 6.7. Let 0 ≤ µ < 1. Suppose that {γi} is a sequence which tends to

infinity and {ui} is a sequence of periodic solutions which correspond to γi and which
each satisfy (1.11). Then there exists a subsequence and a periodic solution V of
problem (6.15) which also satisfies (1.11) such that

(6.16) ui(γ
1/4
i s, γi) → V (s) as i→∞,

uniformly on compact sets.
As a by-product, the above argument yields the existence of periodic solutions

V of problem (6.15) which satisfy (1.11) for every µ ∈ [0, 1). This result can also
be proved by means of the method used in sections 3 and 5. Since the proofs are
very close to those already presented, we omit them here. Summarizing, we have the
following result.

Theorem 6.8. If 0 ≤ µ < 1, then problem (6.15) has a periodic solution V1 such
that

max{|V1(x)| : x ∈ R} < 1.

If µ = 0, then problem (6.15) has a periodic solution V2 which satisfies (1.11) such
that

max{|V2(x)| : x ∈ R} ∈ (1,
√

2).
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Abstract. The problem of determining an insulating body D contained in a conducting one Ω
is studied. If at an initial time the temperature is zero and increasing temperature is assigned on
the boundary of Ω then the knowledge of the flux on a portion of ∂Ω for a finite interval of time
determines D. A logarithmic stability estimate is found if some a priori assumptions are given on D.

Key words. stability, inverse problem

AMS subject classifications. 35K05, 35R30

PII. S0036141095294262

1. Introduction. Consider a three-dimensional heat conducting body Ω, and
suppose that it contains an insulating three-dimensional body D. We want to deter-
mine D by assigning the initial temperature of Ω, the temperature on the boundary
for an interval of time [0, t1], and measuring the flux of temperature on a portion Σ
of ∂Ω in a subinterval of [0, t1] .

Denote by u(x, t) the temperature in a point x at time t and suppose that the
temperature of Ω is initially zero (or, more generally, that ∆u(x, 0) ≥ 0). If ϕ is the
temperature on ∂Ω then u solves the following boundary value problem:

∂u

∂t
−∆u = 0 in

(
Ω � D

)× [0, t1] ,(1)

u = ϕ on ∂Ω× [0, t1] ,(2)

∂u

∂n
= 0 on ∂D × [0, t1] ,(3)

u (x, 0) = 0 for x ∈ Ω � D,(4)

where n denotes the unit outer normal to ∂ (Ω � D) .
The problem we study consists of assigning an opportune input ϕ on ∂Ω× [0, t1]

in such a way that the flux ∂u
∂n on Σ× [t0, t1] , where Σ is a nonempty open set of ∂Ω,

t0 ∈ (0, t1) , determines D.
It is simple to prove that uniqueness holds for a large class of domains D if the

input ϕ satisfies the monotonicity condition

∂ϕ (x, t)

∂t
> 0 for (x, t) ∈ ∂Ω× [0, t1] .(5)

In fact, let P be the class of domains D that are C2 and such that D ⊂int(Ω) and
Ω � D is connected. Suppose that there exist two domains D1, D2 ∈ P such that

∗Received by the editors November 30, 1995; accepted for publication (in revised form) June 25,
1996.
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∂u1

∂n = ∂u2

∂n on Σ × [t0, t1]. Let I be the connected component of Ω \ (D1 ∪D2) that
contains ∂Ω; uniqueness for the parabolic Cauchy problem and analytic continuation
in the space variables give u1 ≡ u2 in I × [t0, t1]. Therefore, if, for instance, D2 �

D1 6= Ø, then, by the inclusion ∂ ((Ω � I) � D1) ⊂ (∂I ∩ ∂D2) ∪ ∂D1 and by the
divergence theorem, we have for every t ∈ (t0, t1)∫

(Ω�I)�D1

∂u1 (x, t)

∂t
dx =

∫
(∂I)∩(∂D2)

∂u1 (x, t)

∂n
ds =

∫
(∂I)∩(∂D2)

∂u2 (x, t)

∂n
ds = 0,

but the maximum principle applied to ∂u1

∂t yields that the first integral is strictly
positive, which leads to a contradiction.

We are mainly interested in studying the stability, that is, the continuous de-
pendence of D on the measured flux; to this purpose we assume that ∂D is con-
nected and is locally a graphic of C2,α functions whose norms are bounded and
dist(D, ∂Ω) ≥ L0 > 0. If this a priori information is available, (5) is satisfied and
the following error bound on the measured flux of temperature holds:

sup
Σ×[t0,t1]

∣∣∣∣∂u1

∂n
− ∂u2

∂n

∣∣∣∣ ≤ ε.

Then (see Theorem 2.4)

δH (D1, D2) = O
(
|ln ε|−s

)
,

where Di, i = 1, 2 is the domain corresponding to ui, δH (D1, D2) is the Hausdorff
distance between D1 and D2, and s is a positive number.

We want to point out that our results can be extended simply to the case where
we assign the flux of temperature, φ, on the boundary of Ω in the interval of time
[0, t1] and we measure the temperature on Σ in a subinterval of [0, t1] . If ∂φ

∂t > 0 and
the initial temperature is zero then uniqueness and logarithmic stability remain valid.

An interesting open problem is the one where the body D is not perfectly in-
sulating. In this case the problem that could be studied is the determination of the
coefficient a in the equation ut−div(a∇u) = 0 in Ω× [0, T ], where a = a0+bχD (χD is
the indicator function of D), a0 and b are known positive constants, and D is the un-
known to be determined, again, by a pair of Cauchy data. In [6] the authors consider
the problem of determining the nonconstant function b and the domain D (in the case
where a0 is also a nonconstant function) from the whole Dirichlet-to-Neumann map.

In our opinion there is some similarity in the mathematical formulation be-
tween our problem and the problem of cracks determination. In these problems one
wants to determine an unknown electrically insulating surface (or a curve in the two-
dimensional version) which lies in the electrically conducting body from electrostatic
measurements on the boundary. These problems are inverse problems for elliptic
equations; see [1] , [2] , [3], [4] , [9], [12] , and their references.

The outline of the paper is as follows. In section 2 we begin introducing the
main notations and specifying the a priori information on D and Ω; then we prove
the stability result. Section 3 is an appendix where we prove some estimates used in
section 2; in particular, we find (Lemma 3.1) an estimate on the analytic continuation
in the space variable for solutions of the heat equation. Moreover, we prove (Lemma
3.2) an estimate from below on ∂D for positive solutions of equation (1) fulfilling
condition (3).
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2. Stability results. Let x0 ∈ R3, r > 0, A,B be two measurable sets in R3.
We use the following notation:

(i) B
(
x0, r

)
=
{
x ∈ R3:

∣∣x− x0
∣∣ < r

}
;

(ii) |A| denotes the volume of A; if ∂A is smooth, |∂A| denotes the area of surface
∂A;

(iii) d
(
x0, A

)
= inf

x∈A
∣∣x− x0

∣∣, d(A,B) = inf
x∈A

d(x,B);

(iv) [A]r =
{
x ∈ R3:d (x,A) ≤ r

}
; we set [A]0 = A (A is the closure of A);

(v) (A)r =
{
x ∈ R3:d

(
x,R3\A) ≥ r

}
; we set (A)0 = A;

(vi) δH (A,B) denotes the Hausdorff distance between A and B;

(vii) B′ (0, r) =
{
x ∈ R2 : |x| < r

}
and

C (0, r) =
{
x ∈ R3 : (x1, x2) ∈ B′ (0, r) , |x3| < r

}
;

(viii) K(x, t) =

{ (
2
√
πt
)−3

exp
(
− |x|2

4t

)
if t > 0, x ∈ R3,

0 if t ≤ 0 x ∈ R3.

Let α, d, h, L0,M , be given positive numbers (α ∈ (0, 1)). Ω and D satisfy the a
priori information listed in (6), (7).

Prior information on Ω :(6)

(a) Ω is a bounded, C2,α open set in R3 whose boundary is connected; d is the
diameter of Ω;

(b) for every x ∈ ∂Ω, there exist two balls, B
(
x0, L0

)
B
(
y0, L0

)
, such that B

(
x0, L0

)
⊂ Ω, B

(
y0, L0

) ⊂ R3 � Ω, and ∂B
(
x0, L0

)
, ∂B

(
y0, L0

)
are tangent to ∂Ω in x.

Prior information on D :(7)

(a) D is an open, bounded set in R3 whose boundary is connected; D ⊂ Ω and
d(D, ∂Ω) ≥ L0;

(b) let y ∈ ∂D and let R be the rotation of coordinate that transforms the outer
normal to ∂D in y in the vector (0, 0, 1) ; then C(0, h) ∩R (∂D − y) is the graph of a
function g ∈C2,α (B′ (0, h)) with g (0) = 0, ∇g (0) = 0, and

(b1) C(0, h)∩R (∂D − y) =
{
x ∈ R3 : (x1, x2) ∈ B′ (0, h) , − h < x3 < g (x1, x2)

}
,

(b2) sup
B′(0,h)

∣∣gxixj ∣∣+ hα sup
s,t∈B′(0,h)

s6=t

|gxixj (s)−gxixj (t)|
|s−t|α ≤M for i, j = 1, 2.

Note that, by denoting L1 = min
{
h, L0

2 , (2M)
−1
}
, the following interior and

exterior sphere property hold.

Proposition 2.1. If r ∈ [0, L1), then for every x ∈ ∂ [D]r there exist two balls
B
(
x0, L1

)
and B

(
y0, L1 − r

)
such that B

(
x0, L1

) ⊂ [D]r , B
(
y0, L1 − r

) ⊂ Ω � [D]r ,

and ∂B
(
x0, L1

)
, ∂B

(
y0, L1 − r

)
are tangent to ∂ [D]r in x.

Furthermore, we have the following proposition.

Proposition 2.2. If r ∈ [0, L1), then for every x ∈ Ω � D such that d(x, ∂D) =
r we have x ∈ ∂ [D]r .

Proposition 2.3. If r1, r2 ∈ [0, L1), then (Ω)r1 � [D]r2 is a connected set.

The proofs of Propositions 2.1, 2.2, and 2.3 are elementary.

Now we prove the main theorem.
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Theorem 2.4. Let t0, t1 be positive numbers, and let t1 > t0. Let Ω, D1, D2,
satisfy, respectively, (6) and (7). Let Σ ⊂ ∂Ω, Σ nonempty open set of ∂Ω, and
ϕ ∈C1 (∂Ω× [0, t1]) , which fulfills

ϕ (x, 0) = 0 for x ∈ ∂Ω(8)

and

∂ϕ

∂t
(x, t) > 0 for (x, t) ∈ ∂Ω× [0, t1] ,(9)

denote m2 =
∫
∂Ω

ϕ (x, t0) ds by m1 = max
∂Ω×[0,t1]

ϕ.

Let uj , j = 1, 2 satisfy

∂uj
∂t

−∆uj = 0 in
(
Ω � Dj

)× [0, t1] ,(10)

uj = ϕ on ∂Ω× [0, t1] ,(11)

∂uj
∂n

= 0 on ∂Dj × [0, t1] ,(12)

uj (x, 0) = 0 for x ∈ Ω � Dj .(13)

If

sup
Σ×[t0,t1]

∣∣∣∣∂u1

∂n
− ∂u2

∂n

∣∣∣∣ ≤ m1

d
ε,(14)

then there exists a nondimensional constant C, depending on α, d, h, L0,
m2

m1
,M, t0, t1,Σ,

and Ω, such that

δH (D1, D2) ≤ Cd
(
|ln ε|− 1

44 + ε
)
.(15)

Proof. First we normalize the solutions of (10), replacing uj with
uj
m1

(we continue

to denote
uj
m1

with uj).
Denote

u = u1 − u2 in (Ω � (D1 ∪D2))× [0, t1] ,

G =
(
Ω � (Ω)L0

2

)
× [0, t1] ,

Qj =
(
(Ω)L0

2
� Dj

)
× [0, t1] .

By regularity estimates for parabolic equations, we have

‖u‖L∞(G) + d ‖∇xu‖L∞(G) + d2
∥∥D2

xu
∥∥
L∞(G)

≤ E1,(16)

where E1 is a nondimensional constant depending on α,L0,Ω, and

‖uj‖L∞(Qj)
+d ‖∇xuj‖L∞(Qj)

+d2
∥∥D2

xuj
∥∥
L∞(Qj)

+d3 ‖∇xDtuj‖L∞(Qj)
≤ E2,(17)
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where E2 depends on α, d, h, L0,M(in 16); in (17) D2
x denotes the matrix of second

derivatives with respect to xi, xk ). We set

E = max {E1, E2} .

Starting from the stability estimates for the Cauchy problem for parabolic equations
contained in [13, Chap. IV], estimating the constants appearing there and applying
Lemma 3.1 to uxk , k = 1, 2, 3 yields

|∇xu (x, t2)| ≤ C11

d
(E1 + ε)

1−γ1 εγ1 for
L0

8
≤ d (x, ∂Ω) ≤ L0

2
,(18)

where

t2 =
t0 + t1

2
,

C11 = C10

(
τ

dL0
+

d4

τ
3
2L0

)
,

τ = t1 − t0,

γ1 = exp−c
(
C ′10

(
dL−1

0 + dτ−
1
2

)
+ |Ω|L−3

0

)
(C10 depends only on Σ, d, t1; C

′
10 depends on Σ and d; and c is an absolute constant).

The proof is subdivided into two steps. In the first we prove a log–log estimate
for δH (D1, D2); in the second we prove estimate (15).

Step 1. Let r ∈ (
0, L1

4

)
. Denote by Ir the connected component of (Ω)r �

([D1]r ∪ [D2]r) that contains ∂ (Ω)r . By positivity of ∂u2

∂t (x, t2) in Ω � D2, the inclu-
sion D1 � D2 ⊂ (((Ω)r � Ir) � [D2]r)∪ ([D2]r � D2) , estimate (17), and inequality
(69), we have∫

D1�D2

∂u2 (x, t2)

∂t
dx ≤

∫
[D2]r�D2

∂u2 (x, t2)

∂t
dx+

∫
((Ω)r�Ir)�[D2]r

∂u2 (x, t2)

∂t
dx(19)

≤ c
E2rd

ML3
1

+

∫
((Ω)r�Ir)�[D2]r

∆u2 (x, t2) dx.

By (10), (12), the divergence theorem (see [7]), the inclusion

∂ (((Ω)r � Ir) � [D2]r) ⊂ (∂Ir ∩ ∂ [D1]r) ∪ ∂ [D2]r ,(20)

estimate (17), and inequality (69), we obtain∫
((Ω)r�Ir)�[D2]r

∆u2 (x, t2) dx ≤
∫

(∂Ir∩∂[D1]r)∪∂[D2]r

∣∣∣∣∂u2 (x, t2)

∂n

∣∣∣∣ ds(21)
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≤
∫

∂Ir∩∂[D1]r

|∇xu (x, t2)| ds+

∫
∂[D2]r

∣∣∣∣∂u2 (x, t2)

∂n

∣∣∣∣ ds+

∫
∂[D1]r

∣∣∣∣∂u1 (x, t2)

∂n

∣∣∣∣ ds

≤ cd3

M2L3
1

(
max
x∈∂Ir

|∇xu (x, t2)|+ E2r

d2

)
.

From estimates (19) and (21) and applying inequality (66) (see Remark 3 of section
3), where u is replaced with ∂u2

∂t , T with t2, T
′′ with t0, and T ′ with t0+t2

2 , we have

|D1 � D2| ≤ C12d
2

(
E2r + d2 max

x∈∂Ir
|∇xu (x, t2)|

)
,(22)

where C12 depends on α, d, h, L0,
m2

m1
,M , and τ.

Now consider the set J =
{
x ∈ (Ω)r : d (x, ∂Ω) ≤ L0

2

}
. By the interior sphere

property of Ω, it follows that J is connected. Furthermore, J is contained in (Ω)r �

([D1]r ∪ [D2]r) and ∂ (Ω)r ⊂ J ; therefore, the inclusion J ⊂ Ir is valid. Let x ∈ ∂Ir,
y ∈ J such that d(y, ∂Ω) = L0

4 , and Γ be a simple curve in Ir with endpoints x and
y. Γ is contained in (Ω)r � (D1 ∪D2), and d(Γ, Dj) ≥ r, j = 1, 2, d(Γ, ∂Ω) ≥ r. We
construct a chain of closed balls which are centered in Γ, have radius r

3 , are tangent
two by two, and are internally nonoverlapping. The first ball is centered in y; the last
is at a distance less than or equal to r

3 from x. If the distance is less than r
3 , we add

to the chain the ball of radius r
3 whose center is x. The repeated use of Lemma 3.1

applied to uxj , j = 1, 2, 3 gives

|∇xu (x, t2)| ≤ 6 (1 + C0)
2Nr

(
Ed−1 + ε1

)1−γ2Nr
0 ε

γ2Nr
0

1 ,(23)

where C0 = e
L2

1
64t2 and γ0 is the exponent in the inequality (42), ε1 is defined by

ε1 = max
B(y, r3 )

|∇xu (x, t2)| ,

and

Nr =
34d3

4πr3
.

By estimates (18) and (23) we obtain

|D1 � D2| ≤ C13d
2 (E + ε)

(
r + d (1 + C0)

2Nr

(
ε

E + ε

)γ1γ
2Nr
0

)
,(24)

where C13 depends on α, d, h, L0,
m2

m1
,M, τ, t1, and Σ.

Denoting by l the integral part of 1
γ1

(
1 + ln(1+C0)

|ln γ1|
)

and ε0 the number

ε0 = E exp

(
− ((2l)!)

2
exp

(
2 · 34d (|ln γ0|+ 1)

πL1

))

for ε ≤ ε0, we can choose in (24) r given by

r =
L1

4


34 |ln γ1|

(
4dL−1

1

)3
4π ln

(∣∣∣ln ε
E+ε

∣∣∣) 1
2




1
3

,
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and we have

|D1 � D2| ≤ C14d
3

(
ln

∣∣∣∣ln ε

E + ε

∣∣∣∣
)− 1

3

,(25)

where C14 depends on α, d, h, L0,
m2

m1
,M, τ, t1, Σ, and Ω. The same inequality holds

for |D2 � D1| .
Denote by σ (ε) the number

σ (ε) = C14

(
ln

∣∣∣∣ln ε

E + ε

∣∣∣∣
)− 1

3

(here C14 is the same constant of estimate (25)). By Proposition 3.5 we have

δH (D1, D2) ≤ 2
(
d7L−3

1 σ (ε)
) 1

4 .(26)

Step 2. Let I0 denote the connected component of Ω � (D1 ∪D2) that contains
∂Ω. By (10), (12), inclusion (20) considered for r = 0, and the divergence theorem we
have ∫

D1�D2

∂u2 (x, t2)

∂t
dx ≤

∫
(∂I0∩∂D1)�∂D2

|∇xu (x, t2)| ds.(27)

Let x ∈ (∂I0 ∩ ∂D1) � ∂D2. By (26), we have

d (x,D2) ≤ δ (ε) ,(28)

where δ (ε) =2
(
d7L−3

1 σ (ε)
) 1

4 .

The definition of I0 states that x ∈ Ω � D2. Let r = d(x1, D2). Furthermore, let
ε1 be such that ε1 ≤ ε0 and δ (ε1) ≤ L1

2 ; (28) and Proposition 2.1 yield, for ε ≤ ε1,

that x ∈ ∂ [D2]r ∩ ∂D1. By Proposition 2.2 we have that there exist four balls B
(j)
i ,

B
(j)
e , j = 1, 2, with radius L1

2 , which fulfill

(a) B
(1)
i ⊂ D1, B

(1)
e ⊂ Ω � D1,

with ∂B
(1)
i and ∂B

(1)
e tangent to ∂D1 in x;

(b) B
(2)
i ⊂ [D2]r , B

(2)
e ⊂ Ω � [D2]r ,

with ∂B
(2)
i and ∂B

(2)
e tangent to ∂ [D2]r in x.

Note that

B
(1)
i ∩ B(2)

e ⊂ D1 � [D2]r ,(29)

B(1)
e ∩ B(2)

e ⊂ Ω �
(
D1 ∪ [D2]r

)
.(30)

By (29) and (30) we have

∣∣∣B(2)
e � B

(1)
i

∣∣∣ ≥ ∣∣∣B(2)
e

∣∣∣− |D1 � [D2]r| ≥
4π

3

(
L1

2

)3

− d3σ (ε) .(31)

Now consider the planes P1 and P2 which are tangent in x, respectively, to B
(1)
i ,

B
(1)
e and B

(2)
i , B

(2)
e . B

(1)
e ∩B

(2)
e is contained in one of the four regions in which R3 is
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divided by P1 and P2. Let P+
j ⊂ Pj , j = 1, 2, the half-planes that limit this region,

and denote by θ, θ ∈ [0, π) the angle between P+
1 and P+

2 .
By the formula

∣∣∣B(2)
e � B

(1)
i

∣∣∣ = 2π

(
L1

2

)3(
sin

θ

2
− 1

3
sin3 θ

2

)
(32)

and by (31), we have, if ε ≤ ε2 (where ε2 is such that σ (ε2) ≤ π
100

(
L1

2

)3
and ε2 ≤ ε1),

sin
θ

2
− 1

3
sin3 θ

2
≥ 3

√
3

8
.

Therefore, θ ≥ θ0 > 3
4π. Denote Sθ (x) =B

(1)
e ∩B

(2)
e ; let L be the plane containing

the circle ∂B
(1)
e ∩ ∂B

(2)
e . We can suppose, by mean of an isometry, that the center of

symmetry of Sθ (x) is in the origin of coordinate, L is the plane x3 = 0, and x belongs
to x1 axis and x1 > 0. Denote s0 = L1

8

(
1− cos θ0

2

)
. We have B(0, s0) ⊂ Sθ (x) and

d(B (0, s0) , Dj) ≥ 2s0, j = 1, 2. Let ε ≤ ε3, where ε3 is such that δ (ε3) ≤ s0
2 and

ε3 ≤ ε2. By (26) we have D1 ∪D2 ⊂ [D1] s0
2
⊂ [D2]s0 ; therefore, B(0, s0) ⊂ (Ω)s0 �

[D2]s0 . By Proposition 2.3, (Ω)s0 � [D2]s0 is connected; hence we can join every

point x ∈B(0, s0) with y ∈ Ω such that d(y, ∂Ω) = L0

4 . Proceeding as in the proof of
(23), we obtain, by (18),

|∇xu (x, t2)| ≤ ω (ε)

d
for every x ∈ B (0, s0) ,(33)

where

ω (ε) = 12 (1 + C0)
N0 C10 (E + ε)

1−γ1γ
2N0
0 εγ1γ

2N0
0

and

N0 =
34d3

4πs30
.

Let ρ ∈ (0, L1

4 sin θ0
2

)
and denote

xρ = (x1 − 2ρ, 0, 0) , r =
1

2
d (xρ, ∂Sθ (x)) .

Observe that

1

2
ρ sin

θ

2
< r < ρ.(34)

Using the Green formula for uxj in Sθ (x)× [0, t2] for fix j ∈ {1, 2, 3} and setting

f (λ+ iµ) = uxj (λ+ iµ, 0, 0, t2) ,(35)

a straightforward calculation shows that the complex analytic function f is defined in
the subset of C :

Λ =


λ+ iµ : −s0 ≤ λ ≤ x1 − 2ρ+ r, |µ| ≤ 1

2


L1

2
−
√
λ2 +

L2
1 cos2 θ

2

4




 .(36)
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Furthermore, by (33), the following estimates follow:

|f (λ+ i0)| ≤ ω (ε)

d
for |λ| ≤ s0,

|f (λ+ iµ)| ≤ cEL3
1e

L2
1

64T

r3d
for λ+ iµ ∈ Λ,

where c is an absolute constant.
These inequalities and estimates for analytic continuation, see [5] , give (recalling

that uxj (xρ, t2) = f (x1 − 2ρ+ i0))

∣∣uxj (xρ, t2)
∣∣ ≤ cL3

1e
L2

1
64T

r3d
(E + ω (ε))

1−Ar (ω (ε))
Ar ,(37)

where

Ar = c1

(
r

L1

)10

and c, c1 are absolute constants.
From Proposition 2.1, (17), (27), (37), and (67), we have

|D1 � D2| ≤ C15d
2 (E + ε)

(
ρ+

d4

r3

(
ε

E + ε

)γ2Ar
)
,(38)

where γ2 = γ1γ
2N0
0 and C15 depends on α, d, h, L0,

m2

m1
,M, τ, t1,Σ, and Ω. If ε ≤ ε4,

where ε4 = min{ε3, E exp(− exp 2140

γ2C1
)}, and we set in (38)

ρ = L1

∣∣∣ln ε

E

∣∣∣− 1
11

,

we have, recalling (34),

|D1 � D2| ≤ C16Ed
3
∣∣∣ln ε

E

∣∣∣− 1
11

,

where C16 depends on the same data of C15. The same estimate holds for |D2 � D1| .
Now, proceeding as in the proof of (26), we obtain

δH (D1, D2) ≤ 2d (C16E)
1
4

∣∣∣ln ε

E

∣∣∣− 1
44

.

Finally, by the trivial inequality δH (D1, D2) ≤ d
ε4
ε valid for ε > ε4, we obtain (15).

Remark 1. More careful and tedious calculations in the evaluation of angle θ and
of analytic continuation of f in Λ give an improvement, only concerning the epsilon
dependence, in estimate (15). More precisely, (i) by inequality (31) and formula (32)
we have that for every ν > 0 there exists ων > 0 ( ων → 0 as ν → 0 ) such that
if ε ≤ ων then θ ≥ π − ν; (ii) to estimate f (λ+ iµ) in Λ we can use a more large
part than really was used in the proof—in this way the exponent γ2Ar in (38) can be

replaced by κν

(
r
R

)2+κν
, where κν → 0 as ν → 0, the constant C15 can be replaced
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by Cν (Cν → ∞ as ν → 0), and if we choose ρ = L1

∣∣ln ε
E

∣∣−( 1+ων
2+ων

)
, we obtain the

estimate

δH (D1, D2) = O
(
|ln ε|− 1

8+ων
)
.(39)

Remark 2. If in the a priori information on D, instead of ∂D, connected, we

assume that R3 � D is connected, D =
⋃N
n=1D

(n) with D(i) ∩ D(j) = ∅ for i 6= j,
and ∂D(i) is connected for every i = 1, ..., N, then estimate (15) (and (39)) continues
to hold with a different constant.

3. Appendix. In the following lemma we prove an estimate on the analytic
continuation of the space variable for solutions of the heat equation.

Lemma 3.1. Let ε, E, r, T > 0. Suppose that u satisfies the equation

∂u

∂t
−∆u = 0 in B (0, 3r)× [0, T ] .

Let y ∈ ∂B(0, r). Suppose that

‖u‖L∞(B(0,3r)×[0,T ]) + r ‖∇xu‖L∞(B(0,3r)×[0,T ]) ≤ E,(40)

|u (x, T )| ≤ ε for x ∈ B (y, r) ∩B (0, r) .(41)

The following estimate holds:

|u (x, T )| ≤ C0 (E + ε)
1−γ0 εγ0 for x ∈ B (y, r) � B (0, r) ,(42)

where C0 = 240e
r2

64T and γ0 = 1
4 cosh π

8 coshπ .

Proof. The Green formula gives, for x ∈B(0, 3r) ,

u (x, T ) =

∫
B(0,3r)

K (x− ξ, T )u (ξ, 0) dξ(43)

+

∫ T

0

dt

∫
∂B(0,3r)

(
K (x− ξ, T − t)

∂u (ξ, t)

∂nξ
− ∂K

∂nξ
(x− ξ, T − t)u (ξ, t)

)
dsξ.

Now, let zk = xk + iyk, k = 1, 2, 3, and consider the function U (z) obtained by the
formal substitution in the right-hand side of (43) of xkwith zk. U (z) is the complex
analytic continuation of u (x, T ) ; in fact, U (x1 + i0, x2 + i0, x3 + i0) = u (x, T ) and

a simple calculation prove that for x ∈B(0, 3r), y ∈B(0, 3r−|x|
2 ), the Cauchy–Riemann

equations ∂U
∂xk

+ i ∂U∂yk = 0, k = 1, 2, 3, are valid. We continue to denote by u (z, T ) the

function U (z).
Consider x ∈B(y, r) �B(0, r) and denote

f (λ+ iµ) = u ((λ+ iµ)x, T ) .

From (40) and (43) we have

|f (λ+ iµ)| ≤ 120Ee
r2

64T for λ ∈
[
0,

5r

2 |x|
]
, µ ∈

[
− r

4 |x| ,
r

4 |x|
]
.(44)
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Furthermore, by (41), we obtain

|f (λ+ i0)| ≤ ε for λ ∈
[
0,

r

|x|
]
.(45)

By analytic continuation in the rectangle [0, 5r
|x| ] × [− r

4|x| ,
r

4|x| ] (see [5]), we have by

(44) and (45) that

|u (x, T )| = |f (1 + i0)| ≤ 240e
r2

64T (E + ε)
1−γ0 εγ0 ,

where γ0 = 1
4 cosh π

8 coshπ .

Lemma 3.2. Let Ω and D satisfy (6) and (7), respectively. Let u be a solution of
the equation

∂u

∂t
−∆u = 0 in

(
Ω � D

)× [0, T ] ,

which is positive in
(
Ω � D

)× (0, T ] and fulfills the condition

∂u

∂n
= 0 on ∂D × [0, T ] .

The following estimate then holds:

min
x∈∂D

u (x, T ) ≥ C

L4
0

∫ T ′

0

dt

∫
∂Ω

u (x, t) ds,(46)

where T ′ ∈ (0, T ) and C is a nondimensional constant depending on d, h, L0,M, T, T−
T ′.

The proof of this lemma is preceded by the following.
Lemma 3.3. Let Ω and D be as in the previous lemma. Let x0 ∈ ∂D, σ > 0, and

let v be the solution of

∂v

∂t
−∆v = 0 in

(
Ω � D

)× [0, T, ] ,(47)

v (x, 0) = K
(
x− x0, σ

)
for x ∈ Ω � D,(48)

v = 0 on ∂Ω× [0, T ] ,(49)

∂v

∂n
= 0 on ∂D × [0, T ] .(50)

For every T ′ ∈ (0, T ) there exist σ0 > 0 and C8 depending on d, h, L0, L1,M, T, T −T ′
such that for σ ∈ (0, σ0) and (x, t) ∈ ∂Ω× [T − T ′, T ] ,

−∂v (x, t)

∂n
≥ 1

L4
0

exp− c

C8

[(
dL−1

1

)6
+ TL−2

1

]
,(51)

where c is an absolute constant and n is the outward normal to ∂Ω.
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Proof of Lemma 3. First we find an estimate from below in a point far enough
from D for v. We construct v as follows: v = w + z, where

z (x, t) = K
(
x− x0, t+ σ

)
+

t∫
0

dη

∫
∂D

K (x− ξ, t− η)ψ (ξ, η) dξ,(52)

ψ ∈C0 (∂D × [0, T ]) , and it is such that

∂z

∂n
= 0 on ∂D × [0, T ] .(53)

w is the solution of the boundary value problem (the existence of w is assured by [14,
Chap. III]);

∂w

∂t
−∆w = 0 in

(
Ω � D

)× [0, T ] ,

w (x, 0) = 0 for x ∈ Ω � D,

w = −z on ∂Ω× [0, T ] ,

∂w

∂n
= 0 on ∂D × [0, T ] .

Condition (53) is equivalent to the integral equation

ψ (x, t)−
t∫

0

dη

∫
∂D

G (x, t; ξ, η)ψ (ξ, η) dsξ = F0 (x, t) for (x, t) ∈ ∂D × [0, T ] ,

where

G (x, t; ξ, η) = 2
∂K

∂nx
(x− ξ, t− η) for 0<η<t, x, ξ ∈ ∂D,

F0 (x, t) = −2
∂K

∂nx

(
x− x0, t+ σ

)
for (x, t) ∈ ∂D × [0, T ] ,

and nx denotes unit inner normal to ∂D in x.
The continuity of F0 gives the continuity of ψ (see [8]); furthermore,

ψ (x, t) =

∞∑
m=0

Fm (x, t) ,(54)

where

Fm (x, t) =

∫ t

0

dη

∫
∂D

G (x, t; ξ, η)Fm−1 (ξ, η) dsξ(55)

for m ≥ 1, (x, t) ∈ ∂D × [0, T ].
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Now for µ ∈ (0, 1) we have

|G (x, t; ξ, η)| ≤ c
(
M + h−1

)
(t− η)

µ |x− ξ|3−2µ ,(56)

|F0 (x, t)| ≤ c
(
M + h−1

)
(t+ σ)

µ |x− x0|3−2µ ,(57)

where c is a constant depending on µ.
Furthermore, by a slight modification of [8, Lemma 1, p. 137] , we have for x ∈

∂D, ξ ∈ Ω � D, and a, b ∈ [0, 2) ,

∫
∂D

dsy

|x− y|a |y − ξ|b
≤



C1

|x−ξ|a+b−2 if a+ b > 2,

C2 if a+ b < 2,

(58)

where C1 and C2 are constants depending on a, b, d, h,M.
Let µ = 1√

3
(observe that µ ∈ ( 1

2 ,
2
3

)
; by (55)–(58) we have

|Fm (x, t)| ≤




C3

d

(
C3t

1−µd−1|x−x0|2µ−1
)m

t−µ

Γ((m+1)(1−µ))|x−x0|3−2µ for 2 ≤ m ≤ N,

C3

d4−2µ

(C3t
1−µd2(µ−1))

m
t−µ

Γ((m+1)(1−µ)) for m ≥ N + 1,

(59)

where N is the integral part of 3−2µ
2µ−1 and C3 is a constant depending on d, h,M.

Furthermore,

|F0 (x, t)|+ |F1 (x, t)| ≤ C4

d1+2µ

(
T

t+ σ

)µ
1

|x− x0|3−2µ ,(60)

where C4 depends on d, h,M, T.
By (54), (59), (60) we obtain

|ψ (x, t)| ≤ C ′4
d1+2µ

(
T

t+ σ

)µ
1

|x− x0|3−2µ ;(61)

C ′4 depends on d, h,M, T.
This inequality, (52), and the maximum principle yield

‖w‖L∞((Ω�D)×[0,T ]) ≤ ‖z‖L∞(∂Ω×[0,T ]) ≤
C ′′4
L3

0

;(62)

C ′′4 depends on d, h,M, T.
From (52), (61), and (62) we obtain

v
(
x,
∣∣x− x0

∣∣2 − σ
)
≥ 1

|x− x0|3
[

1

e1/4 (2
√
π)

3 −
C5

∣∣x− x0
∣∣

L0

]
,(63)

where C5 depends on d, h, L0,M, T. For such a choice of C5, denote

C6 = min

{(
2e1/4

(
2
√
π
)3
C5

)−1

,
L1

2L0

}
, C7 =

(
2e1/4

(
2
√
π
)3
C3

6

)−1

.
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We obtain, for x ∈ (Ω � D
) ∩ ∂B

(
x0, C6L0

)
and σ <

C2
6L

2
0

2 , the following estimate:

v
(
x,C2

6L0 − σ
) ≥ C7

L3
0

.(64)

This estimate, the Harnack inequality, and the Hopf maximum principle give, for
T ′ ∈ (0, T ) ,

− ∂v
∂n

(x, t) ≥ 1

L4
0

exp− c

C8

((
dL−1

1

)6
+ TL−2

1

)
for (x, t) ∈ ∂Ω× [T − T ′, T ] ,

where n is the outward normal to ∂Ω, c is an absolute constant,

C8 = min

{
C6

7 ,
(T − T ′)3/2

(4L0)
3

}
,

and C7 is as in (64).
Proof of Lemma 2. Let x0 ∈ ∂D such that

u
(
x0, T

)
= min
x∈∂D

u (x, T ) .

By the Green formula applied to u and v (x, T − t) , the positivity of u, and (51) we
obtain

1

2
u
(
x0, T

)
= lim
σ→0+

∫
Ω�D

u (x, T )K
(
x− x0, σ

)
dx ≥ lim

σ→0+

T∫
0

dt

∫
∂Ω

u (x, t)

(
− ∂v
∂n

)
(x, T − t) ds

≥ 1

L4
0

(
exp− c

C8

((
dL−1

1

)6
+ TL−2

1

)) T ′∫
0

dt

∫
∂Ω

u (x, t) ds.

That is, we obtain (46).
Remark 3. If ‖∇xu‖L∞((Ω)L0

�D×[0,T ]) ≤ d−1E, E > 0, by (46) we have for

x ∈ Ω � D such that d(x, ∂D) ≤ Cd
L4

0E

∫ T ′
0
dt
∫
∂Ω
uds

u (x, T ) ≥ C

2L4
0

T ′∫
0

dt

∫
∂Ω

u (x, t) ds.(65)

Furthermore, if T ′′ ∈ (0, T ′), using (65) where T is replaced by T ′ and T ′ by T ′′ and
applying again the Harnack inequality, we get

u (x, T ) ≥ C9

L4
0

T ′′∫
0

dt

∫
∂Ω

u (x, t) ds for x ∈ Ω � D such that d (x, ∂Ω) ≥ L0,(66)

where C9 depends on d,E, h, L0,M, T, T − T ′, T ′ − T ′′.
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Proposition 3.4. Let D fulfill condition (7), denote L2 = min{(2M)
−1
, h}; we

have

|∂D| ≤ 24e3

M2L3
2

|D| ,(67)

|∂ [D]r| ≤
96e3

M2L3
2

|D| for r ∈ (0, L2) ,(68)

|[D]r � D| ≤ 56e3

M2L3
2

|D| r.(69)

Proof. Denote by H (x) and K (x), respectively, the mean and total curvature of
∂D in x. By (7) we have

|H (x)| ≤ min
{
M,L−1

2

}
, |K (x)| ≤ min

{
2M2, L−2

2

}
.(70)

Furthermore (see [10]), for r ∈ (0, L2), the function d(x) =d(x, ∂D) is C2 in Sr =
D � (D)r and |∇d (x)| = 1 for x ∈ Sr. By simple calculation we have

|∂ (D)r| = |∂D|+ 2r

∫
∂D

H (x) ds+ r2
∫
∂D

K (x) ds;

by the coarea formula we obtain

|Sr| =
r∫

0

|{x : d (x) = t}| dt = r |∂D|+ r2
∫
∂D

H (x) ds+
r3

3

∫
∂D

K (x) ds.

Set f (r) = |Sr| . By inequality (see [11])

|f ′ (0)| ≤ 12e2 ‖f‖ 2
3

(
‖f ′′′‖+

6

L3
2

‖f‖
) 1

3

,

where ‖f‖ = max
[0,L2]

|f | , and (70) we obtain

|∂D| ≤ 12e2 |D| 23
(

4M |∂D|+ 6

L3
2

|D|
) 1

3

;(71)

applying the arithmetic–geometric inequality to the right side of (71) we obtain (67).
From

|∂ [D]r| = |∂D| − 2r

∫
∂D

H (x) ds+ r2
∫
∂D

K (x) ds

and (67) we obtain (68).
Finally, from

|[D]r � D| = r


|∂D| − r

∫
∂D

H (x) ds+
r2

3

∫
∂D

K (x) ds
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and recalling (70) and (67) we have (69).
Proposition 3.5. Let D1, D2 satisfy (7). The following inequality then holds:

δH (D1, D2) ≤ 2dL
− 3

4
1 |D1 M D2|

1
4 .(72)

Proof. Denote σ = |D1 M D2| . First suppose that

σ ≤ πL3
1

50
.(73)

Let x ∈ D1 � D2. By the interior sphere property of D1 (see Proposition 2.2), it easily
follows that there exists a ball B

(
p, L1

2

)
such that B

(
p, L1

2

) ⊂ D1 and x ∈ ∂B
(
p, L1

2

)
.

We have ∣∣∣∣B
(
p,
L1

2

)
� D2

∣∣∣∣ ≤ |D1 � D2| ≤ σ.

By (73) we have that B
(
p, L1

2

)∩D2 is nonempty and there exists y ∈ ∂D2∩B
(
p, L1

2

)
such that

|x− y| = d

(
x,D2 ∩B

(
p,
L1

2

))
.

By the exterior sphere property of D2, it follows that there exists a ball B(q, L1)
contained in Ω � D2 and tangent in y to ∂D2. By simple geometric considerations we

have that x, y ∈ B (p, L1

2

)∩B (q, L1). Furthermore, the inclusionB
(
p, L1

2

)∩B (q, L1) ⊂
D1 � D2 gives ∣∣∣∣B

(
p,
L1

2

)
∩ B (q, L1)

∣∣∣∣ ≤ σ.

This estimate and a bound of diameter of B
(
p, L1

2

)∩B(q, L1) by its volume gives

|x− y| ≤ diameter of

(
B

(
p,
L1

2

)
∩ B (q, L1)

)
≤ 2d

(
L−3

1 σ
) 1

4 .

Therefore, if x ∈ D1 � D2, then

d (x,D2) ≤ 2d
(
L−3

1 σ
) 1

4 .

Since the same estimate is valid for d(x,D1) , if x ∈ D2 � D1, (72) holds if (73) is
fulfilled. Otherwise, if (73) is not fulfilled, (72) is trivial.

Acknowledgment. I wish to express my gratitude to Prof. Mario Primicerio,
who proposed this problem to me.
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Abstract. We consider an inverse scattering problem (ISP) for the acoustic equation utt =
c2(x)∆u, u|t=0 = 0, ut|t=0 = δ(x), x ∈ R3. The ISP consists of the determination of the speed of
sound c(x) inside a bounded domain Ω ⊂ R3 given c(x) outside Ω and measurements of the amplitude
u(x, t) of the sound at the boundary ∂Ω, u|∂Ω = ϕ(x, t). This problem is nonoverdetermined since
only a single source location at {0} is counted. Assuming regularity of the rays generated by c(x)
and using the Carleman’s weight functions, we construct a cost functional Jλ. The main result is
Theorem 3.1, which claims global strict convexity of Jλ on “reasonable” compact sets of solutions.
Therefore, global convergence on such a set of a number of standard minimization algorithms to
the unique global minimum of Jλ (i.e., solution of the ISP) is guaranteed. This in turn shows a
possibility of constructions of numerical methods for this ISP which would not be affected by the
problem of local minima.

Key words. inverse scattering problem, Carleman estimate, globally convex cost functional
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1. Introduction. Let c(x) be the speed of sound at the point x ∈ R
3, c(x) ≥

const > 0. The amplitude u(x, t) of the sound waves propagating in R
3 from the point

source located at {0} is governed by the wave equation

utt = c2(x)4 u, x ∈ R
3, t ∈ (0, T ),(1.1)

u|t=0 = 0, ut|t=0 = δ(x).

Let Ω ⊂ R
3 be a bounded domain with a piecewise smooth boundary ∂Ω and {0} /∈ Ω.

We work with the following inverse scattering problems (ISPs).
ISP 1. Assume that function c(x) is given outside of Ω and is unknown inside of

Ω. Determine c(x) for x ∈ Ω assuming that the following function ϕ(x, t) is given:

u|∂Ω×(0,T ) = ϕ(x, t).

Function ϕ can be interpreted as the result of measurements of the sound’s am-
plitude. This problem has well-known applications in geophysics and ocean acoustics.

Solving the outer boundary value problem

utt = c2(x)4 u, x ∈ R
3\Ω, t ∈ (0, T ),

u|t=0 = 0, ut|t=0 = δ(x),

u|∂Ω×(0,T ) = ϕ(x, t),

one can uniquely determine function u(x, t) outside of Ω. Hence, the following function
ξ(x, t) is given as well:

∂u

∂n
|∂Ω×(0,T ) = ξ(x, t).

∗Received by the editors January 17, 1996; accepted for publication (in revised form) June 26,
1996.

http://www.siam.org/journals/sima/28-6/29736.html
†Department of Mathematics, University of North Carolina at Charlotte, Charlotte, NC 28223

(mklibanv@unccsun.uncc.edu).

1371



1372 MICHAEL V. KLIBANOV

Now, with the case of backscattering data in mind, we consider a more compli-
cated ISP. Namely, let ω ⊂ ∂Ω be a part of ∂Ω.

ISP 2. Assume that function c(x) is given outside of Ω and is unknown inside of
Ω. Determine c(x) for x ∈ Ω assuming that the following two functions are given:

u|∂Ω×(0,T ) = ϕ(x, t),
∂u

∂n
|ω×(0,T ) = ξ(x, t), t ∈ (0, T ).(1.2)

As follows from our method, precise values of the function ϕ at ∂Ω\ω = ω1 are
not important. Rather, bounds for ϕ and its derivatives up to the second order are
important at ω1 in order to keep u(x, t) bounded. Therefore, one can consider ISP 2
as an ISP with the backscattering data only.

Remarks (also, see a relevant discussion in section 5). (i) In the case of backscat-
tering data, the function ϕ is usually only given at ω×(0, T ) rather than at ∂Ω×(0, T ).
However, it follows from our method that one can prescribe reasonable “pseudo” val-
ues for this function at (∂Ω\ω) × (0, T ). Given the right choice of parameters λ and
ν in the Carleman’s weight function (Theorem 3.1), these pseudovalues will provide
very little impact on the solution c(x) at the points x located far from ∂Ω\ω. The real
role of these pseudovalues is to provide an upper bound for the solution. In terms of
estimates given below, we would not be able to obtain the “Lipshitz-like” Carleman
estimate in the form of Theorem 4.1 without a boundary condition at ∂Ω\ω. Rather,
we would obtain a “Hölder-like” Carleman estimate. To see this, one might compare
Theorem 8.3.1 in [3] with Theorem 3 in Chapter 4, section 1 in [8]. In [3], the function
u ∈ C∞0 (Ω) leads to the Lipshitz-like Carleman estimate, whereas in [8], u does not
have zero boundary values, which leads to a Hölder estimate. The difference between
Theorem 4.1 below and Theorem 8.3.1 in [3] is that, unlike [3], we assign a single
boundary condition only at ∂Ω\ω.

(ii) Even in the case of backscattering data, the function ξ(x, t) in (1.2) can
often be computed, rather than given a priori. The following example clarifies this
statement. Suppose that the function c(x) is given in the half-space {x3 > 0} and is
unknown for {x3 < 0} . Also, let the function ϕ(x, t) = u|{x3=0}×(0,T ) be given for all
(x, t) ∈ {x3 = 0}×(0, T ). Then, function ξ(x, t) can be computed for {x3 = 0}×(0, T )
as the solution of the corresponding boundary value problem in the half-space. Let
R be a positive constant. Assume that one wants to find function c(x) for x ∈
{|x| < R, x3 < 0} only, rather than for all x ∈ {x3 < 0} . Denote

Ω = {|x| < 2R, x3 < 0} , ω = {|x| < 2R, x3 = 0} , ∂Ω′ = Ω\ω.
Next, assign reasonable “pseudo” values for the function

ϕ(x, t)|∂Ω′×(0,T ) = u|∂Ω′×(0,T ).

Then, given the right choice of parameters λ and ν in the Carleman’s weight function
in (3.2), our method should provide a good approximation for the function c(x) for
x ∈ {|x| < R, x3 < 0} .

A variety of numerical methods for different versions of multidimensional coef-
ficient ISPs including inverse acoustic problems has been developed in the past; cf.
[1] and references cited therein. However, in nonlinear situations, these methods do
not guarantee the absence of the local minima of cost functionals. In this paper we
construct such a cost functional Jλ for the ISP 2, which is globally strictly convex on
“reasonable” compact sets of solutions.

Thus, Jλ does not have local minima in the interior of such a compact set. Further,
by Tikhonov’s principle [9], one should assume that a solution of the ISP 2 exists and
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belongs to the interior of a given compact set, at least in the case of noiseless data.
Hence Jλ attains its unique global minimum at an interior point of this compact set.
Finally, in the case of a presence of a small-level noise in the data, convexity of Jλ
implies that its unique global minimum is attained at a point which is close to the
solution for the noiseless data (the corresponding result easily can be derived using
the general framework of the theory of ill-posed problems [1, 9]).

Our main idea consists of the use of the Carleman’s weight functions α2(x), which
are involved in the Carleman estimates for Laplace’s operator (see Theorem 4.1). For
this reason, we call our technique Carleman’s weight method (CWM). The major
“price” for our method is an assumption that a function associated with u(x, t) has
a finite number N of Fourier harmonics with respect to t for an orthonormal basis
in L2-space. That is, we work with the Galerkin approximation without proof of its
convergence as N → ∞.Thus, N is the regularization parameter for this ill-posed
problem. Note that such an assumption is usually quite acceptable in numerical
methods. In fact, all the preceding algorithms deal with some similar assumptions
(implicitly or explicitly). We also note that the proof of convergence of our technique
as N →∞ would almost inevitably lead to the proof of a global uniqueness theorem
for this ISP. The latter, however, is a long-standing unsolved problem; cf. [7, 8].

The global convexity of cost functionals for similar 3-dimensional hyperbolic and
parabolic ISPs was established by CWM in [2, 5]. However, only coefficients at the
lower order derivatives were reconstructed in these references.

CWM consists of two main steps. First, by eliminating the unknown coefficient,
one obtains a special boundary value problem for an elliptic system of nonlinear PDEs.
Second, to solve this system, one constructs a cost functional Jλ. The presence of the
Carleman’s weight function in Jλ together with the Carleman estimate for Laplace’s
operator ensures the global strict convexity of Jλ.

In section 2, we obtain a nonlinear elliptic system convenient for treatment by
CWM. In section 3, we construct the cost functional Jλ and prove its convexity. In
section 4, we derive the Carleman estimate. Section 5 is devoted to discussion.

2. Nonlinear elliptic system convenient for CWM. In this section, we use
the detailed study of propagation of singularities of the hyperbolic Cauchy problem
(1.1) being undertaken in the book [8]. For x0, x ∈ R

3, let τ(x, x0) be the travel
time of the sound traveling from x0 to x. Then, function τ(x, x0) satisfies the eikonal
equation

| 5x τ |2 =
1

c2(x)
.(2.1)

This equation generates the family of rays L(x, x0) along which the first arrival signal
travels from x0 to x. One also calls these rays geodesic lines generated by Riemann’s
matrix

dτ =
1

c(x)

√
(dx1)2 + (dx2)2 + (dx3)2.

The following functional τ(M) attains its minimum value on the geodesic line
L(x, x0) (this is Fermat’s principle):

τ(M) =

∫
M(x,x0)

ds

c(x)
,

where M(x, x0) is a smooth curve connecting x0 with x.
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Regularity assumption. In what follows, we will always assume that the fam-
ily of geodesic lines is regular in R

3; i.e., for every two points x0, x ∈ R
3, there

exists a unique geodesic line L(x, x0) connecting them.
Denote τ0(x) = τ(x, 0). The surface {t = τ0(x)} in R

3× (0, T ) defines the charac-
teristic cone for the solution of the hyperbolic Cauchy problem (1.1). So, u(x, t) = 0
for t < τ0(x). Thus, we will consider function u(x, t) above this cone only. Let
G = {(x, t) : x ∈ Ω, τ0(x) ≤ t ≤ T} . Function u(x, t) consists of singular and regular
parts which we denote u0 and u1, respectively, where u = u0 + u1. CWM requires
that

u1(x, t) ∈ C2(G), τ0(x) ∈ C2(Ω).(2.2)

By [8] and to ensure (2.2), we impose somewhat excessive smoothness conditions
on the function c(x) (these conditions might likely be relaxed in practical computa-
tions). Theorem 4.1 of [8] can be reformulated as follows in our case.

Theorem 2.1. Let c(x) ≥ const > 0, 0 /∈ Ω, c(x) ∈ Cl+4(R3), l ≥ 2s+ 7 (where
s ≥ −1 is an integer), and H(t) be the Heaviside function. Then the solution of the
Cauchy problem (1.1) has the form

u(x, t) =
σ−1(x)

τ0(x)
δ(t− τ0(x)) +H(t)

s∑
k=0

σk(x)Hk(t
2 − τ2

0 (x)) + vs(x, t),

where

Hk(t) =
tk

k!
H(t), k ≥ 0, σk(x) ∈ Cl−2k(Ω) for k = −1, ..., s,

τ0 ∈ Cl+3(Ω), and σ−1(x ) > 0 for all x .

Furthermore, vs(x, τ0(x)) = 0; for s ≥ 1, function vs(x, t) is continuous in G

with its derivatives Dα
χDβ

t Vs, α = (α1, α2, α3), |α|+ β ≤ s− 1.
Hence, the singular part of the function u is

u0(x, t) =
σ−1(x)

τ0(x)
δ(t− τ0(x)), σ−1(x) > 0,(2.3)

and the regular part is

u1(x, t) = H(t)
s∑

k=0

σk(x)Hk(t
2 − τ2

0 (x)) + vs(x, t).

Thus, to ensure that u1 ∈ C2(G), we take s = 3, l = 13, and

c ∈ C17(R3).(2.4)

Remark. Because of the singular part (2.3) in the function u(x, t), functions

τ0(x)|∂Ω and ∂τ0(x)
∂n |ω easily can be determined from u(x, t)|∂Ω×(0,T ) and ∂u

∂n (x, t)|ω×(0,T ).
Now we replace the cone {t = τ0(x)} with the hyperplane {t = 0} . To do this, we

introduce a new function W (x, t):

W (x, t) =

t∫
0

dz

z∫
0

u(x, y + τ0(x))dy.(2.5)
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Here the integral of the singular part u0 of the function u is understood in the
conventional setting as (see (2.3))∫ z

0

u0(x, y + τ0(x))dy =
σ−1(x)

τ0(x)
H(z).

Hence,

lim
t→0+

W (x, t) = 0, lim
t→0+

∂W

∂t
(x, t) =

σ−1(x)

τ0(x)
> 0.(2.6)

Further, let T1 = T− max
Ω

τ0(x). We assume that T1 > 0. Let ΩT1
= Ω× (0, T1);

then

W ∈ C2(ΩT1).(2.7)

Because of (1.1), (1.2), and (1.5), function W satisfies the following conditions:

4W − 25 (Wt)5 τ0 −Wt 4 τ0 = 0 in ΩT1
,(2.8a)

W (x, 0) = 0,(2.8b)

Wt(x, 0) > 0 in Ω,(2.8c)

W |∂Ω×(0,T1) = ϕ1(x, t),
∂W

∂n
|ω×(0,T1) = ξ1(x, t),(2.8d)

where functions ϕ1 and ξ1 are generated by the functions ϕ and ξ due to the trans-
formation (2.5).

An inconvenience of equation (2.8a) is that highest order derivatives fall on two
unknown functions rather than just a single one: W (x, t) and τ0(x). So, to obtain
a system of the equations with respect to τ0 and W, we take t = 0 in (2.8a). Then,
using (2.8b) and (2.8c), we obtain

4τ0 +
2

Wt(x, 0)
5 [Wt(x, 0)]5 τ0 = 0.(2.9)

To find the Dirichlet and Neumann data for τ0(x), we analyze singularities of
functions ϕ and ξ in (1.2) at t → τ+

0 (x) due to the propagation of the singularity in
(2.3). Hence, the following two functions are known as well:

τ0 |∂Ω= p(x),
∂τ0
∂n

|ω = q(x).(2.10)

We cannot solve the nonlinear system (2.8)–(2.10) in its present form. So, we
simplify this system by cutting off Fourier harmonics for W (x, t) with respect to t.
Let {an(t)}∞n=1 ⊂ C2 [0, T1] be an orthonormal basis in L2 [0, T1] such that an(0) = 0.
Let {Qn(x)}∞n=1 be Fourier coefficients of the function W (x, t) with respect to this
basis,

Qn(x) =

T1∫
0

W (x, t)an(t)dt.
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Choose an integer N > 1; we then impose the following assumption.

Main assumption. Denote

v(x, t) =

N∑
n=1

an (t) Qn (x),

ϕ̃1(x, t) =
N∑
n=1

an (t) ϕ1n (x),

ξ̃1(x, t) =
N∑
n=1

an (t)ξ1n(x),

where ϕ1n(x) and ξ1n(x) are Fourier coefficients of the corresponding functions in
(2.8d). So, we assume that function v satisfies exactly the same conditions (2.8a)–
(2.8c), (2.9), and (2.10) as does function W, whereas (2.8d) is replaced with

v|∂Ω×(0,T1) = ϕ̃1(x, t),
∂v

∂n
|ω×(0,T1) = ξ̃1(x, t).

Therefore, we arrive at the following nonlinear system of PDEs:

4v − 25 (vt)5 τ0 − 2vt 4 τ0 = 0,(2.11a)

v(x, 0) = 0,(2.11b)

vt(x, 0) > 0,(2.11c)

4τ0 +
2

vt(x, 0)
5 [vt(x, 0)]5 τ∂ = 0,(2.11d)

v|∂Ω = ϕ̃1,
∂v

∂n
|ω = ξ̃1, τ0|∂Ω = p,

∂τ0
∂n

|ω = q.(2.11e)

Remark. Because of the finite-dimensional Fourier approximation, the existence
of a solution to the system (2.8a)–(2.8d) does not necessarily imply the existence of
a solution to the system (2.11a)–(2.11e). This is a major shortcoming of our main
assumption, since we cannot evaluate our method as N →∞ (also, see the discussion
below). However, we think that the finite-dimensional time dependence assumption
is acceptable for numerical methods. In addition, Theorem 3.1 guarantees that our
method finds a vector-valued function (v, τ0), which provides a minimal discrepancy
between left- and right-hand sides of (2.11a) and (2.11d), provided, of course, that a
solution of the minimization problem (3.2) does exist and belongs to the interior of
the set K2 (this last assumption is very similar to the classical Tikhonov’s “compact
set principle”; see also the remark after the statement of Theorem 3.1).

Further, introduce vectors

A =
(
a

′
1(0), ..., a

′
N (0)

)
, Q(x) = (Q1(x), ..., QN (x)) ,

Φ(x) = (ϕ11(x), ..., ϕ1N (x)) , and Ψ(x) = (ξ11(x), ..., ξ1N (x)) .
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Let [ , ] denote the dot product in R
N . Choose an integer n, 1 ≤ n ≤ N, multiply

both sides of (2.11a) by an(t), and integrate it over the time interval (0, T1). We
obtain the following nonlinear elliptic system of the second order:

4Q− 25 (BQ) · 5τ0 + 2BQ
5 [A,Q] · 5τ0

[A,Q]
= 0,

4τ0 + 2
5 [A,Q] · 5τ0

[A,Q]
= 0,(2.12)

Q|∂Ω = Φ(x),
∂Q

∂n
|ω = Ψ(x), τ0|∂Ω = p(x),

∂τ0
∂n

|ω = q(x),

where B is an N ×N matrix with the elements

bnk =

T1∫
0

an(t)a
′
k(t)dt; n, k = 1, ..., N.

While the form of the system (2.12) is almost what we need, it is still a bit
inconvenient because of the nonzero boundary conditions. Hence, to obtain zero
boundary conditions, we assume that there exists a givenN -dimensional vector-valued
function F (x) and a given real-valued function g(x) such that

F = [F1, (x), ..., FN (x)] , Fi, g ∈ C2(Ω) ,

F |∂Ω = Φ(x),
∂F

∂n
|ω = Ψ(x),(2.13)

g|∂Ω = p(x),
∂g

∂n
|ω = q(x).

Denote

P (x) = Q(x)− F (x), r(x) = τ0(x)− g(x).

Then (2.12) and (2.13) lead to

4P − 25 (BP )5 (r + g)− 25 (BF )5 r

+2 B(P + F )
5 [A,P + F ]5 (r + g)

[A,P + F ]
= R(1)(x),

4r + 2
5 [A,P + F ] · 5(r + g)

[A,P + F ]
= R(2)(x),(2.14)

P |∂Ω =
∂P

∂n
|ω = 0, r|∂Ω =

∂r

∂n
|ω = 0,

where

R(1)(x) = − (4F − 25 (BF )5 g) , R(2)(x) = −4 g.(2.15)

So, our goal below is to solve the system (2.14), (2.15). Given the solution (P, r)
of this system, one easily can reconstruct the function τ0(x) and, therefore, c(x). We
also note that while zero boundary conditions for the vector (P, r) are convenient for
theoretical analysis, in practical computations, one can likely work with the nonzero
conditions for the vector (Q, τ0) in (2.12).
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3. Uniformly strictly convex cost functional. To solve the system (2.14)
and (2.15), we introduce a weighted cost functional Jλ. As the weight function, we
choose the Carleman’s weight function, i.e., one involved in the Carleman estimate
for the Laplacian operator (see Theorem 4.1).

Choose a point x0 ∈ R
3\Ω such that there exists a part ω1 ⊆ ω for which

(x− x0, n(x)) < 0 for all x ∈ ω1

and

(x− x0, n(x)) ≥ 0 for all x ∈ ∂Ω\ω1,

where n(x) is the outward pointing unit normal to ∂Ω and ( , ) is the dot product in R
3.

Without loss of generality, we will always assume that Ω ⊂ {|x− x0| < 1
2

}
.Consid-

er functions

ψ(x) = |x− x0|2 +
1

4
, α(x) = exp

[
λψ−ν

]
,

where λ and ν are large positive parameters to be chosen later. Because of the
Carleman estimate of Theorem 4.1, we call α(x) Carleman’s weight function. Let x1

be the point on ω1 closest to x0. It is important for our method that Carleman’s
weight α(x) attains its maximum value at x1 and decays exponentially in Ω with
respect to the distance from x1. The level surfaces of α(x) are spheres with the center
at x0.

Remark. It can be shown that if, for example, Ω is a cube, Ω = (1, a)3 with
a = const > 1 and ω = {x3 = 1} ∩ ∂Ω, then one can choose α(x) in a simpler way as
α(x) = exp(λx−ν3 ) with its level surfaces {x3 = const} .

Let H2
0 (Ω) be the subspace of H2(Ω) consisting of all the real-valued functions

f(x) satisfying the boundary conditions

f |∂Ω =
∂f

∂n

∣∣∣∣
ω

= 0.

We will say that a k-dimensional vector-valued function β(x) belongs to H2
0 (Ω) if

all of its components belong to H2
0 (Ω). The same is true for any other Banach space

which will be used below. For the norm ‖ · ‖ of such a Banach space, we define the
norm of β as

‖ β ‖=
[

k∑
i=1

‖ βi ‖2
] 1

2

.

Because of (2.14), denote

R(x) =
(
R(1)(x), R(2)(x)

)
, S(x) = (P (x), r(x)) ,

V1(S) = 4P − 25 (BP )5 (r + g)− 25 (BF )5 r

+2B(P + F )
5 [A,P + F ]5 (r + g)

[A,P + F ]
,(3.1)
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V2(S) = 4r + 2
5 [A,P + F ]5 (r + g)

[A,P + F ]
, and V (S) = (V1(S), V2(S)) .

Clearly, S ∈ H2
0 (Ω) and V (S) is an (N + 1)-dimensional vector. Introduce the

cost functional Jλ(S) as

Jλ(S) =

∫
Ω

[V (S)−R]
2
α2dx,(3.2)

where

[V (S)−R]
2

= [V (S)−R, V (S)−R]

is the square length of the (N + 1)-dimensional vector V (S) − R. So, by (2.14) and

(2.15), one should find such an (N + 1)-dimensional vector-valued function S = S̃ ∈
H2

0 (Ω) that provides the minimum of the functional Jλ,

min
S

Jλ(S) = Jλ(S̃).

First, suppose that the data F and g are given without noise and that S∗ ∈ H2
0 (Ω)

is a solution of the equation V (S)−R = 0. Then,

min
S

Jλ(S) = Jλ(S
∗) = 0.

It also follows from the strict convexity of Jλ (Theorem 3.1) that even if functions
F and g are given with noise, which is sufficiently small in the H2(Ω)-norm, then the

point S̃ of the unique global minimum of Jλ (on the compact set K2 introduced below)
is close to the solution S∗ for the noiseless data, provided, of course, that S∗ exists.
The existence of S∗, however, should be assumed a priori by Tikhonov’s approach to
ill-posed problems; cf. [1, 9].

By Tikhonov’s principle [9], we will minimize Jλ over “reasonable” compact sets
introduced below.

In what follows, C will denote different positive constants depending only on
Ω, ω1, and x0. Let m1 = const > 0 and K1 = K1(m1) ⊂ C2(Ω) be the set of vector-
valued functions (F, g) such that

‖ (F, g) ‖C2(Ω)≤ m1 .(3.3)

Hence,

‖ R ‖C(Ω)≤ Cm1.(3.4)

Likewise, we want to bound from the above C1-norms of all vector-valued func-
tions S = (P, r) under consideration. Therefore, let m2 and m3 be two positive con-
stants, m2 < m3. Then K2 = K2(m2,m3) will denote a compact set of vector-valued
functions S = (P, r) ∈ H2

0 (Ω) ∩H3(Ω) such that

[A,P + F ] ≥ m2 for all (F, g) ∈ K1 and all (P, r) ∈ K2(3.5)

and

‖ S ‖H3(Ω)≤ m3.(3.6)
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Note that because of (2.11c), [A,P + F ] > 0, which explains (3.5). Inequalities
(3.5) and (3.6) imply that K2 is a convex set in H2

0 (Ω). In addition, by Sobolev’s
embedding theorem, K2 ⊂ C1(Ω) and

‖ S ‖C1(Ω)≤ CNm3 for all S ∈ K2.(3.7)

So, in working on a computational implementation of our method, one should
assume, by Tikhonov’s principle, that in the case of noiseless data, solution S∗ of
problem (2.14) does exist and belongs to the interior of K2 [9].

The following theorem is the main result of this paper.
Theorem 3.1. Let Ω be a convex bounded domain, 0 /∈ Ω, the speed of sound

c(x) ≥ const > 0, c(x) = const outside of Ω, c(x) ∈ C17(R3), the family of geodesic
lines generated by c(x) be regular in R

3, and τ0(x) = τ(x, 0) be the travel time from the
source {0} to the point x. Then there exist large positive parameters ν0 = ν0(Ω, ω) and
λ0 = λ0(Ω, ω,N,K1,K2) such that for ν = ν0, all λ ≥ λ0, and for all (F, g) ∈ K1, the
cost functional Jλ(S) in (3.2) is uniformly strictly convex on the convex compact set
K2 ⊂ H2

0 (Ω) . That is, for all (F, g) ∈ K1 and S, (S + h) ∈ K2, where ||h||H2(Ω) < 1,
ν = ν0, and λ ≥ λ0, the following inequality is valid:

Jλ (S + h)− Jλ(S)− J ′λ(S)(h) ≥ C1 ‖ h ‖2H2(Ω),

where J ′λ is the Frechet derivative of Jλ at the point S and C1 is a positive constant,
C1 = C1(Ω, ω,N, ν0, λ,K1,K2), but does not depend onS, h, F, and g.

Remark. There is a question, of course, on how “big” the set K2 is. First, K2 is
a compact set in H2(Ω), which suits the Tikhonov’s principle [9] well. Second, the
“size” of K2 depends on the constants m2 and m3 in (3.5), (3.6). So, given m2, the
size of K2 can be big if m3 is a big number. The bigger the size of K2, the larger the
value of λ0 one should use in Theorem 3.1.

Proof. In this proof, C2 will denote different positive constants depending on
the sets K1 and K2 only, i.e., on the constants m1,m2, and m3 in (3.3)–(3.6). But
constants C2 do not depend on λ, ν, S, and h.

The proof consists of two steps. First, using algebraic manipulations and the
Cauchy–Schwarz inequality, we prove that

Jλ(S+h)−Jλ(S)−J ′λ(S)(h) ≥ 1

2

∫
Ω

[4h]2α2dx−C2

∫
Ω

(| 5 h|2 + [h]2
)
α2dx.(3.8)

Second, the Carleman estimate of Theorem 4.1 implies that the first term of the
right-hand side of (3.7) dominates the rest.

To establish (3.8), we evaluate Jλ(S + h) − Jλ(S) and single out the derivative
J ′λ(S)(h). By (3.2),

Jλ(S + h)− Jλ(S) =

∫
Ω

[V (S + h)− V (S), V (S + h) + V (S)− 2R]α2dx.

Let h = (h1, h2), where h1 and h2 represent P and r, respectively. Then a routine
algebraic analysis of (3.1) implies that

V1(S + h)− V1(S) = L1(S, h) +G1(S, h),

where L1 and G1 are the linear and nonlinear parts, respectively, of this difference
with respect to h. Namely,

L1(S, h) = 4h1 − 25 (Bh1)5 (r + g)− 25 (BP )5 h2
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+2(Bh1)
5[A,P + F ]5 (r + g)

[A,P + F ]

+2B(P + F )

{5[A, h1]5 (r + g) +5[A,P + F ]5 h2

[A,P + F ]

}
(3.9)

−2B(P + F )
5[A,P + F ]5 (r + g)

[A,P + F ]2
[A, h1].

Also, G1 satisfies the following estimate:

[G1(S, h)] ≤ C2(| 5 h|2 + [h]2).(3.10)

Similarly,

V2(S + h)− V2(S) = L2(S, h) +G2(S, h),

where L2 and G2 represent the linear and nonlinear parts, respectively, of this differ-
ence with respect to h:

L2(S, h) = 4h2 + 2
5[A, h1]5 (r + g) +5[A,P + F ]5 h2

[A,P + F ]

−2[A, h1]
5[A,P + F ]5 [r + g]

[A,P + F ]2
,(3.11)

and

|G2(S, h)| ≤ C2(| 5 h|2 + |h|2).(3.12)

Similarly,

V (S + h) + V (S)− 2R = 2(V (S)−R) +4h+G3(S, h),(3.13)

where

[G3(S, h)] ≤ C2(| 5 h|2 + |h|2).(3.14)

Again, we remark that constants C2 are independent on S, h because of (3.7). Let
L(S, h) and G(S, h) be (N + 1)-dimensional vector-valued functions of the form

L(S, h) = (L1(S, h), L2(S, h)), G(S, h) = (G1(S, h), G2(S, h)).

Hence,

L(S, h) = 4h+ L̃(S, h),(3.15)

where the linear (with respect to h) operator L̃ contains only the lower order deriva-
tives of h.
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By (3.9)–(3.14),

Jλ(S + h)− Jλ (S) =

∫
Ω

[L(S, h) +G(S, h), 2(V (S)−R) +4h+G3(S, h)]α
2dx.

Hence,

J ′λ(S)(h) = 2

∫
Ω

[L(S, h), V (S)−R]α2dx

and

Jλ(S + h)− Jλ(S)− J ′λ(S)(h) =

∫
Ω

[L(S, h),4h+G3(S, h)]α
2dx

+

∫
Ω

[G(S, h), 2(V (S)−R) +4h+G3(S, h)]α
2dx.

This equation together with (3.15) leads to

Jλ(S + h)− Jλ(S)− J
′
λ(S)(h) =

∫
Ω

[4h]2α2dx+

∫
Ω

[L̃(S, h),4h+G3(S, h)]α
2dx

+

∫
Ω

[4h,G3]α
2dx+

∫
Ω

[G(S, h), 2(V (S)−R) +4h+G3(S, h)]α
2dx.(3.16)

Thus, the Cauchy–Schwarz inequality, (3.7), (3.10), (3.12), (3.14), and (3.16)
immediately lead to (3.8). Further, (3.8) and the Carleman estimate (Theorem 4.1)
imply that

Jλ(S + h)− Jλ(S)− J ′λ(S)(h) ≥ C

2λ

3∑
i,i=1

∫
Ω

[
hxixj

]2
α2dx

+
1

2
Cλ

∫
Ω

| 5 h|2α2dx+
1

2
Cλ3

∫
Ω

[h]2α2dx− C2

∫
Ω

(| 5 h|2 + [h]2
)
α2dx.

Hence, for sufficiently large λ ≥ λ0 = λ0 (Ω, ω,N,K1,K2) , we obtain

Jλ(S + h)− Jλ(S)− J ′λ(S)(h) ≥ C

2λ

3∑
i,i=1

∫
Ω

[
hxixj

]2
α2dx

+C2λ

∫
Ω

[5h]2α2dx+ C2λ
3

∫
Ω

[h]2α2dx.

Let σ =max
Ω

ψ(x).Then, the last inequality leads to

Jλ(S + h)− Jλ(S)− J ′λ(S)(h) ≥ C2

λ
exp[2λσ−ν ] ‖ h ‖2H2(Ω)= C1 ‖ h ‖2H2(Ω) .
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Remark. A minor concern can be raised about how to keep H3-norms of function
S bounded (since S ∈ K2 ⊂ H3(Ω)) while only the H2-norm of h is involved in this
theorem. One can argue, however, that in practical computations one could work
with the finite-dimensional approximations of S, where all norms are equivalent in
the finite-dimensional spaces.

4. Carleman estimate. One can find the conventional Carleman estimates in
the books [3, 4, 7]. In particular, these estimates were obtained in [3, 4] for very
general differential operators, including elliptic ones. The main difference between our
case and the conventional one is that we integrate over the whole domain Ω,Dirichlet
data are given on the whole boundary ∂Ω, and Neumann data are given on its part
ω only, whereas in the conventional case, either the integration is carried out over
a part of Ω adjacent with ω (and both Dirichlet and Neumann data are given at
ω only as in [7]) or the integration is carried out over the whole domain Ω (and both
Dirichlet and Neumann data are given at the whole boundary ∂Ω, as in [3, 4]). This
difference makes it necessary for us to carefully evaluate boundary terms arising after
applying the Gaussian formula. Therefore, the major difference between our case and
the conventional one lies in the method of evaluation of the boundary terms.

One of the most convenient methods of the derivation of the Carleman estimates
which allows one to deal with the nonzero boundary terms is the method of [7]. So,
our proof essentially follows [7]. The only two differences are in the analysis of the
nonzero boundary conditions and second-order derivatives.

Theorem 4.1.There exist sufficiently large positive numbers λ0, ν0 depending
only on Ω, w1, and x0 (see the beginning of section 3 about x0) such that the following
Carleman estimate is valid for ν = ν0, for all λ ≥ λ0, and for all functions u ∈
H2

0 (Ω) : ∫
Ω

(4u)2 α2dx ≥ C

λ

∫
Ω

3∑
i,j=1

(
uxixj

)2
α2dx

+Cλ

∫
Ω

| 5 u|2α2dx+ Cλ3

∫
Ω

u2α2dx,

where the positive constant C depends on Ω, ω1, and x0 only.
Remark. By a slight modification of the proof of this result, we show that one

can choose any ν ≥ ν0, rather that just fix ν = ν0. This leads to an obvious slight
change of Theorem 3.1.

Proof. Without loss of generality, we assume that x0 = 0. Let v(x) = u(x)α(x);
then u = v exp[−λψ−ν ]. Hence,

uxi = (vxi + 2λνxiψ
−ν−1v) exp[−λψ−ν ],

uxixi =
{
vxixi + 4λνxiψ

−ν−1vxi

+
(
2λ2ν2x2

iψ
−2v−2 + λνψ−ν−1 − λν(ν + 1)x2

iψ
−ν−2

)
v
}

exp[−λψ−ν ].
Hence,

(4u)2ψν+1α2 =

[
4v + 4λνψ−ν−1

3∑
i=1

xivxi + 4λ2ν2ψ−2ν−2|x|2(1 + γ)v

]2

.(4.1)

In what follows, γ = γ(x, λ, ν) will denote different C1(Ω)-functions such that

lim
λ,ν→∞

‖ γ(x, λ, ν) ‖C1(Ω)= 0.
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Let

z1 = 4v, z2 = 4λνψ−ν−1
3∑

i=1

xivxi ,

and

z3 = 4λ2ν2ψ−2ν−2|x|2(1 + γ)v.(4.2)

Then (4.1) leads to

(4u)2ψν+1α2 = [(z1 + z3) + z2]
2ψν+1 ≥ 2z2(z1 + z3)ψ

ν+1.(4.3)

First, we estimate 2z1z2ψ
ν+1. Note that

8λνxivxi 4 v = 8λν
3∑

j=1

vxjxjvxixi

=
3∑

j=1

∂

∂xj

(
8λνxivxjvxi

)− 3∑
j=1

8λνυxjvxixjxi − 8λνυ2
xi

=
3∑

j=1

∂

∂xj
(8λνxivxjvxi) +

∂

∂xi
(−4λνxi| 5 v|2) + 4λν| 5 υ|2 − 8λνυ2

xi .

Hence,

8λνxiυxi 4 υ = 4λν| 5 υ|2 − 8λνυ2
xi

+

3∑
j=1

∂

∂xi

(
8λνxiυxjυxi

)
+

∂

∂xi
(−4λνxi| 5 υ|2).

Therefore,

2z1z2ψ
ν+1 = 8λν

3∑
i=1

xiυxi 4 υ

= 4λν| 5 υ|2+
3∑

j=1

∂

∂xj

(
8λνυxj

3∑
i=1

xiυxi

)
+

3∑
i=1

∂

∂xi
(−4λνxi| 5 υ|2).(4.4)

Second, we estimate 2z2z3ψ
ν+1.

2z2z3ψ
ν+1 = 32λ3ν3|x|2ψ−2ν−2 (1 + γ)

3∑
i=1

xivxiv

=
3∑

i=1

∂

∂xi

[
16λ3ν3ψ−2ν−2|x|2(1 + γ)v2

]
+ 32λ3ν3(ν + 1)ψ−2ν−3|x|2(1 + γ)v2.
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Therefore, (4.1)–(4.4) and the last inequality imply that

(4u)2ψν+1α2 ≥ 4λν| 5 v|2 + 32λ3ν3(ν + 1)ψ−2ν−3|x|2(1 + γ)v2

+
3∑

j=1

∂

∂xj

(
8λνυxi

3∑
i=1

xiυxi

)

+
3∑

i=1

∂

∂xi
[−4λνxi| 5 v|2 + 16λ3ν3ψ−2ν−2|x|2(1 + γ)v2].

Integrating this inequality over Ω and using the fact that v|∂Ω = 0, we obtain, for
sufficiently large ν and λ,∫

Ω

(4u)2ψν+1α2dx ≥ 4λν

∫
Ω

| 5 v|2dx+ 30λ3ν3(ν + 1)

∫
Ω

ψ−2ν−3|x|2v2dx(4.5)

+

∫
ω

[
8λν

∂v

∂n

3∑
i=1

xivxi − 4λν|x| cos(n, x)| 5 v|2
]
ds.

Let T (x) be the tangent plane to ω at the point x ∈ ω. Introduce the local
orthonormal coordinate system with the center at the point x ∈ ω.The first two
coordinate vectors of this system are s1(x), s2(x) ∈ T (x), and the third one is the
outward normal vector n(x). Then

3∑
i=1

xivxi |ω = |x|
[
∂v

∂n
cos(n, x)+

3∑
i=1

∂v

∂sk
cos(sk, x)

]
ω

,

where ∂
∂sk

is the directional derivative. Because v|∂Ω = 0,

3∑
i=1

xivxi |ω = |x| cos(n, x)
∂v

∂n

∣∣∣∣
ω

.(4.6)

Further,

| 5 v|2|ω =

[(
∂v

∂n

)2

+
3∑

i=1

(
∂v

∂sk

)2
]
|ω =

(
∂v

∂n

)2

|ω.(4.7)

Hence (4.1), (4.6), and (4.7) imply that∫
ω

[
8λν

∂υ

∂n

3∑
i=1

xiυxi − 4λν|x| cos(n, x)| 5 υ|2
]
ds

= 4λν

∫
ω

|x| cos(n, x)

(
∂υ

∂n

)2

ds.(4.8)

But since cos(n, x) ≥ 0 on ∂Ω\ω1 and cos(n, x) < 0 on ω1, (4.8) leads to

4λν

∫
ω

|x| cos(n, x)

(
∂υ

∂n

)2

ds ≥ 2λν

∫
ω1

|x| cos(n, x)

(
∂υ

∂n

)2

ds.(4.9)
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However, since ∂υ
∂n |ω1=0, the integral in the right-hand side of (4.9) equals zero.

Hence, (4.5), (4.8), and (4.9) lead to∫
Ω

(4υ)2ψν+1α2dx ≥ Cλν

∫
Ω

| 5 υ|2α2dx+ Cλ3ν4

∫
Ω

υ2α2dx.

Replacing υ with u and using the fact that ν4 >> ν3 and ψν+1 < 1, we obtain∫
Ω

(4u)2α2dx ≥
∫
Ω

(4u)2ψν+1α2dx

≥ Cλν

∫
Ω

| 5 u|2α2dx+ Cλ3ν4

∫
Ω

u2α2dx.(4.10)

The estimate (4.10), however, does not include the second-order derivatives uxixj
in its right-hand side. In order to incorporate them, we refer first to the following
classical inequality for the elliptic operators in convex bounded domains Ω (cf. [6]):∫

Ω

(4w)2dx ≥ C

∫
Ω

3∑
i,j=1

(wxixj )
2dx,(4.11)

which is valid for all functions w ∈ H2(Ω) such that w|ω = 0. Further, (4.1) and (4.3)
imply that

(4u)2ψν+1α2 ≥ [2z2(z1 + z3) + z2
1 + 2z1z3]ψ

ν+1.(4.12)

The first bracket term of the right-hand side of (4.12) was already estimated.
Below, we will estimate z2

1 and 2z1z3. To do this, we fix sufficiently large ν = ν0 =
ν0(Ω, ω1, x0).

Now we estimate 2z1z3ψ
ν+1. Let ν = ν0 and λ ≥ λ0. Similar to the above, we

obtain ∫
Ω

2z1z3ψ
ν+1dx ≥ −Cλ2

∫
Ω

| 5 u|2α2dx− Cλ3

∫
Ω

u2α2dx.(4.13)

Since ψ ≥ 1
4 , then ψν+1 = ψν0+1 ≥ C. Hence, (4.11) implies that

∫
Ω

z2
1ψ

ν+1dx ≥
(

1

4

)ν0+1 ∫
Ω

(4υ)2dx ≥ C

∫
Ω

3∑
i,j=1

(υxixj )
2dx.

Replacing υ(x) in the latter estimate with u(x), we obtain∫
Ω

z2
1ψ

ν+1dx ≥ C

∫
Ω

α2
3∑

i,j=1

(uxixj )
2dx(4.14)

−Cλ2

∫
Ω

| 5 u|2α2dx− Cλ4

∫
Ω

u2α2dx.
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Further, as we have already proven above, at least∫
Ω

2z2(z1 + z3)dx ≥ 0.

Hence, combining (4.12), (4.13), and (4.14), we obtain

1

λ

∫
Ω

(4u)2α2dx ≥ C

λ

∫
Ω

α2
3∑

i,j=1

u2
xixjdx

−Cλ
∫
Ω

| 5 u|2α2dx− Cλ3

∫
Ω

u2α2dx.

Finally, an obvious combination of the latter estimate with (4.10) leads to

∫
Ω

(4u)2α2dx ≥ C

λ

∫
Ω

α2
3∑

i,j=1

(uxixj )
2dx

+Cλ

∫
Ω

| 5 u|2α2dx+ Cλ3

∫
Ω

u2α2dx.

5. Discussion. Because of the exponential decay of the Carleman’s weight α(x),
the major impact in the cost functional Jλ is provided by a small neighborhood
Ω(x1) ⊂ Ω of the point x1 ∈ ω1 closest with x0. Hence, the data at ∂Ω\ω are not
really important for Jλ. Therefore, in fact, CWM can work with the backscattering
data only. In this case, one needs the Dirichlet data on ∂Ω\ω to “bound” the solution.
Hence, one does not need to know these data with good precision. By changing x0, one
can cover, by such neighborhoods, a small layer adjacent with ω. Thus, CWM can be
considered as a stable layer stripping procedure: α(x) together with the “nonprecise”
Dirichlet data at ∂Ω\ω provide a stabilization.

Since Jλ is uniformly strictly convex on K2, then a global convergence on K2 for
a number of standard minimization techniques is guaranteed, which hopefully should
lead to an effective numerical implementation(s) of this technique. The crucial point
is that in such an implementation, one would not face the problem of local minima.

The major price for these attractive features of CWM consists of predetermination
of the number N, which is a regularization parameter. In other words, we work with
the Galerkin method without allowing N →∞. In our opinion, this is acceptable for
practical computations. We also note that an increase of N could lead to nonstable
algorithms; cf. [1, p. 86] for a similar conclusion. Finally, if one would be able to
prove convergence of this method for N →∞, then one would almost certainly prove
a global uniqueness result for this ISP, which is a long-standing problem [4, 8, 9].
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Abstract. We consider the inverse problem to the refraction problem div((1+(k−1)χD)∇u) = 0
in Ω and ∂u

∂ν
= g on ∂Ω. The inverse problem is to determine the size and the location of an

unknown object D from the boundary measurement ΛD(g) = u|∂Ω. The results of this paper are
twofold: stability and estimation of size of D. We first obtain upper and lower bounds of the size
of D by comparing ΛD(g) with the Dirichlet data corresponding to the harmonic equation with the
same Neumann data g. We then obtain logarithmic stability in the case of the disks. In the course
of deriving the stability, we are able to compute a positive lower bound (independent of D) of the
gradient of the solution u to the refraction problem with the Neumann data g satisfying some mild
conditions.

Key words. inverse problem, stability
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1. Introduction. Let Ω be a bounded, simply connected domain in R
n and let

D be a subdomain compactly contained in Ω. Let k 6= 1 be a positive number and put
µ = k − 1. In this paper we consider the inverse problem to the following Neumann
problem:

P [D, g]




div((1 + µχD)∇u) = 0 in Ω,

∂u

∂ν
= g on ∂Ω,

∫
∂Ω

u = 0,

∫
∂Ω

g = 0, g ∈ L2(∂Ω),

where ν is the unit outward normal vector to the boundary ∂Ω. By setting

ue = u|Ω\D and ui = u|D,(1.1)

the equation div((1 + µχD)∇u) = 0 may be written as

∆ue = 0 in Ω \D,(1.2)

∆ui = 0 in D,(1.3)

ue = ui on ∂D,(1.4)

∂ue

∂ν
= k

∂ui

∂ν
on ∂D.(1.5)

The inverse problem determines the size and the location of an unknown object D
from the boundary measurement u|∂Ω = ΛD(g). Practically, it determines D by
applying an electric current flux g to ∂Ω and measures the corresponding electric
voltage ΛD(g) on ∂Ω.
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Because of its potential of various applications, the inverse conductivity problem
has been attracting much attention lately. The uniqueness of the inverse conductivity
problem with one (or two) measurement has been studied in many works such as
[AIP, BFS, FI, IP, KS, S]. However, there are still plenty of questions to be answered.
There are also some works on the stability question [BF, FG, BFI]. The question of
the stability estimate is to establish the following kind of inequality:

d(D1, D2) ≤ ψ(‖ΛD1
(g)− ΛD2

(g)‖L2(∂Ω)),

where d(D1, D2) is a distance (e.g., the Hausdorff distance) between D1 and D2 and
ψ is a function such that ψ(t) → 0 as t → 0. In the paper [BFI], Bellout, Friedman,
and Isakov obtained a local stability result with ψ(t) = Ct when n = 2 under the
assumption that D1 is a small perturbation of D2. Without this assumption (i.e.,
nonlocal), however, no stability estimate for the nonmonotone case has been known.

In this paper, we obtain an estimate of the size of D (in any dimension) without
a priori knowledge of the shape of D or and logarithmic stability in the case of two-
dimensional disks.

We show that the size of an arbitrary subdomain D of any dimension can be
calculated approximately from the boundary measurement (Theorem 3.1). More pre-
cisely, we find upper and lower bounds of D in terms of the conductivity k and the
quantity

∫
∂Ω

(h−ΛD(g))gdσ, where h is the solution of the Neumann problem P [∅, g],
i.e., ∆h = 0 in Ω and ∂h

∂ν = g on ∂Ω. In one dimension, where Ω is an interval and D
is a subinterval of Ω, one can see via simple computations that

k

k − 1

∫
∂Ω

(h− u)gdσ = ‖g‖2
L2(∂Ω)|D|.

Here, |D| is the Lebesgue size of D. We extend this estimation to higher dimensions
in the sense of upper and lower bounds.

We then turn our attention to a theoretical study of the stability in the case of
disks of dimension two. In R

2, we suppose that the Neumann data g satisfies the
following conditions:

(N1) There exists a positive number M such that |g′(P )| > M if |g(P )| < M ,
P ∈ ∂Ω. (Here, g′ means the tangential derivative on ∂Ω.)

(N2) {P ∈ ∂Ω : g(P ) ≥ 0} and {P ∈ ∂Ω : g(P ) ≤ 0} are nonempty connected
subsets of ∂Ω.

Let us call these conditions the condition (N). Condition (N1) means that g is
rather steep if g is small, while (N2) means that g changes sign only twice on ∂Ω.
There are a lot of functions g satisfying the condition (N). For example, when Ω is
a disk, g(P ) = 〈~v, νP 〉 with a nonzero constant vector ~v satisfies this condition with
M = |~v|/2.

In this paper we find a positive lower bound of |∇u| which depends only on the
conductivity k and M in (N1) when g satisfies the condition (N) (Theorem 4.1). This
is one of the key observations required to derive results from this paper. Based on
this observation, we prove that if D1 and D2 are disks and ‖ΛD1

(g)− ΛD2
(g)‖L2(∂Ω)

is small, then |D1 \D2| and |D2 \D1| are comparable (see Corollary 4.4). We then
prove in Theorem 5.1 the following logarithmic stability for disks:

|D1∆D2| ≤ C
∣∣log ‖ΛD1

(g)− ΛD2
(g)‖L2(∂Ω)

∣∣−1/α
.(1.6)

Here, |D1∆D2| is the measure of the symmetric difference of D1 and D2 and α is the
number determined by the angle between ∂D1 and ∂D2 at the intersection points. Let
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us briefly explain how we obtain (1.6). Let uj be the solution of P [Dj , g] (j = 1, 2).
From the fact that ‖ΛD1

(g)− ΛD2
(g)‖L2(∂Ω) is small, we can show that

|u1 − u2| is small in D1 ∩D2,(1.7)

|∇(u1 − u2)| is small outside D1 ∪D2(1.8)

(see Proposition 5.2). We then derive (1.6) using the transmission condition (1.5) on
∂D. Note that in one dimension, where the uniqueness let alone the stability for the
inverse conductivity problem does not hold, one can see that (1.7) does not hold while
(1.8) is still true.

This paper is organized as follows. In section 2 we review the representation
formula for the solution to the refraction problem in [KS]. In section 3 the size
estimation of D is derived. In section 4 we prove that |∇u| has a positive lower bound
if g satisfies the condition (N) and D is a disk. The logarithmic stability of disks is
derived in section 5.

The constants C appearing in estimates may vary on each occurrence. However,
they are independent of the quantities to be estimated.

2. Representation of the solution to the refraction problem. In this sec-
tion we review the representation formula for the refraction problem P [D, g] obtained
in [KS]. Let Ω be a simply connected bounded Lipschitz domain in R

n and let D be a
simply connected subdomain with Lipschitz boundary which is compactly contained
in Ω. The single layer potential on D is defined by

SDf(X) =

∫
∂D

Γ(X −Q)f(Q)dσQ, X ∈ R
n,

where Γ(X) is the fundamental solution of ∆:

Γ(X −Q) =




1

2π
ln |X −Q|, n = 2,

1

(2− n)ωn
|X −Q|2−n, n ≥ 3,

and dσ is the surface measure. Here ωn is the area of the unit sphere. Let

K∗Df(P ) =
1

ωn

∫
∂D

〈νP , P −Q〉
|P −Q|n f(Q)dσQ

and KD be the dual of K∗D. The following trace formula is well known (see [F] or
[FJR]):

∂

∂ν
S±Df(P ) := lim

t→0+
〈νP ,∇SDf(P ± tνP )〉 =

(
±1

2
I +K∗D

)
f(P ) (P ∈ ∂D).

(2.1)

Throughout this paper, ∇S+
Df and ∇S−Df denote the restrictions of the gradient of

SDf to ∂D from the exterior and interior of D, respectively.
Let L2

0(∂Ω) = {f ∈ L2(∂Ω) :
∫
∂Ω
fdσ = 0}. Then the representation formula in

[KS] is as follows.
Theorem 2.1 (see [KS]). If u is a weak solution to the Neumann problem P [D, g],

then there are a unique harmonic function H ∈ W 1,2(Ω) and a density function
ϕD ∈ L2

0(∂D) such that u can be expressed as

u(X) = H(X) + SDϕD(X) for X ∈ Ω.(2.2)
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Moreover, if f = u|∂Ω,

H(X) = SΩ

(
−g +

∂

∂ν
U+

Ω f |∂Ω

)
+ cf(2.3)

and (
k + 1

2(k − 1)
I −K∗D

)
ϕD =

∂H

∂ν
|∂D on ∂D,(2.4)

where

UΩf(X) =
1

ωn

∫
∂Ω

〈Q−X, νQ〉
|X −Q|n

(
−1

2
I +KΩ

)−1

(f − cf )(Q)dσQ,(2.5)

cf =
∫
∂Ω
fη0dσ, and η0 is the basis of the null space of − 1

2I+K∗Ω such that
∫
∂Ω
η0dσ =

1.
Note that (2.5) is the solution of the exterior Dirichlet problem ∆u = 0 in R

n \Ω
and u = f − cf on ∂Ω. Moreover, ϕD satisfies

ϕD = (k − 1)
∂ui

∂ν
=
k − 1

k

∂ue

∂ν
.(2.6)

When D is a disk, it is known that

K∗Dϕ(P ) =
1

4πr

∫
∂D

ϕ(Q)dσQ for every P ∈ ∂D(2.7)

(see [KS]). Therefore, by (2.2), (2.4), and (2.6), we have

u = H +
1

λ
SD
(
∂H

∂ν

)
, λ =

k + 1

2(k − 1)
.(2.8)

In particular, we have

u(X) =

(
1− 1

2λ

)
H(X) +

1

2λ
H(X0), X ∈ D,(2.9)

where X0 is the center of D. In fact, by the trace formula (2.1) and (2.7), we have

∂u

∂ν
=

(
1− 1

2λ

)
∂H

∂ν

and u(X0) = H(X0). Equation (2.9) follows from the uniqueness of the Neumann
problem.

3. Size estimations of the unknown object. In this section the domain Ω is
contained in R

n (n ≥ 2). Let D be a subdomain (not necessarily simply connected)
of Ω. Let uD be the solution of P [D, g], and let h be the solution of P [∅, g], i.e., the
harmonic function in Ω with the Neumann boundary data g on ∂Ω and

∫
∂Ω
hdσ = 0.

Put µ = k − 1 as before. For this section we choose the Neumann data g so that the
corresponding harmonic function h satisfies

inf
x∈Ω

|∇h(x)| > 0.
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There are plenty of Neumann data g which satisfy the above condition: in any di-
mension, choose, for example, g(x) = 〈~v, ν(x)〉, where ~v is a constant vector. In two
dimensions, if g satisfies the condition (N), then the corresponding h satisfies

inf
x∈Ω

|∇h(x)| > CM,

where C is a positive constant depending only on ∂Ω and the constant M comes from
the condition (N1). (See the remark following Theorem 4.1.) The main result of this
section is the following theorem.

Theorem 3.1. Let uD and h be as above. Put C1 = (supx∈Ω |∇h(x)|)−2 and
C2 = (infx∈Ω |∇h(x)|)−2. Let

ED(g) =

∣∣∣∣
∫
∂Ω

(h− ΛD(g))gdσ

∣∣∣∣ .
If k > 1, then

C1
1

k − 1
ED(g) ≤ |D| ≤ C2

(
√
k − 1 + 1)2

k − 1
ED(g),

and if 0 < k < 1, then

C1
(1−√

1− k)2

1− k
ED(g) ≤ |D| ≤ C2

1

1− k
ED(g).

In particular, if g = 〈~v, ν(·)〉, where ~v is an unit constant vector, then C1 = C2 = 1.
Remark 3.2. Before proving Theorem 3.1, we give an explicit computation of

|D| which illustrates the relationship between |D| and ED(g) when Ω = B1(0) and
D = Bd(0) in R

2. Here Br(x) is the disk of radius r centered at x. Let us construct the
solution uD to the refraction problem P [D, g] with g = cos θ. Using the representation
formula (2.8), put

uD = H +
1

λ
SD
(
∂H

∂ν

)
, λ =

k + 1

2(k − 1)
,

and H(X) = αx1 = αr cos θ (α is a constant to be chosen later). Then, by the trace
formula (2.1) and the uniqueness of the Neumann problem, one can see that

1

λ
SD
(
∂H

∂ν

)
=




−k − 1

k + 1
αr cos θ if 0 ≤ r ≤ d,

−k − 1

k + 1

αd2

r
cos θ if d < r < 1.

Therefore,

uD = α

(
r − k − 1

k + 1

d2

r

)
cos θ in Ω \D.

If we choose α = k+1
(k+1)+(k−1)d2 , then uD is the desired solution and

ΛD(g) =
(k + 1)− (k − 1)d2

(k + 1) + (k − 1)d2
cos θ.
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It is easy to see that h = r cos θ is the solution to the harmonic equation with the
Neumann data g. Finally, we have∫

∂Ω

(h− ΛD(g))gdσ =
2(k − 1)

(k + 1) + (k − 1)d2
|D|.

Lemma 3.3. Let Dj be a domain in Ω and let uj be the solution of P [Dj , g]
(j = 1, 2). Then∫

Ω

(1 + µχD1
)|∇(u1 − u2)|2dx+ µ

∫
D2\D1

|∇u2|2dx

=

∫
∂Ω

(ΛD1
(g)− ΛD2

(g))gdσ + µ

∫
D1\D2

|∇u2|2dx.
(3.1)

Proof. Since u1 and u2 have the same Neumann boundary data g on ∂Ω,∫
Ω

(1 + µχD1
)∇u1∇ηdx =

∫
Ω

(1 + µχD2
)∇u2∇ηdx

and hence ∫
Ω

(1 + µχD1)∇(u1 − u2)∇ηdx = µ

∫
Ω

(χD2 − χD1)∇u2∇ηdx(3.2)

for every test function η ∈ W 1,2(Ω). Substituting η = u1 in (3.2) and integrating by
parts, we have∫

∂Ω

(ΛD1(g)− ΛD2(g))gdσ = µ

∫
Ω

(χD2
− χD1

)∇u2∇u1dx,(3.3)

while the substitution η = u1 − u2 in (3.2) yields∫
Ω

(1 + µχD1)|∇(u1 − u2)|2dx(3.4)

= µ

∫
Ω

(χD1
− χD2

)|∇u2|2dx+ µ

∫
Ω

(χD2
− χD1

)∇u2∇u1dx.

Then Lemma 3.3 follows from (3.3) and (3.4).
Proof of Theorem 3.1. Note that (3.1) holds even when one of Dj , j = 1, 2, is an

empty set. Therefore, formula (3.1) with D1 = D and D2 = ∅ leads to∫
Ω

(1 + µχD)|∇(uD − h)|2dx− µ

∫
D

|∇h|2dx = −
∫
∂Ω

(h− ΛD(g))gdσ,(3.5)

and with D1 = ∅ and D2 = D it leads to∫
Ω

|∇(uD − h)|2dx+ µ

∫
D

|∇uD|2dx =

∫
∂Ω

(h− ΛD(g))gdσ.(3.6)

Suppose first that k > 1, i.e., µ > 0. Notice that by (3.6),∫
∂Ω

(h− ΛD(g))gdσ > 0.
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It then follows from (3.5) that∫
∂Ω

(h− ΛD(g))gdσ ≤ µ

∫
D

|∇h|2dx ≤ 1

C1
µ|D|.

On the other hand, by (3.6), we have for any positive ε

|D| ≤ C2

∫
D

|∇h|2dx

≤ C2

[
(1 + ε)

∫
D

|∇(uD − h)|2dx+

(
1 +

1

ε

)∫
D

|∇uD|2dx
]

≤ C2α(ε;µ)

∫
∂Ω

(h− ΛD(g))gdσ,

where α(ε;µ) = 1 + ε + µ−1(1 + ε−1). α(ε;µ) has its minimum value when ε = 1√
µ ,

and in this case we have

|D| ≤ C2

(
√
µ+ 1)2

µ

∫
∂Ω

(h− ΛD(g))gdσ.

We now suppose that k < 1. Then −1 < µ < 0. It readily follows from (3.5) that∫
∂Ω

(h− ΛD(g))gdσ < 0.

We then have from (3.5) that

|D| ≤ C2

∫
D

|∇h|2dx ≤ C2
1

−µ
∫
∂Ω

(ΛD(g)− h)g dσ.

From (3.6), we see that∫
∂Ω

(ΛD(g)− h)gdσ ≤ −µ
∫
D

|∇uD|2dx.

For every ε > 0, we obtain from (3.6) that∫
D

|∇uD|2dx ≤ (1 + ε)

∫
D

|∇(uD − h)|2dx+ (1 + ε−1)

∫
D

|∇h|2dx

≤ (1 + ε)(−µ)

∫
D

|∇uD|2dx+ (1 + ε−1)

∫
D

|∇h|2dx,

which implies that ∫
D

|∇uD|2dx ≤ β(ε;µ)

∫
D

|∇h|2dx,

where β(ε;µ) = 1+ε−1

1+µ(1+ε) . The minimum of β(ε;µ) with the function value being

positive occurs when ε+ 1 = 1/
√−µ, and in this case one has∫

D

|∇uD|2dx ≤ 1

(1−√−µ)2

∫
D

|∇h|2dx.

It then follows that∫
∂Ω

(ΛD(g)− h)gdσ ≤ −µ
(1−√−µ)2

∫
D

|∇h|2dx ≤ 1

C1

−µ
(1−√−µ)2

|D|.

This completes the proof.
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4. Lower bound of |∇u|. In this and the next section, D is a disk in R
2. In

this section, we prove that if u is the solution of P [D, g] where g satisfies the condition
(N), then |∇u| has a positive lower bound independent of the disk D. We also prove
that |∇u| has an upper bound independent of D provided that D is at some distance
from ∂Ω.

Theorem 4.1. Let u be the solution of P [D, g] with g satisfying the condition (N).
There exists Ck > 0 depending only on the conductivity k (particularly independent
of D) such that

inf
X∈Ω

|∇u(X)| > CkM.

Here M is the number in the condition (N1).
Remark. The above theorem holds even when D is an empty set.
The proof of Theorem 4.1 will be based on the following lemma.
Lemma 4.2. Suppose that D = Br0(X0). Put e1 = (1, 0) and e2 = (0, 1) and let

ν be the normal vector field to ∂D. For j = 1, 2, let

vj(X) = 〈ej , X〉+
1

λ
SD(〈ej , ν〉)(X), X ∈ R

2.

Then, vj (j = 1, 2) satisfies div((1 + µχD)∇vj) = 0 and

(∇v1(X)
∇v2(X)

)
=




I − k − 1

k + 1
I if X ∈ D,

I +
k − 1

k + 1

r20
|X −X0|2

(
cos 2θ sin 2θ
sin 2θ − cos 2θ

)
if X ∈ R

2 \D,

(4.1)

where I is the identity matrix and (sin θ, cos θ) = X−X0

|X−X0| . In particular,

∣∣∣∣∇v1(X)
∇v2(X)

∣∣∣∣ =



4

(k + 1)2
if X ∈ D,

1−
(
k − 1

k + 1

r20
|X −X0|2

)2

if X ∈ R
2 \D,

and hence the matrix (∇v1,∇v2)t is invertible at every point in R
2.

Proof. That vj satisfies div((1 + µχD)∇vj) = 0 is proved in [KS, Lemma 3.3].
Recall that

SD(〈ej , ν〉)(X) =
1

2π

∫
∂D

log |X −Q| 〈ej , Q−X0〉
|Q−X0| dσQ

is harmonic in R
2\∂D. Put e(θ) = X0+r0(cos θ, sin θ). Then, ν(e(θ)) = (cos θ, sin θ)

and the tangential vector field T (e(θ)) = (− sin θ, cos θ). By the trace formula (2.1)
and (2.7), we have

∂

∂ν
S±D(〈ej , ν〉)(e(θ)) =

(
±1

2
I +K∗D

)
(〈ej , ν〉)(e(θ)) = ±1

2
〈ej , ν〉(e(θ)).(4.2)

It is well known (see [FJR]) that

∂

∂T
S+
D(〈ej , ν〉)(e(θ)) =

∂

∂T
S−D(〈ej , ν〉)(e(θ)).(4.3)
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It then follows from (4.2) that

∇SD(〈ej , ν〉)(X) = −1

2
ej if X ∈ D.(4.4)

We also have from (4.3) and (4.4) that

∇S+
D(〈e1, ν〉)(e(θ)) = 〈∇S+

D(〈e1, ν〉), ν〉ν(e(θ)) + 〈∇S+
D(〈e1, ν〉), T 〉T (e(θ))

=
1

2
cos θ ν(e(θ)) +

1

2
sin θ T (e(θ))

=
1

2
(cos 2θ, sin 2θ).

In the same way, we have

∇S+
D(〈e2, ν〉)(e(θ)) =

1

2
(sin 2θ,− cos 2θ).

It follows from the uniqueness of the interior and exterior Neumann problem for the
harmonic equation that

∇SD(〈e1, ν〉)(X) =




−1

2
e1 if X ∈ D,

r20
2|X −X0|2 (cos 2θ, sin 2θ) if X ∈ R

2 \D

and

∇SD(〈e2, ν〉)(X) =




−1

2
e2 if X ∈ D,

r20
2|X −X0|2 (sin 2θ,− cos 2θ) if X ∈ R

2 \D,

where (cos θ, sin θ) = X−X0

|X−X0| .
Therefore, we have (4.1) and Lemma 4.2 follows. This completes the proof.
Proof of Theorem 4.1. For a small number ε > 0, we can choose Y0 ∈ Ω \ ∂D so

that

|∇u(Y0)| = (1 + ε) inf
X∈Ω\∂D

|∇u(X)|.

(Note that by the condition (N2) infX∈Ω\∂D |∇u(X)| > 0 (see [AM] or [S]).) By
Lemma 4.2, we can choose (a, b) so that

∇u(Y0) = a∇v1(Y0) + b∇v2(Y0).

By (4.1), there is a positive constant C1 depending only on k such that

|(a, b)| ≤ C1|∇u(Y0)|.(4.5)

From (4.1) and (4.5), there is a positive constant C0 depending only on k such that∣∣∣∣a∂v1∂ν
+ b

∂v2
∂ν

∣∣∣∣ ≤ C0|∇u(Y0)|,(4.6) ∣∣∣∣∣
(
a
∂v1
∂ν

+ b
∂v2
∂ν

)′∣∣∣∣∣ ≤ C0|∇u(Y0)|(4.7)
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for every X ∈ ∂Ω. Here, ′ denotes the tangential derivative on ∂Ω. We will show that

|∇u(Y0)| > M

C0
.

Suppose this is not true. Put

ω(X) = u(X)− av1(X)− bv2(X).

Then ω satisfies the equation div((1 + µχD)∇ω) = 0 with the Neumann data

∂ω

∂ν
= g − a

∂v1
∂ν

− b
∂v2
∂ν

.

Put

I+ = {P ∈ ∂Ω : g(P ) > M} and I− = {P ∈ ∂Ω : g(P ) < −M}.

Then, if P ∈ ∂Ω \ (I+ ∪ I−), then by the condition (N1), |g′(P )| > M and hence∣∣∣∣∣
(
∂ω

∂ν

)′
(P )

∣∣∣∣∣ ≥ |g′(P )| −
∣∣∣∣∣
(
a
∂v1
∂ν

+ b
∂v2
∂ν

)′
(P )

∣∣∣∣∣ > M − C0
M

C0
= 0.

Therefore, on the set ∂Ω \ (I+ ∪ I−), ∂w
∂ν is strictly monotone. On the other hand, if

P ∈ I+, then

∂ω

∂ν
(P ) ≥ g(P )−

∣∣∣∣∣
(
a
∂v1
∂ν

+ b
∂v2
∂ν

)′
(P )

∣∣∣∣∣ > M − C0
M

C0
= 0.

Likewise, if P ∈ I−, then

∂ω

∂ν
(P ) < 0.

Put

∂Ω \ (I+ ∪ I−) = ∪mj=1Jj ,

where Jj are mutually disjoint connected arcs. Since ∂ω
∂ν is monotone on each Jj , if

both endpoints of Jj lie in I+, then ∂ω
∂ν > 0 on Jj . Similarly, if both endpoints of Jj

lie in I−, then ∂ω
∂ν < 0 on Jj . If one endpoint of Jj lies in I+ and the other endpoint

lies in I− , then ∂ω
∂ν changes sign only once on Jj . Since {P ∈ ∂Ω : g(P ) ≤ 0} is

connected by the condition (N2), we obtain that{
P ∈ ∂Ω :

∂ω

∂ν
(P ) ≤ 0

}
is a connected subset of ∂Ω.

However, since ∇ω(Y0) = 0,{
P ∈ ∂Ω :

∂ω

∂ν
(P ) ≤ 0

}
is a disconnected subset of ∂Ω.

(For this, see [AM].) This gives a contradiction and the proof is complete.
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Although the following lemma is proved in a standard argument, we include a
proof for the reader’s sake.

Lemma 4.3. Let D be a disk in Ω such that dist(D, ∂Ω) > δ, and let u be the
solution to P [D, g]. Then there exists C = C(δ, k,Ω, ‖g‖L2(∂Ω)) such that

sup
X∈D

|∇u(X)| < C.

Proof. Let H be the harmonic part of u in the representation (2.2). Then, by
(2.9),

∇u(X) =

(
1− 1

2λ

)
∇H(X), X ∈ D.

Since |∇H| is subharmonic and dist(D, ∂Ω) > δ, we have, for X ∈ D,

|∇H(X)|2 ≤ Cδ

∫
Ω

|∇H|2dY

= Cδ

[
−
∫

Ω

H∆HdY +

∫
∂Ω

H
∂H

∂ν
dσ

]

≤ Cδ

(∫
∂Ω

∣∣∣∣∂H∂ν
∣∣∣∣
2

dσ

)1/2(∫
∂Ω

|H|2dσ
)1/2

.

By (2.1) and (2.3), one sees that

∂H

∂ν
=

(
− 1

2
I +K∗Ω

)(
− g +

∂

∂ν
U+

Ω f |∂Ω

)
.

Recall that K∗Ω is bounded on L2(∂Ω) and UΩ is bounded on W 1,2(∂Ω) (see [V]).
Moreover, by the Rellich identity,

C1

∥∥∥∥ ∂

∂T
UΩf

∥∥∥∥
L2(∂Ω)

≤
∥∥∥∥ ∂∂νU+

Ω f

∥∥∥∥
L2(∂Ω)

≤ C2

∥∥∥∥ ∂

∂T
UΩf

∥∥∥∥
L2(∂Ω)

for some constant C1 and C2 (see [V]). Therefore, we have∥∥∥∥∂H∂ν
∥∥∥∥
L2(∂Ω)

≤ C

(
‖g‖L2(∂Ω) + ‖f‖L2(∂Ω) + ‖ ∂f

∂T
‖L2(∂Ω)

)
.

Since
∫
∂Ω
fdσ = 0, it follows from the Poincaré inequality and the Rellich identity

again that

‖f‖L2(∂Ω) ≤ C

∥∥∥∥ ∂f∂T
∥∥∥∥
L2(∂Ω)

≤ C‖g‖L2(∂Ω).

It is easy to show that

‖H‖L2(∂Ω) ≤ C‖g‖L2(∂Ω).

In conclusion, we have

|∇H(X)| ≤ C(δ,Ω, k)‖g‖L2(∂Ω).
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This completes the proof.
As a consequence of Theorem 4.1 and Lemma 4.3, we have the following corollary.
Corollary 4.4. Let D1 and D2 be disks in Ω such that dist(Dj , ∂Ω) > δ, j =

1, 2 for some δ. Then there exist constants C1 and C2 such that if ‖ΛD1
(g) −

ΛD2(g)‖L2(∂Ω) ≤ ε, then

C1(|D2\D1|+ ε) ≤ |D1\D2|+ ε ≤ C2(|D2\D1|+ ε).

Proof. Without loss of generality, assume that k > 1. By Theorem 4.1, Lemma
4.3, and identity (3.1),

|D2 \D1| ≤ C
(‖ΛD1(g)− ΛD2(g)‖L2(∂Ω) + |D1 \D2|

)
.

Since (2.1) is symmetric in D1 and D2, we simply switch the roles of D1 and D2 to
obtain the other inequality. This completes the proof.

5. Stability of disks. In this section we prove logarithmic stability of the disk.
Throughout this section let Ω0 = {X ∈ Ω : dist(X, ∂Ω) ≥ δ0} for some fixed δ0 > 0.

Theorem 5.1. Let D1 and D2 be disks in Ω0. Suppose that

|D1 ∩D2| ≥ µ0 min(|D1|, |D2|)(5.1)

for some µ0 > 0. Let g be a Neumann data with the condition (N). Then there exists
a constant C such that

|D1∆D2| ≤ C
∣∣log ‖ΛD1

(g)− ΛD2
(g)‖L2(∂Ω)

∣∣− (3πµ0)1/3

π .

Let θ0 be the angle between ∂D1 and ∂D2 at the points of the intersection ∂D1∩
∂D2. Then it is easy to see from elementary geometry of circles that if (5.1) holds,
then

θ0 ≥ (3πµ0)
1/3.(5.2)

(In fact, assuming that |D1| ≤ |D2|, we let θ(≤ θ0) be the angle between the tangent
line to ∂D1 at one of the intersection points and the line connecting two intersection
points of ∂D1 and ∂D2. Then one can see θ− sin θ ≥ 1

2µ0π.) Therefore, to each point
X ∈ Ω \ (D1 ∪D2) there exists a cone Γ(X) lying entirely in R

2 \ (D1 ∪D2) with the
corner at X and the aperture θ0. Put α = π/θ0.

Proposition 5.2. Let µ0 and α be as above. Then there exists a constant C
such that if ‖ΛD1(g)− ΛD2(g)‖L2(∂Ω) = ε, then

sup
Ω0

|u1 − u2| ≤ C| log ε|−1/α,(5.3)

sup
Ω0\(D1∪D2)

|∇(ue1 − ue2)| ≤ C| log ε|−1/α,(5.4)

sup
D1∩D2

|∇(ui1 − ui2)| ≤ Cε.(5.5)

In order to prove Proposition 5.2, we need the following Lindelöf-type lemma. A
similar idea has been used in [A].
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Lemma 5.3. Let z0 and θ0 be fixed and let

Γ = z0 +
{
reiθ : 0 < r < 2ρ, θ0 < θ < θ0 +

π

α

}
for some 1 ≤ α and ρ > 0. Suppose that φ is a holomorphic function in Γ satisfying


sup

z∈Γ,|z−z0|≤2ρ

(|φ(z)|+ |φ′(z)|) ≤ L,

|φ(z)| ≤ ε for all z ∈ Γ ∩ {ρ ≤ |z − z0| ≤ 2ρ}.

Then there exists C depending only on L such that if 0 ≤ r < ρ, then

|φ(z0 + reiθ)| ≤ Cε(r/ρ)
α sinαθ| log ε|(−1+(r/ρ)α)/α.(5.6)

In particular,

|φ(z0 + rei
π
2α )| ≤ Cε(r/ρ)

α | log ε|(−1+(r/ρ)α)/α,(5.7)

and

|φ(0)| ≤ C| log ε|−1/α.(5.8)

Proof. Without loss of generality, we may assume that z0 = 0, θ0 = 0, ρ = 1, and
L = 1. Put S = {reiθ : 0 < r < 1, 0 < θ < π

α}. Suppose that w is the harmonic
function in Γ with the boundary condition

w = 1 on S ∩ {|z| = 1} and w = 0 on ∂S \ {|z| = 1}.

It follows from the maximum principle that

rα sin(αθ) ≤ w(reiθ) ≤ rα.

Note that

log |φ(z)| ≤ w(z) log ε+ (1− w(z)) logM for all z ∈ ∂S,

where M = supz∈S |φ(z)| ≤ 1. By the maximum principle,

|φ(z)| ≤ εw(z)M1−w(z), z ∈ S.(5.9)

By the hypothesis, we have

|φ(0)| ≤ |φ(rei
π
2α )|+

∫ r

0

|φ′(sei π2α )|ds ≤ |φ(rei
π
2α )|+ r,

and hence

|φ(0)| ≤ εr
α

+ r for all 0 < r < 1.

By choosing rα = log | log ε|
| log ε| , we get

|φ(0)| ≤ C| log ε|−1/α.
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For any point z ∈ ∂Γ with |z| ≤ 1, we can repeat the above argument with the
subsector Sz ⊂ Γ with the corner at z and congruent to S to obtain

|φ(z)| ≤ C| log ε|−1/α.

Therefore,

M ≤ C| log ε|−1/α.

The desired estimates follow from (5.9) and the proof is complete.
Proof of Proposition 5.2. By the representation formula (2.8), uj = Hj + Sjϕj

(j = 1, 2), where ϕj = 1
λ
∂Hj

∂ν |∂Dj . If we put fj = ΛD1(g), it follows from (2.3) and a
standard argument (see [V]) that

‖H1 −H2‖L2(∂Ω) =

∥∥∥∥SΩ

(
∂

∂ν
UΩ(ΛD1

(g)− ΛD2
(g))

)∥∥∥∥
L2(∂Ω)

+ C|cf1 − cf2 |

≤ C(‖UΩ(ΛD1
(g)− ΛD2

(g))‖L2(∂Ω) + ε)

≤ C(‖ΛD1(g)− ΛD2
(g)‖L2(∂Ω) + ε)

≤ Cε,

where C depends only on the Lipschitz character of ∂Ω. By standard interior esti-
mates, we have

‖H1 −H2‖L∞(Ω0) + ‖∇(H1 −H2)‖L∞(Ω0) ≤ Cε.(5.10)

So, to prove (5.3), it suffices to show that

‖S1ϕ1 − S2ϕ2‖L∞(Ω0) ≤ C| log ε|−1/α.(5.11)

Set W = S1ϕ1 −S2ϕ2. Then W ∈ C(R2) and it is easy to check that W satisfies
the following:

∆W = 0 in R
2 \ (∂D1 ∪ ∂D2),(5.12)

‖W‖L2(∂Ω) ≤ ‖H1 −H2‖L2(∂Ω) + ‖u1 − u2‖L2(∂Ω) ≤ Cε,(5.13)

|W (X)|+ |X||∇W (X)| = O(|X|−1) as |X| → ∞.(5.14)

By the representation formulas (2.8) and (2.9) for the disk, we have

|∇W (X)| = 1

2|λ| |∇(H1 −H2)(X)| ≤ Cε for every X ∈ D1 ∩D2.(5.15)

Equation (5.5) follows from (5.10) and (5.15). We also have from (2.3) that

sup
R2\D1∪D2

(|W |+ |∇W |+ |∇∇W |) ≤ C(‖H1‖L2(Ω) + ‖H2‖L2(Ω)) ≤ C.(5.16)

Since ∫
R2\Ω

|∇W |2 ≤
∫
∂Ω

|W ||∇W | ≤ Cε

by (5.12)–(5.14), we have from the standard interior estimate that

sup
{X∈R2:dist(X,Ω)≥1}

(|W (X)|+ |∇W (X)|) ≤ Cε.(5.17)
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Therefore, (5.11) follows from the maximum principle, (5.12), (5.15), and the following
inequality, still to be proved:

sup
P∈∂(D1∪D2)

|W (P )| ≤ C| log ε|−1/α.(5.18)

To prove (5.18), for each P ∈ ∂(D1 ∪ D2), let Γ(P ) be a cone lying entirely in
R

2 \ D1 ∪ D2 with the corner at P and the aperture greater than θ0 given in (5.2).
Let P1 be a point in Γ(P ) such that the line joining P and P1 bisects Γ(P ) and
dist(P1,Ω) ≥ 1. We claim that

|∇W (tP + (1− t)P1)| ≤ Cεt
α | log ε|(−1+tα)/α, 0 < t < 1.(5.19)

In fact, φ := Wx − iWy is a holomorphic function in the cone Γ(P ), ‖φ‖C1 ≤ C on
the bounded subset of Γ(P ) by (5.16), and, by (5.17),

sup
X∈Γ(P ),dist(X,Ω)≥1

|φ(X)| ≤ Cε.(5.20)

Thus (5.19) follows from (5.7). By (5.17) and (5.19) we have

|W (P )| ≤ |W (P1)|+
∫ 1

0

∣∣∣∣ ∂∂tW (tP + (1− t)P1)

∣∣∣∣ dt
≤ Cε+ |P − P1|

∫ 1

0

|∇W (tP + (1− t)P1)|dt

≤ Cε+ | log ε|−1/α

∫ 1

0

εt
α | log ε|tα/αdt

≤ C| log ε|−1/α.

This proves (5.18).
Equation (5.8) also says that

sup
P∈∂(D1∪D2)

|φ(P )| ≤ C| log ε|−1/α.(5.21)

Thus, (5.4) follows from (5.20), (5.21), and the maximum principle. This completes
the proof.

Proof of Theorem 5.1. Put ‖ΛD1
(g) − ΛD2

(g)‖L2(∂Ω) = ε. Then it follows from
(5.4) and the transmission condition (1.5) that

∂

∂ν
(ui1 − ue2) =

∂ui1
∂ν

− ∂ue1
∂ν

+
∂

∂ν
(ue1 − ue2)(5.22)

= (1− k)
∂ui1
∂ν

+O(| log ε|−1/α) on ∂D1 \D2.

We also have from (5.5) and (1.5) that

∂

∂ν
(ui1 − ue2) =

∂ui1
∂ν

− k
∂ui1
∂ν

+ k
∂

∂ν
(ui1 − ui2)(5.23)

= (1− k)
∂ui1
∂ν

+O(ε) on ∂D2 ∩D1,
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where ν is the outward normal vector on ∂(D1 \D2). By the Green theorem, we have∫
D1\D2

|∇(u1 − u2)|2dx =

∫
∂(D1\D2)

∂

∂ν
(ui1 − ue2)(u1 − u2)dσ.(5.24)

Thus by (5.3), (5.22), and (5.23),∫
D1\D2

|∇(u1 − u2)|2dx = (1− k)

∫
∂(D1\D2)

∂ui1
∂ν

(u1 − u2)dσ +O(| log ε|−2/α).

Integrating by parts and using (5.22) and (5.23) again, we have∫
D1\D2

|∇(u1 − u2)|2dx

= (1− k)

∫
∂(D1\D2)

u1
∂

∂ν
(ui1 − ue2)dσ +O(| log ε|−2/α)

= (1− k)2
∫
∂(D1\D2)

u1
∂ui1
∂ν

dσ +O(| log ε|−1/α)

= (1− k)2
∫
D1\D2

|∇u1|2dx+O(| log ε|−1/α).

By interchanging the role of u1 and u2 and adding up, we have∫
D1\D2

|∇u1|2dx+

∫
D2\D1

|∇u2|2dx(5.25)

=
1

(1− k)2

∫
D14D2

|∇(u1 − u2)|2dx+O(| log ε|−1/α).

On the other hand, (5.3) and (5.24) show that∫
D1∆D2

|∇(u1 − u2)|2dx ≤ C| log ε|−1/α.

Therefore, ∫
D1\D2

|∇u1|2dx+

∫
D2\D1

|∇u2|2dx = O(| log ε|−1/α).

Since |∇u1| and |∇u2| have a lower bound by Theorem 4.1, we have Theorem 5.1.
This completes the proof.

Remark. One of the main ingredients in obtaining the stability result of this paper
is the estimate of the lower bound of the solution of P [D, g] (see Theorem 4.1). It
would be interesting to see if the same result holds in three dimensions.
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Abstract. In this paper, two-dimensional electromagnetic scattering problems with a time-
periodic incident field are considered. In the case of a perfect conductor scatterer with the presence
of an artificial boundary, the existence of a time-periodic solution is proved. For arbitrary initial
conditions, asymptotic behavior of solutions is characterized. The asymptotic solution can be repre-
sented as the time-periodic solution of the periodically forced scattering problem plus a stationary
field. The source of the stationary field is explained, and equations describing it are obtained.

Key words. Maxwell equations, periodic solutions, magnetic offset, electric offset, artificial
boundary

AMS subject classifications. 35B40, 35B10, 35Q60
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1. Introduction. For solving scattering problems with a time-periodic incident
field, the periodic solution is often obtained by introducing an artificial boundary (to
limit the domain of computations), choosing arbitrary initial conditions and time-
marching Maxwell’s curl equations to a periodic state (see [2], [8]). One might expect
that as time increases, the solution approaches the solution of the periodically forced
scattering problem (the existence of which is proved in section 5). Actually, the
difference between these two solutions approaches a steady state, which in general
may be nonzero. For the transverse magnetic problem, the electric field is shown
to converge to the expected periodic solution, while the magnetic field may have a
spurious stationary component; for the transverse electric problem the situation is the
opposite. We present here, with complete proofs, the results in case of the transverse
magnetic problem, including the equations and the boundary conditions describing
the stationary field. The transverse electric problem is briefly discussed in section 10.

Information about the spurious fields is important in practical computations since
the computed fields often will be incorrect. To obtain the correct solution of the
periodically forced scattering problem, some form of postprocessing is often used. In
[6] we discuss some alternatives to postprocessing which enable us to get rid of the
spurious stationary fields and at the same time increase the rate of convergence of the
numerical methods used. The algorithms in [6] rely on the theorems presented here.

A related problem is considered in [1]. There, authors discuss the decay of solu-
tions for a scatterer with homogeneous boundary conditions and a first-order radiation
condition applied at a finite distance from the scatterer. We will solve a similar prob-
lem (see sections 6–9), but our method differs somewhat from that of [1]. For instance,
we treat Lipschitz boundaries. Also, we do not require some physical compatibility
conditions (e.g., the divergence condition) to be satisfied, because they might be dif-
ficult to enforce in actual calculations.
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Classical work on the decay of solutions in the acoustic case (in an exterior do-
main) can be found in [5, Chapter 5].

2. The transverse magnetic problem. Let the scatterer be an infinitely long
cylindrical perfect conductor with the axis parallel to the z-axis. We assume that the
incoming field has an E-component in the z-direction and an H-component on the
xy-plane, both independent of z. Then the scattered field satisfies the same condi-
tions. The corresponding two-dimensional problem is called the transverse magnetic
problem.

Let ΓS be the boundary of the scatterer (on xy-plane), and let Γ be the artificial
boundary. We denote the domain between these boundaries by Ω; n denotes the unit
outer normal to Ω. Let Ei be the incoming electric field. Maxwell’s equations for the
scattered field are 

ε
∂E

∂t
= curl H

µ
∂H

∂t
= −curlE

in Ω,(1)

with the boundary conditions

E = −Ei on ΓS ,

E− cµH× n = 0 on Γ,
(2)

and the initial conditions

E(x, 0) = E0(x), H(x, 0) = H0(x)(3)

(here x = (x, y)). We ignore the divergence conditions, since they are automati-
cally satisfied if the initial conditions are divergence-free. Otherwise, the (nonzero)
divergence is preserved in the evolution by equations (1). Since it causes no difficul-
ties in the analysis, we prefer not to make additional assumptions about the initial
conditions.

We assume that the incident field can be written in the form Ei(x, t) = eiωtẼi(x).
The initial conditions for the physical problem typically are not known, and only the
periodic solution of (1), (2) of the form E(x, t) = eiωtẼ(x), H(x, t) = eiωtH̃(x) is of
interest. To obtain the periodic solution, arbitrary initial conditions are often used,
and the problem is solved on a time interval long enough to make the solution close to
a periodic function. We will show below that the limiting solution, while time periodic,
is generally not of the form E(x, t) = eiωtẼ(x), H(x, t) = eiωtH̃(x) but contains an
additional static magnetic field, which is caused by “incorrect” (not satisfying certain
compatibility conditions) initial conditions.

3. Preliminaries. In this section we will introduce the function spaces and a
Green’s formula needed later. All functions in the following are complex valued.
Define the spaces

H1
0S (Ω) = {v ∈ H1(Ω) | v|ΓS = 0}

equipped with the norm |v|1 = ‖∇v‖L2 (by Poincaré’s inequality it is equivalent to
the usual H1-norm) and

Hcurl(Ω) = {u ∈ L2(Ω)2 | curl u ∈ L2(Ω)}
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with the norm

‖u‖2curl = ‖u‖2L2 + ‖curl u‖2L2 .

We treat the functions with values in C2 as taking values in C3 where the third com-
ponent is zero and the functions with values in C as having the first two components
as zero. If Ω is bounded and the boundary of Ω is Lipschitz continuous, then the unit
outer normal n to its boundary is defined almost everywhere; for u ∈ Hcurl(Ω) the
trace on the boundary of Ω of u × n is well defined and belongs to H−1/2(Γ

⋃
ΓS)2;

for u ∈ L2(Ω)2 with div u ∈  L2(Ω), the trace of u · n is in H−1/2(Γ
⋃

ΓS) (see [3] for
the trace theorems). The following Green’s formula holds:∫

Ω

(u · curl v − curl u · v) = 〈u× n,v〉Γ ∀u ∈ Hcurl(Ω) and ∀v ∈ H1
0S (Ω),(4)

where by the dot product on the left-hand side we mean the scalar product in the
complex vector space and 〈·, ·〉Γ , defined in H−1/2(Γ) ×H1/2(Γ), is the extension of
the L2(Γ)-scalar product in the sense that for w ∈ L2(Γ) we have

〈w, v〉Γ =

∫
Γ

wv ∀v ∈ H1/2(Γ).

In H1/2(Γ) we will use the norm

‖f‖H1/2(Γ) = inf
u∈H1

0S
(Ω), u|Γ=f

|u|1,

and in H−1/2(Γ) we will use the corresponding dual norm.

4. The main result. In the subsequent sections we will prove the following
theorem.

Theorem 4.1. Assume that Ω is a bounded multiply-connected domain with a
Lipschitz-continuous boundary. Let Γ be the exterior part of the boundary and let
ΓS be the interior boundary (which may consist of several pieces). Assume that the
incident field Ei can be written in the form

Ei(x, t) = eiωtẼi(x),

with Ẽi ∈ H2(Ω) and real ω; the initial conditions satisfy E0 ∈ L2(Ω) and H0 ∈ L2(Ω)2.
Then the solutions E, H of (1)–(3) satisfy

‖H(t, ·)− eiωtH̃(·)−H∗(·)‖L2 → 0

‖E(t, ·)− eiωtẼ(·)‖L2 → 0
as t→∞,

where eiωtẼ(x), eiωtH̃(x) are unique solutions of this form of (1), (2) (ignoring the
initial conditions) and H∗ is the unique solution of

curlH∗ = 0, div H∗ = div H0 in Ω,
H∗ × n = 0 on Γ,

H∗ · n = H0 · n− 1

iωµ
curl Ẽi · n on ΓS ,∫

Σj

H∗ · n =

∫
Σj

(
H0 · n− 1

iωµ
curl Ẽi · n

)
, j = 1, . . . , k − 1,

(5)
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where k is the number of connectivity components of ΓS and Σj , j = 1, . . . , k − 1
are smooth lines in Ω joining the different connectivity components of ΓS such that
ΓS ∪

(∪k−1
j=1Σj

)
is connected.

Remark. Under the assumptions of Theorem 4.1, the solution of (1)–(3) satis-
fies (E,H) ∈ C([0,∞);L2(Ω) × L2(Ω)2); it solves the integrated (in t) form of the

equations (1), (2), (3), i.e.,
∫ t
0
E ∈ H1(Ω),

∫ t
0
H ∈ Hcurl(Ω), and

εE = εE0 + curl

∫ t

0

H , µH = µH0 − curl

∫ t

0

E .

Under the additional assumptions on initial conditions E0 ∈ H1(Ω), H0 ∈ Hcurl(Ω)

with E0 = −Ẽi on ΓS , and E0 −H0 × n = 0 on Γ, we have the classical solution of
(1)–(3), (E,H) ∈ C1([0,∞);L2(Ω)× L2(Ω)2)

⋂
C([0,∞);H1(Ω)×Hcurl(Ω)).

Idea of proof. First we show the existence of a periodic solution of (1), (2) in the

form eiωtẼ(x), eiωtH̃(x). Then consider the equations for the differences

Ed(x, t) = E(x, t)− eiωtẼ(x), Hd(x, t) = H(x, t)− eiωtH̃(x).

We can set up the problem in the semigroup framework and, using the fact that the
electromagnetic energy is nonincreasing along the solutions, show that the solutions of
(1)–(3) with the initial conditions (E0 − Ẽ,H0 − H̃) (considered as functions of t) stay
inside a compact subset of L2(Ω)× L2(Ω)2. Then every sequence (Ed(tn),Hd(tn))∞n=1

with tn → ∞ as n → ∞ must have at least one accumulation point. We show that
the set of all those accumulation points (the ω-limit set) consists of only one point
(0,H∗), where H∗ satisfies (5).

5. Existence of a periodic solution. In this section we will prove the following
result.

Theorem 5.1. Assume that Ω and Ei are as in Theorem 4.1. Then Maxwell’s
equations (1) together with the boundary conditions (2) have a unique time-periodic
solution of the form

E(x, t) = eiωtẼ(x), H(x, t) = eiωtH̃(x),(6)

where Ẽ ∈ H1(Ω) and H̃ ∈ Hcurl(Ω) with div H̃ = 0.

Proof. Substituting (6) into (1), (2), eliminating H̃ from the equations, and

dividing everything by eiωt, we get the following equations for Ẽ (note that curl Ẽ×
n = ∂Ẽ/∂n): 

4Ẽ +
ω2

c2
Ẽ = 0 in Ω,

Ẽ = −Ẽi on ΓS ,

iω

c
Ẽ +

∂Ẽ

∂n
= 0 on Γ,

(7)

where c = 1/
√
εµ is the speed of light.

Since the inhomogeneous Dirichlet condition on ΓS is not easy to handle directly,
we transform the problem into a more suitable form. Let ψ be a function in H2(Ω) sat-

isfying ψ = −Ẽi on ΓS and ψ ≡ 0 in a neighborhood of Γ. Put f = −4ψ − (ω2/c2)ψ.
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Then u = Ẽ− ψ satisfies 
4u+

ω2

c2
u = f in Ω,

u = 0 on ΓS ,

iω

c
u+

∂u

∂n
= 0 on Γ.

(8)

To show the existence of the solution for these equations, we will first use the Lax–
Milgram lemma for the equations without the term (ω2/c2)u to define a compact
operator B (the inverse of 4 with the above boundary conditions) and then use the
Fredholm alternative to invert B + λI. Therefore, let us consider the equations

4u = g in Ω,

u = 0 on ΓS ,

iω

c
u+

∂u

∂n
= 0 on Γ,

(9)

with g ∈ L2(Ω). The corresponding weak form asks us to find u ∈ H1
0S (Ω) such that∫

Ω

∇u · ∇v +
iω

c

∫
Γ

u · v = −
∫

Ω

g · v ∀v ∈ H1
0S (Ω).

By the Lax–Milgram lemma (for complex Hilbert spaces) for any g ∈ L2(Ω), there
exists a unique weak solution ug; it satisfies |ug|1 ≤ ‖g‖L2 . Define a linear continuous
operator B : L2(Ω) → L2(Ω) by Bg = ug. Since B maps bounded sets of L2(Ω) into
bounded sets of H1

0S (Ω), B is a compact operator in L2(Ω).

Now the equations (8) are equivalent to u+ (ω2/c2)Bu = Bf . By the Fredholm
alternative, this equation is uniquely solvable for any right-hand side if and only if the
corresponding homogeneous equation u + (ω2/c2)Bu = 0 has only the zero solution.
The weak form for the homogeneous equation asks us to find u ∈ H1

0S (Ω) such that∫
Ω

∇u · ∇v − ω2

c2

∫
Ω

u · v +
iω

c

∫
Γ

u · v = 0 ∀v ∈ H1
0S (Ω).

Substituting v = u in the weak form, we find that
∫
Γ
|u|2 = 0; hence u = 0 on Γ

(recall that the dot product means the scalar product in a complex vector space). So
u is a weak solution of 

4u+
ω2

c2
u = 0 in Ω,

u = 0 on ΓS ,

u = 0,
∂u

∂n
= 0 on Γ.

(10)

The conditions on Γ imply that the extension of u by zero outside Ω and across Γ is
also a solution of 4u+ (ω2/c2)u = 0 in the sense of distributions in a larger domain.
Since the eigenfunctions of the Laplacian are (real) analytic (see [4, p. 92]), it follows
that u must be identically zero.

From above, it follows that (8) is uniquely solvable for any f . Let u be the

solution of (8) with f = 4ψ − (ω2/c2)ψ. Note that u ∈ H1
0S (Ω). Then Ẽ = ψ + u
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is the solution of (7) with Ẽ ∈ H1(Ω) and 4Ẽ ∈ L2(Ω). Put H̃ = −(1/iωµ)curl Ẽ.

Then curl H̃ ∈ L2(Ω) and div H̃ = 0, so H̃ ∈ Hcurl(Ω). It is easy to see that

E(x, t) = eiωtẼ(x), H(x, t) = eiωtH̃(x)

satisfy Maxwell’s equations (1) and the boundary conditions (2). Clearly, the solution
is unique.

6. Semigroup formulation. We will continue the proof of Theorem 4.1. In this
section we will prove that the problem for the difference between the solution of (1),

(2), (3) and the periodic solution eiωtẼ(x), eiωtH̃(x) can be set up in the semigroup
framework. This will give us the existence and uniqueness of the solution as well
as the smoothness mentioned in the remark after Theorem 4.1. In the subsequent
sections we are going to use the standard tools in the semigroup theory for studying
the asymptotic behavior of the solutions.

We are going to work in the state space

X = {(E,H) ∈ L2(Ω)× L2(Ω)2}
equipped with the norm

‖(E,H)‖2X = ε‖E‖2L2 + µ‖H‖2L2 ,

where the corresponding inner product X is a Hilbert space. Define the operator
A : D(A) → X by

D(A) = {(E,H) ∈ H1
0S (Ω)×Hcurl(Ω) | E− cµH× n|Γ = 0},

A(E,H) =

(
1

ε
curlH,− 1

µ
curlE

)
.

We can write the problem for the differences

Ed(t) = E(·, t)− eiωtẼ, Hd(t) = H(·, t)− eiωtH̃

(considered as functions of t with values in X) in the form{
(Ėd, Ḣd) = A(Ed,Hd),

Ed(0) = E0 − Ẽ, Hd(0) = H0 − H̃.
(11)

We want to show that A generates a C0-contraction semigroup. For this we will use
the Lumer–Phillips theorem for Hilbert spaces (see [7]): Let X be a Hilbert space; let
A : D(A) → X be a linear operator satisfying

(i) Re〈Au, u〉X ≤ 0 for all u ∈ D(A),
(ii) I −A is surjective.

Then A generates a linear C0-contraction semigroup.
The first condition (energy estimate) follows from Green’s formula (4):

Re 〈A(E,H), (E,H)〉X = Re

∫
Ω

curlH ·E− curlE ·H
= −Re 〈H× n,E〉Γ
= − 1

cµ

∫
Γ

|E|2 ∀(E,H) ∈ D(A).
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The second condition needs more work. We have to show that for any (f ,g) ∈ X we
can find (E,H) ∈ D(A) such that

E− 1

ε
curlH = f ,

H +
1

µ
curlE = g.

Formally, by eliminating H we get the following equations for E:
E + c2curl curlE = f +

1

ε
curl g in Ω,

E = 0 on ΓS ,

E + c curlE× n = cµg × n on Γ.

The corresponding weak form asks us to find E ∈ H1
0S (Ω) such that∫

Ω

E · v + c2curlE · curl v + c 〈E,v〉Γ =

∫
Ω

f · v +
1

ε
g · curl v ∀v ∈ H1

0S (Ω).(12)

Clearly, the assumptions of the Lax–Milgram lemma are satisfied, so there is a solution
of (12), E ∈ H1

0S (Ω). Put H = g − (1/µ) curlE. Then H ∈ L2(Ω)2 and

E− 1

ε
curlH = E + c2curl curlE− 1

ε
curl g = f ,

hence H ∈ Hcurl(Ω). Checking the outer boundary condition, for any v ∈ H1
0S (Ω)

we have

〈E− cµH× n,v〉Γ =

∫
Γ

E · v + cµ

∫
Ω

curlH · v −H · curl v

=

∫
Γ

E · v + cµ

∫
Ω

ε(E− f) · v

−cµ
∫

Ω

(
g − 1

µ
curlE

)
· curl v = 0

by (12). Consequently, I−A is surjective. From the Lumer–Phillips theorem it follows
that A generates a C0-contraction semigroup {T (t) | t ≥ 0} with ‖T (t)‖ ≤ 1 ∀t ≥ 0.

7. Compactness of the orbits. In this section we show that for (E0,H0) ∈
D(A) the solution of (11) stays inside a compact set of X for all t ≥ 0.

Let (E0,H0) be given. The orbit through (E0,H0) is

γ(E0,H0) = {T (t)(E0,H0) | t ≥ 0}.

Equip D(A) with the graph norm

‖(E,H)‖A = ‖(E,H)‖X + ‖A(E,H)‖X .

Note that the graph norm is equivalent to the norm in H1(Ω) × Hcurl(Ω). In the
following and also in the next section we shall assume that (E0,H0) ∈ D(A). We will
remove this assumption in section 9.
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Since {T (t) | t ≥ 0} is a contraction semigroup and A commutes with T (t) on
D(A), we have for every (E,H) ∈ γ(E0,H0),

‖(E,H)‖A = ‖T (t)(E0,H0)‖X + ‖AT (t)(E0,H0)‖X
≤ ‖(E0,H0)‖X + ‖A(E0,H0)‖X = ‖(E0,H0)‖A.

Consequently, γ(E0,H0) is bounded in H1(Ω)×Hcurl(Ω).
It is enough to show that the projections of γ(E0,H0) onto E- and H-components

have compact closures in L2(Ω) and L2(Ω)2, respectively. Since the E-component
stays bounded in H1(Ω) and H1(Ω) is compactly embedded into L2(Ω), the first
compactness is immediate. To show the compactness of projHγ(E0,H0), we note
that E = 0 on ΓS implies that

curlE · n = 0 on ΓS ,

∫
Σj

curlE · n = 0, j = 1, . . . , k − 1,

and

d

dt
div H(t) = 0 ⇒ div H(t) = div H0.

Hence the normal trace of H−H0 to ΓS and to Σj makes sense, and

(H(t)−H0) · n = − 1

µ

∫ t

0

curlE(τ) · n dτ = 0 on ΓS(13)

and ∫
Σj

(H(t)−H0) · n = 0, j = 1, . . . , k − 1.(14)

Also, on Γ,

(H−H0)× n =
1

cµ
(E−E0) ∈ H1/2(Γ),

so the trace of (H−H0)× n on Γ is bounded in H1/2(Γ). Now let

S = {G ∈ Hcurl(Ω)|‖G‖curl ≤ C, ‖G× n‖H1/2(Γ) ≤ C, div G = 0 in Ω,

G · n = 0 on ΓS ,

∫
Σj

G · n = 0, j = 1, . . . , k − 1}.

Note that H−H0 ∈ S. We want to show that S is compact in L2(Ω)2.
Suppose {Gk}∞k=1 ⊂ S is such that Gk ⇀ G (weakly) in Hcurl(Ω) as k → ∞.

We will show that there is a subsequence {Gkl}∞l=1 such that Gkl → G in L2(Ω)2.
Indeed, since div Gk = 0 and Gk · n = 0 on ΓS , we can choose Φk ∈ H1(Ω) such
that Gk = curl Φk. To fix the arbitrary constant in Φk, we can require that Φk = 0
on ΓS (since curl Φk · n = 0, Φk is constant on each piece of ΓS ; the constants on
different pieces of ΓS must be equal because

∫
Σj

curl Φ · n = 0, j = 1, . . . , k − 1).

The sequence {Φk}∞k=1 is bounded in H1(Ω) (because |Φk|1 = ‖Gk‖L2), so there is
a subsequence {Φkl}∞l=1 converging weakly in H1(Ω); the limit Φ of this sequence
satisfies curl Φ = G. Now we have
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• Φkl → Φ in L2(Ω),
• Φkl |Γ ⇀ Φ|Γ in H1/2(Γ),
• Gkl × n → G× n in H−1/2(Γ) (because H1/2(Γ) ↪→↪→ H−1/2(Γ)).

Hence by Green’s formula (4),∫
Ω

G2
kl

=

∫
Ω

Gkl · curl Φkl

=

∫
Ω

curlGkl · Φkl + 〈Gkl × n,Φkl〉Γ + 〈Gkl × n,Φkl〉ΓS

→
∫

Ω

curlG · Φ + 〈G× n,Φ〉Γ

=

∫
Ω

G · curl Φ =

∫
Ω

G2.

Since Gkl ⇀ G in L2(Ω) and ‖Gkl‖L2(Ω) → ‖G|L2Ω) as l → ∞, we have Gkl → G
in L2(Ω). This implies that the closure of projHγ(E0,H0) is compact in L2(Ω)2.
Consequently, the closure of the orbit γ(E0,H0) is compact in X.

8. The ω-limit set. We will study the ω-limit set of (E0,H0) ∈ D(A) and show
that it consists of only one point (0,H∗), where H∗ satisfies (5).

First let us give the definition of the ω-limit set. Let (E0,H0) ∈ X be given.
The ω-limit set of (E0,H0), denoted by ω(E0,H0), is the set of all χ ∈ X such that
there exists a sequence of positive times {tn}∞n=1 with tn → ∞ as n → ∞ such that
T (tn)(E0,H0) → χ in X.

It is easy to see that if the closure of the orbit through (E0,H0) is compact,
then the ω-limit set ω(E0,H0) is nonempty, compact, connected, and invariant (i.e.,
T (t)ω(E0,H0) ⊂ ω(E0,H0) for all t ≥ 0). Moreover,

dist(T (t)(E0,H0), ω(E0,H0)) → 0 as t→∞.

Define V : X → R by

V (E,H) =
1

2
‖(E,H)‖2X .

(V (E,H) is the electromagnetic energy.) Since the semigroup is contractive, V is a Li-
apunov function (nonincreasing along the solutions). Since every element of ω(E0,H0)
is a limit point of a sequence of the form T (tn)(E0,H0), with tn →∞ as n→∞, V
must be constant on ω(E0,H0). For (E0,H0) ∈ D(A) we can compute

d

dt
V (T (t)(E0,H0))=Re 〈Ṫ (t)(E0,H0), T (t)(E0,H0)〉X

=Re 〈A(E(t),H(t)), (E(t),H(t))〉X = − 1

cµ

∫
Γ

|E(t)|2,

where (E(t),H(t)) = T (t)(E0,H0).

Let (E∗0,H
∗
0) ∈ ω(E0,H0) be given. Then (E∗0,H

∗
0) ∈ D(A) (since (E∗0,H

∗
0) is a

limit inX of a sequence inD(A), bounded in the graph norm; there is inD(A) a weakly
convergent subsequence; by the uniqueness of the limit it must converge to (E∗0,H

∗
0)).

Put (E∗(t),H∗(t)) = T (t)(E∗0,H
∗
0). Since ω(E0,H0) is invariant and V is constant on
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ω(E0,H0), we get that V (E∗(t),H∗(t)) is constant. Hence (d/dt)V (E∗(t),H∗(t)) = 0,
but this implies that E∗(t) = 0 on Γ for all t ≥ 0. So (E∗(t),H∗(t)) are solutions of

Ė∗(t) =
1

ε
curlH∗(t),

Ḣ∗(t) = − 1

µ
curlE∗(t),

E∗(t) = 0 on ΓS ,

E∗(t) = 0, H∗(t)× n = 0 on Γ,

E∗(0) = E∗0, H∗(0) = H∗
0.

(15)

This system is overdetermined (too many boundary conditions on Γ). We will show
that the only E∗ that can satisfy these equations is zero.

Let uk, k = 1, 2, . . . be the orthonormal basis of L2(Ω) consisting of the eigen-
functions of −4 with Dirichlet boundary conditions. Let λk, k = 1, 2, . . . be the
corresponding eigenvalues. Expand E∗(t) in the basis of the eigenfunctions:

E∗(t) =
∞∑
k=1

ck(t) uk.

We will show that ck(t) ≡ 0 for all k = 1, 2, . . .. By taking the inner product of the
first equation of (15) with uk, we get

ċk(t) =
1

ε

∫
Ω

curlH∗(t) · uk =
1

ε

∫
Ω

H∗(t) · curl uk

=
1

ε

∫
Ω

H∗
0 · curl uk − c2

∫
Ω

∫ t

0

curlE∗(τ) · curl uk dτ

=
1

ε

∫
Ω

H∗
0 · curl uk − c2λk

∫ t

0

ck(τ)dτ,

so c̈k(t) = −c2λkck(t) and

ck(t) = ake
ic
√
λkt + a−ke−ic

√
λkt, k = 1, 2, . . . .

Denote γk = c
√
λk, γ−k = −c√λk, and u−k = uk for k = 1, 2, . . . . Then we can write

E∗(t) =
∑
k 6=0

ake
iγktuk.

The series is convergent in H1(Ω); hence the series
∑

k 6=0 λk|ak|2 also converges. Now

H∗(t) = H∗
0 −

1

µ

∫ t

0

curlE∗(τ)dτ

= H∗
0 −

1

µ

∫ t

0

∑
k 6=0

ake
iγkτcurl uk dτ

= H∗
0 −

1

µ

∑
k 6=0

ak
iγk

(eiγkt − 1)curl uk.

Since curl curl uk = −4uk = λkuk and the series
∑

k 6=0 λk|ak|2 is convergent, the
series for H∗(t) converges in Hcurl(Ω), uniformly in t. So we can calculate the
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tangential traces on Γ term by term: for any v ∈ H1/2(Γ) we have

0 = 〈H∗(t)× n,v〉Γ = 〈H∗
0 × n,v〉Γ − 1

µ

∑
k 6=0

ak
iγk

(eiγkt − 1)〈curl uk × n,v〉Γ.

This can be written in the form
∑

k 6=0 bke
iγkt = const, where we have denoted bk =

(ak/γk)〈curl uk × n,v〉Γ. Note that the convergence of the series is uniform in
t. Multiplying the series by e−iγlt and taking the mean value over [0,∞), we get
(without loss of generality we can assume all γk are different)

0 = lim
T→∞

1

T

∫ T

0

∑
k 6=0

bke
iγkte−iγltdt = bl + lim

T→∞
1

T

∑
k 6=0,k 6=l

ei(γk−γl)T − 1

i(γk − γl)
= bl.

Thus for every k either ak = 0 or 〈curl uk × n,v〉Γ = 0 ∀v ∈ H1/2(Γ), but the latter
implies that ∂uk/∂n = 0 in H−1/2(Γ), which contradicts (10) having only the zero
solution. Consequently, ak = 0 for all k 6= 0; i.e., E∗(t) ≡ 0.

For H∗ we get from (15) first that H∗ is independent of t, and it satisfies{
curlH∗ = 0,

H∗ × n = 0 on Γ.
(16)

These equations do not determine H∗ uniquely. To get additional equations for H∗,
we note that along the orbits

div (H(t)−H0) = 0 in Ω,

(H(t)−H0) · n = 0 on ΓS ,∫
Σj

(H(t)−H0) · n = 0, j = 1, . . . , k − 1

(17)

(see (13) and (14)). Since H∗ is the L2-limit of a sequence in the form H(tn) with
tn → ∞ as n → ∞, we get that div H∗ = 0. Using the continuity of the trace
operator for the normal component from {H ∈ L2(Ω)2 |div H = 0} to H−1/2(ΓS) and
to H−1/2(Σj), we see that H∗ must also satisfy conditions (17). Now recall that

H0 = H0 − H̃ = H0 +
1

iωµ
curl Ẽ.

Since

curl Ẽ · n = −curl Ẽi · n on ΓS

and ∫
Σj

curl Ẽ · n = −
∫

Σj

curl Ẽi · n, j = 1, . . . , k − 1,

we have

(H∗ −H0) · n = − 1

iωµ
curl Ẽi · n on ΓS

and ∫
Σj

(H∗ −H0) · n = − 1

iωµ

∫
Σj

curl Ẽi · n,



PERIODIC SCATTERING PROBLEMS IN ELECTROMAGNETICS 1417

which together with (16) gives us (5). Uniqueness of the solution can be shown
using the vector potential: the difference between two solutions is curl Φ for some
Φ ∈ H1

0S (Ω) (note that the conditions on the cuts are needed to find the potential in
H1

0S (Ω)). From the divergence condition we get 4Φ = 0 and on the outer boundary
Γ we have ∂Φ/∂n = 0, hence Φ ≡ 0.

9. General data. In the last two sections we worked under the assumptions
that the initial data for the problem for the differences satisfy (E0,H0) ∈ D(A). We

want to use the results for problem (11) with (E0,H0) = (E0− Ẽ,H0− H̃), but even
for (E0,H0) = (0, 0) (which is often the case in practice), we have (E0,H0) 6∈ D(A)
since the boundary conditions and the initial conditions are inconsistent. So we must
allow (E0,H0) ∈ X.

Let (E0,H0) ∈ X be given. Choose a sequence (E0
k,H

0
k)∞k=1 in D(A) such that

(E0
k,H

0
k) → (E0,H0) in X. Let H∗

k, k = 1, 2, . . . be the corresponding steady state
solutions. Since T (t) is a contraction semigroup, the sequence (H∗

k)∞k=1 is a Cauchy
sequence in X. Since curlH∗

k = 0, (H∗
k)∞k=1 converges in Hcurl(Ω). Let the limit of

the sequence be H∗. Then curlH∗ = 0, div H∗ = 0, and since the corresponding
trace operators are continuous in Hcurl(Ω), H∗ also satisfies the boundary conditions
in (5). Now for any k ∈ N and t ≥ 0 we have

‖(E(t),H(t)−H∗)‖X ≤ ‖T (t)(E0 −E0
k,H

0 −H0
k)‖X

+‖T (t)(E0
k,H

0
k)− (0,H∗

k)‖X + ‖H∗
k −H∗‖L2(Ω).

By choosing k large we can make the first and the last term arbitrarily small, and for
t large the second term is also small. So the results remain true for initial data in X.

This completes the proof of Theorem 4.1.

10. The transverse electric problem. Consider the transverse electric prob-
lem; where the scatterer is, as before, an infinitely long cylindrical perfect conductor
with the axis parallel to the z-axis but where the incidence field has an E-component
in the xy-plane and an H-component on the z-direction. The corresponding scattering
problem is 

ε
∂E

∂t
= curlH

µ
∂H

∂t
= −curl E

in Ω,(18)

with the boundary conditions

E× n = −Ei × n on ΓS ,
E× n + cµH = 0 on Γ,

(19)

and the initial conditions

E(x, 0) = E0(x), H(x, 0) = H0(x).(20)

In this case one can prove the following theorem.
Theorem 10.1. Assume that Ω is a bounded multiply-connected domain with a

Lipschitz-continuous boundary. Let Γ be the exterior part of the boundary, and let ΓS
be the interior boundary. Assume that the incident field Ei can be written in the form

Ei(x, t) = eiωtẼi(x),
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with Ẽi × n ∈ H−1/2(ΓS) and real ω, and the initial conditions satisfy E0 ∈ L2(Ω)2,
H0 ∈ L2(Ω). Then the solutions E, H of (18)–(20) satisfy

‖H(t, ·)− eiωtH̃(·)‖L2 → 0

‖E(t, ·)− eiωtẼ(·)−E∗(·)‖L2 → 0
as t→∞,

where eiωtẼ(x), eiωtH̃(x) are unique solutions of this form of (18), (19) (ignoring
the initial conditions), and E∗ is the unique solution of

curlE∗ = 0, div E∗ = div E0 in Ω,

E∗ × n = 0 on Γ and on ΓS ,∫
ΓSj

E∗ · n =

∫
ΓSj

E0 · n, j = 1, . . . k,
(21)

where ΓSj , j = 1, . . . k are the connectivity components of ΓS.
The idea of proof of the theorem and most of the proof itself are the same (inter-

changing the roles of E and H and using Neumann instead of Dirichlet conditions on
ΓS) as in the case of the transverse magnetic problem, so we will not present it here.

11. Conclusions. We have shown that the solutions of electromagnetic scatter-
ing problems with the incident field of the form Ei(x, t) = eiωtẼi(x) do not always

converge to the time-periodic solution of the form eiωtẼ(x), eiωtH̃(x). Instead, in
case of the transverse magnetic problem there may be a magnetic offset and in case of
the transverse electric problem it is possible to have an electric offset. From the equa-
tions describing the offset fields ((5) and (21), respectively) we see that if we want
the spurious stationary fields to be zero, we have to have additional compatibility
conditions on the data. Namely, we have

div H0 = 0 in Ω,(22)

H0 · n− 1

iωµ
curl Ẽi · n = 0 on ΓS ,(23) ∫

Σj

(
H0 · n− 1

iωµ
curl Ẽi · n

)
= 0, j = 1, . . . , k − 1(24)

for the transverse magnetic problem and

div E0 = 0 in Ω,(25) ∫
ΓSj

E0 · n = 0, j = 1, . . . k(26)

for the transverse electric problem. Condition (23) reflects the requirement that the
normal component of the total magnetic field is zero on ΓS at time t = 0 (we can

interpret − 1
iωµe

iωtcurl Ẽi as the incident magnetic field at time t = 0). If this is
not satisfied, then we have a static magnetic field inside the body, which “causes”
an additional static magnetic field outside. Condition (24) requires the magnetic flux
through surfaces between the scatterers to be zero. Nonzero magnetic flux corresponds
to the possibility of currents flowing parallel to the z-axis in the opposite directions in
different scatterers (note that the artificial boundary condition implies that the sum
of all such currents must be zero in the steady state). Condition (26) means that the
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total charge on the scatterer(s) must be zero at time t = 0. The total charge remains
constant in time, and it is this charge which is responsible for the electric offset field.

In practical calculations, it may not be advantageous to impose the compatibility
conditions, especially (23), on the initial data. Some alternative methods to eliminate
the offset fields are discussed in [6].

For the three-dimensional scattering calculations, similar results are true. Both
the electric and magnetic offset may be present, and for simply connected scatterers
the equations (5) and (21) describing the offset fields are still true, as well as the
compatibility conditions (23) and (26). The main idea of the proof is similar, but one
needs additional results about the compactness properties of the spaces related with
the operators div and curl.
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Abstract. We consider the Cauchy problem

ut − 〈A(x)∇u,∇u〉 1
2 = 0 in R

N × (0,+∞),

u = u0 in R
N × {t = 0},

where A(x) is a positive locally Lipschitz map from R
N to the space of symmetric matrices. Since

no growth condition on A is assumed, pathological phenomena can occur. We study the problem
in the framework of discontinuous viscosity solutions and we get some comparison results and a
representation formula for the minimal solution of the problem.

Key words. Hamilton–Jacobi equations, discontinuous viscosity solution, Riemannian distance,
infinite speed of propagation, canonical solutions
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1. Introduction. In this paper we study a Hamilton–Jacobi equation of the
type

ut +H(x,∇u) = 0 in R
N × (0,+∞)(1.1)

with the initial condition

u = u0 in R
N × {t = 0},(1.2)

where H is a map from R
N × R

N to R and u0 : R
N → R ∪ {+∞} is an upper

semicontinuous function.
Problem (1.1), (1.2) has been extensively studied in the framework of viscosity

solutions theory; see [9], [8], [19]. To get a comparison result for solutions of (1.1), it
is often assumed that on H there is a linear growth condition in x. This hypothesis
yields a bounded domain of dependence of the solution from the initial datum and
therefore the comparison can be carried out into a compact set of R

N × [0,+∞).
Roughly speaking, this is like assuming that the first-order PDE (1.1) has the finite
propagation speed property.

Here we consider a case where no growth condition on H with respect to x is
assumed. More precisely, we take the Hamiltonian as

H(x, p) = −〈A(x)p, p〉 1
2 ,

where A is a locally Lipschitz continuous positive map from R
N to the space of the

symmetric matrices. By means of some examples (see section 8) we show that certain
new phenomena can occur in this case. First of all, a solution can be discontinuous
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even starting from a smooth initial datum. To deal with discontinuous viscosity
solutions we follow the approach of Barron and Jensen, see [4], [3], exploiting the
concavity of H in p, see [17] for an application of this theory to a degenerate problem.
Other phenomena are the blow-up of solutions (see Example 8.1) and the lack of
uniqueness (see Example 8.2 and Proposition 7.1).

We exhibit a representation formula (see section 5) for a canonical solution of
problem (1.1), (1.2). To do this we associate to the map A a distance d in R

N whose
properties are described in section 3. The crucial point is that the space (RN , d)
may not be complete; actually the completeness of this metric is equivalent to the
finite propagation speed property for equation (1.1). All the pathologies described
above depend on the lack of completeness of (RN , d). It is worth noting that the
usual condition of linear growth of H in x implies that (RN , d) is complete, but the
converse is not true as we show in Example 8.3.

One idea essential to the study of the canonical solution is to prove that it is the
limit in a suitable weak sense of a sequence of solutions of some approximate problems
(see sections 4 and 5).

In section 7 we get some comparison principles which give as a consequence a
minimality property of the canonical solution. To prove this we follow the general
outline of the analogous results in [4]; we enlarge the set of the test functions as
already done in [20] (see Propositions 2.1 and 2.4) and we make use of an explicit
locally Lipschitz test function which is constructed in section 6.

Using the comparison principles we are also able to prove that every solution can
be represented locally in R

N × (0,+∞) by a formula similar to that of the canonical
solution. Furthermore we show that problem (1.1), (1.2) is uniquely solvable once a
growth condition at infinity (on the solution) is also prescribed. This is similar to
what happens in the parabolic case.

2. Preliminary results. We now give some notation that we will use in what
follows. For any x = (x1, . . . , xN ), y = (y1, . . . , yN ) ∈ R

N , O ⊂ R
N and r > 0, we set

〈zx, y〉 =

N∑
i=1

xiyi, |x| = 〈x, x〉 1
2 ,

BE(x, r) = {z ∈ R
N : |z − x| < r}, dE(x,O) = inf{|y − x| : y ∈ O}.

Let SN denote the algebra of the N ×N symmetric matrices endowed with the norm
‖B‖ = max|x|=1〈Bx, x〉 and the standard order (i.e., for B,C ∈ SN , B ≤ C if and
only if 〈Bx, x〉 ≤ 〈Cx, x〉 for all x ∈ R

N ). A matrix B is called positive (nonnegative)

if B > 0 (B ≥ 0). If B ≥ 0, then B
1
2 is the nonnegative matrix verifying B

1
2B

1
2 = B.

For any x ∈ R
N , we write x ⊗ x for the symmetric matrix with entries xixj for

i, j = 1, . . . , N . Finally, given α, β ∈ R, α∧β (α∨β) stands for min{α, β} (max{α, β}).
Let us introduce the Cauchy problem we will study:

ut − 〈A(x)∇u,∇u〉 1
2 = 0 in R

N × (0,+∞),(2.1)

u = u0 in R
N × {t = 0},(2.2)

where

A : R
N → SN is locally Lipschitz continuous,(2.3)

A(x) > 0 for all x ∈ R
N ,(2.4)
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and

u0 ∈ X0 =
{
v : R

N → R ∪ {+∞} : v is upper semicontinuous
}
.

From now on we set H(x, p) = −〈A(x)p, p〉 1
2 .

We seek solutions in the functional space

X =
{
u : R

N × [0,+∞) → R ∪ {+∞} : u is upper semicontinuous
}
.

Definition 2.1. Given an upper semicontinuous (u.s.c.) function φ : R
N ×

(0,+∞) → R and (x0, t0) ∈ R
N × (0,+∞), we say that a continuous function ψ is

supertangent to φ at (x0, t0) if (x0, t0) is a point of local maximum of φ− ψ.
Definition 2.2. A function u ∈ X is said to be a (viscosity) solution of (2.1) if

for any (x0, t0) ∈ R
N ×(0,+∞), M ∈ R, and for any function ψ ∈ C1(RN ×(0,+∞))

supertangent to u ∧M at (x0, t0), the following equality holds:

ψt(x0, t0) +H (x0,∇ψ(x0, t0)) = 0.(2.5)

The definition of supersolution (subsolution) is given replacing the equality sign in
(2.5) by ≥ (resp., ≤). As for the initial condition (2.2), it is understood that it has
to be taken in the following sense:

u0(x) = sup

{
lim sup
ε→0

u(xε, tε) : (xε, tε) → (x, 0), tε > 0

}
.(2.6)

Exploiting the positive homogeneity of H(x, p) in p, we get the following charac-
terization.

Proposition 2.1.
(i) A function u is a solution of (2.1) if and only if for any (x0, t0), α ≤ u(x0, t0)

and for any C1 function ψ which has a local minimum on the set {(x, t) : u(x, t) ≥ α}
at (x0, t0), equality (2.5) holds.

(ii) A similar equivalence is true for supersolutions and subsolutions.
Proof. To show that the condition given in the statement implies that u is

a solution of (2.1), it is sufficient to note that if M ∈ R and ψ is a C1 super-
tangent to u ∧ M at (x0, t0), then (x0, t0) is a point of local minimum of ψ on
{u ∧M ≥ u(x0, t0) ∧M} = {u ≥ u(x0, t0) ∧M}.

To prove the converse, we use the fact that, due to the positive homogeneity of H
in p, (2.1) belongs to the class of geometric equations (see [5], [13], [14]). Then a basic
property of such equations permits us to assert that if u is a solution of (2.1), (2.5)
holds for any supertangent to θ ◦ (u ∧M), M ∈ R and θ a continuous nondecreasing
function.

Now let ψ be a C1 function which attains a local minimum on {u ≥ α} at (x0, t0)
for a given α ∈ R. Then this point is also a local minimum on {u ∧M ≥ α} for
any M ≥ α. We refer to Lemma 3.1 of [20] to construct a continuous nondecreasing
function θ such that θ ◦ (u ∧M) permits ψ to be a supertangent at (x0, t0). This
ends the proof of part (i). Minor modifications of the above argument also give the
assertion (ii).

The next step is to enlarge the set of test functions for equation (2.1) in such a
way as to include the locally Lipschitz ones. We use an approximation argument by
means of inf convolution.

Let us recall some properties of the (Clarke) generalized gradient that we will use
later (see [6] for a general treatment).
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Proposition 2.2. Let φ : R
N × [0,+∞) → R be a locally Lipschitz continuous

function and denote by ∂φ(z, t) its generalized gradient. Then we have the following:
(i) The multifunction (z, t) → ∂φ(z, t) is u.s.c.; i.e., for any (z0, t0), (zn, tn) →

(z0, t0), (qn, sn) ∈ ∂φ(zn, tn) with (qn, sn) converging to (q, s), one has (q, s) ∈
∂φ(z0, t0).

(ii) If φ attains a local extremum at (z0, t0), then (0, 0) ∈ ∂φ(z0, t0).
(iii) If φ is semiconcave, then

∂φ(z, t) =
{
(q, s) : there exists φ C1-supertangent

to φ at (z, t) with (∇φ(z, t), φt(z, t)) = (q, s)
}
.

(iv)

∂φ(z, t) = co
{

lim
n→∞(∇φ(zn, tn), φt(zn, tn)) :

φ is differentiable at (zn, tn) and (zn, tn) → (z, t)
}
,

where co means convex hull.
The following proposition summarizes some properties of the inf convolution. We

refer to [12], [18] for definitions and basic properties.
Proposition 2.3. Let φ : R

N × [0,+∞) → R be continuous. For λ > 0 define

φλ(z, t) = inf
y,s

{
φ(y, s) +

λ

2
(|y − z|2 + |t− s|2)

}
.(2.7)

Then
(i) φλ is semiconcave.
(ii) if (y, s) realizes the infimum in (2.7), then λ(y − z, s− t) ∈ ∂φλ(z, t).
Proposition 2.4. Let (x0, t0) ∈ R

N × (0,+∞), α ∈ R, and ψ be a locally
Lipschitz function which attains a local minimum on {u ≥ α} at (x0, t0). Then, if u
is a solution of (2.1), there exists (p, s) ∈ ∂ψ(x0, t0) such that

s+H(x0, p) = 0.(2.8)

If instead u is a supersolution (subsolution), then

s+H(x0, p) ≥ 0 (≤ 0).(2.9)

Proof. Suppose first that u is a solution. Regularize ψ using inf convolution by
defining the sequence

ψn(x, t) = inf
y,s

{
ψ(y, s) +

n

2
(|x− y|2 + |t− s|2)

}
(2.10)

which converges to ψ uniformly on compact subsets of R
N × (0,+∞). Note that the

addition to ψ of −β(|x−x0|2+|t−t0|2), β > 0, does not affect the generalized gradient
at (x0, t0). Therefore we can suppose without loss of generality that the minimum
(x0, t0) is strict. Hence straightforward arguments provide a sequence (xn, tn) of local
minima of ψn on the closed set {u ≥ α} converging, up to a subsequence, to (x0, t0).

Now denote by (yn, rn) a point satisfying

ψn(xn, tn) = ψ(yn, rn) +
n

2
(|xn − yn|2 + |tn − rn|2)
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and set

pn = n(yn − xn), sn = n(rn − tn).(2.11)

Observe that

(pn, sn) ∈ ∂ψn(xn, tn) ∩ ∂ψ(yn, rn)(2.12)

according to Proposition 2.2(ii) and Proposition 2.3(ii). Exploiting Proposition 2.3(i),
Proposition 2.2(iii), and Proposition 2.1, from (2.12) we get

sn +H(xn, pn) = 0.(2.13)

Moreover, (yn, rn) is convergent to (x0, t0) and the sequence (pn, sn) is bounded by
(2.12) and so is convergent up to a subsequence. Denoting the limit by (p, s), we
obtain, by Proposition 2.2(i),

(p, s) ∈ ∂ψ(x0, t0)

and so (2.8) follows letting n → +∞ in (2.13). Suitable modifications of the above
argument also give (2.9).

We conclude this section with two remarks.
Remark 2.1. Note that since H is nonpositive and because of (2.6), any solution

u is nondecreasing for t ∈ [0,+∞).
Remark 2.2. If u is a subsolution of (2.1) and ψ is a test function as in Proposition

2.4 (which attains a local minimum at (x0, t0) on the intersection {u ≥ α} ∩ (RN ×
(0, t0]), α ∈ R), then (2.9) still holds; see [5]. In this case even if u is a solution, one
cannot expect equality (2.8) but only (2.9).

3. Properties of the distance function. Here, starting from any given con-
tinuous map from R

N to SN with nonnegative values, we define a distance on R
N .

This construction will allow us to give a representation of a canonical solution of (2.1),
(2.2) as well as of some approximated problems we will introduce in the next section.

Definition 3.1. Given a continuous map C : R
N → SN with C(x) ≥ 0, a

continuous piecewise C1 curve ξ : [0, T ] → R
N is said to be C-admissible if

ξ̇(t)⊗ ξ̇(t) ≤ C(ξ(t)) a.e. in [0, T ].(3.1)

We set for x, y ∈ R
N ,

dC(x, y) = inf{T : there exists a ξ C-admissible
(3.2)

with ξ(0) = x, ξ(T ) = y}
with the convention that dC(x, y) = +∞ if there are no C-admissible paths joining
x to y. It is an exercise to verify that dC is a distance on R

N , possibly infinite.
Moreover, dC turns R

N into a length space in the sense of [15].
We consider the distance dA associated to the map A(x) which appears in (2.1).

Thanks to (2.4), d∆ is a finite distance. We will hereafter write d instead of dA and
set B(x, r) = {y ∈ R

N : d(x, y) < r} for any r > 0, x ∈ R
N .

Proposition 3.1.
(i) d is topologically equivalent to the Euclidean distance.
(ii) For any x ∈ R

N , the set {r > 0 : B(x, r) is relatively compact} is a non-
empty, open interval.
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(iii) The metric space (RN , d) is complete if and only if for every x ∈ R
N , r > 0,

the ball B(x, r) is relatively compact.
Note that, because of (i), the expression relatively compact in (ii) and (iii) is not

ambiguous.
Proof. We first show that for every x0, r, the Euclidean ball BE(x0, r) is open

in the topology induced by d. More precisely we set for every x ∈ BE(x0, r), Tx =
dE(x, ∂BE(x0, r)), where ∂ denotes the boundary in the Euclidean topology and we
claim that

B

(
x,
Tx
M

)
⊂ BE(x0, r)(3.3)

for any M satisfying

A(x) ≤M2I, x ∈ BE(x0, r).(3.4)

If (3.3) is not true, we can find x ∈ BE(x0, r), T > 0, and an A-admissible path ξ
joining x = ξ(0) to a point ξ(T ) ∈ ∂BE(x0, r) such that

T <
Tx
M

(3.5)

and

ξ([0, T )) ⊂ BE(x0, r).(3.6)

The last formula, together with (3.4), gives

|ξ̇(t)| ≤M a.e. in [0,T].

Then we get

Tx ≤ |x− ξ(T )| ≤
∫ T

0

|ξ̇(t)|dt ≤MT,

which contradicts (3.5).
We conclude the proof of (i) by proving that, for any x0, r, B(x0, r) is open in the

Euclidean topology. According to the positivity of A (see (2.4)) for any x ∈ B(x0, r)
and δ > 0, we can choose a positive number mδ = mδ(x) such that

A(y) ≥ m2
δI, y ∈ BE(x, δ).(3.7)

If y ∈ BE(x, δ), then the path ξ defined via

ξ(t) = x+mδ
y − x

|y − x| t, t ∈ [0, |y − x|/mδ],

is A-admissible thanks to the relation

ξ̇(t)⊗ ξ̇(t) = m2
δ

(
y − x

|y − x| ⊗
y − x

|y − x|
)
≤ m2

δI ≤ A(ξ(t))

which holds by (3.7). Hence

BE(x, δ) ⊂ B

(
x,

δ

mδ

)
.(3.8)
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Since mδ is nondecreasing with respect to δ, we can select δ so that

δ

mδ

< r − d(x, x0).(3.9)

Finally we use (3.8), (3.9) to find

BE(x, δ) ⊂ B(x, r − d(x, x0)) ⊂ B(x0, r),

which ends the proof of (i).
Now fix x ∈ R

N and denote by Ix the set that appears in (ii). Exploiting (i)
and the local compactness of the Euclidean topology, we see that Ix is nonempty.
Moreover Ix is obviously an interval. Hence we will prove (ii), once we show that for
any given δ ∈ Ix, there exists δ′ > δ belonging to Ix. To do this, choose r > 0 such
that

B(x, δ) ⊂ BE
(
x,
r

2

)
.(3.10)

Set K = ∂BE(x, r) and define

f(y) = d(y,K) = inf
K
d(y, z)

for any y ∈ R
N . The function f is continuous by (i), so taking into account that

δ ∈ Ix and (3.10), we have that

σ = inf
B(x,δ)

{f}

is positive. Therefore B(x, δ + σ) ⊂ BE(x, r), so δ + σ ∈ Ix, which proves (ii).
It is easy to see that the relative compactness of the balls implies the completeness

of d. The converse follows from a general theorem for locally compact length space
(see [15, Chapter 1]).

For any x ∈ R
N , let us denote by d(x,∞) the supremum of the set {r > 0 :

B(x, r) is relatively compact}. This notation is justified by the fact that whenever
d(x,∞) is finite, it is the smallest radius for which the ball (for the distance d) centered
in x becomes unbounded with respect to the Euclidean distance. The completeness of
(RN , d) is clearly equivalent to d(x,∞) being infinite for every x. On the other hand,
(RN , d) is not complete if and only if d(x,∞) < +∞ for every x.

Lemma 3.1. Assume that (RN , d) is not complete and let x0 be any point of R
N .

Every sequence contained in B(x0, d(x0,∞)) has a subsequence which is fundamental
with respect to d.

Proof. The argument of Theorem 1.10 in [15] easily can be adapted to verify our
Lemma 3.1.

Lemma 3.2. Let x0, y0 ∈ R
N and r > 0 such that B(x0, r) is compact and

y0 6∈ B(x0, r). Then there exist z0, z ∈ ∂B(x0, r) such that

d(y0, z0) = d(x0, y0)− r,(3.11)

d(z,∞) = d(x,∞)− r.(3.12)
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Proof. To show (3.11) we consider, for every n ∈ N, an A-admissible curve ξn
verifying ξn(0) = x0, ξn(d(x0, y0) + 1

n ) = y0 and denote by zn a point belonging to
the intersection of this curve with ∂B(x0, r). We have

d(x0, y0)− r ≤ d(zn, y0) ≤ d(x0, y0) +
1

n
− r.(3.13)

From (3.13) we see that every z0, limit point of zn, satisfies (3.11).
We turn to the proof of (3.12). If (RN , d) is complete, then (3.12) is obvious for

any z. If (RN , d) is not complete, consider a sequence yn contained in B(x0, d(x0,∞))
such that |yn| → +∞. By Lemma 3.1, yn is fundamental for d up to a subsequence.
We denote by zn, for any n, an element of ∂B(x0, r) satisfying

d(zn, yn) = d(x0, yn)− r < d(x0,∞)− r.(3.14)

Such a point exists by virtue of (3.11). We can assume without loss of generality that
zn converges to a limit z. Taking into account the properties of yn and (3.14), we
have

d(zn, ym) ≤ d(zn, yn) + d(yn, ym)
(3.15)

< d(x0,∞)− r + ε

for any given ε > 0 and n, m sufficiently large. Letting n → +∞ in (3.15), we find
that the inequality

d(z, ym) < d(x0,∞)− r + ε(3.16)

holds for m sufficiently large. Since |ym| → +∞, (3.16) implies that B(z, d(x0,∞)−
r + ε) is noncompact, so d(z,∞) ≤ d(x,∞)− r + ε, which gives the assertion since ε
is arbitrary.

Let us stress that our assumptions on A do not exclude the possibility that (RN , d)
is not complete. We shall prove later that this fact is the cause of the pathologies in
the analysis of problem (2.1). To emphasize this, we now show that as a consequence
of Proposition 3.1 the growth conditions in x usually assumed on the Hamiltonian
(see, for example, [2]) lead to the completeness of (RN , d).

Corollary 3.1. Assume that there exist positive constants α, β such that

|H(x, p)| ≤ (α|x|+ β)|p| for every x, p.(3.17)

Then (RN , d) is complete.
Proof. Condition (3.17) implies that

‖A 1
2 (x)‖ ≤ α|x|+ β, x ∈ R

N .

So, if ξ is an A-admissible path, we find

|ξ̇(t)| ≤ α|ξ(t)|+ β for a.e. t.(3.18)

Given x0 ∈ R
N , r > 0, by Gronwall’s inequality, (3.17), and (3.2), we obtain

|x| ≤ (|x0|+ βr)eαr

for every x ∈ B(x0, r). This shows that B(x0, r) is relatively compact, so the assertion
follows according to Proposition 3.1(iii).

The converse of the previous corollary is not true as we will show in Example 8.3.
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4. Approximation by complete metrics. In this section we approximate A
by a sequence of maps An : R

N → SN with compact support. Moreover, we study
the distances dn associated to An and define functions wn which we will prove in the
next section to be convergent in a suitable sense to a solution of (2.1), (2.2).

To simplify notation, from now on On will stand for BE(0, 2n) for every n ∈ N.
Proposition 4.1. There exists a sequence of maps An from R

N to SN verifying

An(x) > 0 for x ∈ On, An = 0 for x ∈ R
N \ On,(4.1)

An ≤ A,(4.2)

An, A
1
2
n ∈ C∞(RN ,SN ),(4.3)

An converges to A uniformly on compact subsets of R
N .(4.4)

Proof. Regularize the elements of A(x) via mollification to obtain a sequence
Cn(x), with Cn : R

N → SN smooth, which converges to A uniformly on compact
subsets of R

N . Set

Mn = max
On

‖A(x)‖,

mn = min
On

‖A(x)‖,

and denote by εn a positive sequence verifying

εn <
1

n

(
mn

Mn

)
∧mn,(4.5)

where Mn/mn is well defined because mn is strictly positive by (2.4). From the
convergence of Cn, it follows that we can find a subsequence, still denoted by Cn,
which verifies

A(x)− εnI ≤ Cn(x) ≤ A(x) + εnI, x ∈ On.(4.6)

Consequently we have

Cn(x) > 0, x ∈ On,(4.7)

‖Cn(x)‖ ≤ 2Mn, x ∈ On.(4.8)

Setting γn = mn/(mn + εn) and using (4.5), (4.6), and (4.8), we get for any x ∈ On

the following inequalities:

γnCn(x) ≤ γnA(x) + εnγnI ≤ mn

mn + εn
A(x) +

εn
mn + εn

A(x) = A(x)(4.9)

and

‖γnCn(x)−A(x)‖ ≤ |γn − 1|‖Cn(x)‖+ ‖A(x)− Cn(x)‖
(4.10)

≤ 2
εn

mn + εn
Mn + εn ≤ 1

n

mn

Mn

1

mn
2Mn + εn ≤ 3

n
.

Now we consider a C∞ cut-off function λ defined in [0,+∞) with the following prop-
erties:

λ(t) = 1, t ∈ [0, 1] ; 0 < λ(t) < 1, t ∈ [1, 4] ; λ(t) = 0, t ∈ [4,∞).
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Further, we set, for any t ∈ R
+, x ∈ R

N , µn(t) = λ2( t
n2 ), andAn(x) = µn(|x|2)γnCn(x).

By (4.7) and (4.9), An satisfies (4.1) and (4.2).

To obtain (4.3), note that since Cn is strictly positive, C
1
2
n is smooth and the same

is true for A
1
2
n (x) = λ( |x|

2

n2 )
√
γnC

1
2
n (x).

To prove (4.4), observe that, since any compact subset K ⊂ R
N is contained in

BE(0, n) for n sufficiently large, from (4.10) it follows for such n that

max
K

‖An(x)−A(x)‖ ≤ max
On

‖γnCn(x)−A(x)‖ ≤ 3

n

which ends the proof.
In connection with the maps An, we can define distances dn as in the previous

section, namely, via (3.1) and (3.2) with C replaced by An. We set for any x ∈ R
N

and r > 0, Bn(x, r) = {y : dn(x, y) < r}.
Proposition 4.2.
(i) For any x0 ∈ R

N \ On, r > 0,

Bn(x0, r) = {x0}(4.11)

or, equivalently, dn(x0, y) = +∞ if y 6= x0.
(ii) dn is the distance induced on On by the Riemannian metric gn defined via

gn(x) = A−1
n (x), x ∈ On.(4.12)

Proof. If x0 ∈ R
N \ On, assertion (i) is clear. Consider x0 ∈ ∂On and suppose

that there exists y0 ∈ On, T > 0, and an An-admissible path such that ξ(0) = x0,
ξ(T ) = y0. We have

|ξ̇(t)|4 ≤ 〈An(ξ(t))ξ̇(t), ξ̇(t)〉
for a.e. t ∈ [0, T ], so

|ξ̇(t)| ≤ ‖A 1
2
n (ξ(t))‖ for a.e. t.(4.13)

Since A
1
2
n is smooth, we can select L > 0 verifying

‖A 1
2
n (x)−A

1
2
n (y)‖ ≤ L|x− y| for any x, y ∈ On.(4.14)

So using (4.13) and (4.14), we get

|y − x0| = |ξ(T )− ξ(0)| ≤ L

∫ T

0

|ξ(t)− x0|dt,

which implies y0 = x0 by Gronwall’s inequality, concluding the proof of (i).
To establish (ii), fix n and, for any x ∈ On, b ∈ TOn(x) = R

N , set

‖b‖x = 〈gn(x)b, b〉.(4.15)

The previous formula gives the norm induced by the Riemannian metric (4.12) on
TOn(x). We claim that

‖b‖x ≤ 1 if and only if b⊗ b ≤ An(x).(4.16)
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Assume ‖b‖x ≤ 1. By the Hölder inequality,

〈An(x)a, b〉2 ≤ 〈An(x)a, a〉〈An(x)b, b〉 for a ∈ R
N .

We deduce

〈(b⊗ b−An(x))a, a〉 = 〈b, a〉2 − 〈An(x)a, a〉
≤ ‖b‖x〈An(x)a, a〉 − 〈An(x)a, a〉 ≤ 0.

Conversely, let b⊗ b ≤ An(x). Then

0 ≥ 〈(b⊗ b−An(x))a, a〉 = ‖b‖2x − ‖b‖x,

which completes the proof of the claim. Now let us name gn-admissible any continuous
piecewise C1 curve contained in On which satisfies

‖ξ̇(t)‖ξ(t) ≤ 1 for a.e. t

and recall that the Riemannian distance between x, y ∈ On is given by

dgn(x, y) = inf{T : there exists ξ
(4.17)

gn-admissible with ξ(0) = x, ξ(T ) = y}.

We observe that an An-admissible curve which joins two points of On is contained in
On thanks to (i). Hence (4.16) permits us to assert that any curve joining points in
On is An-admissible if and only if it is gn-admissible. This together with (3.2) and
(4.17) ends the proof.

Remark 4.1. It is easily seen that the distances dn are not topologically equivalent
to the Euclidean distance. Nevertheless, by Proposition 4.2(ii) this equivalence holds
restricted to On. Hence, for any x0 ∈ On, the function x → d(x, x0) is continuous
in On (with respect to the Euclidean topology). We can also immediately verify that
R
N , with the metric given by dn, is complete and that for any x, r, the balls Bn(x, r)

are relatively compact (in the Euclidean topology).
From now on we will consider only the Euclidean topology on R

N . We set, for
any (x, t) ∈ R

N × [0,+∞),

wn(x, t) = sup
Bn(x,t)

{u0} = max
Bn(x,t)

{u0}.(4.18)

Proposition 4.3.
(i) For any x ∈ R

N , wn(x, 0) = u0(x).
(ii) wn ∈ X.
Proof. Part (i) of the assertion follows directly from (4.18). To prove (ii), fix n

and observe that, by Proposition 4.2(i) and (4.18), it follows that wn(x, t) = u0(x)
for any (x, t) ∈ (RN \On)× [0,+∞). Thus wn is u.s.c. in this set because u0 is u.s.c.
Now let (x, t) ∈ On × [0,+∞) and (xk, tk) be any sequence converging to this point.
Then for every k, we can select yk satisfying

yk ∈ Bn(xk, tk), u0(yk) = wn(xk, tk).

We claim that if x ∈ ∂On, then yk converges to x. In view of Proposition 4.2(i),
we can suppose {yk}, {xk} ⊂ On. Let σ > 0 and k be so large that tk < t + σ.
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Consider an An-admissible path ξk and sk ≤ t+ σ such that ξk(0) = xk, ξk(sk) = yk.
Employing (4.13), (4.14) we get for any t ∈ [0, sk],

|ξ̇k(t)| ≤ ‖A 1
2
n (ξk(t))‖ ≤ L‖ξk(t)− xk‖+ ‖A 1

2
n (xk)‖.

Hence

|yk − xk| ≤ L

∫ sk

0

|ξk(t)− xk|dt+ L(t0 + σ)‖A 1
2
n (xk)‖,

and by Gronwall’s inequality we obtain

|yk − xk| ≤ L(t0 + σ)‖A 1
2
n (xk)‖ exp(L(t0 + σ)).

So taking into account that xk and ‖A 1
2
n (xk)‖ converge to x and 0, respectively, the

claim follows. Therefore wn is u.s.c. for (x, t) ∈ ∂On × [0,+∞).
Finally, let x ∈ On. If n is sufficiently large, we have that yk ∈ On and

dn(yk, x0) ≤ tk + dn(yk, x) ≤ t+ σ(4.19)

for any σ > 0. We can assume without loss of generality that yk converge to a point
y0 ∈ On so that using (4.19) and the continuity of y → dn(y, x), we find

dn(x, y0) = lim
k
dn(x, yk) ≤ t.

Hence wn(x, t) ≥ u0(y0) ≥ lim supk u0(yk) = lim supk wn(xk, tk), which also gives the
assertion in this case.

5. Truncated problems. We set, for any n, (x, p) ∈ R
N × R

N ,

Hn(x, p) = −〈An(x)p, p〉 1
2(5.1)

and we consider the equation

ut(x, t) +Hn(x,∇u(x, t)) = 0.(5.2)

Our aim is to show that the function wn defined in (4.18) is a solution of (5.2), (2.2)
in the sense of Definition 2.2.

We start by recalling some elementary facts from Riemannian geometry that we
will apply to the Riemannian manifolds (On, gn). In the next proposition (M, g) is a
Riemannian manifold, dg is the distance associated to g, and Bg(x, r) = {y : dg(x, y) <
r} for x ∈ M, r > 0. By a minimizing geodesic we mean a curve ξ : [0, T ] → M
satisfying dg(ξ(t), ξ(s)) = |t − s| for every t, s ∈ [0, T ]. For such a geodesic, the

Riemannian norm of ξ̇(t) equals 1 for any t.
Proposition 5.1. Let x0 ∈ M. There exists δ0 = δ(x0) > 0 such that if

δ ∈ (0, δ0), then
(i) any two points of Bg(x0, 3δ) can be joined by a unique minimizing geodesic.
(ii) d2

g is differentiable in Bg(x0, 3δ)×Bg(x0, 3δ).

(iii) for any y0 ∈ Bg(x0, δ) and z0 ∈ Bg(y0, δ), z0 6= y0, denoting by ξ the mini-

mizing geodesic joining y0 to z0 with ξ(0) = y0, ξ(T ) = z0, we have that ξ̇(T ) is equal
to the Riemannian gradient at z0 of the function z → dg(y0, z).
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Proof. See [16, vol. 1], and [7] for verification of this proposition.
Part (iii) of the previous proposition is a version of the classical Gauss lemma.

Recall that, as proved in Proposition 4.2(ii), one has dn = dgn in On.
Corollary 5.1. Let x ∈ On, δ0 > 0 be as in Proposition 5.1 with (M, g) =

(On, gn), y0 ∈ Bn(x0, δ) with 0 < δ < δ0. If f : On → R is a differentiable function
which attains a local minimum on Bn(y0, δ) at a point z0 6= y0, then

∇f(z0)ξ̇(T ) = Hn(z0,∇f(z0)),(5.3)

where ξ is the minimal geodesic joining y0 to z0 with ξ(0) = y0, ξ(T ) = z0.
Proof. For any y ∈ On, denote by 〈·, ·〉y and ‖ · ‖y, respectively, the inner product

and the norm induced by gn on TOn(y). We claim that

ξ̇(T ) = An(z0)∇2dn(y0, z0),(5.4)

where ∇2dn(y0, z0) is the Euclidean gradient of the function z → dn(y0, z) at z0 and
this function is differentiable by virtue of Proposition 5.1(ii). To prove the claim we
observe that

〈An(z0)∇2dn(y0, z0), b〉z = 〈∇2dn(y0, z0), b〉
for any b ∈ R

N . This equality is equivalent to An(z0)∇2dn(y0, z0) being the Rie-
mannian gradient of z → dn(y0, z) at z0. Hence we conclude by using Proposition
5.1(iii).

Since z0 is a local minimum of f on Bn(y0, δ) we know that

∇f(z0) = λ∇2dn(y0, z0) for some λ ≤ 0.

Therefore, noting that by (5.4)

1 = ‖ξ̇(T )‖2z0 = 〈An(z0)∇2dn(y0, z0),∇2dn(y0, z0)〉,
we find

〈∇f(z0), ξ̇(T )〉 = λ〈An(z0)∇2dn(y0, z0),∇2dn(y0, z0)〉 1
2

= −〈An(z0)λ∇2dn(y0, z0), λ∇2dn(y0, z0)〉 1
2 = Hn (z0,∇f(z0)) .

Lemma 5.1. wn is a solution of equation (5.2).
Proof. Since wn(x0, t0) ∧M = max

Bn(x0,t0)
{u0 ∧M} for any (x0, t0) ∈ R

N ×
(0,+∞), M ∈ R, we need to consider only the case where wn is finite and show that
for any ψ, C1 supertangent to wn at (x0, t0), we have

ψt(x0, t0) +Hn(x0,∇ψ(x0, t0)) = 0.(5.5)

If x0 ∈ R
N \ On, then Hn(x0,∇ψ(x0, t0)) = 0 and the function t → wn(x0, t) is

identically equal to u0(x0), which gives ψt(x0, t0) = 0 and, consequently, (5.5).
Now we claim that for any (x, t) ∈ On × (0,+∞), σ ∈ (0, t),

wn(x, t) = max
Bn(x,σ)

{wn(·, t− σ)} .(5.6)

In fact since Bn(y, t− σ) ⊂ Bn(x, t) for every y ∈ Bn(x, σ), we see that

wn(x, t) ≥ max
Bn(x,σ)

{wn(·, t− σ)} .(5.7)
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Moreover we can find z0, z1 verifying u0(z1) = wn(x, t), d(z0, x) ≤ σ, d(z0, z1) ≤ t−σ
from which we deduce

wn(x, t) = wn(z0, t− σ);(5.8)

this equality together with (5.7) yields (5.6).
Fix (x0, t0) ∈ On × (0,+∞), δ ∈ (0, t0 ∧ δ0), where δ0 is as in Proposition 5.1

applied to (On, gn) and select, using (5.6), y0 ∈ Bn(x, δ) such that

wn(x0, t0) = wn(y0, t0 − δ).(5.9)

We can always assume that the C1 supertangent ψ verifies ψ(x0, t0) = wn(x0, t0) and
ψ(x, t) ≥ wn(x, t) in Bn(x0, 3δ)× (t0 − δ, t0 + δ). We have, for any x ∈ Bn(y0, δ),

ψ(x, t0) ≥ wn(x, t0) = max
Bn(x,δ)

{wn(·, t0 − δ)}

≥ wn(y0, t0 − δ) = wn(x0, t0) = ψ(x0, t0)

so that

ψ(x0, t0) = min
Bn(y0,δ)

{ψ(·, t0)}.(5.10)

If x0 = y0, then by (5.10)

∇ψ(x0, t0) = 0.(5.11)

Moreover because the function t→ wn(x0, t) is nondecreasing by (4.18) and constant
in [t0 − δ, t0] by (5.9), we get

ψt(x0, t0) = 0.(5.12)

This equality and (5.11) give (5.5).
If x0 6= y0, let dn(x0, y0) = ρ ≤ δ and denote by ξ the minimizing geodesic joining

y0 to x0 with ξ(0) = y0 and ξ(ρ) = x0. The path ξ can be extended to an interval
[0, ρ′), ρ′ > ρ, with the property

dn(ξ(t), y0) = t, t ∈ [0, ρ′).(5.13)

Set f(t) = ψ(ξ(t), t + t0 − ρ) and employ (5.6), (5.13), and (5.9) to find for t close
to ρ,

f(t) ≥ wn(ξ(t), t+ t0 − δ) = max
Bn(ξ(t),t)

{wn(·, t0 − δ)}

≥ wn(y0, t0 − δ) = wn(x0, t0) = f(ρ).

Hence

df

dt
(ρ) = ∇ψ(x0, t0) · ξ̇(ρ) + ψt(x0, t0) = 0.

By this equality, (5.10), and Corollary 5.1, we get (5.5) and conclude the
proof.
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Now we show that the sequence wn converges in a suitable sense to a function w
defined via

w(x, t) = inf
ε>0

sup
B(x,t+ε)

{u0}.(5.14)

This result along with stability properties of viscosity solutions will imply that w is a
solution of (2.1).

Definition 5.1. Given a sequence φn of functions from R
N × [0,+∞) → R ∪

{+∞} and φ : R
N × [0,+∞) → R ∪ {+∞}, we say that φ = lim sup∗n φn in R

N ×
[0,+∞) if for any (z, t) ∈ R

N × [0,+∞),

φ(z, t) = sup

{
lim sup

n
φn(zn, tn) : (zn, tn) → (z, t)

}
.

Proposition 5.2. Let φ = lim sup∗n φn in R
N × [0,+∞). One has that

(i) φ is u.s.c.
(ii) φ ∧M = lim sup∗n(φn ∧M) in R

N × [0,+∞) for any M ∈ R.
(iii) If φ : R

N × [0,+∞) → R ∪ {+∞} is u.s.c. and φ ≥ φn on R
N × [0,+∞) for

every n ∈ N, then φ ≥ φ.
Proof. For verification of Proposition 5.2, see [11], where the previous limit is

called Γ− lim sup.
Lemma 5.2. w = lim sup∗n wn in R

N × [0,+∞).
Proof. The proof is based on the inclusions

Bn(xn, tn) ⊂ B(x0, t0 + δ),(5.15)

B

(
x0, t0 +

δ

2

)
⊂ Bn(x0, (1 + δ)(t0 + δ)),(5.16)

which we claim are true for any (x0, t0) ∈ R
N × [0,+∞), (xn, tn) converging to this

point, δ > 0, and n sufficiently large.
To obtain the first one choose n such that d(xn, x0) <

δ
2 , tn < t0 + δ

2 and note
that, by this last inequality, for any y ∈ Bn(xn, tn), there exists an An-admissible
path ξ with ξ(0) = xn, ξ(t0 + δ

2 ) = y. Furthermore, ξ is A-admissible since An ≤ A;
therefore,

d(x0, y) ≤ d(x0, xn) + d(xn, y) < t0 + δ,

which is (5.15).
Now choose z ∈ B(x0, t0 + δ

2 ) and an A-admissible path ζ verifying ζ(0) = x0,
ζ(t0 + δ) = z. Since this curve is continuous we find

ζ([0, t0 + δ]) ⊂ BE(0, r)(5.17)

for a suitable r > 0. Exploiting the fact that An converges to A uniformly on compact
subsets, we also have

A(x) ≤ (1 + δ)2An(x), x ∈ BE(0, r)(5.18)

for n sufficiently large. By (5.17) and (5.18) the path ζ(s) = ζ( s
1+δ ) satisfies

ζ̇(s)⊗ ζ̇(s) =
1

(1 + δ)2

(
ζ̇

(
s

1 + δ

)
⊗ ζ̇

s

1 + δ

)

≤ 1

(1 + δ)2
A

(
ζ

(
s

1 + δ

))
≤ An(ζ(s))



HAMILTON–JACOBI EQUATIONS WITH INFINITE SPEED 1435

for a.e. s ∈ [0, (1 + δ)(t0 + δ)] and, obviously, ζ(0) = x0, ζ((1 + δ)(t0 + δ)) = z.
Therefore dn(x0, z) ≤ (1 + δ)(t0 + δ), so (5.16) follows.

The relation (5.15) implies

wn(xn, tn) ≤ sup
B(x0,t0+δ)

{u0} ≤ w(x0, t0 + δ)

for any given δ > 0 and n sufficiently large. Therefore, taking into account that w is
u.s.c., we have

w(x0, t0) ≥ lim sup
δ→0

w(x0, t0 + δ) ≥ lim sup
n

wn(xn, tn).

To end the proof we construct a sequence (zn, sn) converging to (x0, t0) such that

lim sup
n

wn(zn, sn) ≥ w(x0, t0).(5.19)

Suppose first that w(x0, t0) < +∞ and fix δ > 0. For any σ > 0 we can select by
(5.14) a point z0 ∈ B(x0, t0 + δ

2 ) satisfying

u0(z0) ≥ sup
B(x0,t0+

δ
2 )

{u0} − σ ≥ w(x0, t0)− σ.

From this and (5.16) we obtain

wn(x0, (1 + δ)(t0 + δ)) ≥ u0(z0) ≥ w(x0, t0)− σ.

Hence

lim inf
n

wn(x0, (1 + δ)(t0 + δ)) ≥ w(x0, t0).(5.20)

Then we choose δh converging to zero and set th = (1 + δh)(t0 + δh). By (5.20), there
exists a subsequence wkh of wn such that

wkh(x0, th) ≥ w(x0, t0)− 1

h
.(5.21)

If we define

zn = x0 for any n,

sn = th for kh ≤ n < kh+1,

from the fact that wkh(zkh , skh) = wkh(x0, th) is a subsequence of wn(zn, sn) and by
using (5.21), we get (5.19).

In the case where w(x0, t0) = +∞, it is possible to argue as above to discover that
limn wn(x0, (1 + δ)(t0 + δ)) = +∞ for every δ > 0. So, denoting by δn any sequence
converging to zero and setting sn = (1 + δn)(t0 + δn), zn = x0, we find that (5.19)
holds.

Remark 5.1. It is worth noting that, as easily seen in Example 8.1, the sequence
wn may not in general converge pointwisely to w. If instead (RN , d) is complete, then
the convergence of wn to w is uniform on compact sets of R

N .
Theorem 5.1. w is a solution of (2.1), (2.2).
Proof. w ∈ X thanks to Proposition 5.2(i). To prove that w is a solution of

equation (2.1), we only need to show that Hn converges to H uniformly on a compact
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subset of R
N×R

N , since in this case the assertion is a consequence of Lemmata 5.1, 5.2
and well-known stability results for viscosity solutions (see [2]). To get the convergence
of Hn, let K be a compact subset of R

N × R
N and m > 0 verifying A ≥ m2I in

K1 = {x : (x, p) ∈ K for some p} and |p| ≤ 1
m in K2 = {p : (x, p) ∈ K for some x}.

Then for any (x, p) ∈ K, we have

|Hn(x, p)−H(x, p)| ≤ 1

m2
max
K1

‖An(x)−A(x)‖

and we conclude by employing the uniform convergence of An to A on K1.
We must still prove that

w(x, 0) = u0(x) for every x ∈ R
N .(5.22)

The inequality w(x, 0) ≥ u0(x) is clear from (5.14). For any fixed x, according to
Proposition 3.1(ii), we have that B(x, ε) is relatively compact for ε > 0 sufficiently
small and so for such ε there exists xε ∈ B(x, ε) satisfying

u0(xε) = sup
B(x,ε)

{u0}.

Therefore, by (5.14), w(x, 0) = limε→0 u0(xε) and since u0 ∈ X0, we get w(x, 0) ≤
u0(x). The equality (5.22) is therefore proved.

In what follows we will refer to w as the canonical solution of problem (2.1), (2.2).
We conclude this section pointing out an immediate consequence of Lemma 5.2

and of Proposition 5.2(iii) that we will use in the comparison results of section 6.
Corollary 5.2. Let u be a solution of (2.1), (2.2) and assume that u ≥ wn on

R
N × [0,+∞) for every n ∈ N. Then u ≥ w.

6. Construction of a test function. We consider a solution u of (2.1) and for
any α ∈ R, the level sets

Γα(t) = {x : u(x, t) ≥ α}, t ∈ [0,+∞),

which are closed since u ∈ X, possibly empty. We set

Jα = {t ≥ 0 : Γα(t) 6= ∅}

and define on R
N × Jα the function

vα : (x, t) → −dE(x,Γα(t)).

The purpose of this section is to show that vα is locally Lipschitz and verifies with its
generalized gradient a certain differential inequality related to equation (2.1). These
properties will be crucial for the proof of the comparison results of the next section.

We fix α ∈ R and we write in this section for simplicity Γ, J , v instead of Γα, Jα,
vα, respectively. We start with two lemmata.

Lemma 6.1.
(i) If J is not empty, then J \ {0} is a open unbounded interval.
(ii) Let H be a compact set of R

N and define JH = {t > 0 : Γ(t) ∩ H 6= ∅}. If
JH is not empty, then it is a closed unbounded interval. Moreover if t = min{JH} is
positive, then Γ(t) ∩H ⊂ ∂H.
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Proof. If J is not empty, then it is an unbounded interval by the monotonicity
of u; see Remark 2.1. To show that J \ {0} is open we argue by contradiction and
assume that J has a minimum t0 strictly positive. Then (x0, t0) is a minimum of the
function ψ : (x, t) → t on {u ≥ α} for every x0 ∈ Γ(t0). This implies by Proposition
2.1 that equality (2.5) holds, which is impossible because of the definition of ψ.

Now we prove (ii). Clearly JH is an unbounded interval. To show that it is closed,
set t = inf JH and denote by tn a sequence of JH converging to t. Hence there exist
xn ∈ H which verify u(xn, tn) ≥ α. Moreover the sequence xn converges, up to a
subsequence, to a point x ∈ H. Since u is u.s.c. one has u(x, t) ≥ α, which gives
t ∈ JH. Finally if t > 0 and Γ(t) ∩ H◦ 6= ∅, we repeat the argument of the first part
to get a contradiction. This ends the proof.

Lemma 6.2.
(i) v is u.s.c. in R

N × J .
(ii) For any (x0, t0) ∈ R

N × J , t0 > 0, and ψ C1-supertangent to v at (x0, t0),
one has

|∇ψ(x0, t0)| ≤ 1.(6.1)

Proof. Fix (x0, t0) ∈ R
N×J and let (xn, tn) be a sequence in R

N×J converging to
(x0, t0) such that limn v(xn, tn) exists. This limit is then finite because by employing
the monotonicity of u, we can choose ε > 0 verifying (t0 − ε) ∈ J and |v(xn, tn)| ≤
|v(x0, t0−ε)|+ε for n sufficiently large. Because Γ(tn) is a closed nonempty set, there
exists, for every n, yn ∈ Γ(tn) satisfying

−|yn − xn| = v(xn, tn).(6.2)

Hence the sequence yn is bounded and so convergent, up to a subsequence, to a point
y0 which belongs to Γ(t0) by the upper semicontinuity of u. Therefore taking into
account (6.2), we have

lim
n
v(xn, tn) = −|x0 − y0| ≤ v(x, t),

and this proves (i).
The inequality (6.1) follows from the fact that x→ v(x, t) is Lipschitz continuous

with Lipschitz constant 1 for every t (see [1]).
Proposition 6.1.
(i) v is locally Lipschitz in R

N × J .
(ii) For any compact set K of R

N × (J \ {0}), there exists a positive constant
L = L(K) such that

s+H(x, p) ≥ Lv(x, t)(6.3)

for every (x, t) ∈ K, (p, s) ∈ ∂v(x, t).
Proof. As a first step let us show that for any (x0, t0) ∈ R

N × J , t0 > 0, ψ
C1-supertangent to v at this point, one has

ψt(x0, t0) +H(z0,∇ψ(x0, t0)) = 0,(6.4)

where z0 is any element of Γ(t0) satisfying

|z0 − x0| = −v(x0, t0).(6.5)
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In fact set β = v(x0, t0), b = x0−z0, ψ(x, t) = ψ(x+b, t) and note that ψ attains a local
minimum at (x0, t0) on the set {v ≥ β}. Then denote by U a neighborhood of (x0, t0)
such that the inequality ψ(x, t) ≥ ψ(x0, t0) holds for every (x, t) ∈ U ∩ {v ≥ β} and

write Ũ = {(z, t) : (z+b, t) ∈ U}. If (z, t) ∈ Ũ ∩{u ≥ α}, then (z+b, t) ∈ U ∩{v ≥ β}
since |b| = −β. So we obtain ψ(z, t) ≥ ψ(z0, t0) which shows that (z0, t0) is a local
minimum point of ψ on {u ≥ α}. Therefore by Proposition 2.1 we find

ψt(z0, t0) +H(z0,∇ψ(z0, t0)) = 0

and (6.4) follows.
We turn now to the proof of (i). Let K be a compact subset of R

N × J . We
can assume without loss of generality that K = H× I, where H and I are a compact
domain of R

N and a compact interval contained in J , respectively. Set t1 = min I,
m = minH{v(·, t1)}. Since, by the monotonicity of v, m = minK{v}, we have that

if (x0, t0) ∈ K and z0 verifies (6.5), then z0 ∈ H̃ = {x : dE(x,H) ≤ −m} which is a
compact set. From this, (6.4), and Lemma 6.2(ii) we get for t0 > 0,

|ψt(x0, t0)| ≤M(6.6)

for any positive constant M satisfying

‖A(x)‖ ≤M2, x ∈ H̃.

Since the inequality (6.6) holds for any (x0, t0) ∈ K, t0 > 0, and any ψ C1 supertangent
to v at (x0, t0), we discover that (see [4], [10]) for every x ∈ H, the function t→ v(x, t)
is Lipschitz continuous in I with Lipschitz constant less than or equal to M . Then we
get the assertion (i) recalling that v is also Lipschitz continuous in x with Lipschitz
constant independent of t.

To prove (ii) let K be a compact subset of R
n × (J \ {0}) and let H, H̃, and I be

as above. We first select two positive constants L̃, m̃ satisfying

‖A(x)−A(y)‖ ≤ L̃|x− y|,
A(x) ≥ m̃2I

for any x, y ∈ H̃. Then we compute for any p 6= 0, x, y ∈ H̃,

|H(x, p)−H(y, p)| ≤ ‖A(x)−A(y)‖|p|2
〈A(x)p, p〉 1

2 + 〈A(y)p, p〉 1
2

(6.7)

≤ L̃

m̃
|x− y| |p|.

Set L = L̃/m̃, recall Lemma 6.2, and use (6.7) in (6.4) to find for (x0, t0) ∈ K,

ψt(x0, t0) +H(x0,∇ psi(x0, t0))
(6.8) ≥ −L|∇ψ(x0, t0)||x0 − z0| = Lv(x0, t0).

If, in particular, v is differentiable at (x0, t0), from (6.8) we get

vt(x0, t0) +H(x0,∇v(x0, t0)) ≥ Lv(x0, t0).(6.9)

Hence we obtain (6.3) by using Proposition 2.2(iv) and the fact that H is concave
in p.
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7. Comparison results. We start by proving a maximum principle for equation
(2.1). Given two solutions u1, u2 of (2.1), we will put by convention u1(x, t)−u2(x, t) =
0 whenever u1 and u2 are both infinite at (x, t).

Theorem 7.1. Let H be a bounded set of R
N and I be any interval with minimum

equal to 0. If u1 and u2 are solutions of (2.1), (2.2), then

sup
H×I

{|u1 − u2|} = sup
∂H×I

{|u1 − u2|}.(7.1)

Proof. We argue by contradiction and assume that there exists (x0, t0) ∈ H◦ × I
and two positive constants α, β satisfying

α− β > sup
∂H×I

{|u1 − u2|},(7.2)

u1(x0, t0) ≥ α > β > u2(x0, t0).(7.3)

We define

Γ1(t) = {x : u1(x, t) ≥ α},
Γ2(t) = {x : u2(x, t) ≥ β},

and

Ji = {t ≥ 0 : Γi(t) ∩H 6= ∅}, i = 1, 2.

By Lemma 6.1, J1 has a minimum that we denote by t1. We wish to show that

[t1, t0] ⊂ J2.(7.4)

In fact if t1 = 0, then for any x ∈ Γ1(t1) ∩H, one has

u2(x, t1) = u1(x, t1) ≥ α > β

which gives t1 ∈ J2 and so (7.4).
If t1 > 0, then by Lemma 6.1(ii), Γ1(t1) ∩H ⊂ ∂H. This implies

Γ1(t1) ∩H ⊂ Γ2(t1);(7.5)

otherwise, for any x ∈ (Γ1(t1) ∩H) \ (Γ2(t1)), we should have

u1(x, t)− u2(x, t) > α− β

which is impossible by (7.2). From (7.5) we immediately get (7.4). Now set K =
H× [t1, t0] and for any (x, t) ∈ K,

v(x, t) = −dE(x,Γ2(t)).

By (7.4) we can use Proposition 6.1 to deduce that v is Lipschitz in K. We fix λ > L,
where L is as in formula (6.3) and define v(x, t) = e−λtv(x, t) for any (x, t) ∈ K. From
(6.3) and the positive homogeneity of H in p, we get

s+H(x, p) ≥ (L− λ)v(x, t) ≥ 0(7.6)
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for any (x, t) ∈ K, t > 0, (p, s) ∈ ∂v(x, t). Now choose (x, t) ∈ {u1 ≥ α}∩K such that

v(x, t) = min
{u1≥α}∩K

{v}.(7.7)

Since, by the definition of v and (7.3), v(x0, t0) < 0 and v(x, t) ≤ v(x0, t0), we find

v(x, t) < 0.(7.8)

Keeping in mind the definition of v, from (7.8) we deduce

u2(x, t) < β

and, consequently,

x ∈ H◦,(7.9)

because otherwise, from the inequality u1(x, t) − u2(x, t) > α − β, we should get a
contradiction of (7.2).

We claim that

t > t1.(7.10)

In fact if t1 = 0, t1 = t is impossible since this should imply u1(x, t) = u2(x, t). If
instead t1 > 0, then the equality t = t1 contradicts (7.9) by Lemma 6.1(ii). Thanks
to (7.7), (7.9), and (7.10) we see that (x, t) is a point of local minimum of v on
{u1 ≥ α} ∩ R

N × (t1, t0]. Hence by Proposition 2.4 and Remark 2.2, we get the
existence of (p, s) ∈ ∂v(x, t) verifying

s+H(x, p) ≤ 0.

This contradicts (7.6) if we take into account (7.8) and the inequality λ > L.
The argument of the previous proof gives the following corollary.
Corollary 7.1. Let u1, u2 be two solutions of (2.1) and I be an interval with

minimum equal to 0. If u1(x, 0) ≤ u2(x, 0) for every x ∈ R
N , then either

u1 ≤ u2 in R
N × I

or

lim inf
R→+∞

sup
∂BE(0,R)×I

{u1 − u2} > 0.

Proof. If there exists (x0, t0) ∈ R
N × I such that u1(x0, t0) > u2(x0, t0), use the

argument of Theorem 7.1 to show that

sup
∂BE(0,R)×I

{u1 − u2} ≥ u1(x0, t0)− u2(x0, t0)

if R ≥ |x0|. This proves the assertion.
The next result yields the minimality of the canonical solution among the solutions

of (2.1), (2.2).
Theorem 7.2. The canonical solution w is the minimal solution of (2.1), (2.2).
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Proof. In view of Corollary 5.2 it is enough to prove that if u is a solution of (2.1),
(2.2), then for any n,

u ≥ wn in R
N × (0,+∞),(7.11)

where wn are the functions defined in (4.18). Note that wn is a subsolution of (2.1),
(2.2) by (4.2). So if (7.11) is not true, using Corollary 7.1 one has that there exists n
such that

lim inf
R→+∞

sup
∂BE(0,R)×[0,+∞)

{wn − u} > 0.(7.12)

For R sufficiently large, ∂BE(0, R) ⊂ R
N \On and wn(x, t) = u0(x) for every (x, t) ∈

(RN \On)× [0,+∞) by virtue of Proposition 4.2(i) and (4.18). This contradicts (7.12)
since u is nondecreasing.

Using Corollary 7.1 and Theorem 7.2 we establish that problem (2.1), (2.2) is
uniquely solvable when the solutions are required to satisfy a certain growth condition
at infinity.

Corollary 7.2. Let I be any interval with minimum equal to 0 and u be a
solution of (2.1), (2.2). If

lim inf
R→+∞

sup
∂BE(0,R)×I

(u− w) ≤ 0,(7.13)

then u = w in R
N × I.

We now give a characterization for solutions of equation (2.1).
Theorem 7.3. A function u ∈ X is a solution of (2.1) if and only if one has

u(x0, t0 + s) = max
B(x0,s)

{u(·, t0)}(7.14)

for any (x0, t0) ∈ R
N × [0,+∞), s < d(x0,∞).

Proof. Let x0, t0, s, and u be as in the statement above and denote by w̃ the
canonical solution of (2.1) with initial datum x→ u(x, t0), i.e., the function given by
the formula (4.18) with u0 replaced by u(·, t0). We claim that

w̃(x0, s) = max
B(x0,s)

{u(·, t0)}.(7.15)

In fact from the definition of w̃, the upper semicontinuity of u0, and the compactness

of B(x0, s+ 1
n ) for n sufficiently large, we see that

w̃(x0, s) = lim
n

max
B(x0,s+

1
n )

{u(·, t0)} ≥ max
B(x0,s)

{u(·, t0)}.(7.16)

We select xn verifying

xn ∈ B
(
x0, s+

1

n

)
,

(7.17)
u(xn, t0) = max

B(x0,s+
1
n )

{u(·, t0)}.

If x̃ is a limit point of xn, we have

x̃ ∈ B(x0, s).
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Taking (7.16) into account,

max
B(x0,s)

{u(·, t0)} ≥ u(x̃, t0) ≥ w̃(x0, s) ≥ max
B(x0,s)

{u(·, t0)}.(7.18)

The claim implies that a function u ∈ X satisfying (7.14) is solution of (2.1).
Conversely let u be a solution of (2.1). According to (7.15), equality (7.14) is

equivalent to

u(x0, t0 + s) = w̃(x0, s) for s < d(x0,∞).(7.19)

If (7.19) is not true, by Theorem 7.2 there exists t̃ ∈ (0, d(x0,∞)) such that

u(x0, t0 + t̃) > w̃(x0, t̃).(7.20)

We define a function u0 ∈ X0 via

u0 =

{
u(·, t0) in B(x0, t),
u(·, t0) ∨ α in R

N \B(x0, t),
(7.21)

where α = u(x0, t0 + t̃) and t̃ < t < d(x0,∞) and denote by w the canonical solution
of (2.1) with initial datum u0.

Now we observe that by (7.21),

u(x, t0) ≤ u0(x) = w(x, 0) for every x(7.22)

and using (7.15), (7.20), and (7.21) we see that

w(x0, t̃) = w̃(x0, t̃) < u(x0, t0 + t̃) = α.(7.23)

Taking (7.22), (7.23) into account and applying Corollary 7.1 to u(x, t) = u(x, t0+t)∧α
and w, which are solutions of (2.1), we get

lim inf
R→+∞

sup
∂BE(0,R)×[0,+∞)

{u− w} > 0.

This is impossible since

u ≤ α in R
N × [0,+∞)

and

w(x, t) ≥ u0(x) ≥ α for any (x, t) ∈ (RN \B(x0, t))× [0,+∞).

The previous theorem has the following interpretation: As long as the ballB(x0, s)
is relatively compact, every solution of (2.1) in the interval [t0, t0 + s] can be repre-
sented with a formula analogous to that of the canonical solution.

Remark 7.1. From Theorem 7.3 it easily follows that if the initial data satisfy

lim
|x|→+∞

u0(x) = +∞,

then the solution of (2.1),(2.2) is unique.
Moreover if (RN , d) is complete, then every solution starting from a continuous

u0 is continuous in R
N × [0,+∞).
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In the final part of the section we will prove that the uniqueness of solutions of
(2.1), (2.2) for any initial datum is the equivalent of the metric space (RN , d) being
complete.

Proposition 7.1. If (RN , d) is not complete, then

u(x, t) = t− d(x,∞), (x, t) ∈ R
N × (0,+∞)(7.24)

is a noncanonical solution of equation (2.1).
Proof. We have for any x0, y0 ∈ R

N ,

d(x0,∞) ≤ d(x0, y0) + d(y0,∞),(7.25)

so u is locally Lipschitz with respect to the Euclidean distance. By (7.25) we get

u(x0, t+ t0) = −d(x0,∞) + t+ t0 ≥ −d(y,∞) + t0

for any t0, t > 0, y ∈ B(x0, t). By Lemma 3.2 we know that if t < d(x0,∞), there
exists z ∈ ∂B(x0, t) such that

u(x0, t+ t0) = −d(z,∞) + t0.

Therefore u satisfies (7.14) and is a solution of (2.1) according to Theorem 7.3.
From the previous proposition and Theorem 7.3 we obtain the following corollary.

Corollary 7.3. Problem (2.1), (2.2) is uniquely solvable for any initial datum
if and only if the metric space (RN , d) is complete.

8. Examples. The first two examples illustrate the pathologies which can occur
in problem (2.1), (2.2). As we explained before these phenomena depend on the lack
of completeness of the distance associated to A.

The first example shows that the canonical solution can be discontinuous and
infinite even starting from a smooth initial datum.

Example 8.1. Set N = 2 and put in (2.1), (2.2),

A(x1, x2) =

[
x4

1 + 1 −x2
1

−x2
1 1

]

and

u0(x1, x2) = −x2
1x2.

As usual let us denote by w the canonical solution and by x0 the point (1, 1). We
have the following assertions.

Proposition 8.1.
(i) w(x0, 1− δ) ≤ 0 for every 1 > δ > 0.
(ii) w(x0, 1) = +∞.
Proof. Consider any A-admissible path ξ(t) = (ξ1(t), ξ2(t)), which, by definition,

verifies

〈(ξ̇(t)⊗ ξ̇(t))b, b〉 ≤ 〈A(ξ(t))b, b〉 a.e.(8.1)

for any b ∈ R
2. Then put b = (0, ξ̇2(t)) in (8.1) to find

|ξ̇2(t)| ≤ 1 a.e.(8.2)
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The last inequality implies in particular that

B(x0, 1− δ) ⊂ {x2 ≥ 0} for every 1 > δ > 0,

which is equivalent to assertion (i).
Now fix ε > 0 and let σ = σ(ε) > 0 be such that d(x0, x̃) < ε if x̃ = (1, 1−σ). The

path ξ(t) = ( 1
1−t , 1− σ − t) is A-admissible as it can be seen by a direct calculation.

Therefore ξ(t) ∈ B(x̃0, 1) ⊂ B(x0, 1 + ε) for t ∈ [0, 1) and letting t → 1, we discover
that

sup
B(x0,1+ε)

{u0} = +∞.

Since ε > 0 is arbitrary, this gives (ii).
The second example concerns the lack of uniqueness for solutions of (2.1), (2.2).
Example 8.2. Set N = 1, u0 ≡ 0, and

A(x) =

{
1 if x ≤ 1,
x6 if x ≥ 1.

The distance d associated to A coincides with the Euclidean distance in (−∞, 1). If

x, y ∈ [1,+∞) and y ≥ x, then ζ(t) =
√

x2

1−2tx2 , t ∈ [0, |x
2−y2|

2x2y2 ] is A-admissible and it

is the minimal path joining x to y. Therefore we have

d(x, y) =




|x− y| if x, y ∈ (−∞, 1),

|x2−y2|
2x2y2 if x, y ∈ [1,+∞),

1− x+ y2−1
2y2 if x ∈ (−∞, 1), y ∈ [1,+∞).

The number d(x,∞) defined in section 2 is given by

d(x,∞) =




3
2 − x, x ∈ (−∞, 1),

1
2x2 , x ∈ [1,+∞).

A family uα, α ≥ 0, of solutions of (2.1), (2.2) with u0 ≡ 0 is defined via (see
Proposition 7.1)

uα(x, t) = max{αt− αd(x,∞), 0}.
For α > 0 these solutions are not canonical.

Finally we show that even if the Hamiltonian H has superlinear growth in x, then
the distance induced can be complete. That is, the converse of Corollary 3.1 is not
true.

Example 8.3. Set N = 2,

A(x1, x2) =

[
1 0
0 f(x1)

]
,

where f is any strictly positive locally Lipschitz function from R to R. If ξ is an
A-admissible path starting from x0 = (x0

1, x
0
2), it is easy to see that

|ξ̇(t)|2 ≤ max{f(x1) : x1 ∈ [x0
1 + t, x0

1 − t]}+ 1 a.e.
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Hence for any radius r, there exists a positive constant M(x0, r) such that

B(x0, r) ⊂ BE(x0,M(x0, r)r).

This inclusion shows that B(x0, r) is relatively compact and, consequently (see Propo-
sition 3.1(iii)), the distance d is complete.
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Abstract. We are concerned with 2 × 2 nonlinear relaxation systems of conservation laws of
the form ut + f(u)x = − 1

δ
S(u, v), vt = 1

δ
S(u, v) which are coupled through the stiff source term

1
δ
S(u, v). Such systems arise as prototype models for combustion, adsorption, etc. Here we study the

convergence of (u, v) ≡ (uδ , vδ) to its equilibrium state, (ū, v̄), governed by the limiting equations,
ūt + v̄t + f(ū)x = 0, S(ū, v̄) = 0. In particular, we provide sharp convergence rate estimates as the
relaxation parameter δ ↓ 0. The novelty of our approach is the use of a weak W−1(L1)-measure of
the error, which allows us to obtain sharp error estimates. It is shown that the error consists of an
initial contribution of size ||S(uδ0, v

δ
0)||L1 , together with accumulated relaxation error of order O(δ).

The sharpness of our results is found to be in complete agreement with the numerical experiments
reported in [Schroll, Tveito, and Winther, SIAM J. Numer. Anal., 34 (1997), pp. 1152–1166].

Key words. conservation laws, stiff source terms, relaxation, Lip+-stability, convergence rate
estimates
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1. Introduction. We are concerned with one-dimensional systems of conserva-
tion laws which are coupled through a stiff source term. The purpose of this paper is
to study a convergence rate of such systems to their equilibrium solutions as the stiff
relaxation parameter tends to zero.

Our system takes the form

ut + f(u)x = −1

δ
S(u, v),(1.1)

vt =
1

δ
S(u, v),(1.2)

where δ > 0 is the small relaxation parameter. The stiff source term, S(u, v), and the
convective flux, f(u), are assumed to be smooth functions. We consider the Cauchy
problem associated with (1.1)–(1.2), subject to periodic or compactly supported initial
data

u(x, 0) = u0(x), v(x, 0) = v0(x).(1.3)

Here u(x, t) := uδ(x, t), v(x, t) := vδ(x, t) is the unique entropy solution of (1.1)–
(1.3), which can be realized as the vanishing viscosity limit uδ = limν↓0 uδ,ν , vδ =
limν↓0 vδ,ν , where (uδ,ν , vδ,ν) is the solution of the regularized viscosity system

uδ,νt + f(uδ,ν)x = −1

δ
S(uδ,ν , vδ,ν) + νuδ,νxx ,(1.4)

vδ,νt =
1

δ
S(uδ,ν , vδ,ν).(1.5)
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This regularized system, with fixed δ > 0 (and ν > 0), admits a unique, global
(and, respectively, classical) solution. Indeed, such a solution can be constructed, for
example, by fixed point iterations which alternate between the solution of the ODE
(1.5) for v and the viscous conservation law—with v-dependent source term (1.4) for
u. Moreover, by the maximum principle, e.g., [PW], the solution constructed admits
a global uniform bound in view of our monotonicity assumption specified in section 2,
−Su, Sv ≤ 0. Finally, by standard arguments (which we omit), there exists a constant,
independent of ν, Cδ = exp{2(|Su|+ |Sv|)t/δ}, such that

‖uδ1(·, t)− uδ2(·, t)‖L1 + ‖vδ1(·, t)− vδ2(·, t)‖L1

≤ Cδ
[‖uδ1(·, 0)− uδ2(·, 0)‖L1 + ‖vδ1(·, 0)− vδ2(·, 0)‖L1

]
.

Consequently, the uniqueness of the viscous solution, uδ,ν , and hence the uniqueness
of its entropy limit BV-solution, uδ, then follow. We refer to, e.g., [HW], [Lu], and
[Le] for further discussions on the existence and uniqueness for various related models
of the above type.

Once we identify the unique entropy solution, (uδ, vδ), we seek its equilibrium
state as δ ↓ 0, (ū, v̄). Formally, our equilibrium solution is governed by the limit
system obtained by letting δ ↓ 0 in (1.1)–(1.2),

(ū+ v̄)t + f(ū)x = 0,(1.6)

S(ū, v̄) = 0.(1.7)

To obtain the limiting equation (1.6), add (1.2) to (1.1); to obtain the constraint
equation (1.7), multiply (1.2) by δ and pass to the formal limit as δ → 0.

The two main questions that we address in this paper are concerned with the
convergence of the entropy solution (uδ, vδ) to its expected equilibrium state (ū, v̄).

Convergence. We prove the convergence to the expected limits

ū = lim
δ,ν↓0

uδ,ν , v̄ = lim
δ,ν↓0

vδ,ν .(1.8)

Moreover, we provide the following.
Error estimates. We estimate the convergence rate as ν → 0 and, in particular,

as δ → 0.
Assume that Sv 6= 0 so we can solve the constraint equation (1.7) and obtain

its solution in the explicit form

v̄ = v(ū).(1.9)

Inserted into (1.6), we obtain that ū is governed by the limiting equation

[ū+ v(ū)]t + f(ū)x = 0.(1.10)

Equivalently, if we denote w̄ = w̄(ū) := ū+v(ū) and let its inverse1 ū = ū(w̄), then
we conclude that the limiting equation (1.10) can be rewritten as a single conservation
law, expressed in terms of the combined flux F (w̄) := f(ū(w̄)),

w̄t + F (w̄)x = 0.(1.11)

1 The inverse exists since by our monotonicity assumption in section 2 below, v′(u) = −Su/Sv >
−1.
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We obtain our convergence results under the assumptions of convexity—both
f(·) and F (·) and the monotonicity of S(u, v). In addition, we assume that we start
with “prepared” initial data, in the sense that u0 ≡ uδ0 and v0 ≡ vδ0 approach their
equilibrium state (1.7) as δ ↓ 0, i.e.,

||S(uδ0(x), v
δ
0(x))||L1(x)

δ→0−→ 0.

Specifically, we let ε = ε(δ) ↓ 0 denote the vanishing initial error

||S(uδ0(x), v
δ
0(x))||L1(x) ∼ ε(δ) ↓ 0.(1.12)

Equipped with these assumptions, we formulate in section 2 our main results,
which we summarize here in the following theorem.

Theorem 1.1 (main theorem). Consider the system (1.3)–(1.5) subject to W 2(L1)-
“prepared” initial data, (1.12). Then (uδ,ν , vδ,ν) converges to (ū, v̄) as ν → 0, δ → 0,
and the following error estimate holds ∀p, 1 ≤ p ≤ ∞:

||uδ,ν(·, t)− ū(·, t)||W s(Lp(x)) ≤ ConstT ·
(
ε(δ) + δ + ν

) 1−sp
2p , −1 ≤ s ≤ 1

p
.(1.13)

Thus, (1.13) reflects three sources for error accumulation: the initial error of
size ε(δ), the relaxation error of order δ, and the vanishing viscosity of order ν. For
example, in the inviscid case (ν = 0) and with “canonically prepared” initial data
such that ε(δ) ∼ δ, we set (s, p) = (0, 1) in (1.13) to conclude an L1-convergence
rate of order O(

√
δ); in fact, in Corollary 2.3 below we extend this L1-estimate to

the v-variable, stating that

||uδ(·, t)− ū(·, t)||L1 + ‖vδ(·, t)− v̄(·, t)‖L1 = O(
√
δ).(1.14)

The two-step proof of the main theorem is presented in sections 3 (stability) and 4
(consistency).

We close this introduction with three prototype examples.
Example 1: Combustion. We consider a combustion model proposed by Majda

[Ma]. This model was consequently studied in [Le], [TY], and [Lu]. It takes the form

ut + f(u)x =
1

δ
A(u)v + νuxx,

vt = −1

δ
A(u)v.(1.15)

Here u ≡ uδ,ν is a lumped variable representing some features of density, velocity,
and temperature, while v ≡ vδ,ν ≥ 0 represents the mass fraction of unburnt gas in
a simplified kinetics scheme; 1

δ is the rate of reaction and the parameter ν > 0 is a
lumped parameter representing the effects of diffusion and heat conduction.

In this model, S(u, v) = −A(u)v and our convexity and monotonicity assump-
tions (2.1)–(2.3) below hold, provided that

A′(u) < 0, A(u) ≥ η > 0; f ′′(u) ≥ α > 0.(1.16)

The limiting equation (1.10) in this example reads

ūt + f(ū)x = 0,



STIFF SYSTEMS OF HYPERBOLIC CONSERVATION LAWS 1449

and hence uδ,ν − ū satisfies the error estimate (1.13).
Example 2: Adsorption. We consider the following stiff system:

ut + f(u)x = −1

δ
(A(u)− v),

vt =
1

δ
(A(u)− v).(1.17)

In this example u ≡ uδ denotes the density of some species contained in a fluid
flowing through a fixed bed, and v ≡ vδ denotes the density of the species adsorbed
on the material in the bed; δ > 0 is referred to as the relaxation time. Different
forms of adsorption functions, A(u), are discussed in [STW], [TW1], [TW2], and the
references therein.

The source term associated with this adsorption model, S(u, v) = A(u)−v, yields
a limiting equation of the form

[ū+A(ū)]t + f(ū)x = 0.

Under the monotonicity assumption and convexity condition (consult (2.1)–(2.3)),

A′(u) ≥ 0,

[
f ′(u)

1 +A′(u)

]′
≥ α > 0.(1.18)

We conclude the error estimate (1.13) with ν = 0. In particular, for “canonically
prepared” initial data such that ||A(uδ0)− vδ0||L1 = O(δ), (1.14) yields a convergence

rate of order O(
√
δ).

In this context it is interesting to contrast our above error estimates with those of
[STW]. In [STW], Schroll, Tveito, and Winther studied the error estimates for the ad-
sorption model (1.17) subject to “canonically prepared” initial data, ||A(uδ0)− vδ0||L1 =

O(δ), and concluded an L1-convergence rate of order O(δ
1
3 ). Their reported numer-

ical experiments, however, indicate a faster convergence rate of order O(
√
δ). Our

results, e.g., (1.14), apply to their numerical experiments and confirm this optimal

O(
√
δ) convergence rate. It should be pointed that the O(δ

1
3 ) error estimate in [STW]

was derived by interpolation between L2- and L1-error bounds. It is here that we take
advantage of our sharper interpolation between the weaker O(δ) Lip′- and the O(1)
BV -bounds. This enables us to improve over [STW] in both simplicity and generality
and conclude with the sharper estimate of order O(

√
δ).

Example 3: Relaxation. Let us consider the following semilinear stiff system (see,
e.g., [JX], [Li]):

ut + vx = 0,

vt + aux =
1

δ
S(u, v),(1.19)

where S(u, v) := f(u) − v and a is given positive number. The limiting equation,
with v(u) = f(u), is then

ūt + f(ū)x = 0.

To study this system we rewrite it in the form of (1.1)–(1.2) by means of two
changes of variables. First, we define the characteristic variables w :=

√
a u+v, z :=
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√
a u− v. The system (1.19) then takes the form

zt −
√
a zx = −1

δ
S(z, w),

wt +
√
awx =

1

δ
S(z, w),(1.20)

with S(z, w) = S(u(z, w), v(z, w)). Next, we make the second change of variables,
x′ := x−√a t, obtaining

zt − 2
√
a zx′ = −1

δ
S(z, w),

wt =
1

δ
S(z, w).(1.21)

In this model, the flux is linear and hence our first convexity assumption, (2.2),
holds. The second one, (2.3), is satisfied for convex f ’s. In addition, the monotonicity
of S, Sz ≥ 0, Sw ≤ −η < 0, amounts (in terms of Su and Sv) to the inequalities

Sv ≤ −η < 0, Sv
√
a ≤ Su ≤ −Sv

√
a.

Thus, S(u, v) = f(u)− v should satisfy Liu’s subcharacteristic condition (e.g., [Li]),

−√a ≤ f ′(u) ≤ √
a.

In this case, our main theorem with p = 1, for example, yields

||uδ − ū||W s(L1) = Const ·
(
||f(uδ0)− vδ0||L1 + δ

) 1−s
2

, −1 ≤ s ≤ 1.

2. Statement of main results. We seek the behavior of the solution of regu-
larized system (1.4)–(1.5) towards the limit solution as δ → 0, as well as ν → 0.
Throughout this section we make the following two main assumptions.

Monotonicity. S(u, v) is monotonic with respect to u and strictly monotonic with
respect to v,

Su(u, v) ≥ 0, Sv(u, v) ≤ −η < 0.(2.1)

Convexity. f(·) is convex and F (·) is a strictly convex function,

f ′′(u) ≥ 0,(2.2)

F ′′(w) ≥ α > 0 ⇐⇒
(

f ′(ū)
1 + v′(ū)

)′
≥ α > 0.(2.3)

Remark. Our first assumption of monotonicity guarantees, by the classical maxi-
mum principle (see, e.g., [PW]), the L∞-boundedness of (uδ,ν , vδ,ν) (proof is left to
the reader).

Equipped with the two assumptions above, we now turn to the main result of
this paper. To this end, our error estimate is formulated in terms of the weak Lip′-
(semi)norm, || · ||Lip′ , and the dual of the Lip-norm given by

||φ||Lip′ := sup
ψ

[(φ− φ̂0, ψ)/||ψ||W 1,∞ ], φ̂0 :=

∫
suppφ

φ.
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Thus, the Lip′-size of regular φ’s (with bounded average over their finite support)
amounts to their W−1(L1)-size or, equivalently, the L1-size of their primitive. As we
shall see, such weak (semi)norm has the advantage of providing us with sharp error
estimates which, in turn, will be converted into strong ones.

Theorem 2.1. Consider the system (1.3)–(1.5) subject to W 2(L1)-“prepared”
initial data, (1.12). Then (uδ,ε, vδ,ε) converges to (ū, v̄) as δ → 0, ν → 0, and the
following error estimate holds:

||uδ,ν(·, T )− ū(·, T )||Lip′(x) ≤ ConstT ·
(
ε(δ) + δ + ν

)
.(2.4)

Let us consider the particular inviscid case, where ν = 0. Then the entropy
solution of the stiff system (1.1)–(1.2), (uδ, vδ), converges as δ → 0 to its equilibrium
solution, (ū, v̄), and we obtain the asserted convergence rate in terms of the initial
error ε(δ) and the vanishing relaxation parameter δ:

||uδ(·, T )− ū(·, T )||Lip′(x) ≤ ConstT ·
(
ε(δ) + δ

)
.(2.5)

Remarks. 1. Our assumption of “prepared” initial data means that at the

initial moment, ||S(uδ0, v
δ
0)||L1

δ→0−→ 0. In section 4 we will show that, in fact,

||S(uδ,ν , vδ,ν)||L1

δ→0−→ 0 for all t > 0.
2. What about “nonprepared” initial data? In this case the initial layer formed

persists in time; i.e., the initial error propagates and prevents convergence of uδ,ν , vδ,ν

to their equilibrium state.
The proof of the main theorem will be given in sections 3 and 4. To obtain this

result we utilize the framework of Tadmor and Nessyahu [Ta], [NT]. To this end, we
need the two ingredients of consistency and stability. Here, consistency—evaluated in
terms of the Lip′-norm—measures by how much the approximate pair (uδ,ν , v(uδ,ν))
fails to satisfy the limiting equation (1.10); stability requires the Lip+-stability 2 of
uδ,ν ; that is, we seek a one-sided Lipschitz continuity (OSLC) of the viscosity solution
uδ,ν ,

‖uδ,ν(·, t)‖Lip+(x) := sup
x

[uδ,νx (x, t)]+ ≤ Ct · ‖uδ,ν(·, 0)‖Lip+(x).(2.6)

By interpolation between the (weak) Lip′-error estimate (2.4) and the (strong)
BV -boundedness of the error (which follows from the Lip+-boundedness due to (2.6)),
we are able to convert the weak error estimate stated in Theorem 2.1 into a strong
one. As in [NT], we conclude with the following corollary.

Corollary 2.2 (global estimate). Consider the inviscid problem (1.1)–(1.3),
(1.12). Then the following convergence rate estimate holds:

||uδ(x, T )− ū(x, T )||Lp ≤ ConstT · (ε(δ) + δ)
1
2p , 1 ≤ p ≤ ∞.(2.7)

Remark. The above-mentioned Lp-estimates in (2.7) are, in fact, particular cases
of the more general error estimate in the W s(Lp)-norm

||uδ(x, T )− ū(x, T )||W s(Lp) ≤ ConstT · (ε(δ) + δ)
1−sp
2p , −1 ≤ s ≤ 1

p
.(2.8)

2 Here ||φ||Lip+ := ess supx6=y

[
φ(x)−φ(y)

x−y

]
+
, where, as usual, (·)+ denotes the “positive part of.”

For convenience we shall use the equivalent definition of the Lip+ norm: ||φ||Lip+ := supx [φ′(x)]+,

where the derivative of φ is taken in the distribution sense.
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The special cases, (s, p) = (−1, 1) and s = 0, correspond, respectively, to the weak
Lip′-estimate (Theorem 2.1) and the global Lp-estimate (Corollary 2.2).

Taking p = 1 in (2.7), we obtain, in particular, the L1-error estimate, which
reads

||uδ(x, T )− ū(x, T )||L1 ≤ ConstT ·
√
ε(δ) + δ.(2.9)

In this L1-framework, we are able to extend the last estimate and obtain the same
O(
√
ε(δ) + δ) convergence rate of vδ towards v̄. This brings us to the following

corollary.
Corollary 2.3 (L1-error estimate). Consider the system (1.1)–(1.3) subject to

“prepared” initial data, (1.12). Then we have

||uδ(x, T )− ū(x, T )||L1 + ||vδ(x, T )− v̄(x, T )||L1 ≤ ConstT ·
√
ε(δ) + δ.(2.10)

In particular, for “canonically prepared” initial data, ||S(uδ0, v
δ
0)||L1 = ε(δ) ∼ δ, we

obtain a convergence rate of order
√
δ,

||uδ(x, T )− ū(x, T )||L1 + ||vδ(x, T )− v̄(x, T )||L1 ≤ ConstT ·
√
δ.(2.11)

Proof. We first note that due to the strict monotonicity of S(u, v) with respect
to its second argument and the L∞-bound of uδ, vδ, ū, and v̄, we have

|vδ − v̄| = |vδ − v(uδ) + v(uδ)− v̄| ≤ |vδ − v(vδ)|+ |v(vδ)− v̄|

= |v′(ũ)| · |uδ − ū|+
∣∣∣∣S(uδ, vδ)− S(uδ, v(uδ))

Sv(uδ, ṽ)

∣∣∣∣ ∼ |uδ − ū|+ |S(uδ, vδ)|.

Here ũ and ṽ are appropriate midvalues, ũ = θ1u
δ + (1− θ1)ū, ṽ = θ2v

δ + (1− θ2)v̄.
And we now obtain the desired estimate, (2.10),

||vδ(x, T )− v̄(x, T )||L1 ≤ ConstT · (||uδ(x, T )− ū(x, T )||L1

+||S(uδ(x, T ), vδ(x, T ))||L1)

= O(
√
ε(δ) + δ) +O(ε(δ) + δ) = O(

√
ε(δ) + δ).(2.12)

Indeed, the first O(
√•)-upperbound on the right is due to (2.9); the second upper-

bound, ||S(uδ(x, T ), vδ(x, T ))||L1 = O(ε(δ)+ δ), is outlined in section 4 below.
Finally, arguing along the lines of [NT; Corollary 2.4], we also obtain the pointwise

convergence towards the equilibrium solution away from discontinuities.
Corollary 2.4 (local estimate). Consider the inviscid problem (1.1)–(1.3),

(1.12). Then the following estimate holds:

|uδ(x, T )− ū(x, T )| ≤ Constx,T · (ε(δ) + δ)
1
3 .(2.13)

Here, Constx,T is a constant which measures the local smoothness of u(·, T ) in the
small neighborhood of x,

Constx,T ∼ 1 + max
|y−x|< 3√

δ
|ūx(y, T )|.

.
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3. Lip+-stability estimate. We now turn to the proof of our main theorem.
We begin with the Lip+-stability of the solution of (1.4)–(1.5).

Assertion 3.1. Consider the system (1.4), (1.5) subject to Lip+-bounded initial
data (1.3). Then there exists a constant (which may depend on the initial data) such
that

||uδ,ν(·, T )||Lip+(x) ≤ Const.(3.1)

Proof. The proof is based on the maximum principle for (uδ,νx )+.
Differentiation of (1.4) and (1.5) with respect to x implies

(uδ,νx )t + f ′′(uδ,ν)(uδ,νx )2 + f ′(uδ,ν)(uδ,νx )x = −1

δ
[Suu

δ,ν
x + Svv

δ,ν
x ] + ν(uδ,νx )xx,(3.2)

(vδ,νx )t =
1

δ
[Suu

δ,ν
x + Svv

δ,ν
x ].(3.3)

We now multiply (3.2) by
1+sgn(uδ,νx )

2 ; using the monotonicity of S(u, v) and convexity
of f(u) we obtain the following inequalities:

[(uδ,νx )+]
t
+ f ′(uδ,ν) · [(uδ,νx )+]

x

≤ −1

δ

[
Su(u

δ,ν
x )+ + Svv

δ,ν
x

(
1 + sgn(uδ,νx )

2

)]
+ ν[(uδ,νx )+]

xx
,(3.4)

(vδ,νx )t ≤
1

δ
[Su(u

δ,ν
x )+ + Svv

δ,ν
x ].(3.5)

By solving the second inequality, we find (with Sv(τ) := Sv(x, τ) ≡ Sv(u
δ,ν(x, τ),

vδ,ν(x, τ)) and B(t) :=
∫ t
0
Sv(τ)dτ) that

vδ,νx (t) ≤ e
B(t)
δ vδ,νx (0) +

1

δ

t∫
0

e
B(t)−B(τ)

δ Su(τ)(u
δ,ν
x (τ))+dτ.(3.6)

Plugging this into (3.4) and denoting m(t) = max
x

(uδ,νx (x, t))+, we end up with

ṁ(t) ≤ −Su(t)
δ

m(t)− Sv(t)

δ
e
B(t)
δ (vδ,νx (0))+ −

Sv(t)

δ2

t∫
0

e
B(t)−B(τ)

δ Su(τ)m(τ)dτ.(3.7)

The first and the third terms in the right-hand side of (3.7) add up to a perfect
derivative, modulo extra terms which are differentiated along the characteristics where
uδ,vxx (x(t), t) = 0 so that

ṁ(t) ≤
(
−eB(t)

δ (vδ,νx (0))+

)
t

− 1

δ

( t∫
0

e
B(t)−B(τ)

δ Su(τ)m(τ)dτ

)
t

+ k(t).(3.8)

Here the constant k(t) (depending on the convexity constant of F in (2.3), α) is an
upperbound on the extra terms differentiated along the characteristics, e.g.,
∂xB(x, t)ẋeB(t)/δ(uδ,vx (0))+/δ . . . . Integration of (3.8) over (0, T ) yields

m(T ) ≤ m(0)+(vδ,νx (0))+

[
1−eB(T )

δ

]
− 1

δ

T∫
0

e
B(T )−B(τ)

δ Su(τ)m(τ)dτ+

T∫
0

k(τ)dτ.(3.9)
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In view of the positivity of Su, we obtain that

(uδ,νx (x, T ))+ ≤ (uδ,νx (x, 0))+ + (vδ,νx (x, 0))+ +KT , KT =

T∫
0

k(τ)dτ,

and the assertion follows with Const = ||uδ,ν(·, 0)||Lip+(x) + ||vδ,ν(·, 0)||Lip+(x)

+KT .
We close this section by noting that the proof of Assertion 3.1 is based on the

straightforward, formal maximum principle for the positive part of uδ,ν ; alternatively,
it could be justified, for example, by Lp iterations in (3.4).

4. Lip’-consistency and proof of the main result. In this section we prove
the promised error estimate (2.4) in the Lip′-norm. According to the results of [Ta],
[NT], the error ||uδ,ν − ū||Lip′ is upper bounded by the truncation error∣∣∣∣∣∣[uδ,ν + v(uδ,ν)]t + f(uδ,ν)x

∣∣∣∣∣∣
Lip′(x,t)

.(4.1)

This quantity measures by how much uδ,ν fails to satisfy the limiting equation (1.10).
To complete this proof we have to show, therefore, that the truncation error is of
order O(ε(δ) + δ + ν). We proceed as follows.

Adding the two components of the regularized system (1.5) to (1.4), we obtain
that

uδ,νt + vδ,νt + f(uδ,ν)x = νuδ,νxx ,

which we rewrite as

∗[uδ,ν + v(uδ,ν)]t + f(uδ,ν)x = uδ,νt + vδ,νt + f(uδ,ν)x
+[v(uδ,ν)− vδ,ν ]t = νuδ,νxx + [v(uδ,ν)− vδ,ν ]t.

It is here that we take advantage of the weak Lip′-norm introduced earlier in section
2: by measuring the L1-size of its primitive, the right-hand side of the last equality
tells us that the truncation error in (4.1) does not exceed

||νuδ,νxx + [v(uδ,ν)− vδ,ν ]t||Lip′(x,t)
≤ ConstT ·

[
ν||uδ,νx ||L1(x,t) + ||v(uδ,ν)− vδ,ν ||L1(x,t)

]
=: ConstT ·

[
I + II

]
.(4.2)

We proceed with estimating the two terms on the right. First, since uδ,ν is
Lip+-bounded, (3.1), it has a bounded variation, ||uδ,νx ||L1(x,t) ≤ CK (where CK

may depend on the Lip+-bound, K, and the finite support of uδ,ν) and, therefore,
I ≤ O(ν). Next, we find that the second term, II, is of order

II ≡ ||v(uδ,ν)− vδ,ν ||L1(x,t) ∼ ||S(uδ,ν , vδ,ν)||L1(x,t).(4.3)

Indeed, since 0 < η ≤ −Sv ≤ Const, we have

1

η
≤ |v(uδ,ν)− vδ,ν |
|S(uδ,ν , v(uδ,ν))− S(uδ,ν , vδ,ν)| ≤ Const
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and, hence, |v(uδ,ν) − vδ,ν | ∼ |S(uδ,ν , v(uδ,ν)) − S(uδ,ν , vδ,ν)| = |S(uδ,ν , vδ,ν)|, and
(4.3) follows. Returning to (4.2) we find that

||νuδ,νxx + [v(uδ,ν)− vδ,ν ]t||Lip′(x,t) ≤ ConstT ·
[
I + II

]
≤ ConstT ·

[
ν + ||S(uδ,ν , vδ,ν)||L1(x,t)

]
.(4.4)

To conclude with the promised O(ε(δ) + δ + ν)-bound, it remains to prove that

||S(uδ,ν , vδ,ν)||L1(x,t)—or, utilizing (4.3), that δ||vδ,νt (·, t)||L1(x) is of order O(ε(δ)+δ),

||S(uδ,ν(·, t), vδ,ν(·, t))||L1(x) ≡ δ||vδ,νt (·, t)||L1(x) = O(ε(δ) + δ).(4.5)

To achieve such an estimate, we differentiate (1.4) with respect to t, multiply by

sgn(uδ,νt ), and obtain

|uδ,νt |t + (f ′(uδ,ν)uδ,νt )xsgn(uδ,νt ) = −1

δ

(
Su|uδ,νt |+ Sv|vδ,νt |sgn(uδ,νt )sgn(vδ,νt )

)
+ε(uδ,νt )xxsgn(uδ,νt ).(4.6)

The same treatment of equation (1.5) yields

|vδ,νt |t =
1

δ

(
Su|uδ,νt |sgn(uδ,νt )sgn(vδ,νt ) + Sv|vδ,νt |

)
.(4.7)

Next, we integrate the following equations with respect to x:

d

dt
||uδ,νt ||L1(x) ≤ −1

δ

(∫
x

Su|uδ,νt |dx+

∫
x

Sv|vδ,νt |sgn(uδ,νt )sgn(vδ,νt )dx

)
,(4.8)

d

dt
||vδ,νt ||L1(x) ≤

1

δ

(∫
x

Su|uδ,νt |sgn(uδ,νt )sgn(vδ,νt )dx+

∫
x

Sv|vδ,νt |dx
)
.(4.9)

Finally, we add up (4.8) and (4.9), obtaining

d

dt

[
||uδ,νt ||L1(x) + ||vδ,νt ||L1(x)

]
≤ 1

δ

[∫
x

Su|uδ,νt |
(
sgn(uδ,νt )sgn(vδ,νt )− 1

)
dx

+

∫
x

Sv|vδ,νt |
(
1− sgn(uδ,νt )sgn(vδ,νt )

)
dx

]
≤ 0.

It follows that

||uδ,νt (·, t)||L1(x) + ||vδ,νt (·, t)||L1(x) ≤ ||uδ,νt (·, 0)||L1(x) + ||vδ,νt (·, 0)||L1(x)(4.10)

and, in particular,

δ||vδ,νt (·, t)||L1(x) ≤ δ||uδ,νt (·, 0)||L1(x) + δ||vδ,νt (·, 0)||L1(x).

To conclude this proof, we show that the upper bound on the right does not exceed the
promised O(ε(δ)+δ). Indeed, by equations (1.4)–(1.5), uδ,νt = −vδ,νt −f(uδ,ν)x+νuδ,νxx ,
and hence

δ||uδ,νt (·, 0)||L1(x) + δ||vδ,νt (·, 0)||L1(x) ≤ 2||S(uδ,ν(·, 0), vδ,ν(·, 0))||L1(x)

+δ||f(uδ,ν(·, 0))x||L1(x) + δν||uδ,νxx (·, 0)||L1(x).
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The three terms on the right are upper-bounded by O(ε(δ)+ δ) since, by our assump-
tion of the “prepared” initial data (1.12), ||S(uδ,ν(·, 0), vδ,ν(·, 0))||L1(x) = O(ε(δ)); the

BV-boundedness of uδ,ν yields δ||f(uδ,ν(·, 0))x||L1(x) = O(δ) and, finally, since the ini-

tial data are assumed to be in W 2(L1), then δν||uδ,νxx (·, 0)||L1(x) = O(δν) << O(δ).
This completes the proof of Theorem 2.1.

Remark. We close by noting that the W 2(L1)-regularity of initial data used in
the last stage of the proof can be relaxed. In fact, it is sufficient to assume ||u0x||L1 +
ν||u0xx||L1 ≤ Const.

Note added in proof. We thank Professor R. Natalini for pointing out a gap
in the previous version of the proof of Assertion 3.1. Details will appear elsewhere.
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Abstract. Spatial analyticity properties of the solution to Burgers’ equation with a generic
initial data are presented, following the work of Bessis and Fournier [Research Reports in Physics:
Nonlinear Physics, Springer-Verlag, Berlin, Heidelberg, 1990, pp. 252–257]. The positive viscosity
solution is a meromorphic function with a countable set of conjugate poles confined to the imaginary
axis. Their motion is governed by an infinite-dimensional Calogero dynamical system (CDS). The
inviscid solution is a three-sheeted Riemann surface with three branch-point singularities.

Exact pole locations are found independent of the viscosity at the inviscid shock time t∗. For
t 6= t∗, the time evolution of the poles is obtained numerically by solving a truncated version of
the CDS. A Runge–Kutta scheme is used together with a “multipole” algorithm to deal with the
computationally intensive nonlinear interaction of the poles. Additionally, for t ≤ t∗, the small
viscosity behavior of the poles is shown to be a perturbation of the conjugate inviscid branch-point
singularities ±xs(t). The numerical pole dynamics also provide the width of the analyticity strip
which remains uniformly bounded away from zero, agreeing with asymptotic predictions.

For small ν > 0 and t ≥ t∗, different saddle-point approximations of the solution are found
within and outside the caustics x = ±xs(t). The transition between the two regimes at x = ±xs(t)
is described by a uniform asymptotic expansion involving the Pearcey integral. The solution is
computed for small viscosity using pole dynamics, finite differences (method of lines), and asymptotic
methods (saddle-point method); numerical agreement is established.

Key words. partial differential equations, asymptotic approximations, pole dynamics, domain
of analyticity
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1. Introduction. In this article we investigate the spatial analyticity properties
of a solution to Burgers’ equation (hereafter referred to as “BE”):

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
, x ∈ R, t > 0, ν ≥ 0,(1.1)

where the parameter ν is a viscosity coefficient and u = uν(x, t) represents the veloc-
ity field of a fluid particle at position x in space and time t. BE is a model for the
statistical theory of turbulence [9, 10] which can be thought of as a simplified one-
dimensional scalar analog of the Navier–Stokes equations of fluid dynamics. Although
it does not exhibit the complexity of the Navier–Stokes equations, it does illustrate
the interaction between a nonlinear first-order convective term and a second-order
diffusive one. This feature, which is shared with the Navier–Stokes equations, may
help us to understand the questions of regularity of so complicated a system. Al-
though Burgers’ model is not a good model for turbulence because it does not exhibit
any chaotic behavior, there are other important applications besides the Ising model
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analogy presented by Bessis and Fournier in [7]. A partial list of such applications
can be found in the introduction of the work by She, Aurell, and Frisch in [30].

There are many tools which can be used to evaluate domains of analyticity of
solutions to nonlinear PDEs: Painlevé expansions, Padé approximants, pole dynamics,
spectral methods, the abstract Cauchy–Kowalewski theorem, and, more generally,
methods involving analytic norms.

The work of Bardos and Benachour [5] was pioneering because it used complex
analytic techniques (analytic norms) to describe domains of regularity for equations
of fluid dynamics: Bardos and Benachour showed that the loss of analyticity for the
incompressible Euler equations in R

n follows from a blowup in the vorticity ω = ∇×u,
in analogy with the blowup of the solution of the inviscid BE (ν = 0), which is driven
by the blowup of the gradient of the solution ∂u/∂x.

Another method which also involves analytic norms is the abstract Cauchy–
Kowalewski theorem. A concise and improved version of the original work of Nirenberg
[27] can be found in [11]. One of the limitations of this method is that it cannot deal
with parabolic PDEs. An interesting combination of Painlevé expansions and the
abstract Cauchy–Kowalewski theorem applied to BE can be found in [23].

As far as spectral methods are concerned, we only mention the works of Sulem,
Sulem, and Frisch [35] and Fournier and Frisch [19], both of which deal with BE. Ref-
erence [35] focuses on the numerical implementation of spectral methods to evaluate
the widths of analyticity strips of solutions to nonlinear PDEs. Reference [19] focuses
on spectral methods applied to the deterministic and statistical BE. More references
can be found in both of these works.

The method of pole dynamics originated with Kruskal’s work [26], followed by
Calogero [13] and the Choodnovskys [16], who developed a mathematical tool for what
was to become a very powerful method to solve nonlinear PDEs. Indeed, they showed
that a very large class of nonlinear evolution equations has an associated/equivalent
N-body problem/formulation. This method consists in inserting into the PDE a pole
expansion of the solution (a Mittag–Leffler expansion where the complex spatial poles
are time dependent). Compatibility conditions are found in the form of a dynamical
system for these poles; this dynamical system is referred to as the Calogero dynamical
system (CDS for short).

In [20], Frisch and Morf describe complex time singularities for nonlinear PDEs
as well as make a first attempt to describe spatial singularities for BE through pole
dynamics. In [20, section 4], a list of other references which use pole dynamics can be
found. In [19], Fournier and Frisch devoted greater attention to (real time) complex
spatial singularities for the inviscid BE from a deterministic and a statistical point of
view. In the meantime, Thual, Frisch, and Hénon [36] used pole dynamics to compute
the stationary pole distribution and stationary solution of a Sivashinsky-type flame-
front propagation pseudo-differential equation. From the work of Fournier and Frisch
[19], Bessis and Fournier [6, 7] went on to analyze the spatial analytic properties for
both the inviscid and viscous deterministic case using a generic initial data. Kimura
[25] has described complex space and time pole positions for the BE with periodic
initial data by straightforwardly solving for the roots of the Cole–Hopf variable.

In [6, 7], Bessis and Fournier studied the analytical properties of the solution to
the BE with a cubic initial data, namely,

u(x, 0) = u0(x) = 4x3 − x/t∗, x ∈ R,(1.2)

and t∗ is a fixed positive parameter corresponding to the first blowup time of the
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solution to the inviscid equation. This work stemmed from the observation [19] that
the large wavenumber asymptotic expansion of the Fourier transform of the inviscid
solution was degenerate at the shock time t∗; it was even incorrect beyond t∗. Thus,
Bessis and Fournier sought for an explanation using complex analytic methods. They
showed that the inviscid shock could be interpreted as a permutation of the two sides
of the “physical Riemann sheet.” As far as the viscous case is concerned, Bessis
and Fournier showed that the poles were confined to the imaginary axis and that
they satisfied a CDS. Additionally, they presented a “limiting” pole density which
characterized the process of pole condensation as ν → 0+.

The inviscid equation ut+uux = 0 is a simple hyperbolic quasi-linear PDE. Its so-
lution develops a cube root singularity at the origin at the time t = −(infx u

′
0(x))−1 >

0, which, for (1.2), equals t∗. This is known to be a generic singularity for the invis-
cid BE. It is due to the coalescence at the origin (x = 0) of two complex conjugate
branch points ±xs(t) of order two. Thus, the cubic initial data is considered generic
due to the local cube root shape of the shock of the inviscid solution at t = t∗ and the
associated cube root singularity (for further details, see [32, App. A] and [7, 12, 19]).
Another compelling reason for which a cubic polynomial is used is that its solution can
be completely analyzed for both ν > 0 and ν = 0, unlike a higher-order polynomial
of the form u0(x) = 2nx2n−1 − x/t∗ (see [32, App. D]).

For t > t∗, the inviscid solution has three real values within the real interval
(−xs, xs), and in the real complement (−xs, xs)c it has one real value and two complex
values (see [32, App. C] and [12]). By extending (for all t > 0) the domain of the
spatial variable x and the range of the solution u into the complex plane, Bessis and
Fournier have shown in [6, 7] that the analytic structure (topology) of the inviscid
solution is a three-sheeted Riemann surface with three branch points. One is at
infinity, and the other two come down the imaginary axis as a conjugate pair and
coalesce at the origin at the shock time t∗ to form a third-order branch point. The
inviscid shock in the real plane is interpreted as the permutation of the physical
Riemann sheets which make up the Riemann surface. More precisely, it appears to
be the connecting path between the two sides of the physical Riemann sheet which
are separated by nonphysical ones (see [6] for more details).

In this work, we propose to correct and extend the results of Bessis and Fournier
in [7] by using complex analytic methods and asymptotic methods (including spectral
methods). Most important, we show how to use pole dynamics to determine the
evolution of the domain of regularity of the solution to BE. This method can be
adapted to a wide range of nonlinear PDEs.

The positive viscosity solution (ν > 0) is a meromorphic function with a countable
set of conjugate pairs of simple poles for all t > 0. These poles move towards the origin
along the imaginary axis, then turn around after a finite time and start moving away
from the origin (see [32, Figs. 1.1, 1.2]). In the same way that the dynamics of the
branch points of the inviscid solution help in understanding the formation of a shock
in the real (physical) plane, we intend to illustrate the preservation of regularity of the
viscous solution by further analyzing the dynamics of the simple poles. In turn, this
will shed some light on the interaction between the nonlinear convective term and the
diffusive one present in the (viscous) BE. Furthermore, we clarify the limiting process
which describes the vanishing viscosity limit by focusing on the small ν asymptotic
behavior of the poles. As ν → 0+, the poles condense on the imaginary axis, yielding
an asymptotic pole density. The inviscid limit can be recovered by introducing an
integral representation of the Mittag–Leffler expansion which involves this density.
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These results are presented in [32].
We focus on BE with the same cubic initial data (1.2) used by Bessis and Fournier,

whose choice will be clarified. It should be noted, however, that the method of pole
dynamics used in this article is adaptable to a large class of one-dimensional evolution
equations (cf. [13, 16, 36]). The main difficulty in adapting this method to equations
with spatial derivatives of order higher than two is that it may translate into additional
algebraic conditions. Thus, one may have to solve a differential-algebraic system
of equations (DAE). Additionally, the choice of the initial data need not be fixed
and is actually the focus of current research in the case of BE with random initial
data. Much attention has recently been devoted to this problem (see, for example,
[4, 19, 26, 30, 34]). A final note on the generality of the method: the pole expansion
and pole dynamics which are derived for BE are valid for any meromorphic solution
to BE and as such correct the pole expansion previously derived for BE.

In part I, we describe exact and asymptotic properties of the positive viscosity
solution, its pole locations, and their dynamics.

In section 2, the solution is explicitly given by the Cole–Hopf transform for ν > 0.
From a careful analysis of the Cole–Hopf variable, the solution is expressed in terms of
its polar singularities by means of a Mittag–Leffler (pole) expansion. A correction to
the infinite dimensional CDS derived by Bessis and Fournier which governs the time
evolution of the poles is found by replacing the pole expansion of the solution into
the PDE. This system represents compatibility conditions for the existence of such a
pole expansion.

In section 3, from the integral representation obtained via the Cole–Hopf anal-
ysis and by means of the saddle-point method, we derive an asymptotic formula for
the solution uν(x, t) for small ν. However, for t ≥ t∗, there is a degeneracy in the
asymptotic formula at the caustic x = ±xs(t) where two saddle points coalesce; thus,
we derive both the regular saddle-point analysis within and outside the caustic and a
uniformly valid expansion via Pearcey’s integral, which correctly describes the transi-
tion between the two regions. The asymptotic behavior of the solution at the caustic
uν(xs(t), t) is obtained from the Pearcey representation and is shown to match the
behavior obtained from the classical saddle-point analysis.

In section 4, we analyze the pole locations: at the inviscid shock time t∗ we
use the Cole–Hopf variable to approximate the poles. Highly accurate asymptotic
formulas of a related Fourier integral derived in [31] enable us to obtain almost exact
pole locations independent of the viscosity. At other times (t 6= t∗), when no such
formula can be obtained, we derive weaker asymptotic results: for small ν > 0 and
0 < t ≤ t∗, we show that the poles are a perturbation of the inviscid branch-point
singularities of the form βk(t, ν) = |xs(t)|+O((kν)3/4). For t > t∗, their asymptotic
behavior no longer depends on the inviscid branch-point singularities, and it is given
by βk(t, ν) = O((kν)3/4). Similarly, we also show that for large k, fixed ν, and all
t > 0, we have βk(t, ν) = O((kν)3/4).

In section 5, we analyze the time evolution of the poles more explicitly since their
actual location for t 6= t∗ has not been described. The method consists in numeri-
cally solving a truncated version of the CDS. The “initial data” which is adjoined to
this truncated system is generated by the exact pole locations found in section 4. A
Runge–Kutta–Fehlberg 4–5 time marching scheme is used in combination with the
“multipole” algorithm designed by Greengard and Rokhlin [21]. This multipole algo-
rithm reduces the computational complexity of the nonlinear interaction of the poles
in the Calogero ODE system from O(N2) to O(N logN) particles (poles), thereby
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allowing us to carry out very large simulations with up to N = 50, 000 poles. The
closed-form solution to a two-pair pole dynamics is obtained and serves as a test case
for the multipole simulation. The poles ±βk(t, ν) are confined to the imaginary axis
and move towards the origin until a time t = tu(k), k ∈ N

∗; this is the time at which
they turn around and move away from the origin. These turn-around times tu(k) de-
crease as k increases: tu(1) > tu(2) > · · · > tu(n) > · · · > 0. Moreover, tu(1) occurs
before t∗ for ν ' .01 and after t∗ for ν / .01. Another worthwhile feature is that tu
increases with decreasing ν, in accordance with the fact that the time at which the
solution starts decaying increases with decreasing ν.

From this procedure, the evolution of the width of the analyticity strip is shown to
remain uniformly bounded away from zero, agreeing with the asymptotic predictions
and the well-known fact that BE with analytic initial data has a smooth solution for
all times as long as ν > 0 (in agreement with the results of Sulem, Sulem, and Frisch
in [35]).

Finally, the solution is computed for small viscosity using pole dynamics, finite
differences, and asymptotic methods (saddle-point analysis), and numerical agreement
is established. The difference scheme we use is the method of lines consisting of the
same Runge–Kutta–Fehlberg 4–5 scheme in time combined with central differencing
in space. The solution is reconstructed from the pole positions and the Mittag–Leffler
(pole) expansion of the solution.

In part II [32], the zero-viscosity limit of the solution is obtained via a process
of pole condensation. It is shown that the asymptotic density of poles, which de-
scribes their condensation on the imaginary axis, can be obtained as the weak limit
of a discrete Borel measure (analogously to the zero-dispersion limit of the spectral
measure in the KdV problem). The analytic structure of the inviscid solution, which
is a three-sheeted Riemann surface with three branch-point singularities, is recovered.
The continuum limit of the pole expansion of the solution and the CDS for the poles
is a system of two integro-differential equations which form a new representation of
the solution to the inviscid BE. This formalism clarifies the relation between pole
dynamics and branch-cut dynamics. A large wave number asymptotic expansion of
the Fourier transform of the inviscid solution uniformly valid in a neighborhood of the
shock time is described in terms of the Airy function. This provides a clarification of
the degeneracy presented by Fournier and Frisch in [19]. In [33], this methodology is
adapted to the dispersive case ν ∈ iR.

2. Integral representation, pole expansion, and pole dynamics for
ν > 0.

2.1. The Cole–Hopf solution and Mittag–Leffler expansion. The Cole–
Hopf solution to the initial value problem (1.1)–(1.2) can be represented by a Mittag–
Leffler expansion as follows.

Theorem 2.1. For all ν, t, t∗ > 0, the solution to BE with initial data u0(x) =
4x3 − x/t∗ is

uν(x, t) =
x

t
− 2ν ∂x log

(
Eν(x, t)

)
,

Eν(x, t) =

∫ ∞

−∞
exp

{
1

2ν

(x
t
y + αy2 − y4

)}
dy,

where 2α = 1/t∗ − 1/t ∈ R. For fixed ν, t, Eν(x, t) is an even entire function of x of
order 4/3 with countably many simple zeros which come in pure imaginary opposite
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and conjugate pairs. Moreover, Eν(x, t) has the infinite product representation

Eν(x, t) = Cν(t)
∞∏
n=1

(
1 +

x2

β2
n(t, ν)

)
,

∞∑
n=1

1

βn
= +∞,

∞∑
n=1

1

β2
n

< +∞,

Cν(t) =

√
α

2
e
α2

16ν K1/4

(
α2

16ν

)
, Cν(t∗) = ν1/42−3/4Γ(1/4),

where Kq(z) is the modified Bessel function of the second kind. Thus, the solution
uν(x, t) has an alternate representation in terms of a Mittag–Leffler (pole) expansion

uν(x, t) =
x

t
−

∞∑
n=1

4νx

x2 + β2
n(t, ν)

=
x

t
− 2ν

∞∑
n=−∞
n6=0

1

x− iβn(t, ν)
,

which converges uniformly on compact sets for x away from the poles an = ±iβn.
Proof. The solution to system (1.1) is constructed using the Cole–Hopf nonlin-

ear transform u = −2ν ∂x log(φν) [17, 22], which was first introduced by Forsyth
(cf. [18, section 207, p. 100]). This nonlinear dependent variable transformation
maps BE into the diffusion equation for φν(x, t) with corresponding initial data
φ0(x) = exp{− 1

2ν

∫ x
0
u0(y)dy}. The solution is therefore represented by means of

a convolution:

φν(x, t) = (Kν ∗ φo) (x, t)

= (4πνt)−1/2

∫ ∞

−∞
exp

{
− (x− y)2

4νt
− 1

2ν

∫ y

0

u0(η)dη

}
dy

= Kν(x, t)Eν(x, t),

where

Kν(x, t) = K(x, νt) = (4πνt)−1/2 exp
(−x2/4νt

)
is the fundamental solution of the diffusion equation and

Eν(x, t) =

∫ ∞

−∞
exp

{
1

2ν

∫ y

0

(x
t
− η

t
− u0(η)

)
dη

}
dy.(2.1a)

Since ∂x log
(
Kν(x, t)

)
= −x/2νt, the solution of the original problem is given by

uν(x, t) =
x

t
− 2ν ∂x log

(
Eν(x, t)

)
.(2.1b)

For u0(x) = 4x3 − x/t∗, ν, t > 0, we obtain the following solution:

Eν(x, t) =

∫ ∞

−∞
exp

{
1

2ν

(x
t
y + αy2 − y4

)}
dy, α =

t− t∗
2tt∗

∈ R.(2.2)

It is clear that Eν is an even, real analytic function of x and therefore satisfies
the conjugacy relation Eν(x, t) = Eν(x, t) (the analyticity of Eν can be verified
using Morera’s theorem). The positive order λ of an entire function f(z) is de-
fined as λ = lim supr→+∞ log logM(r)/log r, where M(r) = max|z|=r |f(z)|. For
a fixed time t > 0, the order of Eν is the smallest number λ ∈ R+ such that
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Mν(r) = max|x|=r |Eν(x, t)| ≤ exp(rλ+ε) for any ε > 0 as soon as r is sufficiently
large. From the asymptotic behavior of Eν for |x| = r → +∞, we find in (4.4) that
Mν(r) = O(r1/3 exp(−κ(t) r4/3/2ν)), where κ(t)/2ν is the “type” of the entire func-
tion Eν . Thus, it is clear that its order is λ = 4/3. It is known that entire functions
of fractional order have infinitely many zeros (see [3, 8]); thus, Eν has infinitely many
zeros that come in opposite and conjugate pairs. Since the fractional order of the en-
tire function Eν is also the exponent of convergence of its zeros an (see again [3, 8]),
we have

∞∑
n=1

1

|an|λ+ε
< +∞ ∀ε > 0.(2.3)

Using a Hadamard decomposition, we construct the solution uν by factorization of
the zeros of Eν . The canonical infinite product expansion of Eν is (see [3])

Eν(x, t) = Cxmeg(x)
∞∏
n=1

(
1− x

an

)
ex/an+ 1

2 (x/an)2+···+ 1
p (x/an)p ,

where g(x) is a polynomial of degree q. The integer h = max(p, q), which is called
the genus of the product representation of the entire function Eν , satisfies the bound
h ≤ λ ≤ h + 1 ⇒ h = 1 ⇒ p, q ≤ 1. Moreover, since Eν is an even function of
x, we must have q = deg g(x) = 0, and therefore p = 1 (since p + 1 > λ, p ∈ N).
Since C = Cν(t) = Eν(0, t) 6= 0 (see (2.6a)), we must also set m = 0, so the canonical
product must be of the form

Eν(x, t) = Cν(t)
∞∏
n=1

(
1− x

an

)
ex/an ,

∞∑
n=1

1

|an| = +∞,
∞∑
n=1

1

|an|2 < +∞.

Due to the even parity of Eν , its zeros come in opposite pairs x = ±an; thus, the
product representation reduces to the simple form

Eν(x, t) = Cν(t)
∞∏
n=1

(
1− x2

a2
n

)
.

In [29], Pólya showed that functions of the form∫ ∞

−∞
e−at

4n+bt2n+iytdt n ≥ 1, a > 0, b ∈ R(2.4)

have only real zeros. Using this property, it is straightforward to show that the zeros
of Eν come in pure imaginary conjugate pairs; thus, we let an = iβn, βn > 0 and
obtain an infinite product expansion of Eν valid for all t, ν > 0:

Eν(x, t) = Cν(t)
∞∏
n=1

(
1 +

x2

β2
n(t, ν)

)
,

∞∑
n=1

1

βn
= +∞,

∞∑
n=1

1

β2
n

< +∞,(2.5)

where Cν(t) is a constant depending on t which can be found explicitly: let Kq(z) be
the modified Bessel function of the second kind; then

Cν(t) = Eν(0, t) =

∫ ∞

−∞
e(αy

2−y4)/2ν dy =

√
α

2
e
α2

16ν K1/4

(
α2

16ν

)
,(2.6a)

Cν(t∗) = Eν(0, t∗) =

∫ ∞

−∞
e−y

4/2ν dy = ν1/42−3/4Γ(1/4),(2.6b)
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with K1/4(z) = O(z−1/4) as z → 0. After logarithmic differentiation of Eν and by
using (2.1b) and (2.5), the spatially singular part of the solution being the ratio of
two entire functions is meromorphic. Thus, we obtain a Mittag–Leffler expansion of
the solution which we refer to as the pole expansion:

uν(x, t) =
x

t
−

∞∑
n=1

4νx

x2 + β2
n(t, ν)

=
x

t
− 2ν

∞∑
n=−∞
n6=0

1

x− iβn(t, ν)
.(2.7)

In the second sum, we have adopted the convention that β−n = −βn. Furthermore,
it must be understood as a symmetric (convergent) sum of the form

∞∑
n=−∞
n6=0

1

x− iβn(t, ν)
=
∑
n∈N∗

(
1

x− iβn(t, ν)
+

1

x+ iβn(t, ν)

)
.

Since
∑

n β
−2
n < ∞ for any fixed t, ν > 0, the series defining uν in (2.7) converges

absolutely and uniformly on any strip 0 < βk < δk ≤ |=x| ≤ δk+1 < βk+1, k ∈ N
∗ =

N\{0}. Therefore, uν is analytic in the strip |=x| < β1 where iβ1 is the first ordered
pole on the imaginary axis. From (2.7), uν conserves the odd parity of the initial data
as expected from the PDE: uν(−x, t) = −uν(x, t). In order for this pole expansion
to make sense, the behavior of the spatially singular part of the expansion should be
unbounded as t→ 0+ in order to balance with the term x/t. �

2.2. CDS for the poles βn(t, ν). We describe the time evolution of the poles
βn(t, ν) according to an infinite dimensional dynamical system which is found as a
compatibility condition for the existence of the pole expansion (2.7). We prove the
following property.

Property 2.2. The imaginary part βn = βn(t, ν) : R+×R+ → R+ of the simple
poles x = ±iβn of uν(x, t) satisfy the Calogero-type infinite-dimensional dynamical
system

β̇n =
βn
t

+
ν

βn
− 4νβn

∞∑
l=1
l 6=n

1

β2
l − β2

n

∀n ∈ N
∗.

Adopting the convention that β−n = −βn, we have a symmetric formulation:

β̇n =
βn
t
− 2ν

∞∑
l=−∞
l 6=n,0

1

βl − βn
∀n ∈ Z

∗.

Moreover, the variables γn(t, ν) = β2
n(t, ν)/ν satisfying

∑
n γ

−1
n < +∞ are the solution

to the ν-independent infinite system of ODEs:

γ̇n
2

=
γn
t

+ 1− 4γn

∞∑
l=1
l 6=n

1

γl − γn
∀n ∈ N

∗.

Proof. The usual pole expansion that is sought in [1, pp. 203–209] and [13, 16, 20]
is of the form

uν =
N∑
n=1

2ν

x− iβn
.(2.8)
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However, as N → +∞ this series diverges for any fixed x, t, ν. Since we know that the
representation (2.7) converges away from the poles (since

∑
n β

−2
n < ∞ from (2.5))

instead of using (2.8), we replace the full Mittag–Leffler/pole expansion (2.7) in the
PDE (1.1). The extension from a finite pole expansion to an infinite one is easily
made (cf. [16, section 3]). We obtain an infinite system of ODEs which govern the
motion of the poles βn(t, ν) as they evolve with time for t > 0. We introduce the
following notations:

β̇n =
dβn
dt

,
∑
n

=
∞∑
n=1

,
∑
l

=
∞∑
l=1

,
∑
l 6=n

=
∞∑
l=1
l 6=n

.

Using partial fraction expansion we have the following property.
Property 2.3. Let x /∈ {iβn ∈ iR for all n ∈ Z

∗} and l 6= n; then

1

(x2 + β2
n)(x2 + β2

l )
=

1

β2
n − β2

l

·
(

1

x2 + β2
l

− 1

x2 + β2
n

)
(2.9a)

1

(x2 + β2
n)(x2 + β2

l )
2

=
1

(β2
l − β2

n)2
·
(

1

x2 + β2
n

− 1

x2 + β2
l

)

+
1

β2
n − β2

l

· 1

(x2 + β2
l )

2
.

(2.9b)

Due to obvious symmetries, we also have

∑
n

∑
l 6=n

1

(β2
n − β2

l )
2
·
(

1

x2 + β2
n

− 1

x2 + β2
l

)
= 0.(2.10)

Thus, combining (2.9b) and (2.10), we obtain Property 2.4.
Property 2.4. Let x /∈ {iβn ∈ iR for all n ∈ Z

∗}; then

∑
n

∑
l 6=n

1

(x2 + β2
n)
· 1

(x2 + β2
l )

2
=
∑
n

∑
l 6=n

1

β2
n − β2

l

· 1

(x2 + β2
l )

2

=
∑
n

∑
l 6=n

1

β2
l − β2

n

· 1

(x2 + β2
n)2

.

After replacing the pole expansion (2.7) into the original PDE (1.1), canceling
the terms ±x/t2, regrouping terms together in powers of (x2 + β2

n)−1, dividing by
8νx, and appealing to both equation (2.9a) of Properties 2.3 and 2.4, Property 2.2 is
proved. Note that in [7], the pole interaction in the dynamical system was incorrectly
stated as a divergent semi-infinite sum of the form

β̇n =
βn
t
− 2ν

∑
l≥1
l 6=n

1

βl − βn
.

Due to the generality of the integral representation (2.1a,b) of solutions to an
initial value problem (IVP) for BE, it is important to see that the pole representation
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(2.7) and pole dynamics of Property 2.2 are special cases of the general representation
for a meromorphic solution to BE.

Property 2.5. Let I ⊆ Z be a set of indices, either finite or countable, and let
{an(t, ν), n ∈ I} be a finite or countable set of time-dependent pole locations. Then
any meromorphic solution with poles {an(t, ν), n ∈ I} must have the following pole
representation/pole dynamics:

Pole representation: uν(x, t) =
x

t
− 2ν

∑
n∈I

1

x− an(t, ν)
,

Pole dynamics: ȧn =
an
t
− 2ν

∑
l∈I
l 6=n

1

an − al
∀n ∈ I.

Moreover, if the initial data is odd, then the poles must come in opposite pairs
{a±n(t, ν), n ∈ I ⊆ Z

∗ = Z\{0} | a−n = −an}. In this case, the pole represen-
tation is fully symmetric.

3. Asymptotic analysis of uν(x, t) as ν → 0+, t > t∗. When ν → 0+, we
evaluate the asymptotic behavior of Eν using the saddle-point method. The caustic
x = xs(t) corresponds to the envelope of the characteristics of the inviscid Burgers
solution and is also determined by the following system of equations:

{
0 = wz(z, x) = x/t+ 2αz − 4z3,
0 = wzz(z, x) = 2α− 12z2,

(3.1)

where

w(z, x) =

∫ z

0

(x
t
− η

t
− u0(η)

)
dη(3.2)

is the phase function of the integrand in the definition of Eν(x, t). This system repre-
sents the conditions for the phase function w to have saddle points of multiplicity two,
thereby yielding a curve in the (x, t) plane on which two saddle points of multiplicity
one coalesce into a saddle point of multiplicity two. From the second equation in
(3.1), we find zcaustic(t) = ±√α/6; from the first, we have

x = xcaustic = t
(
4zcaustic(t)

3 − 2αzcaustic(t)
)

= ∓t
(

2α

3

)3/2

= ∓xs(t),(3.3)

where xs(t) = (3t∗)−3/2(t−t∗)3/2t−1/2 is the second-order branch point of the inviscid
solution described in [32, App. C]. We find that all three saddle points may be relevant
within the caustic |x| < |xs(t)| − δ/2, where δ > 0. For a discussion on such caustics,
cf. [24, 28]. When t > t∗, x ∈

(−∞,−xs(t) − δ/2
) ∪ (xs(t) + δ/2,∞), ν → 0+, the

same analysis holds and one recovers the characteristic solution outside the caustic
consisting of only one relevant saddle point. The transition from within the caustic
to outside is not uniform as the asymptotic behavior at the caustic x = ±xs(t) is
degenerate (two saddle points have coalesced). The transitionary regime from one
relevant saddle point to two at and around the caustic is therefore described by means
of the Pearcey integral which allows for a uniformly valid description.
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3.1. Inner expansion: x ∈ (−xs(t)+ δ/2, xs(t)− δ/2
)
, δ > 0, t > t∗. In

the analysis that follows, we are only concerned with the dominant behavior of Eν ;
thus, we only retain the first term:

Eν(x, t) =
∑

s=0,1,2

√
−4πν

wzz(zs, x)
exp

(
w
(
zs, x

)
2ν

)(
1 +O(ν)

)
,(3.4)

as ν → 0+, with

wz

(
zs(x, t), x

)
= 0, wzz

(
zs(x, t), x

)
= 2α− 12z2

s .(3.5)

Since

0 =
zs
4
wz

(
zs, x

)
=

xzs
4t

+
α

2
z2
s − z4

s ,

we have that

w
(
zs(x, t), x

)
=

x

t
zs + αz2

s − z4
s =

3

4

x

t
zs +

α

2
z2
s .(3.6)

The values of the saddle points zs = zs(x, t) of (3.4) are determined by the three
roots of the first equation in system (3.1), i.e., the first equation of (3.5). They are,
specifically, 


z0 = ωA+ ω2 B,
z1 = ω2A+ ω B,
z2 = A+ B,

(3.7)

where w = e2πi/3 is a cube root of unity and
 A(x, t) = (8t)−1/3 · 3

√
x+

√
x2 − x2

s,

B(x, t) = (8t)−1/3 · 3

√
x−√x2 − x2

s.
(3.8)

Note that all three saddle points are real when x, xs ∈ R and the discriminant ∆ =
x2 − x2

s < 0, that is, |x| < |xs(t)|. In this case, A = B (see [32, App. B]). Therefore,
we have zs ∈ R, w(zs, x) ∈ R, and wzz(zs, x) = 2α− 12z2

s ∈ R. Hence, all three terms
in the summation signs may be relevant. Note, however, that the expansion derived
for Eν is only valid within |x| < |xs|, and in order to get an expansion uniformly
valid across x = ±xs one needs to derive a uniform expansion as presented in section
3.3. The dominant behavior of the solution uν(x, t) is found from the Cole–Hopf
representation, so within the caustic |x| < |xs| − δ/2 we have

Uν(x, t)

t
= 2ν ∂x log

(
Eν(x, t)

)
= 2ν ∂x log

( ∑
s=0,1,2

√
−4πν

wzz(zs, x)
e
w(zs,x)

2ν

(
1 +O(ν)

))

= 2ν

∑
s=0,1,2 ∂x

(√
−4πν

wzz(zs,x)e
w(zs,x)

2ν

)
∑

s=0,1,2

√
−4πν

wzz(zs,x)e
w(zs,x)

2ν

+O(ν2).
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Since w(zs, x) ∈ R, ν > 0, and

∂w

∂x
(zs, x) =

zs
t
,(3.9)

we find

Uν(x, t) =

∑
s=0,1,2 zs · e

w(zs,x)
2ν /

√
wzz(zs, x)∑

s=0,1,2 e
w(zs,x)

2ν /
√
wzz(zs, x)

+O(ν).(3.10)

The x-differentiation of the asymptotic formula of Eν(x, t) is justified due to the
analytic dependency in x. Often one of the three saddle points is such that w(zs, x) <
0, and as such, its contribution is exponentially smaller than either of the other two.
In terms of the numerical computation that will be carried out in section 5, leaving
this term in (3.1) does not affect the value of uν . Thus, we can simplify expression
(3.10) to a two-term asymptotic expansion that is similar to the one in [38, section
4.2]. Clearly, the further away we are from the caustic, the more dominant one of
the saddle points becomes. However, since there is a point where the dominance
of one over the other changes (i.e., where they are equally relevant), we must leave
both in the asymptotic formula. Note also that wzz(zs, x) → ∞ as x → xs, which
is characteristic of the degeneracy of the asymptotic formula (3.10) at the caustic
x = xs.

Property 3.1. For x ∈ (−xs(t) + δ/2, xs(t) − δ/2
)
, δ > 0, t > t∗, the inner

expansion of the solution to BE as ν → 0+ is given by

uν(x, t) =
x

t
− Uν(x, t)

t
,

Uν(x, t) =

∑
{s:w(zs,x)>0} zs · e

w(zs,x)
2ν /

√
wzz(zs, x)∑

{s:w(zs,x)>0} e
w(zs,x)

2ν /
√
wzz(zs, x)

+O(ν).

3.2. Outer expansion: x ∈ (−xs(t) − δ/2, xs(t) + δ/2
)c

, δ > 0, t > t∗.
The inviscid limit is found in a straightforward manner in this case: only one saddle
point is relevant, so the asymptotic limit derived in section 3.1 reduces to

Uν(x, t) = U(x, t) +O(ν) as ν → 0+,

where U(x, t) = zs∗(x, t) is the spatially singular part of the inviscid solution (see [32,
App. C]). The particular saddle point zs∗ that is chosen at every x is the one for
which w(zs∗, x) = maxs=0,1,2 w(zs, x). Hence, we have the following property outside
of the caustic.

Property 3.2. Let δ > 0, t > t∗, and define zs∗(x, t) by

w(zs∗, x) = max
s=0,1,2

w(zs, x).

Then for x ∈ (−xs(t)− δ/2, xs(t) + δ/2
)c

, the solution to BE is given by

uν(x, t) =
x

t
− Uν(x, t)

t
=

x

t
− U(x, t)

t
+O(ν) as ν → 0+,

where U(x, t) = zs∗(x, t) is the Lagrangian characteristic variable of the inviscid so-
lution.
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3.3. Uniform asymptotic expansion as ν → 0+ in a neighborhood of
the caustics x = ±xs(t) for t > t∗ via Pearcey’s integral. Following the
notation of Kaminski in [24], we introduce the Pearcey integral from which one can
derive a uniform asymptotic expansion with two coalescing saddle points (see [15]):
let

P (X,Y ) =

∫ +∞

−∞
ei(v

4/4+Xv2/2+Y v) dv(3.11)

denote the Pearcey integral. Introducing the change of variable

y → (−iν/2)
1/4

v = (ν/2)
1/4

e3πi/8 v

and deforming the path of integration back to the real axis using Jordan’s lemma, we
can express Eν(x, t) as

Eν(x, t) =

∫ +∞

−∞
exp

{
1

2ν

(x
t
y + αy2 − y4

)}
dy

=

(−iν
2

)1/4 ∫ +∞

−∞
exp

{
i

(
v4

4
+
αeiπ/4√

2ν

v2

2
+
xe−iπ/8

2t

(
1

2ν3

)1/4

v

)}
dv

=

(−iν
2

)1/4

P

(
X =

αeiπ/4√
2ν

, Y =
xe−iπ/8

2t

(
1

2ν3

)1/4
)
.(3.12)

Clearly, a small ν asymptotic of Eν is equivalent to a combined asymptotic expan-
sion of the Pearcey integral as |X|, |Y | → +∞. The caustic of P (X,Y ) and the
corresponding caustic of Eν(x, t) is given by

Y =
2√
27

(−X)3/2 ⇐⇒ x = ±xs(t) ∈ R for t > t∗.(3.13)

Hence, the uniform asymptotic behavior of Eν in a neighborhood of the caustic is
found from the one of P (−X, (2/

√
27 − τ)X3/2) as X → +∞, where τ = 0 at the

caustic and τ 6= 0 away from it (see [24]). This amounts to a uniformly valid expansion
in the interval |x± xs(t)| ≤ |δ±(τ ; t)|, where δ±(τ) = δ±(τ ; t) = ∓√27xs(t) · τ/2 ∈ R.
This expansion is also valid outside of this interval, however the region of interest is a
neighborhood of the caustic. Indeed one only needs to use the asymptotic expansion
of the Airy function and its derivative to find the results obtained in sections 3.1 and
3.2. From (3.12) we have that

Uν(x, t) = t · 2ν ∂x log
(
Eν(x, t)

)
= t · 2ν ∂x log

[
P

(
X(ν; t) =

αeiπ/4√
2ν

, Y (ν;x, t) =
xe−iπ/8

2t

(
1

2ν3

)1/4
)]

.

Let

X = X(ν; t), Y = Y (ν;x, t) = Y (ν;x = ±xs(t)− δ±(τ ; t), t),

where δ±(τ ; t) → 0∓ as τ → 0±, so that

Uν

(
x = ±xs(t)− δ±(τ ; t), t

)
= t · 2ν ∂x logP (X,Y )

= −t · 2ν ∂τ log
(
P
(
−X, (2/

√
27− τ)X3/2

))/∂δ±
∂τ

.
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Let P (τ) = P
(−X, (2/

√
27− τ)X3/2

)
. Then, since ∂δ±/∂τ = ∓√27xs(t)/2, we have

Uν

(
x = ±xs(t)− δ±(τ ; t), t

)
= ± 4νt√

27xs(t)

Pτ (τ)

P (τ)
.

Let

Ai(z) =
1

2πi

∫ i∞

−i∞
ev

3/3−zv dv

stand for the Airy function (cf. [2]); then the following property is found in [24].
Property 3.3. The uniform asymptotic expansion of P (−X, ( 2√

27
− τ)X3/2) as

X → +∞ in a neighborhood of τ = 0 is given by

P

(
−X,

(
2√
27
− τ

)
X3/2

)
=

[
eiX

2[f(v2)+f(v3)]/2

{
p0(τ)

2π

X1/6
Ai(−X4/3ζ(τ))

+q0(τ)
2π

iX5/6
Ai′(−X4/3ζ(τ))

}
+ eiX

2f(v1)

(
π

3v2
1 − 1

)1/2
1 + i

X1/2

](
1 +O

(
1

X2

))
,

with

p0(τ) = 3−1/6(1 +O(τ)), q0(τ) = −3−5/6

2
(1 +O(τ)), ζ(τ) = 3−1/6τ(1 +O(τ)),

and

f(v) = f(v; τ) =
v4

4
− v2

2
+

(
2√
27
− τ

)
v,

and the vi, i = 1, 2, 3 are the saddle points of f(v; τ) determined by the equation
fv(vi; τ) = 0, so f(vi; τ) = −v2

i /4 + (2/
√

27− τ)3vi/4. The vi’s are, specifically,

v1(τ) = − 2√
3

sin
(π

3
+ φ(τ)

)
, v2(τ) =

2√
3

sin(φ(τ)), v3(τ) =
2√
3

sin
(π

3
− φ(τ)

)
,

where

φ = φ(τ) =
1

3
arcsin

(
1− τ

√
27/2

)
, τ ∈ R, |φ| ≤ π

6
.

In order to derive the uniform asymptotic expansion of the derivative Pτ , one can
differentiate termwise the expression in Property 3.3 due to the analytic dependency
of P (X,Y ) in both its arguments X,Y (see [24] and [37, p. 52]). Therefore, since

X =
αeiπ/4√

2ν
⇒ iX2

2
= −α2

4ν
⇒ X−2 = O(ν)

and

∂f

∂τ
(vi; τ) = −vi, ∂f

∂v
(vi; τ) = 0 ⇒ df

dτ
(vi(τ); τ) = −vi(τ),

and using the fact that 2α/3 = (xs/t)
2/3, the next property is proved.
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Property 3.4. Let δ±(τ ; t) = ∓√27xs(t) · τ/2. Then the uniform asymptotic
expansion as ν → 0+ of Uν(x = ±xs(t)− δ±(τ ; t), t) in a neighborhood of the caustic
x = ±xs(t) is

Uν

(
x = ±xs(t)− δ±(τ ; t), t

)
= ±

√
3

2

(
xs(t)

t

)1/3

×
[

[v2 + v3]e
−α2

4ν [f(v2)+f(v3)]

×
{
p0(τ)

2π

X1/6
Ai(−X4/3ζ(τ)) + q0(τ)

2π

iX5/6
Ai′(−X4/3ζ(τ))

}

+2v1 e
−α2

4ν 2f(v1)

(
π

3v2
1 − 1

)1/2
1 + i

X1/2

]
/[

e−
α2

4ν [f(v2)+f(v3)]

{
p0(τ)

2π

X1/6
Ai(−X4/3ζ(τ)) + q0(τ)

2π

iX5/6
Ai′(−X4/3ζ(τ))

}

+e−
α2

4ν 2f(v1)

(
π

3v2
1 − 1

)1/2
1 + i

X1/2

]
+O(ν) as ν → 0+.

3.3.1. Behavior at the caustics x = ±xs(t). At the caustics x = ±xs(t),
τ = 0, φ(0) = π/6, v1(0) = −2/

√
3, and v2(0) = v3(0) = 1/

√
3. Moreover,

f(vi; 0) = −v2
i /4 + vi/2

√
3, so f(v2; 0) = f(v3; 0) = −2/3 and f(v1; 0) = 1/12. Since

f(v2; 0) < 0 and f(v1; 0) > 0, the dominant term as ν → 0+ in both the numerator
and denominator of Uν is obviously the one containing the exponentially increasing

factor exp(−α2

4ν [f(v2) + f(v3)]). Therefore, the dominant behavior of Uν(±xs(t), t)
reduces to the simple form

Uν(±xs(t), t) = ±
√

3

2

(
xs(t)

t

)1/3

· (v2(0) + v3(0)) +O(ν)

= ±
(
xs(t)

t

)1/3

+O(ν) as ν → 0+.

Thus, since uν(x, t) = x/t − Uν(x, t)/t and from the odd parity of uν , we have the
following property.

Property 3.5. The asymptotic behavior of the solution uν(x, t) as ν → 0+ at
the caustic x = ±xs(t) for t > t∗ is

uν(±xs(t), t) = ±xs(t)

t
∓ 1

t

(
xs(t)

t

)1/3

+O(ν).

This matches the solution found from a classical saddle-point analysis obtained by
combining (3.2) and (3.7): when x = xs(t), both saddle points z0, z1 coalesce into
zs = (xs(t)/t)

1/3. From the asymptotic formula

uν(x, t) =
x

t
− zs(x, t)

t
+O(ν)

derived in section 3.2, Property 3.5 is verified. Note that this expression is valid only
for t ≥ t∗ + ε, ε > 0.

4. Pole locations.
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4.1. Exact pole location at t = t∗. From the integral representation (2.2), a
Taylor expansion about x = 0 can be obtained when t = t∗.

Property 4.1. Let

Sν(z) = ν1/4 2−3/4
∞∑
n=0

(−1)n
Γ( 2n+1

4 )

Γ(2n+ 1)
z2n, |z| < +∞,

which converges absolutely and uniformly on compact sets for z. Then

Eν(x, t∗) = Sν
(
ix

4t∗
(2ν)−3/4

)
, |x| < +∞.

Let x = iβ, β ∈ R, |β| < +∞; then if we introduce the scaling

β = β(t∗, ν) = 4t∗(2νµ)3/4,(4.1)

we have

Eν

(
i · 4t∗(2νµ)3/4, t∗

)
= Sν

(
µ3/4

)
.(4.2)

Following this scaling, we transform the integral representation of Eν(iβ, t∗) to sim-
plify its analysis. At the inviscid shock time t∗,

Eν(iβ, t∗) =

∫ ∞

−∞
exp

{
1

2ν

(
iβ

t∗
y − y4

)}
dy,

and the change of variable

y →
(

β

4t∗

)1/3

z(4.3)

introduces the scaling factor (4.1) between the imaginary part βn of the zeros an and
the viscosity ν. This allows us to express Eν(iβ, t∗) in terms of a new function F (µ),
which has the advantage that its saddle points are fixed to the unit disc (thereby
making the asymptotic analysis simpler):

Eν(iβ, t∗) =

(
β

4t∗

)1/3

F

(
1

2ν

(
β

4t∗

)4/3
)
, F (µ) =

∫ ∞

−∞
eµ(4iz−z4)dz.(4.4)

Once the zeros {µk}∞k=1 of F (µ) are found (independent of ν), the poles ±ak(t∗, ν) =
±iβk(t∗, ν) of uν(x, t∗) are given by the relation

βk(t∗, ν) = 4t∗(2νµk)3/4 ∀ν > 0,(4.5)

which was introduced in (4.1). It is important to see that this relation is valid regard-
less of whether ν is small or β is large. Thus, if we can describe the µk’s accurately,
then the pole locations are known with great precision at t∗ (independent of ν). Fur-
thermore, the expansion of Eν(iβ, t∗) as ν → 0+ or as β → +∞ is determined by that
of F (µ) as µ→ +∞. The following theorem is proved in [31].

Theorem 4.2. The asymptotic expansion of F (µ) =
∫∞
−∞ eµ(4iz−z4)dz as µ →

+∞ centered about the sector | argµ| < π/2 is

F (µ) =

√
2π

3µ
e−

3
2µ

[
cos

(
3

√
3

2
µ− π

6

)
+O

(
1

µ

)]
as µ→ +∞.
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0
−Γ1

− Γ
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steepest ascent

steepest descent
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+Γ Re z

hill
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steepest path
level curve

9π/8

7π/8

5π/8 3π/8

π/8

−π/8

Fig. 4.1. Hills, valleys, level curves, and steepest paths of the saddle points z0 = eiπ/6,

z1 = ei5π/6 relevant to the expansion of F (µ) =
∫∞
−∞ eµ(4iz−z4)dz as µ→ +∞.

Moreover, the kth ordered positive zero µk of F (µ) for k ≥ 1 is given by

µ
(0)
k =

2π

3
√

3
(k − 1/3), µk = G

(
µ

(0)
k

)
+O

(
1

k6

)
as k → +∞,

G(µ) = µ+
7

432µ

(
1− 1

6µ

(
1 +

7

72µ

(
1− 5

12µ

(
1 +

53143

18900µ

))))
.

In addition to this asymptotic description, the first nine values of µk are com-
puted numerically in [31] and are listed in section 5. The accuracy of this asymptotic
approximation is discussed in [31]; the necessity for such high accuracy will be appar-
ent in section 5. Combining (4.5) and Theorem 4.2, the pole locations at t = t∗ are
given by the simple form in Property 4.3.

Property 4.3. For all ν > 0,

βk(t∗, ν) = 4t∗

(
4νπ

3
√

3

)3/4

·
(
(k − 1/3)3/4 +O(1/k3/4)

)

as k → +∞.

4.2. Asymptotic analysis of the pole locations βk(t, ν) as ν → 0+ for
fixed k and t 6= t∗. The saddle-point analysis of Eν(iβ, t) as ν → 0+ in the case
t 6= t∗ is very similar to the one that is described in [31]. There are, again, two equally
relevant saddle points which come in a symmetric pair. Note that in this case, their
positions are time dependent, and the steepest descent paths are very similar to those
displayed in Fig. 4.1, except that the saddle points are either closer together or further
apart depending on whether t < t∗ or t > t∗.

Let w(z, iβ) = iβz/t + αz2 − z4; 2α = 1/t∗ − 1/t < 0 for 0 < t < t∗. The saddle
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points zs(β; t) are the roots of

0 =
∂w

∂z
(z, iβ) =

β

t
i+ 2αz − 4z3.(4.6)

Throughout the remainder of the analysis, we write (β; t) (as in zs(β; t)) to denote
that t is to be considered as a parameter. We let z = −iu; then u satisfies a cubic
equation with real coefficients, namely,

u3 +
α

2
u− β

4t
= 0.

In order to have some cancellation in the expansion of Eν to obtain zeros, we need two
equally relevant saddle points. Let xs(t) = t(2α/3)3/2 = i (3t∗)−3/2(t∗ − t)3/2t−1/2.
Then for t < t∗, we find that two of the saddle points come in conjugate pairs only
when |β| > |xs(t)|, where β = ±|xs(t)| is the boundary of analyticity of the inviscid
solution up to t = t∗ (see [32, App. C]). From Cardan’s formula for the roots of a
cubic polynomial (see [32, App. B]), we find


u0 = ωA+ ω2B = −1

2 (A+ B) + i
√

3
2 (A− B) ,

u1 = u0 = ω2A+ ωB = −1
2 (A+ B)− i

√
3

2 (A− B) ,
u2 = A+ B,

(4.7)

where ω = e2πi/3. Since x2
s = −|x2

s| < 0 for t < t∗, we find
 A(β; t) = (8t)

−1/3 3

√
β +

√
β2 + x2

s > 0

B(β; t) = (8t)
−1/3 3

√
β −√β2 + x2

s > 0
for β > |xs(t)|,


 A(β; t) = − (8t)

−1/3 3

√
−β +

√
β2 + x2

s < 0

B(β; t) = − (8t)
−1/3 3

√
−β −√β2 + x2

s < 0
for β < −|xs(t)|,

(4.8)

so

zs(−β; t) = −zs(β; t).(4.9)

Here we are taking the real positive branches of the square roots and cube roots in A
and B. We have also used the relation

|xs (t) | = t

(
2|α|
3

)3/2

= t

(
−2α

3

)3/2

> 0,(4.10)

where we are taking the positive branch of z3/2 for z > 0. Moreover, when choosing
the branches of the rational functions A and B, one must make sure that they satisfy
the relation A · B = −α/6 > 0 (see [32, App. B]). In terms of the original variable
z = −iu, after separation of the real and imaginary parts, we have


z0 =

√
3

2 (A− B) + i
2 (A+ B),

z1 = −z0 =
√

3
2 (B −A) + i

2 (A+ B),
z2 = −i(A+ B).

(4.11)
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Since we are only looking at values of |β| > |xs|, the steepest paths and level curves
look almost like the case t = t∗ described in Fig. 4.1 except that the saddle points have
moved closer together, yet preserve the symmetry of Fig. 4.1. The path deformation
is justified in the same way (see [31] for more details). The saddle points come in
symmetric pairs that satisfy z0 = −z1 for all t > 0. We have

0 =
∂w

∂z

(
zs(β; t), iβ

)
=

β

t
i+ 2αzs − 4z3

s ,(4.12a)

0 =
1

4
zs
∂w

∂z

(
zs(β; t), iβ

)
=

iβ

4t
zs +

α

2
z2
s − z4

s ,(4.12b)

w
(
zs(β; t), iβ

)
=

iβ

t
zs + αz2

s − z4
s .(4.12c)

Equation (4.12a) gives (4.12b), which combined with (4.12c) gives

w
(
zs(β; t), iβ

)
=

3iβ

4t
zs +

α

2
z2
s .(4.13)

Since for s = 0, 1

zs(β; t) = (−1)
s

√
3

2
(A− B) +

i

2
(A+ B),(4.14a)

wzz(zs, iβ) = 2α− 12z2
s , w(z0, iβ) = w(z1, iβ),(4.14b)

so

<w
(
zs(β; t), iβ

)
=

α

4
(A2 + B2)− 3β

8t
(A+ B)− α2

6
,(4.15a)

=w
(
zs(β; t), iβ

)
= (−1)

s

√
3

8
· (A− B) · (3β/t+ 2α(A+ B)) ,(4.15b)

θ(zs(β; t), t) = arg(−wzz(zs, iβ)) = (−1)
s
arg(6z2

0 − α).(4.15c)

Using a standard steepest descents analysis (see [31, 39] for example), we find that

Eν(iβ, t) =
∑
s=0,1

√
−4πν

wzz(zs, iβ)
ew(zs,iβ)/2ν (1 +O(ν)) as ν → 0+.

We can further simplify the expansion using the actual value of
√

6z2
s − α. Indeed,

since zs(β; t) = (−1)
s
√

3
2 (A− B) + i

2 (A+ B) = eiπ/6A+ ei5π/6B and A · B = −α/6,

6z2
s − α = 3

√
(A2 + B2 − α)2 + 3(A2 − B2) eiθ(zs(β;t),t),(4.16a)

θ(zs(β; t), t) = arg(6z2
s − α) = (−1)

s
tan−1

(√
3 · A2 − B2

A2 + B2 + α/3

)
,(4.16b)

where in (4.16b) we are taking the branch of tan−1 x for which | tan−1 x| < π/2.
Reproducing a similar analysis for t > t∗, we have the following result.

Theorem 4.4. The asymptotic expansion of Eν(iβ, t) as ν → 0+ is

Eν(iβ, t) =

√
2πν

|6z2
s − α| exp

{
1

2ν
<w

(
zs(β; t), iβ

)}

×
[
cos
( 1

2ν
=w

(
z0(β; t), iβ

)− 1

2
θ(z0(β; t), t)

)
+O (ν)

]
,
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where

zs(β; t) = (−1)
s

√
3

2
(A− B) +

i

2
(A+ B) for s = 0, 1,

and A and B are given by

A(β; t) = (8t)
−1/3 3

√
β +

√
β2 + x2

s

B(β; t) =


 0 < t < t∗ (8t)

−1/3 3

√
β −√β2 + x2

s > 0 β > |xs|,
t > t∗ − (8t)

−1/3 3

√
−β +

√
β2 + x2

s < 0 β > 0.

For β < 0, zs(β; t) is defined by the odd parity condition zs(β; t) = −zs(−β; t).
Letting t→ t∗ in Theorem 4.4, we obtain θ(zs(β; t∗), t∗) = (−1)

s
π/3, and

<w
(
zs(β; t∗), iβ

)
= −3

2

(
β

4t∗

)4/3

,

=w
(
zs(β; t∗), iβ

)
= (−1)

s 3
√

3

2

(
β

4t∗

)4/3

.

For small ν, the poles βk are approximated by the roots of the equation

1

2ν
=w

(
z0(β; t), iβ

)− 1

2
θ(z0(β; t), t) =

(
k − 1

2

)
π, k ∈ N

∗,(4.17)

with the convention that β−k ≡ −βk. Since |θ(z0(βk; t), t)| < π for all βk ∈ R, the
limiting behavior of the poles is given by =w

(
z0(β; t), iβ

)
= 0. Recall from (4.15b)

that

=ws = =w
(
zs(β; t), iβ

)
= (−1)

s

√
3

8
· (A− B) · (3β/t+ 2α(A+ B)) ,

so

=ws = 0 ⇔
{

either A = B or
3β/t+ 2α(A+ B) = 0.

(4.18)

For 0 < t ≤ t∗, α ≤ 0: if β ≥ |xs| then A > 0, B > 0; if β ≤ |xs| then A < 0, B < 0.

We rewrite the second equation as (A + B)3 = − (3β/2αt)
3
, which, after expanding

the left-hand side and using the fact that A · B = −α/6, reduces to β = ±|xs(t)|.
The same conclusion is reached from the first equation A = B. Thus, for 0 < t ≤ t∗,
=ws = 0 only if β = ±|xs|. Let β̂ � β. Then, re-substituting β = |xs(t)|+ β̂ into the
expansion for Eν(iβ, t) in Theorem 4.4 and reproducing an analysis which is similar
to the one described in [31] (i.e., inverting the asymptotic series expansion), we find
that the error term is O((kν)3/4) as ν → 0+ for fixed k. Thus, we can write that
β±k(t, ν) = ±|xs| + O((kν)3/4) as ν → 0+ for fixed k. Similarly, for t ≥ t∗, α ≥ 0,
β > 0 ⇒ A− B > 0 and β < 0 ⇒ A− B < 0; hence, =ws = 0 ⇔ β = 0 as a result
of setting 3β/t + 2α(A + B) = 0. Since =xs(t) = 0 for t ≥ t∗, we have proved the
following (see Fig. 5.12).

Corollary 4.5. For all t > 0 and fixed k, the asymptotic behavior of the poles
x = ±ak(t, ν) = ±iβk(t, ν) is given by

βk(t, ν) = =xs(t) +O((kν)3/4) as ν → 0+.
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Since =xs(t) = 0 for t ≥ t∗,

βk(t, ν) = O((kν)3/4) as ν → 0+

for fixed k. Of particular interest is the modulus of the first ordered pole β1(t, ν) which
governs the time evolution of the width of the analyticity strip of the viscous solution.

Following the exact same steps in the proof of Corollary 4.5, one can show the
following corollary.

Corollary 4.6. For all t > 0 and fixed ν, the asymptotic behavior of the poles
x = ±ak(t, ν) = ±iβk(t, ν) is

βk(t, ν) = O((kν)3/4) as k → +∞.

5. Numerics.

5.1. Finite difference approximation, asymptotic approximation, and
pole expansion. We present a numerical scheme which enables us to solve (1.1) for
moderately small values of ν. The procedure is sometimes referred to as the method of
lines and consists in using a centered difference operator in space while time-marching
with a Runge–Kutta scheme. The method is implemented on the interval I = [0, 1/2]
with boundary conditions

uν(0, t) = uν(1/2, t) = 0.(5.1)

The boundary condition uν(1/2, t) = 0 is chosen to be consistent with the value of
the inviscid solution u(1/2, t) = 0. Thus, we can expect the difference approximation
to be consistent with the initial (boundary) value problem for small ν. Two different
initial conditions are also used:

u(x, 0) = uν(x, 0) = 4x3 − x

t∗
,(5.2a)

uν(x, t∗) =
x

t∗
−

∞∑
n=1

4νx

x2 + β2
n(t∗, ν)

.(5.2b)

Throughout the numerics we use the parameter value t∗ = 1. If the second condition
is used, then the pole positions at t = t∗ are specified by the asymptotic estimate
presented in Theorem 4.2. This estimate is used for all values of µn for 10 ≤ n ≤ N :


βn(t∗, ν) = 4t∗(2νµn)3/4,

µn = G(µ
(0)
n ), µ

(0)
n = 2π

3
√

3
(n− 1/3), n ≥ 10,

G(µ) = µ+ 7
432µ

(
1− 1

6µ

(
1 + 7

72µ

(
1− 5

12µ

(
1 + 53143

18900µ

))))
.

(5.3)

For 1 ≤ n ≤ 9, we use the numerical values found in [31, Table 3], under the column
“Numerical roots”:

µ1 = 0.8221037147, µ2 = 2.0226889660, µ3 = 3.2292915284,(5.4)

µ4 = 4.4372464748, µ5 = 5.6457167459, µ6 = 6.8544374340,(5.5)

µ7 = 8.0632985369, µ8 = 9.2722462225, µ9 = 10.4812510479.(5.6)

Let

uj = uν(j ∗∆x, t), Evj = vj+1, Epvj = vj+p,

D+ = (E − E0)/∆x, D− = (E0 − E−1)/∆x, D0 = (D+ +D−)/2.
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One then solves the system of Nx − 1 equations using a Runge–Kutta 4–5 scheme
(which we refer to as RK45):{

duj/dt = −D0(u
2
j/2) + νD+D−uj , j = 1, . . . , Nx − 1,

uj=0 = uν(0, t) = 0, uj=Nx = uν(1/2, t) = 0,
(5.7)

where Nx is the number of gridpoints (and gridfunctions) and Nx ∗∆x = 1/2. Typi-
cally, the mesh size we use is ∆x = .25 × 10−2 and Nx = 200 gridpoints. The time
stepping restrictions depend on the size of ν and on how far in time one wants to go.
For example, if the final time is t = t∗ = 1, whether ν = 10−2 or ν = 10−3 it suffices
to use ∆t = .25×10−2, Nt = 400 RK45 steps. However, for ν = 10−2, if one wants to
go as far as t = 2, for reasons of stability one needs to use a smaller time step such as
∆t = 10−3, Nt = 2, 000. The domain of integration is (x, t) ∈ [0, 1/2]× [0, T ], where
T = 1 or T = 2. Then, due to the odd parity of the solution, we reflect symmetrically
for x ∈ [−1/2, 0] according to the rule uν(−x, t) = −uν(x, t). This finite difference
scheme is used in order to compare the predictions obtained from the pole expansion
and the pole dynamics in section 5.2.

5.2. Numerical pole dynamics. We investigate the motion of the simple poles
of uν(x, t) by solving the truncated CDS and by starting with initial data for the poles
at t = t∗. The poles of uν(x, t) are located at ±an(t, ν) = ±i√νγn(t, ν), where the
variables γn(t, ν) > 0 satisfy the system (cf. Property 2.2)


γ̇n
2

=
γn
t

+ 1− 4 γn
∑

l 6=n

1

γl − γn
γn(t∗, ν) = (4t∗)2 (2µn)3/2

√
ν

∀n ∈ N.(5.8)

In order to solve this system we use the asymptotic estimate for µn presented in (5.3)
and the numerical values of (5.5). We are mainly interested in describing the motion
of the first pole a1(t, ν) = iβ1(t, ν) ∈ iR; this amounts to describing the time evolution
of the width of the strip of analyticity of the solution uν(t, x). The imaginary part
of the poles βn(t, ν) is recovered using the relation βn(t, ν) =

√
νγn(t, ν). We plot

the evolution of βn(t, ν), n = 1, . . . , 4 for different values of ν. We use N poles in the
computations, i.e., β1 through βN where N × 10−4 varies from .1, .5, 1, 2.5, 5. That
is, we consider the truncated system


γ̇n
2

=
γn
t

+ 1− 4γn
∑N

l=1
l 6=n

1

γl − γn
γn(t∗, ν) = (4t∗)2(2µn)3/2

√
ν

∀n = 1, . . . , N.

In order to accelerate the computation of the slowly converging pole expansions which
require O(N2) operations

N∑
l=1
l 6=n

1

γl − γn
∀n = 1, . . . , N,(5.9)

we use a multipole algorithm developed and implemented by Greengard and Rokhlin
[14, 21] which reduces the computational complexity to O(N logN). A fourth/fifth-
order Runge–Kutta–Fehlberg scheme with automatic step-size control is used (the
same one that is used for the finite difference scheme/method of lines computations
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of the previous section). Since the initial data is specified at t = t∗ = 1, we can solve
the system forward and backwards in time starting from t = 1. The typical bound
on the relative error in the computation is 10−8 < |(x4 − x5)/x5| < 10−4, where x4

and x5 are, respectively, the 4th- and 5th-order estimates of γ1(t, ν). Once this error
criterion is met, we recover the pole location via the relation an(t, ν) = i

√
νγn(t, ν).

The justification of the numerics is the most difficult aspect of this simulation because
one must justify the convergence of the method as both the number of poles increases
and the time step is refined. The time-step control is automatically determined by
the local relative tolerance (LRT = |(x4 − x5)/x5|) test on the 4th- and 5th-order
approximations of the first ordered pole (the one closest to the origin). Thus, one
cannot fix the time stepping; rather, one can have a subtle control on it by reducing
this tolerance. Typically, we fix the number of poles to N = 50, 000 and vary the
tolerance on the successive intervals 10−10 < LRT < 10−6, 10−8 < LRT < 10−4,
and 10−6 < LRT < 10−2. Then we fix the tolerance at the highest reasonable
level 10−8 < LRT < 10−4 and vary the number of poles where N × 10−4 is either
.1, .5, 1, 2.5, or 5. We see that the time step barely affects the convergence of the
method. Thus, the main difficulty in this procedure arises from the slow convergence
of the pole interaction (5.9) that is present in the CDS.

5.2.1. Exact solution for the two-pair pole-dynamics test. In order to
verify the accuracy of the numerical pole dynamics, we implement the numerical
method described in the previous section for the case where there are only four poles
(two pairs). In this case, one can explicitly solve the resulting system as follows:
let an = iβn. That is, replace βn by −ian in Property 2.2 so that the two pairs of
poles {(−a1, a1), (−a2, a2)} and {(−κ1, κ1), (−κ2, κ2)} satisfy, under the transforma-
tion κn = a2

n/ν, the equivalent systems

{
ȧ1 = a1/t− ν/a1 − 4νa1/(a

2
1 − a2

2),
ȧ2 = a2/t− ν/a2 + 4νa2/(a

2
1 − a2

2),
⇐⇒

{
κ̇1/2 = κ1/t− 1− 4κ1/(κ1 − κ2),
κ̇2/2 = κ2/t− 1 + 4κ2/(κ1 − κ2).

Introduce a set of new variables {Θ1,Θ2} defined by{
Θ1 = κ1 + κ2,
Θ2 = κ1 − κ2,

⇐⇒
{

κ1 = (Θ1 + Θ2)/2,
κ1 = (Θ1 −Θ2)/2.

Then it is easy to show that {Θ1,Θ2} satisfy the coupled system of nonlinear ODEs{
Θ̇1 − 2Θ1/t = −12,

Θ̇2 − 2Θ2/t = −8Θ1/Θ2.
(5.10)

We further introduce a new variable denoted by φ2 = Θ2
2 which in turn satisfies the

linear ODE

φ̇2 − 4φ2/t = −16Θ1.(5.11)

We use as initial data the position of the poles a1(t∗, ν) = iβ1(t∗, ν) and a2(t∗, ν) =
iβ1(t∗, ν), where β1(t∗, ν) and β2(t∗, ν) are given in (5.3) and (5.4). Thus, we have{

Θ∗
1 = Θ1(t∗, ν) = κ1(t∗, ν) + κ2(t∗, ν) = a2

1(t∗, ν)/ν + a2
2(t∗, ν)/ν,

φ∗2 = φ2(t∗, ν) = Θ2
2(t∗, ν) = (a2

1(t∗, ν)/ν − a2
2(t∗, ν)/ν)2.

(5.12)
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Fig. 5.1. Convergence of the pole expansion as N → +∞ of the solution uν(x, t∗) = x/t∗ −
ΣN
n=14νx/(x2+β2

n(t∗, ν)) with varying number of poles ranging from N = 103, 104, 105, 106 poles for
ν = 10−2, 10−3, 10−4, 10−5. The dotted curve is computed from the inviscid solution at t = t∗ = 1
by u(x, t∗) = x/t∗−(x/4t∗)1/3. For ν = 10−2, the inviscid solution and the pole expansion uν(x, t∗)
do not agree because the viscosity is large enough that the solution has started decaying earlier (see
comments on the turn-around time of the poles and their relation to the decay of the solution).
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Fig. 5.2. Comparison of the solution reconstruction at t = t∗ = 1 from the pole expansion
uν(x, t∗) = x/t∗ − ΣN

n=14νx/(x2 + β2
n(t∗, ν)) with N = 106 poles and the finite difference scheme

(method of lines) for ν = 10−3. Mesh size: Nx = 200 points, ∆x = .25∗10−2, Nt = 400 RK45 time
steps with ∆t = .25 ∗ 10−2. Pole expansion (+) at t = 1 overlaps finite difference approximation in
solid curve.
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Fig. 5.3. Closeup of Fig. 5.2 in [−.1, .1].
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Fig. 5.4. Comparison of finite difference scheme and saddle-point method for ν = 10−3 at
t = 1, 1.5, 2. Solid curves: finite difference scheme with Nx = 200 points, ∆x = .25∗10−2, Nt = 800
RK45 time steps with ∆t = .25 ∗ 10−2. Dotted curves: saddle-point approximation overshooting the
finite difference approximation.
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Fig. 5.5. Closeup of Fig. 5.4 in [−.1, .1].
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Fig. 5.6. Comparison of the finite difference approximation (solid) and the pole dynamics
(dotted) for ν = 10−3 at t = .5, 1, 1.5, 2. Finite difference mesh size: Nx = 200 points, ∆x =
.25 ∗ 10−2, Nt = 2, 000 RK45 steps with ∆t = .5 ∗ 10−2. Pole dynamics: N = 5 ∗ 104 poles,
10−8 < LRT < 10−4, typical time step ∆t = .05, Nt = 45 RK45 time steps (25 steps backward and
20 steps forward from t = t∗).
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Fig. 5.7. Closeup of Fig. 5.6 in [−.1, .1].
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Fig. 5.8. β1(t, ν) vs. t. Time evolution in R of the width of the analyticity strip β1(t, ν) for
ν = 10−3 and N = 5×104 poles. tinitial = t∗ = 1 and t ∈ [.5, 2]. (+): ∆t = .05; dots (.): ∆t = .01.
Both curves are indistinguishable.
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Fig. 5.9. Closeup of Fig. 5.8 for t ∈ [1, 2].
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Fig. 5.10. β1(t, ν) vs. t. Comparison of pole number simulations for ν = 10−3 and N =
.1, .5, 1, 2.5, 5× 104 poles. (+): N = 5× 104 poles; (solid): N = .1, .5, 1, 2.5× 104 poles. Differences
appear more clearly in the closeup in Fig. 5.11.

Solving the IVP consisting of the first equation in system (5.10) and equations (5.11)
and (5.12), we find that

{
Θ1(t, ν) = (t/t∗)2Θ∗

1 − 12t(t− t∗)/t∗,
φ2(t, ν) = (t/t∗)4

(
φ∗2 − 16t∗(t− t∗)(tΘ∗

1 − 6tt∗ + 6t2∗)/t
2
)
.

(5.13)

Taking t∗ = 1, ν = .001, we use (5.13), a straightforward numerical integration scheme
using RK45 and RK45 together with the multipole algorithm in which we set to zero
all coefficients pertaining to an, n ≥ 3. We find common values for all three methods
at t = 1.25: {

a1(t = 1.25, ν = .001) = 0.0408023705 ∗ i,
a2(t = 1.25, ν = .001) = 0.1009178717 ∗ i.(5.14)

Computing the differences between the exact values of a1 and a2 and the predictions
obtained from the Runge–Kutta schemes (with and without the multipole algorithm),
we find that these predictions are of the order of O(10−10), which is consistent with
the expected 4th-order accuracy of such numerical schemes.
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Fig. 5.11. Closeup of Fig. 5.10 for t ∈ [1, 2]. Turn-around time at tu ≈ 1.62.
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Fig. 5.12. Comparison of the time evolutions of β1(t, ν = 10−3) (+) and xs(t) (.) for t ∈
[.35, t∗ = 1]. The pole dynamics are the same as Fig. 5.8 with N = 5 × 104 poles. This illustrates
the asymptotic relation β1(t, ν) = =xs(t) +O(ν3/4) as ν → 0+ when t ≤ t∗ (see Corollary 4.5).

5.3. Figures, descriptions, and comparisons. In Fig. 5.1, we illustrate the
“slow” convergence of the pole expansion as the viscosity decreases. In particular, for
ν = 10−4 and 10−5, we can compare the inviscid solution given by (see [32, App. C])

u(x, t∗) =
x

t∗
−
(

x

4t∗

)1/3

(5.15)

to the pole expansion and expect good agreement between the two. For ν very small,
we see that even for a very large number of poles (N = 106) the tails of the pole
expansion still do not match the true solution, which is expected to be very close to the
inviscid one. In each of these figures there are five curves, four of which are computed
from the pole expansion for an increasing number of poles N = 103, 104, 105, 106. The
fifth (dotted curve) is the inviscid solution at t∗.

In Figs. 5.2 and 5.3 we present comparisons between the finite difference scheme
and the pole expansion (N = 106 poles) at the fixed time t∗. For the finite difference
scheme, we use Nx = 200 points, ∆x = .25 ∗ 10−2, Nt = 400 RK45 steps with
∆t = .25 ∗ 10−2.

In Figs. 5.4 and 5.5 we present comparisons between the finite difference scheme
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Fig. 5.13. βj(t, ν) vs. t for j = 1, . . . , 4. ν = 10−3 and N = 5 × 104 poles. Same parameters
as in Fig. 5.8. Turn-around times at tu ≈ 1.62, tu ≈ 1.51, tu ≈ 1.39, tu ≈ 1.27 for βj(t, ν), j =
1, . . . , 4.
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ν = 10−2 and N = 5× 104 poles. tinitial = t∗ = 1 and t ∈ [.25, 2]. Nsteps = 32 (20 steps backward
and 12 steps forward from t = t∗). Local relative tolerance: 10−10 < LRT < 10−6.
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Fig. 5.15. βj(t, ν) vs. t for t ∈ [.25, 2] and j = 1, . . . , 4. ν = 10−2 and N = 5 × 104 poles.
Same parameters as in Fig. 5.14. Turn around times at tu ≈ 1.05, tu ≈ .55, tu ≈ .425, tu ≈ .325
for βj(t, ν), j = 1, . . . , 4.
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Fig. 5.16. Comparison of the finite difference approximation (solid) and the pole dynamics
(dotted) for ν = 10−2 at t = .5, 1, 1.5, 2. Finite difference mesh size: Nx = 100 points, ∆x =
.5 ∗ 10−2, Nt = 2, 000 RK45 time steps with ∆t = 10−3. Pole dynamics: same as Fig. 5.14.
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Fig. 5.17. Closeup of Fig. 5.6 in [−.2, .2].

and the saddle-point approximation at the successive times t = 1, 1.5, 2. The mesh
size is the same as the one for Figs. 5.2 and 5.3. One can observe that the saddle-point
approximation overshoots the true value of the solution which is best captured by the
difference scheme. This overshoot is due to the degeneracy of the saddle-point formula
at the caustic and the inaccuracies around it. The correct behavior in a neighborhood
of this caustic can be correctly described only by the uniform asymptotic expansion
of section 3.3.

In Figs. 5.6 and 5.7, we compare the difference method and the pole dynamics
for ν = 10−3 with N = 50, 000 poles at the times t = .5, 1, 1.5, 2. The pole dynamics
are run forward and backward in time starting from t = t∗ = 1 until t = .5 and t = 2.
The solution is then reconstructed from the pole expansion and the pole locations at
these specific times and is compared to the finite difference approximations with mesh
size Nx = 200 points, ∆x = .25 ∗ 10−2, Nt = 2, 000 RK45 time steps with ∆t = 10−3.
The agreement between the finite difference and the pole dynamics close to the shock
region is very good as opposed to the tails. Since the pole dynamics simulation
involved only 50, 000 poles in Fig. 5.6, the mismatch in the tail is characteristic of the
slow convergence of the pole expansion in the tails that are displayed in Fig. 5.1 for
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ν = 10−3. There is also a small source of error in the difference scheme where the
boundary condition at x = 1/2 is set to the inviscid value (u(1/2, t) = 0). This error in
the difference approximation increases for larger ν. Thus, the discrepancy observed in
the tails of the solution in Fig. 5.16 is more likely to arise from errors in the difference
scheme than the pole dynamics. Indeed, it suffices to look at the convergence of the
pole expansion at t = t∗ in Fig. 5.1, ν = 10−2, to establish confidence in the pole
dynamics.

However, one can notice that regardless of the size of ν (whether ν = 10−2 or
10−3), within the shock region of width O(ν), the agreement between the pole dynam-
ics and the difference approximation is very good (see Figs. 5.3, 5.17). This shows
that the dynamics of the first few poles is accurately captured by the pole dynam-
ics. This also becomes apparent when comparing the simulations done with varying
number of poles (see Figs. 5.10 and 5.11). Finally, it should be noted that increasing
the step-size of the time increment (in a reasonable way) in the pole dynamics barely
affects the computations (see Figs. 5.8 and 5.9).

We plot the evolution of the first four (ordered) poles on the imaginary axis
(βk, k = 1, . . . , 4) and focus on the “turn-around” times tu and the position of the
first ordered pole β1, which determines the width of the analyticity strip. One can see
that the behavior of the pole β1 displayed in Figs. 5.8 and 5.14 is qualitatively similar
to the one obtained by Sulem, Sulem, and Frisch in [35, section III-B, Fig. 3] using
spectral methods for the initial data u0(x) = sin(x) with ν = .05. The most important
feature in the behavior of the first ordered pole is clearly the fact that it turns around
before crossing the real axis, thus preserving the uniform analyticity of the viscous
solution within the strip |=x| ≤ δ1 < β1, where β1(t, ν) > 0 for all t > 0. Moreover, it
is interesting to note that the poles ±βk(t, ν) are confined to the imaginary axis and
move towards the origin until a time t = tu(k), k ∈ Z

∗; this is the time at which they
turn around and move away from the origin. These turn-around times tu(k) decrease
as k increases: tu(1) > tu(2) > · · · > tu(n) > · · · > 0. Moreover, tu(1) occurs before
t∗ for ν ' .01 and after t∗ for ν / .01. Thus, the last pole to turn around is the first
ordered pole β1, i.e., the one closest to the real axis. For ν = 10−3, the turn-around
times for βj , j = 1, . . . , 4 are at t ≈ 1.62, 1.51, 1.39, 1.27, respectively. For ν = 10−2,
the turn-around times for βj , j = 1, . . . , 4 are at t ≈ 1.05, .55, .425, .325, respectively.
Thus, comparing Figs. 5.13 and 5.15, one can see that the turn-around times tu(k)
increase with decreasing ν. That is, one can relate the time of initial decay of the
solution to the turn-around times tu(k) by comparing the evolution of the poles (see
Figs. 5.13, 5.15) to the corresponding evolution of the solution (see Figs. 5.6, 5.16).
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Abstract. The zero-viscosity limit of a meromorphic solution to Burgers’ equation (BE) is
found via an integral representation of the Mittag–Leffler expansion of the solution involving a
“polar” measure. The weak zero-viscosity limit of this Borel measure (analogously to the zero-
dispersion limit of the spectral measure in the Korteweg–de Vries (KdV) problem) corresponds to
the asymptotic density of poles which characterizes their condensation on the imaginary axis. The
resulting integral representation of the inviscid solution is computed by residues and is shown to
match the characteristic solution up to the inviscid shock time t∗. The continuum limit of the Mittag–
Leffler expansion and the Calogero dynamical system (CDS) (which describes the time evolution of
the poles) is a system of two integro-differential equations which provide a new representation of the
solution to the inviscid BE. For t ≤ t∗, a uniform asymptotic expansion of the Fourier transform of
the inviscid solution is obtained, thereby providing the analyticity properties of the inviscid solution.

Key words. partial differential equations, zero-viscosity limit, pole condensation
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1. Introduction. In this article we continue the investigation from part I [18] of
the spatial analyticity properties of a solution to Burgers’ equation (hereafter referred
to as “BE”):

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
, x ∈ R, t > 0, ν ≥ 0.(1.1)

Previous work concerning the analyticity properties of BE can be found in [3, 4, 13,
14, 18, 20].

We focus on a particular initial value problem (IVP) for (1.1) which was intro-
duced by Fournier and Frisch [13] and further studied by Bessis and Fournier in [3, 4].
In this problem, the initial condition is given by

u(x, 0) = u0(x) = 4x3 − x/t∗, x ∈ R,(1.2)

where t∗ is a fixed positive parameter. This initial value is chosen for its generic
property, which is due to the type of singularity occurring in the inviscid solution
(ν = 0) at the shock time t = − (infx u

′
0(x))

−1
= t∗ (cf. Appendix A for more

details).

It was shown in part I that all meromorphic solutions to BE with an odd initial
data must have a symmetric pole expansion of the form

uν(x, t) =
x

t
− 2ν

∑
n∈I

1

x− an(t, ν)
,(1.3)
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Fig. 1.1. Inviscid branch points, branch cuts, and viscous poles for ν > 0 and 0 < t < t∗. The
poles are located above the inviscid branch-point singularities according to the asymptotic formula
βk(t, ν) = =xs(t) +O(ν3/4) as ν → 0+ for k fixed. The distance separating two successive poles is
asymptotically given by ∆βk = O(ν) as ν → 0+ for k large (k ∼ 1/ν).

where I ⊆ Z is a finite or countable symmetric set (i.e., if an ∈ I, a−n = −an ∈ I).
Moreover, the poles {an(t, ν)}n∈I must satisfy a Calogero-type dynamical system [8]
(hereafter referred to as “CDS”) of the form

dan
dt

=
an
t
− 2ν

∑
l∈I
l 6=n

1

an − al
∀n ∈ I ⊆ Z.(1.4)

The solution to the IVP (1.1)–(1.2) is the meromorphic function

uν(x, t) =
x

t
− 2ν

∞∑
n=−∞
n6=0

1

x− iβn(t, ν)
=

x

t
− 2ν

∞∑
n=1

2x

x2 + β2
n(t, ν)

,(1.5)

where {±iβn}n∈Z∗ is a countable set of pure imaginary conjugate poles (the zeros
of the Cole–Hopf variable) satisfying β−n = −βn. The motion of these poles on the
imaginary axis is governed by an infinite-dimensional CDS:

β̇n =
βn
t
− 2ν

∞∑
l=−∞
l 6=n,0

1

βl − βn
=

βn
t

+
ν

βn
− 2ν

∞∑
l=1
l 6=n

2βn
β2
l − β2

n

∀n ∈ Z
∗.(1.6)

Numerical simulations of the evolution of these poles and the solution for small vis-
cosity are described in [18]. For more details on the derivation of (1.5) and (1.6),
see the companion article [18, section 2]. As ν → 0+, these poles condense on the
imaginary axis for all t > 0. The asymptotic distance between two successive poles
as ν → 0+ is proportional to ν when the index of these poles grows like k ∼ 1/ν (see
Fig. 1.1). This condensation phenomenon is captured by an asymptotic density of
poles (also referred to as the limiting pole density in the work of Bessis and Fournier
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Fig. 1.2. Inviscid branch points, branch cuts, and viscous poles for ν > 0 and t > t∗. The
inviscid branch points have coalesced at t = t∗ at the origin and are now moving away from each
other on the real axis. However, the poles are fixed to the imaginary axis and are asymptotically
given by βk(t, ν) = O(ν3/4) as ν → 0+ and ∆βk = O(ν) as ν → 0+ for k large (k ∼ 1/ν). They
turn around and move away from the origin at a time tu > t∗ if ν is small enough (if ν ' .01,
tu < t∗).

[4]). We show that this density depends directly on the relevant saddle points of the
small ν asymptotic expansion of the component Eν(x, t) which carries the zeros of
the Cole–Hopf variable. From the Cole–Hopf transformation, we find that

uν(x, t) =
x

t
− 2ν ∂x log

(
Eν(x, t)

)
, Eν(x, t) =

∫ ∞

−∞
ew(z,x)/2ν dz,

where w(z, x) is the phase function defined by

w(z, x) =

∫ z

0

(x
t
− η

t
− u0(η)

)
dη.

The saddle points zs(β, t) of the phase function w(z, x) are implicitly given by

0 = wz(zs, iβ) =
iβ

t
− zs

t
− u0(zs).

Let σ(β; t) be a cumulative distribution function corresponding to the integral of the
asymptotic density of poles (which we will define later). That is, σ(β; t) counts the
number of poles contained within the interval [0, β]. Then it is shown that

σ(β; t) =
=w(zs, iβ)

π
,

and then the asymptotic pole locations are implicitly given by the equation

σ(β; t)

2ν
= k − 1/2, k → +∞.



POLE CONDENSATION FOR BURGERS’ EQUATION II 1493

We show that the asymptotic density of poles defined by Bessis and Fournier in [3, 4]
as

ρ(β; t) = lim
n→∞
ν→0+

2ν

∆βn(t, ν)

∣∣∣∣
βn=β

is given by

ρ(β; t) =
d

dβ
σ(β; t) =

1

πt
<z+

s (β; t),

where z+
s (β; t) is the relevant saddle point with a positive real part in the expansion

of Eν(iβ, t) as ν → 0+. This density is explicitly calculated for all t > 0 using
Cardan’s formula. The Mittag–Leffler expansion (1.5) has an integral representation
which is valid away from the imaginary axis. It can be expressed as the integral of
a continuous function against the distributional derivative of a nonnegative regular
finite Borel measure defined for |β| ≤ βmax < +∞ as

σν(β;βmax, t) =

∫ β

−βmax

2ν

Nν∑
k=1

[δ (ξ − βk(t, ν)) + δ (ξ + βk(t, ν))] dξ,

where

Nν(βmax) = sup
0<δ≤t≤t∗

[
σ(βmax; t)

2ν

]
< +∞.(1.7)

The “polar” measure σν(β;βmax, t) is analogous to the spectral measure in the KdV
problem (cf. [12, 15]). The zero-viscosity limit of the pole expansion is found by taking
the weak limit of dσν(β;βmax, t)/dβ which approximates the asymptotic density of
poles. Thus, we show that for β ∈ [−βmax, βmax], 0 < βmax < +∞,

ρ(β; t) ≡ w- lim
ν→0+

dσν
dβ

(β;βmax, t),

where w-limν→0+ denotes the weak limit of measures. The limiting integral represen-
tation of the solution is given by the nonparametric form

u(x, t) =
x

t
−
∫ ∞

−∞

ρ(β; t)

x− iβ
dβ =

x

t
− x

∫ ∞

−∞

ρ(β; t)

x2 + β2
dβ.

This representation is computed via residues, and the analytic structure of the inviscid
solution is explicitly recovered up to t∗.

We also show that the continuum limit of the pair of equations consisting of the
pole expansion (1.5) and the dynamical system (1.6) is the system of two integro-
differential equations in parametric form:

∂f

∂t
(ζ, t) =

f(ζ, t)

t
− P.V.

∫ ∞

−∞

dζ ′

f(ζ, t)− f(ζ ′, t)

=
f(ζ, t)

t
− f(ζ, t)P.V.

∫ ∞

−∞

dζ ′

f2(ζ, t)− f2(ζ ′, t)

and

u(x, t) =
x

t
−
∫ ∞

−∞

dζ ′

x− f(ζ ′, t)
=

x

t
− x

∫ ∞

−∞

dζ ′

x2 − f2(ζ ′, t)
,
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in which the spatial branch cuts are defined by the condition x 6= f(ζ, t) for each fixed
t > 0. This 2× 2 system is shown to be equivalent to the characteristic equations of
the inviscid BE.

The equivalence between the parametric and nonparametric form of the integral
representation of the inviscid solution is obtained by introducing a simple change of
variable iβ = f(ζ, t) in the parametric equations. From this analysis, we clarify the
relation between the pole positions and their asymptotic density. We show for t = t∗
that the pole positions can be recovered from the asymptotic density by choosing the
right discretization on the “continuum” curve on which this density lies.

Furthermore, the analyticity properties of the inviscid solution can be analyzed
by describing the asymptotic behavior of its Fourier transform (see [13, 20]). We find
a uniform asymptotic expansion as k → +∞ of the Fourier transform of the inviscid
solution, clarifying the seemingly discontinuous change of behavior of û(k, t) at t∗ pre-
sented in [13]. This discontinuity in the asymptotic behavior is a direct consequence
of the coalescence of the two second-order branch points ±xs(t) into a third-order
branch point at the origin xs(t∗) = 0. We show that as k → +∞, û(k, t) = C0 ·
(tk)−4/3Ai[(−3ikxs(t)/2)

2/3
]
(
1 +O (k−1

))
. From the (uniform) asymptotic expan-

sion of the Airy function we find that û(k, t) ∼ C1(t) · (t∗− t)−1/4 k−3/2 exp(−k|xs(t)|)
for 0 < t < t∗ and û(k, t∗) ∼ C2 · (t∗k)−4/3, where C0, C1(t), C2 are appropriate
numerical constants.

2. Polar measure, integral representation, and inviscid limit. In [18], the
solution to the IVP (1.1)–(1.2) is constructed in the following property.

Property 2.1. Let 2α = 1/t∗ − 1/t for ν, t, t∗ > 0; then

uν(x, t) =
x

t
− 2ν ∂x log

(
Eν(x, t)

)
,

Eν(x, t) =

∫ ∞

−∞
exp

{
1

2ν

(x
t
y + αy2 − y4

)}
dy.

Furthermore, uν(x, t) has a Mittag–Leffler (pole) representation:

uν(x, t) =
x

t
− 2ν

∞∑
n=1

2x

x2 + β2
n(t, ν)

,

which converges uniformly on compact sets for x away from the poles x = ±iβn.
From the integral representation of the solution one can describe the behavior

of the solution as the viscosity tends to zero: using a saddle-point analysis, we have
shown in [18, section 4.2] that the dominant behavior of Eν(iβ, t) as ν → 0+ or as
β → +∞ is given by an asymptotic relation of the form√

|6z0(β; t)2 − α|
2πν

exp

{
− 1

2ν
<w(z0(β; t), iβ

)}
Eν(iβ, t)

= cos

(=w(z0(β; t), iβ)

2ν
− θ(z0(β; t), t)

2

)
+O

(
ν

β4/3

)
,

where

w(z, iβ) =

∫ z

0

(iβ/t− η/t− u0(η)) dη = iβz/t + αz2 − z4,

θ(z, t) = arg(∂2
zw) = arg(6z2 − α), −π ≤ θ(z, t) < π,
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and zs(β; t) is implicitly defined by

0 = wz(zs(β; t), iβ) =
iβ

4t
+

α

2
zs − z3

s , s = 0, 1, 2.(2.1)

Solving (2.1) using Cardan’s formula (see Appendix B) and separating real and imag-
inary parts, we find that


z0 =

√
3

2 (A− B) + i
2 (A+ B),

z1 = −z0 =
√

3
2 (B −A) + i

2 (A+ B),
z2 = −i(A+ B),

(2.2)

where for β > |xs(t)|,
 A(β; t) = (8t)

−1/3 3

√
β +

√
β2 + x2

s > 0,

B(β; t) = (8t)
−1/3 3

√
β −√β2 + x2

s > 0.
(2.3)

For β < −|xs(t)|, A and B are defined by the odd parity conditionA(−β; t) = −A(β; t)
and B(−β; t) = −B(β; t) so that

zs(−β; t) = −zs(β; t).(2.4)

For small ν (fixed k) or for large β (large k, fixed ν), the poles βk are approximated
by the roots of the equation

σ(β; t)

2ν
− 1

2π
θ(z0(β; t), t) = k − 1

2
, k ∈ N

∗,(2.5)

with the convention that β−k ≡ −βk. Clearly, since |θ| ≤ π, the contribution of θ is
negligible compared with that of σ. Thus, we approximate (2.5) by

σ(β; t)

2ν
≈ k − 1

2
, k ∈ N

∗.(2.6)

Choose a parameter βmax < +∞, and then choose Nν(βmax) as follows: let Int[x]
denote the integer part of x with half-integers rounded down, and fix ν > 0. Then for
any δ > 0 and compact set [δ, t∗], define Nν by

Nν(βmax) = sup
0<δ≤t≤t∗

[
σ(βmax; t)

2ν

]
< +∞.(2.7)

The βk(t, ν) are ordered as follows:

0 ≤ |xs(t)| < β1(t, ν) < · · · < βk(t, ν) < · · · < βNν < +∞(2.8)

for 1 < k < Nν . For negative indices, the ordering of the β−k’s is the reverse of that
given in (2.8).

Let Uβmax
ν (x, t) be the Nνth partial sum of Uν(x, t):

Uβmax
ν (x, t) = x− t uβmax

ν (x, t) = t · 2x ·
Nν∑
n=1

2ν

x2 + β2
n

= t · 2ν
Nν∑
n=1

(
1

x− iβn
+

1

x + iβn

)
.

(2.9)
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Let Uν(x, t) be the spatially singular part of the viscous solution defined by

Uν(x, t) = x− t uν(x, t) = t · 2x
∞∑
n=1

2ν

x2 + β2
n(t, ν)

,(2.10)

and let the remainder Rβmax
ν (x, t) be defined by

Rβmax
ν (x, t) = Uν(x, t)− Uβmax

ν (x, t) = t · 2x
∞∑

n=Nν+1

2ν

x2 + β2
n(t, ν)

.

Let δ(β) denote the usual Dirac measure, and define the density σν(β;βmax, t) with
support in [−βmax, βmax] by

σν(β;βmax, t) =

∫ β

−βmax

2ν

Nν∑
k=1

[δ (ξ − βk(t, ν)) + δ (ξ + βk(t, ν))] dξ.(2.11)

Since the poles βn are ordered according to (2.8), this insures that (2.11) is
nonnegative and vanishes outside [−βmax, βmax]. Moreover, once βmax has been cho-
sen, σν(β;βmax, t) is uniformly bounded for 0 < δ ≤ t ≤ t∗ by 2νNν . Thus, from the
definition (2.7) of Nν , σν(β;βmax, t) is uniformly bounded in ν, and thus is a regular
finite Borel measure. Since

dσν(β;βmax, t) = 2ν

Nν∑
k=1

[δ (β − βk(t, ν)) + δ (β + βk(t, ν))] dβ

= 2ν

Nν∑
k=−Nν
k 6=0

δ (β − βk(t, ν)) dβ,

(2.12)

the measure dσν(β;βmax, t) consists of a sum of delta functions with weight (height)
2ν decreasing as ν → 0+. The density of these delta functions increases like 1/∆βk =
O(1/ν) as ν → 0+ for k ∼ 1/ν. Since the measure dσν is odd (dσν(−β;βmax, t) =
−dσν(β;βmax, t)), we can represent Uβmax

ν (x, t) as

Uβmax
ν (x, t) = t ·

∫ ∞

−∞

dσν(β;βmax, t)

x− iβ
= t · 2x

∫ ∞

0

dσν(β;βmax, t)

x2 + β2
,(2.13)

where the last integral should be understood as∫ ∞

0

dσν(β;βmax, t)

x2 + β2
≡ 1

2

∫ ∞

−∞

dσν(β;βmax, t)

x2 + β2
.(2.14)

Since the measure dσν(β;βmax, t) has support in the compact interval [−βmax, βmax],
we have proved the following property.

Property 2.2. Uβmax
ν (x, t) has an integral representation for x /∈ [−iβmax, iβmax]

given by

Uβmax
ν (x, t) = t ·

∫ βmax

−βmax

dσν(β;βmax, t)

x− iβ
= t · x

∫ βmax

−βmax

dσν(β;βmax, t)

x2 + β2
.

Now that we have established the validity of the integral representation of Prop-
erty 2.2, we use this to derive an integral representation of the inviscid solution: we
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introduce the asymptotic pole density ρ(β; t), which also corresponds to the asymp-
totic distribution of the zeros of Eν . We define it in relation to the limiting measure
σ(β; t) as follows.

Definition 2.1. For β ∈ [−βmax, βmax], the cumulative distribution function
σ(β; t) represents the number of poles within the interval [0, β] ⊂ [0, βmax].

σ(β; t) =

∫ β

0

ρ(ζ; t) dζ =
1

π
=w(zs(β; t), iβ).

It follows directly from the definition (2.5) of the zeros ±iβk(t, ν) of Eν(x, t) and from
Definition 2.1 of the asymptotic density of the zeros that

lim
ν→0+

Nν∑
k=1

2ν

x2 + β2
k(t, ν)

=

∫ βmax

−βmax

ρ(β; t)

x2 + β2
dβ =

Uβmax(x, t)

tx
(2.15)

for a fixed δ > 0 and 0 < δ ≤ t ≤ t∗. Thus, we have that

|Uβmax(x, t)− Uβmax
ν (x, t)| = t |x| ·

∣∣∣∣∣
∫ βmax

−βmax

dσ − dσν
x2 + β2

∣∣∣∣∣ < ε/3(2.16)

for ν small enough on compact sets for x and t away from the branch cuts defined by
(−i∞,−i|xs|]∪ [i|xs|,+i∞) (for a similar argument see, for example, [12]). Thus the
convergence of the measure dσν to dσ is described in the following way.

Property 2.3. For β ∈ [−βmax, βmax] and 0 < δ ≤ t ≤ t∗, the sequence of
distributions dσν(β;βmax, t) converges weakly to dσ(β; t):

w- lim
ν→0+

dσν(β;βmax, t) = dσ(β; t) = ρ(β; t) dβ =
1

π
=dw(zs(β; t), iβ).

This measure is analogous to the spectral measure introduced in [12, 15]. Here
w-limν→0+ stands for a limit in the sense of weak convergence of measures; that
is, w-limν→0+ dµν(β) = dµ(β) if

lim
ν→0+

(φ, dµν) = (φ, dµ) =

∫ βmax

−βmax

φ(β) dµ(β)

for every continuous function φ in [−βmax, βmax]. Note that we suspect the conver-
gence

lim
ν→0+

Uβmax
ν (x, t) = Uβmax(x, t)(2.17)

to hold uniformly over compact sets for t and x away from the branch cuts.
From the definition of the limiting function U(x, t)

U(x, t) = t · x
∫ ∞

−∞

ρ(β; t)

x2 + β2
dβ,

the remainder Rβmax(x, t), defined for x /∈ (−i∞,−iβmax] ∪ [iβmax, i∞) as

Rβmax(x, t) = Uβmax(x, t)− U(x, t) = t · 2x ·
∫
|β|≥βmax

ρ(β; t)

x2 + β2
dβ,(2.18)



1498 DAVID SENOUF

can be shown to go to zero as βmax → +∞ independently of ν: fix an R > 0 such that
|x| ≤ R < βmax, then |x2 + β2| ≥ β2 − R2. Let θ > 1 be a fixed parameter; then for
β > βmax >

√
θ/(θ − 1)R, we have 1/(β2−R2) < θ/β2. Then since ρ(β; t) = O(β1/3)

as β → +∞ (see Theorem 3.1), we can estimate (2.18) as βmax → +∞ as follows:∣∣∣∣∣
∫
|β|≥βmax

ρ(β; t)

x2 + β2
dβ

∣∣∣∣∣ ≤ C(t)
∫
|β|≥βmax

β1/3

β2 −R2
dβ

≤ θ · C(t) ·
∫
|β|≥βmax

dβ

β5/3
= O(β−2/3

max ).

Therefore, on compact sets for x and t,

|Uβmax(x, t)− U(x, t)| < ε/3(2.19)

for βmax large enough independent of ν.
The last estimate concerns

|Rβmax
ν (x, t)| = |Uβmax

ν (x, t)− Uν(x, t)|

= t |2x|
∣∣∣∣∣

∞∑
n=Nν+1

2ν

x2 + β2
n(t, ν)

∣∣∣∣∣ .(2.20)

In [18, section 4.2], it is shown that βn(t, ν) = O ((nν)3/4
)

as n → +∞ for fixed
ν > 0. Therefore, let yn(t, ν) = Cnν, where C is an appropriate asymptotic constant
which depends on t (see (5.1) for such a representation). This assumption also can
be justified by combining (5.1) and the fact that the order λ = 4/3 of the entire
function Eν is also the order of convergence of its zeros (see [18, section 2.1]). Then
since Nν(βmax) = sup0<δ≤t≤t∗ Int[σ(βmax; t)/2ν], following a similar argument as in
the proof of (2.19), we may estimate (2.20) as

|Uβmax
ν (x, t)− Uν(x, t)| ≤ t |2x|

∣∣∣∣∣
∞∑

n=Nν+1

2ν

x2 + y
3/2
n

∣∣∣∣∣
≤ t |2x| C1

∣∣∣∣
∫ +∞

βmax

dy

x2 + y3/2

∣∣∣∣ = O(β−1/2
max )

as βmax → +∞, uniform in ν on compact sets for t ∈ [δ, t∗] and x away from the
branch cuts. Choosing βmax large enough so that |U(x, t) − Uβmax(x, t)| < ε/3 and
|Uβmax

ν (x, t) − Uν(x, t)| < ε/3 independent of ν and then choosing ν small enough in
such a way that |Uβmax(x, t)− Uβmax

ν (x, t)| < ε/3, we finally have

|Uν(x, t)− U(x, t)| ≤ |U(x, t)− Uβmax(x, t)|
+ |Uβmax(x, t)− Uβmax

ν (x, t)|+ |Uβmax
ν (x, t)− Uν(x, t)| < ε.

Using the fact that ρ(β; t) = 0 for |x| < |xs(t)| when 0 < t ≤ t∗, we have proved the
following theorem.

Theorem 2.4. For δ > 0, t ∈ [δ, t∗]; on compact sets for x away from the branch
cuts defined by (−i∞,−i|xs|] ∪ [i|xs|,+i∞), we have

lim
ν→0+

Uν(x, t) = t · 2x
∫ ∞

|xs(t)|

ρ(β; t)

x2 + β2
dβ.
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3. Asymptotic density of poles. Now that we have defined the asymptotic
density of poles, we proceed with its explicit computation for the different time inter-
vals (0, t∗), t = t∗ and (t∗,+∞). As in section 2, let w-limν→0+ denote a weak limit
in the sense of weak convergence of measures. Then we prove the following.

Theorem 3.1. it For 0 < βmax < +∞, the asymptotic density of poles ρ(β; t) :
[−βmax, βmax]× R+ → R+ is a positive even function of β defined by

ρ(β; t) ≡ w- lim
ν→0+

dσν
dβ

(β;βmax, t) =
dσ

dβ
(β; t) =

1

πt
<z+

s (β; t),

where z+
s (β; t) is the saddle point with positive real part which is relevant to the asymp-

totic expansion of Eν(iβ, t) as ν → 0+. This saddle point is determined by the implicit
equation

∂w

∂z

(
zs(β; t), iβ

)
=

iβ

t
− zs(β; t)

t
− u0

(
zs(β; t)

)
= 0.

Let ±xs(t) = ±i (3t∗)−3/2(t∗ − t)3/2t−1/2 be the second-order branch points of the
inviscid solution arising from the initial data u0(x) = 4x3 − x/t∗. For t > t∗ and for
t < t∗, |β| > |xs|,

ρ(β; t) =
22/3

√
3

π
(4t)−4/3

{
3

√
|β|+

√
β2 + x2

s − 3

√
|β| −

√
β2 + x2

s

}
.

For t < t∗, |β| < |xs|,
ρ(β; t) = 0.

For t = t∗,

ρ(β; t∗) =
2
√

3

π
(4t∗)−4/3|β|1/3.

For t > t∗, β = 0,

ρ(0; t) = lim
β→0
t>t∗

ρ(β; t) =
1

2π
(t− t∗)1/2t−3/2t

−1/2
∗ .

Proof. In [3, 4], Bessis and Fournier introduced a limiting density of poles
which characterizes the process of condensation of poles on the imaginary axis as the
viscosity ν → 0+. They defined it in [3] in the following way:

ρ(β; t) ≡ lim
n→∞
ν→0+

2ν

∆βn(t, ν)

∣∣∣∣
βn=β

: R× R+ → R+,

with ∆βn(t, ν) = βn+1(t, ν) − βn(t, ν) > 0, where n ∈ Z\{0} = {±1,±2, . . . }, with
the convention that β−n = −βn. Since

∂w

∂β

(
zs(β; t), iβ

)
=

i

t
zs(β; t),(3.1a)

∂w

∂z

(
zs(β; t), iβ

)
=

iβ

t
− zs(β; t)

t
− u0

(
zs(β; t)

)
= 0.(3.1b)
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From Property 2.3 we find that the density is given by

ρ(β; t) =
1

π
=dw
dβ

(
zs(β; t), iβ

)
=

1

πt
<z+

s (β; t),(3.2)

where z+
s (β; t) is the relevant saddle point with positive real part. Since zs(−β; t) =

−zs(β; t), in order to have ρ(−β; t) = ρ(β; t) > 0, we must take in both cases (β > 0
and β < 0) the saddle point with positive real part. That is, we must take z0 for
β > 0 and z1 for β < 0 since they are related by z0(−β; t) = −z0(β; t) = z1(β; t)
and z1(−β; t) = −z1(β; t) = z0(β; t) (see [18, section 4.2]). With this choice of saddle
points, the asymptotic density defined in (3.2) is positive whether β > 0 or β < 0.
Note that if we let x = iβ, x0 = x0(x, t) = zs(β; t), then the inviscid solution is
u(x, t) = u0(x0(x, t), t), where x − x0 − t u0(x0) = 0 (see Appendix C). Combining
(2.2) and (3.2), we immediately have an expression for the density as a function of β
and t:

ρ(β; t) =

√
3

2πt
(A(β; t)− B(β; t)),(3.3)

with A(β; t) and B(β; t) defined in (2.3).
We can now describe the various cases t = t∗, 0 < t < t∗, t > t∗, and x = 0, t > t∗:
(i) t = t∗:

ρ(β; t∗) =
1

πt∗
<zs(β; t∗) =

√
3

2πt∗

(
β

4t∗

)1/3

=
2
√

3

π
(4t∗)−4/3|β|1/3.(3.4)

In the last step of (3.4), we replace β1/3 by |β|1/3 to allow for both β > 0 and β < 0.
Note that we can obtain (3.4) by taking the limit as t → t∗ in (3.7) or (3.8). It is
interesting to see that this density is the only one which explicitly can be computed
from the formula introduced by Bessis and Fournier:

ρ(β; t) = lim
n→∞
ν→0+

2ν

∆βn(t, ν)

∣∣∣∣
βn=β

.(3.5)

The explicit pole positions βk(t∗, ν) are given in part I by

βk(t∗, ν) = 4t∗

(
2ν

3
√

3

)3/4

·
(
(k − 1/3)3/4 +O(1/k3/4)

)
(3.6)

as k → +∞ for all ν. Combining (3.5) with (3.6), one recovers (3.4).
(ii) 0 < t < t∗: the density is zero for |β| ≤ |xs| and for |β| > |xs|;

ρ(β; t) =
22/3

√
3

π
(4t)−4/3

{
3

√
|β|+

√
β2 + x2

s − 3

√
|β| −

√
β2 + x2

s

}
.(3.7)

The behavior of ρ(β; t) in a neighborhood of β = ±|xs|, (|β| > |xs|) is

ρ(β; t) =
t−4/3

√
6π

√|β| − |xs|
|xs|1/6 +O

((|β| − |xs|)3/2),
as mentioned in [3].
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(iii) t > t∗: ∀β ∈ R,

ρ(β; t) =
22/3

√
3

π
(4t)−4/3

{
3

√
β +

√
β2 + x2

s +
3

√
−β +

√
β2 + x2

s

}
.(3.8)

(iv) x = 0, t ≥ t∗: an interesting case occurs at the origin for t > t∗, as was pointed
out by Bessis and Fournier in [3, 4]. The inviscid solution u(0, t) at the shock is given
by the asymptotic density of poles ρ(0; t) (see (3.12)). If we look at the solution at
the origin (β → 0), zs(0; t) is the solution to

−zs(0; t)

t
= u0(zs(0; t)).

When u0(x) = 4x3 − x/t∗,

−zs(0; t)

t
= 4zs(0; t)3 − zs(0; t)

t∗
.

The nonzero pair of opposite saddle points are, therefore,

z±s (0; t) = ±1

2

√
t− t∗
tt∗

= ±
√

α

2
≥ 0 when t ≥ t∗.

The corresponding density is easily found to be

ρ(0; t) =
1

πt
<z+

s (0; t) =

{
1
2π (t− t∗)1/2t−3/2t

−1/2
∗ t > t∗,

0 t ≤ t∗.
(3.9)

This could have been found by letting β → 0 in (3.8). Moreover, it makes sense that
the density ρ(0; t) is null when t < t∗ since all the poles βn are located above the
inviscid branch points xs on the imaginary axis, and |xs| > 0.

3.1. Residue computation of the integral representation of the inviscid
limit for t = t∗. Since xs(t∗) = 0, we have∫ ∞

0

z1/3

x2 + z2
dz =

π√
3x2/3

.(3.10)

Combining (3.4) and (3.10), we recover the inviscid solution at t = t∗:

u(x, t∗) = lim
ν→0+

uν(x, t∗) =
x

t∗
−
(

x

4t4∗

)1/3

=
x

t∗
− U(x, t∗)

t∗
.(3.11)

For 0 < t < t∗, a similar computation can be done using the double keyhole
contour of integration displayed in Fig. 3.1.

For t ≥ t∗, there is an interesting special case: since zs(0; t) ∈ R for t ≥ t∗,
ρ(0; t) = zs(0; t)/πt. Thus the inviscid solution at the origin (shock) for t > t∗ is
given by (see (4.4b))

u(0, t) =
u(0−, t)− u(0+, t)

2
= πρ(0; t) =

1

2
(t− t∗)1/2t−3/2 t

−1/2
∗ ,(3.12)

i.e., the solution at the shock satisfies the jump condition (see (C.6), (4.4b), Fig. C.1,
and [3, 16]):

u(0∓, t) = ±1

2
(t− t∗)1/2t−3/2t

−1/2
∗ .(3.13)



1502 DAVID SENOUF
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Γ

Γ β

β

Γ5

3

Γ4 8Γ

Γ

Γ

*0 < t < t

Re

Im

-R R

iR

-iR

Fig. 3.1. Contour of integration for the inviscid limit for t < t∗.

Although this result was stated by Bessis and Fournier and can be derived by
taking limβ→0 ρ(β; t), it is mentioned here to verify the validity formula ρ(β; t) =
(πt)−1 <z+

s (β; t), where z+
s (β; t) is the saddle point relevant to the asymptotic expan-

sion with a positive real part.
As a final remark, we would like to point out that this procedure which consists in

recovering the analytic structure of the inviscid solution via the limiting pole density
and the pole expansion is no longer possible when t > t∗ and x 6= 0. Indeed, in this
case we are faced with the same (apparent) paradox that is present in the asymptotic
expansion of the (spatial) Fourier transform of the inviscid solution (see section 6 and
also [3]). Thus the only way to recover the inviscid solution for t > t∗ and x 6= 0 using
the limiting pole density is by extending the solution obtained for t < t∗ to t > t∗.

4. Analytic extension of the integral representation of the inviscid so-
lution on the imaginary axis. Let

u(x, t) =
x

t
− 2x

∫ ∞

0

ρ(β; t)

x2 + β2
dβ =

x

t
−
∫ ∞

−∞

ρ(β; t)

x− iβ
dβ,(4.1a)

ũ(y, t) =
y

t
+ 2y P.V.

∫ ∞

0

ρ(β; t)

y2 − β2
dβ =

y

t
+ P.V.

∫ ∞

−∞

ρ(β; t)

y − β
dβ.(4.1b)

Then one can show that ρ(y; t) is a density function which satisfies the conservation
equation

ρt + (ρ ũ)y = 0.(4.2)

Indeed, one only needs to verify that u(x, t) defined by (4.1a) satisfies the inviscid
BE ut + uux = 0 under the assumption that (4.2) holds. Since u has branch cuts on
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u=u_ u=u+

Im x

ε
y

Re x

Fig. 4.1. Analytic continuation of the integral representation of the inviscid solution on the
imaginary axis.

the imaginary axis for t < t∗, ũ has branch cuts for y real (i.e., also on the imaginary
axis); one can analytically continue u on the imaginary axis using the paths displayed
in Fig. 4.1. Define the solution on the left (u−) and right (u+) of the imaginary axis
by

u±(iy, t) = lim
x→0±

u(z = x + iy, t).(4.3)

The discontinuity at x = 0 characterizes the shock solution. Thus we find that

u+(iy, t) =
iy

t
− P.V.

∫ ∞

−∞

ρ(β; t)

iy − iβ
dβ − ρ(y; t)

i

πi︷ ︸︸ ︷(
−1

2

∮
|y−β|=ε

dβ

y − β

)

= i

{
y

t
+

∫ ∞

−∞

ρ(β; t)

y − β
dβ + iπρ(y; t)

}
.

Similarly, we have that

u−(iy, t) = i

{
y

t
+

∫ ∞

−∞

ρ(β; t)

y − β
dβ − iπρ(y; t)

}
.

Therefore,

ũ(y, t) =
1

2i
(u+(iy, t) + u−(iy, t)),(4.4a)

ρ(y; t) =
1

2π
(u−(iy, t)− u+(iy, t)).(4.4b)

Since u± are real on the real axis, it is clear that they satisfy the symmetry relations

u±(x, t) = u±(x, t),

u−(−x, t) = −u+(x, t),

and therefore

u±(iy, t) = u±(−iy, t) = −u∓(iy, t).

From this we have

ũ(y, t) = =u+(iy, t),(4.5a)

ρ(y; t) = − 1

π
<u+(iy, t) =

1

π
<u−(iy, t),(4.5b)
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and the symmetry relations

ũ(−y, t) = −ũ(y, t),

ρ(−y; t) = ρ(y; t).

Thus we have the following property.
Property 4.1.

u±(iy, t) = ∓πρ(y; t) + i ũ(y, t).(4.6)

5. Continuum limit of the pole expansion and the CDS. Let an(t, ν) =
iβn(t, ν), and define the complex map F(ζ, ν, t) as

an(t, ν) = F(ζνn = νn, ν, t) : Z
∗ × R

2
+ → iR+, a−n = −an.(5.1)

Reformulating the Mittag–Leffler expansion of uν (1.5) and the CDS (1.6) in terms
of an, we have

uν(x, t) =
x

t
− 2ν

∞∑
l=−∞
l 6=0

1

x− al
,(5.2a)

ȧn =
an
t
− 2ν

∞∑
l=−∞
l 6=n,0

1

an − al
∀n ∈ Z

∗.(5.2b)

Both symmetric sums (5.2a, b) should be understood as

∞∑
l=−∞
l 6=n,0

1

an − al
=

1

2an
+ 2an

∞∑
l=1
l 6=n

1

a2
n − a2

l

=
1

2an
+ an

∞∑
l=−∞
l 6=0,±n

1

a2
n − a2

l

and

∞∑
l=−∞
l 6=0

1

x− al
= 2x

∞∑
l=1

1

x2 − a2
l

= x
∞∑

l=−∞
l 6=0

1

x2 − a2
l

.

At t∗, we have (cf. [18, section 4.1])

an(t∗, ν) = F(ζνn = νn, ν, t∗) = i · 4t∗ (2νµn)
3/4

= i · 4t∗ (2ν(c−1n + c0 + c1/n + · · · ))3/4

= i · 4t∗
(
c−1(2νn) + c02ν + c1(2ν)2/(2νn) + · · · ))3/4 .

Introduce the map

f(ζ, t) = F(ζ, 0, t) : R× R+ → iR+, f(−ζ, t) = −f(ζ, t),(5.3)

where the continuous variable ζ corresponds to a position on the real axis which can
be thought of as a variable obtained by simultaneously letting ν → 0+ and n→ +∞.
Assume that

an(t, ν) = F(nν, ν, t) = f(nν, t) + en(ν, t),(5.4)
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in which en(ν, t) is a small error term that goes to 0 as ν → 0+. Thus, formally we
have

2ν
∑
`6=n

1

an(t, ν)− a`(t, ν)
' 2ν

∑
`6=n

1

f(nν, t)− f(`ν, t)

ν→0+

−−−−→ P.V.

∫ ∞

−∞

dζ ′

f(ζ, t)− f(ζ ′, t)
.(5.5)

Moreover, this approximation shows that representation (5.4) is valid for all time if
it is true at t = t∗. A rigorous analysis of approximation (5.5) has been performed in
the context of vortex sheets in [10]. It is then clear that the pair of equations (5.2a,
b) satisfy the following property.

Property 5.1. The continuum limit of the CDS and the pole expansion is the
parametric system of integro-differential equations defined for any x such that ∀ζ ∈ R,
x 6= f(ζ, t), by

u(x, t) =
x

t
−
∫ ∞

−∞

dζ ′

x− f(ζ ′, t)
,

∂f

∂t
(ζ, t) =

f(ζ, t)

t
− P.V.

∫ ∞

−∞

dζ ′

f(ζ, t)− f(ζ ′, t)
.

This property also can be expressed as

∂f

∂t
(ζ, t) =

f(ζ, t)

t
− f(ζ, t)P.V.

∫ ∞

−∞

dζ ′

f2(ζ, t)− f2(ζ ′, t)
(5.6)

and

u(x, t) =
x

t
− x

∫ ∞

−∞

dζ ′

x2 − f2(ζ ′, t)
, x 6= f(ζ, t).(5.7)

Equation (5.7) defines the branch cuts of the inviscid solution as the set of complex
x-points for which x = f(ζ, t), while equation (5.6) defines the dynamics of these
branch cuts.

Since the poles are located on the imaginary axis, one can make the additional
assumption that f(ζ, t) = i g(ζ, t), where g(ζ, t) : R × R+ → R. Then from (5.7) we
find

u(x, t) =
x

t
− 2x

∫ ∞

0

dζ ′

x2 + g2(ζ ′, t)
, x 6= i g(ζ, t).(5.8)

We then define the density function ρ(z, t) as

ρ(z, t) =
1

gζ(ζ, t)
,(5.9)

where z = g(ζ, t). Then dζ ′ = ρ(z′, t) dz′ and we introduce this change of variable in
(5.8) to obtain

u(x, t) =
x

t
− 2x

∫ ∞

0

ρ(z; t)

x2 + z2
dz.
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As a converse to the procedure of section 3, case (i) t = t∗, the pole positions at
t∗ can be recovered from the cumulative distribution function σ (see Definition 2.1):

σ(β;βmax, t) =

∫ β

0

ρ(ξ; t) dξ for |β| ≤ βmax(5.10)

and, in particular, for t = t∗, ρ(β; t∗) = 2
√

3
π (4t∗)−4/3|β|1/3, so

σ(β;βmax, t∗) =

∫ β∗

0

2
√

3

π
(4t∗)−4/3ξ1/3 dξ

=

(
2π

3
√

3

)−1(
β∗
4t∗

)4/3

.

Inverting this relation in terms of β∗, we find that

β∗ = 4t∗

(
2π

3
√

3
σ∗

)3/4

.(5.11)

In order to recover the correct discretization, it suffices to choose

σ∗ = σn(t∗, ν) = 2νµn

(
2π

3
√

3

)−1

,(5.12)

where µn = 2π
3
√

3
(n− 1

3 ) +O(1/n) as n→ +∞ (see [18, section 4.1]). Therefore,

σ∗ = 2ν(n− 1/3) +O(1/n) as n→ +∞,(5.13)

and

β∗ = βn(t∗, ν) = 4t∗ (2νµn)
3/4

.(5.14)

Similar computations can be found in [21].

6. Uniform asymptotic expansion in (0, t∗] of the spatial Fourier trans-
form of the inviscid solution û(k, t) as k→ +∞. The analyticity properties of
the inviscid solution also can be analyzed by describing the asymptotic behavior of its
Fourier transform (see [13, 20]). We find a uniform asymptotic expansion as k → +∞
of the Fourier transform of the inviscid solution in a neighborhood of t = t∗, where
two second-order branch points ±xs(t) coalesce into a third-order branch point at the
origin xs(t∗) = 0. Thus, we clarify the seemingly discontinuous change of behavior of
û(k, t) at t∗ presented in [13]. This result is resumed in the following theorem.

Theorem 6.1. The uniform asymptotic expansion of the Fourier transform of
the inviscid solution for 0 < t ≤ t∗ is

û(k, t) = C0 · (tk)−4/3Ai
[
(−3ikxs(t)/2)

2/3
] (

1 +O (k−1
))

as k → +∞.

Thus from the asymptotic property of the Airy function and its value at the origin
Ai(0) we have

û(k, t) ∼
{ C1(t) · (t∗ − t)−1/4 k−3/2 e−k |xs(t)| 0 < t < t∗

C2 · (t∗k)−4/3 t = t∗
as k → +∞.
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Proof. In [13], Fournier and Frisch derive the asymptotic behavior of the inviscid
solution via the so-called Fourier–Lagrangian (F–L) representation, which is valid
up to the time where the relation x(x0, t) = x0 + tu0(x0) is invertible, i.e., up to
t∗ = −(infx0 u

′
0(x0))

−1. There is a discontinuous change in the behavior of û(k, t)
in k−3/2 exp(−k|xs(t)|) before t∗ to (t∗k)−4/3 at t∗, which arises from the fact that
the two saddle points of multiplicity 1 for 0 < t < t∗ coalesce at the origin to form a
saddle point of multiplicity 2 at t = t∗. The F–L representation is found by changing
variables from the Eulerian coordinate to the Lagrangian coordinate, followed by an
integration by parts:

û(k, t) =
1√
2π

∫ ∞

−∞
e−ikxu(x, t) dx =

1√
2π

∫ ∞

−∞
e−ikx(x0,t)u0(x0)

∂x

∂x0
dx0

=
1√

2πik

∫ ∞

−∞
e−ikx(x0,t)u′0(x0) dx0 (k 6= 0).

For u0(x) = 4x3 − x/t∗, x(x0, t) = 4tx3
0 + x0(1− t/t∗), we find

û(k, t) =
1√

2πik

∫ ∞

−∞
exp

{
−12ikt

(
x3

0

3
− α

6
x0

)}
u′0(x0) dx0,

where 2α = 1/t∗−1/t. Let λ = −12ikt; then we are interested in finding the behavior
of û(k, t) as k → +∞, that is, the behavior as λ→∞ of the integral∫ ∞

−∞
exp

{
λ

(
x3

0

3
− α

6
x0

)}
u′0(x0) dx0.(6.1)

The saddle points of the integrand occur when ∂x/∂x0 = 0; thus

x0 = x±0 (t) = ±
√

α

6
= ± 3

√
xs(t)

8t
⇒ x

(
x±0 (t)

)
= ±xs(t).

At t = t∗, x±0 (t∗) = 0, and the two saddle points of multiplicity 1 have coalesced into
a saddle point of multiplicity 2 at the origin. Let

f(x0) =
x(x0, t)

12t
=

x3
0

3
− α

6
x0,

and recall that xs(t) = t(2α/3)3/2 (see (C.4)). Then

f(x±0 (t)) = −2

3
x±0 (t)3 = ∓xs(t)

12t
.

We introduce the coefficients

ζ3/2 =
3

4

(
f(x−0 (t))− f(x+

0 (t))
)

=
3

2
f(x−0 (t)) =

xs(t)

8t
,

η =
1

2

(
f(x−0 (t)) + f(x+

0 (t))
)

= 0,

which arise in the construction of a uniform asymptotic expansion of an integral with
two coalescing saddle points. The integral defined in (6.1) is already in a format
appropriate for such a derivation. Indeed, it is an integral of the form

I(λ; ζ, η) =

∫
C

exp
{
λ
(
u3/3− ζu + η

)}
φ0(u) du,
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where λ → ∞. Thus the 1–1 analytic transformation x0 ↔ u given by the equation
f(x0) = u3/3 − ζu + η is simply the identity x0 ≡ u. Therefore, the time-uniform
asymptotic expansion of the spatial Fourier transform of the solution û(k, t) is im-
mediately found in terms of the Airy function and its derivative (cf. [11, 23, section
VII-4]). Let

a0 =
1

2

[
u′0(ζ

1/2) + u′0(−ζ1/2)
]
, b0 =

1

2ζ1/2

[
u′0(ζ

1/2)− u′0(−ζ1/2)
]
,

then

û(k, t) =
e−λη√
2πik

· 2πi
[

Ai
[
λ2/3ζ

]
λ1/3

(a0 +O(1/λ)) +
Ai′
[
λ2/3ζ

]
λ2/3

(b0 +O(1/λ))

]

as λ(k) = −12ikt → ∞. Since η = 0, ζ3/2 = xs(t)/8t, ζ1/2 = x+
0 (t), u′0(x0) =

12x2
0 − 1/t∗, a0 = u′0(x

±
0 (t)) = 1/t, b0 = 0, and we obtain the asymptotic behavior of

û(k, t) as k → +∞ uniform in a compact interval containing t = t∗:

û(k, t) = C0 · (tk)−4/3Ai
[
(−3ikxs(t)/2)

2/3
] (

1 +O (k−1
))

as k → +∞,(6.2)

where C0 is an appropriate numerical constant. Note that (6.2) can be obtained
without recourse to this method by a classical asymptotic analysis in which one would
express the expansion in terms of the Airy function. We choose this derivation due
to the simplicity of its construction. For 0 < t < t∗, using the fact that

Ai(z) =
e−

2
3 z

3/2

2
√
πz1/4

(
1 +O

(
z−3/2

))
as z →∞ in | arg z| < π

and for t = t∗, and by evaluating Ai(0) = 3−2/3/Γ(2/3), we obtain the asymptotic
behavior of û(k, t) as k → +∞ for 0 < t ≤ t∗ described in the second part of Theorem
6.1, in which C1(t) is a constant depending on t and C2 is a numerical constant. These
expansions are consistent with the fact that the Fourier transform of an analytic
function with a branch-point singularity at xs = <xs + i=ys of the form (cf. [20])

v(z) ∼ (z − xs)
µ, µ /∈ Z,

has an asymptotic behavior of the form

v̂(k) ∼ k−(µ+1)e−k=xseik<xs as k → +∞.

Note that the expansion for t > t∗ obtained from (6.2) yields the incorrect be-
havior |û(k, t)| ∼ C1(t) · (t − t∗)−1/4 k−3/2, which is valid only for moderate wave
numbers of the form 1 � k ≤ 1/|xs|. This is due to the fact that the formal
F–L representation is no longer valid beyond t∗. The correct behavior after t∗ of
the form |ûI(k, t)| ∼ C3(t) · (t − t∗)1/2k−1 for k > 1/|xs| which reflects the pres-
ence of a shock then must be obtained by following the work of Fournier and Frisch
in [13]. The two expansions agree when k ' 1/|xs|, giving a behavior of the form
|û(k, t)|, |ûI(k, t)| ∼ C4(t) · (t− t∗)2 for t close to t∗ (see [13]).

Appendix A. On the generic nature of the initial data. Caflisch et al.
characterize geometrically generic singularities for nonlinear hyperbolic systems in [9]
in the following way: given a PDE and its initial data, a singularity is generic if,
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under perturbation of the “initial data,” the singularity is of one of the stable types,
namely, a fold corresponding to a square-root branch point in z for each t or a cusp
corresponding to a cube root branch point which occurs when the two square root
branch points collide. They show that these are the only stable singularity types for
the inviscid BE. Loosely, they define stability as the property that under perturbation
of the initial data, the perturbed solution will have the same singularity type as the
original problem, i.e., either a fold or a cusp. Note that the formation of a cube
root singularity must stem from a “tangential” collision of the square root branch
points, i.e., one where the branch points travel at the same characteristic speed. In
case of a “nontangential” collision of square root branch points travelling at different
characteristic speeds, the resulting singularity remains a square root branch point.
For more details see [9].

Fournier and Frisch characterized generic singularities and corresponding generic
initial data for the inviscid BE in [13]. This description is based on a local analysis
of the singularity and takes into account the Gallilean invariance of the PDE and its
invariance under translation of the reference frame. This was reformulated in Bessis
and Fournier’s first paper [4].

Appendix B. Cardan’s formula. The roots of a cubic polynomial are given
by the well-known formula of Cardan (cf. [1, section 3.8.2]). We state this formula to
clarify the choices that are made in choosing the branches of the algebraic functions
which define the saddle points in the expansions: let λ, a, b, c ∈ C; then the roots of
the equation

λ3 + aλ2 + bλ + c = 0(B.1)

are obtained by setting

A = a/3, B = b/3, α = A2 −B, ζ = 2A3 − 3AB + c.

Let λ = x−A. Then (B.1) becomes

x3 − 3αx + ζ = 0.(B.2)

Let ω = e2πi/3 be a cube root of unity; then the three roots of (B.2) are




x0 = ωA+ ω2B,
x1 = ω2A+ ωB,
x2 = A+ B,

where




∆ = (ζ/2)
2 − α3,

A = 3

√
−ζ/2 +

√
∆,

B = 3

√
−ζ/2−√∆.

(B.3)

After choosing a branch for A, one must choose the corresponding branch for B so
that A · B = α3. If α and ζ are real, then there are three possibilities depending on
the sign of the real discriminant ∆:

(i) ∆ < 0 : A,B ∈ C, A = B, x0, x1, x2 ∈ R;
(ii) ∆ = 0 : A = B ∈ R, x0 = x1 = −x2

2 ∈ R;
(iii) ∆ > 0 : A,B ∈ R, x0 = x1 ∈ C, x2 ∈ R.
Case (iii), which yields two conjugate roots, is the only instance when we can

expect to have two equally relevant saddle points, thus allowing for some cancellation
in the asymptotic expansion. The relevant roots x0 and x1, after separation of real
and imaginary parts, are given by

x0 = x1 = −1

2
(A+ B) + i

√
3

2
(A− B).(B.4)
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u(x,t)

x

u(0+,t)

t>t* u(0-,t)

x (t)

x (t)s

s

-

Fig. C.1. Shock, multivaluedness, branch points, and Maxwell’s equal area rule for t > t∗.

Appendix C. Inviscid solution (ν = 0). The inviscid BE states that the
velocity of a fluid particle is conserved along certain trajectories, namely, the charac-
teristic lines

ẋ =
dx

dt
(t) = u(x(t), t)(C.1)

in the (x, t) plane. The implicit solution obtained by the method of characteristics
reflects the conservation of the velocity along these special curves:{

u = u(x, t) = u0(x0(x, t)),
x = x0 + t u0(x0(x, t)).

(C.2)

A fluid particle originally at a (Lagrangian) position x0 in space will be at a new
(Eulerian) position x after a certain time t with the same velocity along this line. Let
U = x0. Then, substituting u0(x) = 4x3 − x/t∗ in (C.2), we find that U satisfies the
cubic equation

U3 − α

2
U − x

4t
= 0, α =

t− t∗
2tt∗

.(C.3)

This defines a three-sheeted Riemann surface for the solution with a third-order branch
point at infinity and two opposite second-order branch points at ±xs(t) defined by

xs(t) = t (2α/3)3/2 = i (3t∗)−3/2(t∗ − t)3/2t−1/2.(C.4)

The envelope of the characteristic lines is the branch point since 0 = ∂x
∂x0

⇒
x
(
x±0 (t)

)
= ±xs(t). The solution is therefore

U(x, t) =




(8t)
−1/3

{
3

√
x +

√
x2 − x2

s + 3

√
x−√x2 − x2

s

}
t 6= t∗,

3

√
x

4t∗
t = t∗.

(C.5)

Note the particular (real) values of u(x, t) at the shock at x = 0 already found in
(3.13):

u(0±, t) = −U(0±, t)/t =

{
∓1

2 (t− t∗)1/2t−3/2t
−1/2
∗ t ≥ t∗,

0 t < t∗.
(C.6)



POLE CONDENSATION FOR BURGERS’ EQUATION II 1511

The topology of the three-sheeted Riemann surface given by (C.5) and the interpreta-
tion of the shock as the permutation of two Riemann sheets has been fully explained
by Bessis and Fournier in [3].

Appendix D. Generalization of the initial data to u0(x) = 2nx2n−1 −
x/t∗, n ≥ 2. Although the inviscid singularity resulting from a polynomial of
arbitrary odd order of the form u0(x) = 2nx2n−1 − x/t∗, n ∈ N, n ≥ 2, is no longer
generic (see [13, p. 707]), it is still interesting to describe the behavior of the inviscid
solution and the related asymptotic density of poles. We first describe the inviscid
solution and its branch points: substituting u0(x) in (C.2), we find that U is a root
of the polynomial of degree 2n− 1. Let

αn(t) =
t− t∗
ntt∗

and Pn(U) = U2n−1 − αn(t)

2
U − x

2nt
= 0.

Let Us(t) satisfy

0 =
∂x

∂U
(Us(t)) = P ′n(Us(t)) =⇒ Us(t) =

(
αn(t)/2

2n− 1

)1/(2n−2)

.

The 2n− 2 branch points of the inviscid solution are then given by

xs(t) = x(Us(t)) = 2ntUs

(
U2n−2
s − αn(t)/2

)
= Cn · (t− t∗)

2n−1
2n−2 · t−

2n−1
2n−2∗ · t− 1

2n−2 ,

where Cn = −(2n − 2)(2n − 1)
2n−1
2n−2 (2n)−

1
2n−2 . Notice that the 2n − 2 branch points

coalesce at the origin at t∗. Since U(0±, t) = ±πtρ(0; t) = ±(αn(t)/2)
1

2n−2 (cf. (3.9)),
the (real) value of the inviscid solution at the origin (shock) is given by

u(0±, t) = −U(0±, t)/t = ∓πρ(0; t) =

{
∓(t− t∗)

1
2n−2 (2nt∗)

−1
2n−2 t−

2n−1
2n−2 t ≥ t∗,

0 t < t∗.

The limiting pole density and inviscid limit are obtained using results from [17], where
it is shown that the relevant saddle points in the asymptotic analysis of Eν(iβ, t∗) are

z0(β; t∗) = exp

(
iπ

4n− 2

)(
β

2nt∗

) 1
2n−1

, z1 = −z0.

Since

ρ(β; t∗) =
<z0(β; t∗)

πt∗

and further results in [17] concern the asymptotic behavior of the zeros µk,n of Fn(µ) =∫∞
−∞ eµ(2niz−z2n)dz, we have the following result.

Property D.1. For any integer n ≥ 2, the density of poles at the shock time t∗
arising from the initial data u0(x) = 2nx2n−1 − x/t∗ is

ρ(β; t∗) =
1

π
cos

(
π

4n− 2

)(
β

2nt2n∗

) 1
2n−1

.
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The density at the origin (z = 0) is

ρ(0; t) =


 1

πt

(
t−t∗
2ntt∗

) 1
2n−2

t > t∗,
0 t ≤ t∗.

Moreover at t∗, the kth ordered pole of the solution for ν > 0 is located at

ak,n(t∗, ν) = i · 2nt∗ (2νµk,n)
2n−1
2n ,

where the positive coefficients µk,n are asymptotically given by

µk,n =
π

4n− 2
sec

(
π

4n− 2

)(
n− 1

2n− 1
+ 1 + 2k

)
+O

(
1

k

)
as k → +∞.

Higher order approximations of µk,n are provided in [17]. At t = t∗, the inviscid
solution can be found via the complex-valued limiting pole density ρ(β; t∗) and the
pole expansion as in (3.11) or via the characteristic equation as in Appendix C. The
resulting singularity is a branch point of order 2n−1, which arises from the coalescence
of n− 1 pair(s) of conjugate branch points of order 2n− 2 (see [13, p. 707]):

u(x, t∗) =
x

t∗
−
(

x

2nt2n∗

) 1
2n−1

.
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[21] O. Thual, U. Frisch, and M. Hénon, Application of pole decomposition to an equation
governing the dynamics of wrinkled flame fronts, J. Phys., 46 (1985), pp. 1485–1494.

[22] F. Ursell, Integrals with a large parameter. Several nearly coincident saddle points, Proc.
Cambridge Philos. Soc., 72 (1972), pp. 49–65.

[23] R. Wong, Asymptotic Approximations of Integrals, Academic Press, New York, 1989.


	SJMAAH_V28_i1_p0001.pdf
	SJMAAH_V28_i1_p0033.pdf
	SJMAAH_V28_i1_p0049.pdf
	SJMAAH_V28_i1_p0060.pdf
	SJMAAH_V28_i1_p0094.pdf
	SJMAAH_V28_i1_p0109.pdf
	SJMAAH_V28_i1_p0136.pdf
	SJMAAH_V28_i1_p0162.pdf
	SJMAAH_V28_i1_p0178.pdf
	SJMAAH_V28_i1_p0189.pdf
	SJMAAH_V28_i1_p0213.pdf
	SJMAAH_V28_i1_p0233.pdf
	SJMAAH_V28_i2_p0259.pdf
	SJMAAH_V28_i2_p0270.pdf
	SJMAAH_V28_i2_p0274.pdf
	SJMAAH_V28_i2_p0304.pdf
	SJMAAH_V28_i2_p0322.pdf
	SJMAAH_V28_i2_p0338.pdf
	SJMAAH_V28_i2_p0363.pdf
	SJMAAH_V28_i2_p0381.pdf
	SJMAAH_V28_i2_p0389.pdf
	SJMAAH_V28_i2_p0402.pdf
	SJMAAH_V28_i2_p0434.pdf
	SJMAAH_V28_i2_p0452.pdf
	SJMAAH_V28_i2_p0481.pdf
	SJMAAH_V28_i3_p0499.pdf
	SJMAAH_V28_i3_p0516.pdf
	SJMAAH_V28_i3_p0530.pdf
	SJMAAH_V28_i3_p0539.pdf
	SJMAAH_V28_i3_p0570.pdf
	SJMAAH_V28_i3_p0595.pdf
	SJMAAH_V28_i3_p0611.pdf
	SJMAAH_V28_i3_p0633.pdf
	SJMAAH_V28_i3_p0656.pdf
	SJMAAH_V28_i3_p0669.pdf
	SJMAAH_V28_i3_p0704.pdf
	SJMAAH_V28_i3_p0715.pdf
	SJMAAH_V28_i3_p0731.pdf
	SJMAAH_V28_i3_p0749.pdf
	SJMAAH_V28_i4_p0769.pdf
	SJMAAH_V28_i4_p0808.pdf
	SJMAAH_V28_i4_p0831.pdf
	SJMAAH_V28_i4_p0852.pdf
	SJMAAH_V28_i4_p0867.pdf
	SJMAAH_V28_i4_p0886.pdf
	SJMAAH_V28_i4_p0897.pdf
	SJMAAH_V28_i4_p0903.pdf
	SJMAAH_V28_i4_p0924.pdf
	SJMAAH_V28_i4_p0944.pdf
	SJMAAH_V28_i4_p0971.pdf
	SJMAAH_V28_i4_p0999.pdf
	SJMAAH_V28_i5_p1015.pdf
	SJMAAH_V28_i5_p1028.pdf
	SJMAAH_V28_i5_p1048.pdf
	SJMAAH_V28_i5_p1064.pdf
	SJMAAH_V28_i5_p1086.pdf
	SJMAAH_V28_i5_p1094.pdf
	SJMAAH_V28_i5_p1113.pdf
	SJMAAH_V28_i5_p1135.pdf
	SJMAAH_V28_i5_p1158.pdf
	SJMAAH_V28_i5_p1173.pdf
	SJMAAH_V28_i5_p1191.pdf
	SJMAAH_V28_i5_p1205.pdf
	SJMAAH_V28_i5_p1212.pdf
	SJMAAH_V28_i5_p1227.pdf
	SJMAAH_V28_i5_p1248.pdf
	SJMAAH_V28_i5_p1258.pdf
	SJMAAH_V28_i6_p1265.pdf
	SJMAAH_V28_i6_p1294.pdf
	SJMAAH_V28_i6_p1309.pdf
	SJMAAH_V28_i6_p1317.pdf
	SJMAAH_V28_i6_p1354.pdf
	SJMAAH_V28_i6_p1371.pdf
	SJMAAH_V28_i6_p1389.pdf
	SJMAAH_V28_i6_p1406.pdf
	SJMAAH_V28_i6_p1420.pdf
	SJMAAH_V28_i6_p1446.pdf
	SJMAAH_V28_i6_p1457.pdf
	SJMAAH_V28_i6_p1490.pdf

